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Abstract: An approach based on Artificial Neural Networks is proposed in this paper to improve the

localisation accuracy of Inertial Navigation Systems (INS)/Global Navigation Satellite System (GNSS)

based aided navigation during the absence of GNSS signals. The INS can be used to continuously

position autonomous vehicles during GNSS signal losses around urban canyons, bridges, tunnels

and trees, however, it suffers from unbounded exponential error drifts cascaded over time during

the multiple integrations of the accelerometer and gyroscope measurements to position. More so,

the error drift is characterised by a pattern dependent on time. This paper proposes several efficient

neural network-based solutions to estimate the error drifts using Recurrent Neural Networks, such

as the Input Delay Neural Network (IDNN), Long Short-Term Memory (LSTM), Vanilla Recurrent

Neural Network (vRNN), and Gated Recurrent Unit (GRU). In contrast to previous papers published

in literature, which focused on travel routes that do not take complex driving scenarios into consider-

ation, this paper investigates the performance of the proposed methods on challenging scenarios,

such as hard brake, roundabouts, sharp cornering, successive left and right turns and quick changes

in vehicular acceleration across numerous test sequences. The results obtained show that the Neural

Network-based approaches are able to provide up to 89.55% improvement on the INS displacement

estimation and 93.35% on the INS orientation rate estimation.

Keywords: INS; GPS outage; autonomous vehicle navigation; inertial navigation; deep learning;

neural networks

1. Introduction

The safe navigation of autonomous vehicles and robots alike is dependent on fast
and accurate positioning solutions. Autonomous vehicles are commonly localised within
a lane using sensors such as cameras, LIDARS and radars, whilst road localisation is
achieved through the use of information provided by a Global Navigation Satellite System
(GNSS). There are, however, times when the LIDAR or/and camera might be unavailable
for use [1,2]. The GNSS, which operates through the trilateration of signals obtained from
at least three satellites, is also unreliable. The accuracy of the GNSS deteriorates due to
multi-path reflections and visibility issues under bridges and trees, in tunnels and urban
canyons [3]. An Inertial Navigation System (INS) can be used to estimate the position
and orientation of the vehicle during the GNSS outage periods provided the availability
of initial orientation information [4]. Nevertheless, the INS, which is made up of sensors
such as the accelerometer and gyroscope, suffers from an exponential error-drift during
the double integration of the accelerometer’s measurement to position and the integration
of the gyroscopes attitude rate to orientation [5]. These errors are cascaded unboundedly
over time to provide a poor positioning solution within the navigation time window [5].
A common approach towards reducing the error drifts involves calibrating the INS peri-
odically with the GNSS. The challenge, therefore, becomes one of accurately predicting
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the position of the vehicle in the absence of the GNSS signal needed for positioning and
correction. Traditionally, Kalman filters are used in modelling the error between the Global
Positioning System (GPS) and INS positions [6–8]. However, they have limitations when
modelling highly non-linear dependencies, stochastic relationships and non-Gaussian
noise measurements [6].

Over the years, other methods based on artificial intelligence have been proposed by
a number of researchers to learn the error-drift within the sensors’ measurements [9–14].
The use of the sigma pi neural network on the positioning problem was explored by
Malleswaran et al. in Reference [15]. Noureldin et al. investigated the use of the Input
Delay Neural Network (IDNN) to model the INS/GPS positional error [6]. A Multi-Layer
Feed-Forward Neural Network (MFNN) was applied in Reference [16] on a single point
positioning INS/GPS integrated architecture. Reference [17] employed the MFNN on
an integrated tactical grade INS and a Differential GPS architecture for a better position
estimation solution. More so, Recurrent Neural Networks, which are distinguishable
from other neural networks due to their ability to make nodal connections in temporal
sequences, have been proven to model the time-dependent error drift of the INS more
accurately compared to other neural network techniques [18]. In Reference [19], Fang et al.
compared the performance of the Long Short-Term Memory (LSTM) algorithm to the Multi-
Layer Perceptron (MLP) and showed the superiority of the LSTM over the MLP. Similarly,
in Reference [1], Onyekpe et al. investigated the performance of the LSTM algorithm for
high data rate positioning and compared it to other techniques, such as the IDNN, MLP
and Kalman filter.

Nevertheless, we observe that despite the number of techniques investigated on
the INS/GPS error drift modelling, there lacks an investigation into the performances of
the techniques on complex driving scenarios and environments experienced in everyday
driving. Such scenarios range from hard brakes on regular, wet, or muddy roads to sharp
cornering scenarios, heavy traffic, roundabouts, etc. We thus set out to investigate the
performances of neural network-based approaches on such complex driving environments
and show that these scenarios prove rather more challenging for the INS. We propose
an approach based on neural networks with inspiration drawn from the operation of the
feedback control system, in order to improve the estimation of the neural networks (NN)
for the short-term tracking of the vehicles’ displacement in these scenarios.

The rest of the paper is structured as follows. In Section 2, we describe the challenging
navigation problem, formulate the inertial navigation mathematical model and describe the
structure of the proposed NN approach. In Section 3, we describe the Inertia and Odometry
Vehicle Navigation Dataset (IO-VNBD) used as well as the setup of the experiment. In
addition, we also define the metrics used to evaluate the performance of the NN technique
and furthermore perform a comparative analysis of the IDNN, LSTM, Gated Recurrent
Unit (GRU), Vanilla Recurrent Neural Network (vRNN) and MLP in terms of accuracy and
computational efficiency. In Section 4, we discuss the results obtained and we conclude our
work in Section 5.

2. Problem Description and Formulation (INS Motion Model)

Most of the previous research on vehicle positioning does not take into consideration
complex scenarios such as hard brake, sharp cornering or roundabouts. Hence, the evalua-
tion of the performance of positioning algorithms present in most published works may
not accurately reflect real-life vehicular driving experience. Moreover, as those complex
scenarios present strong challenges for INS tracking, it seems essential for the reliability of
the algorithms to be assessed under such scenarios:

• Hard brake—According to Reference [20], hard brakes are characterised by a longitu-
dinal deceleration of ≤−0.45 g. They occur when the brake pad of the vehicle has a
large force applied to it. The sudden halt to the motion of the vehicle leads to a steep
decline in the velocity of the vehicle, thus making it difficult to predict the vehicle
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coming to a stop and to track the motion of the vehicle thereafter. This scenario poses
a major challenge to the displacement estimation of the vehicle.

• Sharp cornering and successive left and right turn—The sudden and consecutive
change in the direction of the vehicle also poses a challenge to the orientation estima-
tion of the vehicle. The INS struggles to accurately capture the sudden sharp changes
to the orientation of the vehicle as well as continuous consecutive changes to the
vehicle in relatively short periods of time.

• Changes in acceleration (Jerk)—The accuracy of the displacement estimation of the
INS is affected by quick and varied changes to the acceleration of the vehicle within a
short period of time. This is particularly a challenge as the INS struggles to capture
the quick change in the vehicle’s displacement thereafter.

• Roundabout—Roundabouts present a particular struggle due to its shape. The circular
and unidirectional traffic flow makes it a challenge to track the vehicle’s orientation
and displacement particularly due to the continuous change in the vehicle’s direction
whilst navigating the roundabout. Different roundabout sizes were considered in
this study.

2.1. INS/GNSS Motion Model

Tracking the position of a vehicle is usually done relative to a reference. The INS’s
measurements usually provided in the body (sensors) frame would need to be transformed
into the navigation frame for tracking purposes [21]. In this study, we adopt the North-
East-Down convention in defining the navigation frame. The transformation matrix Rnb

from the body frame to navigation frame is as shown in Equation (1)

Rnb =





cosθcosΨ −cosθ sinΨ + sinφ sinθ cosΨ sinφ sinΨ + cosφ sinθ cosΨ

cosθ sinΨ cosφ cosΨ + sinφ sinθ sinΨ −sinφ cosΨ + cosφ sinθ sinΨ

−sinθ sinφcosθ cosφcosθ



. (1)

where φ is the roll, θ is the pitch and Ψ is the yaw. However, as our study is limited to
the two-dimensional tracking of vehicles, φ and θ are thus considered to be zero, thus the
rotation matrix Rnb becomes:

Rnb =





cosΨ −sinΨ 0
sinΨ cosΨ 0

0 0 1



 (2)

The gyroscope measures the rate of change of attitude (angular velocity) in yaw,
roll and pitch with respect to the inertial frame as expressed in the body frame [1,21].
Giving initial orientation information Ψ0, the attitude rate ωb can be integrated to provide
continuous orientation ΨINS information in the absence of the GNSS signal.

ΨINS = Ψ0 +
∫ t

t−1
ωb (3)

The accelerometer measures the specific force (In the vehicle tracking application,
the centrifugal acceleration is considered absorbed in the local gravity sector and the
centrifugal acceleration considered negligible due to its small magnitude.) f b on the sensor
in the body frame and is as expressed in Equation (4); where gn represents the gravity
vector, Rbn is the rotation matrix from the navigation frame to the body frame and an

denotes the linear acceleration of the sensor expressed in the navigation frame.

f b = Rbn(an − gn) (4)

However, the accelerometer measurements at each time t are usually corrupted by a
bias δb

INS and noise εb
a, and is thus represented by Fb

INS, as shown in Equation (5).

Fb
INS = f b

INS + δb
INS + εb

a (5)
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More so, the accelerometer’s bias varies slowly with time and as such can be modelled
as a constant parameter; whilst the accelerometer’s noise is somewhat characterised by a
Gaussian distribution and modelled as εb

a ∼ N(0, Σa). Therefore, the specific measurement
equation as expressed in Equation (4) can be expanded as shown below, where ab is the
linear acceleration in the body frame and gb is the gravity vector in the body frame.

from Equation (4), ab = f b + gb, (6)

from Equation (5), Fb
INS = ab

INS + δb
INS, a + εb

a (7)

ab = Fb
INS − δb

INS, a − εb
a (8)

ab + εb
a = Fb

INS − δb
INS, a (9)

However, ab
INS = Fb

INS − δb
INS, a (10)

ab
INS = ab + εb

a (11)

where ab
INS is the bias and gravity compensated acceleration measurement. The vehicle’s

velocity in the body frame can be estimated through the integration of Equation (11) as
shown below:

vb
INS =

∫ t

t−1
ab + εb

v (12)

Through the double integration of Equation (11), the displacement of the vehicle in
the body frame at time t from t− 1, xb

INS, can also be determined as shown in Equation (13).

xb
INS =

x t

t−1
ab + εb

x (13)

where εb
x and εb

v are the noise characterising the INS’s displacement and velocity informa-
tion formulation derived from εb

a, δb
INS, a is the sensors bias in the body frame calculated as

a constant parameter from the average reading of a stationary accelerometer ran for 20 min,
Fb

INS is the corrupted measurement of the accelerometer sensor at time t (sampling time), g

is the gravity vector and
s t

t−1 ab,
∫ t

t−1 ab and ab are the uncorrupted (true) displacement,
velocity and acceleration, respectively, of the vehicle.

Thus, the vehicle’s true displacement is expressed as xb
GNSS ≈

s t
t−1 ab.

Furthermore, εb
x can be obtained by:

εb
x ≈ xb

GNSS − xb
INS (14)

Using the North-East-Down (NED) system, the noise εb
x, displacement xb

INS, velocity

vb
INS and acceleration ab

INS of the vehicle in the body frame within the window t − 1 to t

can be transformed into the navigation frame using Rnb as shown in Equations (15)–(19).
However, the down axis is not considered in this study. More so, the window size in this
study is defined as 1 s.

Rnb
INS . ab

INS → an
INS → ab

INS . cosΨ, ab
INS . sinΨ, (15)

Rnb
INS . vb

INS → vn
INS → vb

INS . cosΨINS, vb
INS . sinΨ, (16)

Rnb
INS . xb

INS → xn
INS → xb

INS . cosΨ, xb
INS . sinΨ, (17)

Where : Rnb
INS =





cosΨINS −sinΨINS 0
sinΨINS cosΨINS 0

0 0 1



, (18)
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(19)

The vehicle’s true displacement xb
GNSS is estimated as the distance between two points

on the surface of the earth specified in longitude and latitude. The accuracy of xb
GNSS is

limited to the precision and accuracy of the GNSS, which is defined as ±3 according to
Reference [22]. There is the possibility to improve the accuracy of xb

GPS using approaches

such as in Reference [3]). xb
GNSS is determined using the Vincenty’s Inverse and applied

according to Reference [1] using the Python implementation in Reference [23].

2.2. Neural Network Localisation Scheme Set-Up

We propose a displacement estimation model to minimise the effect of the noise in the
accelerometer, as illustrated in Figure 1. The proposed model, which is analogous to the
functioning of a closed-loop or feedback control system, operates in prediction mode by
feeding back the output of the neural network at t − 1/t − 2 and the vehicles’ acceleration
at time window t/t − 1 into the neural network in order to estimate the distance covered
by the vehicle within the current window t/t − 1, as shown in Figure 2.

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡𝑎 ,𝑎 ,𝑣 ,𝑣 ,𝑥 ,𝑥 , ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎢
⎢⎡𝑎  . 𝑐𝑜𝑠Ψ𝑎  . 𝑠𝑖𝑛Ψ𝑣  . 𝑐𝑜𝑠Ψ𝑣  . 𝑠𝑖𝑛Ψ𝑥  . 𝑐𝑜𝑠Ψ𝑥  . 𝑠𝑖𝑛Ψ ⎦⎥⎥

⎥⎥⎥
⎥⎤

𝑥 𝑥±3 𝑥𝑥

𝑡 − 1/𝑡 − 2 𝑡/𝑡 − 1 𝑡/𝑡 − 1,

 

𝑡 − 1/𝑡 − 2

Figure 1. Training set-up of the proposed displacement estimation model.

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡𝑎 ,𝑎 ,𝑣 ,𝑣 ,𝑥 ,𝑥 , ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎢
⎢⎡𝑎  . 𝑐𝑜𝑠Ψ𝑎  . 𝑠𝑖𝑛Ψ𝑣  . 𝑐𝑜𝑠Ψ𝑣  . 𝑠𝑖𝑛Ψ𝑥  . 𝑐𝑜𝑠Ψ𝑥  . 𝑠𝑖𝑛Ψ ⎦⎥⎥

⎥⎥⎥
⎥⎤

𝑥 𝑥±3 𝑥𝑥

𝑡 − 1/𝑡 − 2 𝑡/𝑡 − 1 𝑡/𝑡 − 1,

𝑡 − 1/𝑡 − 2

Figure 2. Prediction set-up of the proposed displacement estimation model.

However, as presented in Figure 1, during the training phase, the NN is fed with the
GNSS estimated displacement rather than the output of the NN. Both models (training and
prediction) are structured this way due to the availability of the GNSS signal during the
training phase and its absence in the prediction phase. The NN’s output is thus setup to
mimic the functionality of the GNSS resolved displacement at window t − 1/t − 2 during
the prediction operation.
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Howbeit, as the NN’s output never matches the GNSS displacement, the challenge
becomes one of minimising the effect of the inexactness of the previous NN’s estimation
on the performance of the prediction model. We set about to address this by introducing
a controlled random white Gaussian noise N with a normal distribution N ∼ N (µ, σ2)
to one of the inputs of the NN; the GNSS resolved displacement within the previous
time window, during the training phase. Where the mean µ, and the and the variance σ2,
are determined experimentally from a sample displacement resolving of the GNSS and
INS signals. This approach attempts to aid the NN to account for the impreciseness in
the prediction output. Figures 1 and 2 shows the training and prediction set-up of the
displacement model, respectively.

Furthermore, we adopt a much simpler approach towards the estimation of the
vehicles orientation rate as we found no performance benefit in utilising the feedback
approach presented in the previous paragraphs. On the orientation rate estimation, the
NN is made to learn the relationship between the yaw rate as provided by the gyroscope
and the ground truth (yaw rate) calculated from the information provided by the GNSS.

3. Data Collection, Experimental Setup and NN Model Selection

3.1. Dataset

The IO-VNBD dataset, consisting of 98 h of driving data collected over 5700 km
of travel and characterised by diverse driving scenarios (publicly available at https://
github.com/onyekpeu/IO-VNBD) was used in this study [24]. The dataset captures
information such as the vehicle’s longitudinal acceleration, yaw rate, heading, GPS co-
ordinates (latitude, longitude) at each time instance from the Electric Control Unit (ECU)
of the vehicle with a sampling interval of 10 Hz. Details of the sensors used in our research
can be found in Reference [24]. A Ford Fiesta Titanium was used for the data collection as
shown in Figure 3. Tables 1–3 present the data subsets used in this study.

Figure 3. Data collection vehicle, showing sensor locations [2].

Table 1. Inertia and Odometry Vehicle Navigation (IO-VNB) data subsets used for the model

training [24].

IO-VNB Dataset Features

V-Vta1a
Wet Road, Gravel Road, Country Road, Sloppy Roads, Round About
(×3), Hard Brake on wet road, Tyre Pressure A

V-Vta2
Round About (×2), A Road (A511, A5121, A444), Country Road,
Hard Brake, Tyre Pressure A

V-Vta8 Town Roads (Build-up), A-Roads (A511), Tyre Pressure A

V-Vta10 Round About (×1), A—Road (A50), Tyre Pressure A

V-Vta16
Round-About (×3), Hilly Road, Country Road, A-Road (A515), Tyre
Pressure A

V-Vta17 Hilly Road, Hard-Brake, Stationary (No Motion), Tyre Pressure A

V-Vta20 Hilly Road, Approximate Straight-line travel, Tyre Pressure A

https://github.com/onyekpeu/IO-VNBD
https://github.com/onyekpeu/IO-VNBD
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Table 1. Cont.

IO-VNB Dataset Features

V-Vta21 Hilly Road, Tyre Pressure A

V-Vta22 Hilly Road, Hard Brake, Tyre Pressure A

V-Vta27
Gravel Road, Several Hilly Road, Potholes, Country Road, A-Road
(A515), Tyre Pressure A

V-Vta28 Country Road, Hard Brake, Valley, A-Road (A515)

V-Vta29
Hard Brake, Country Road, Hilly Road, Windy Road, Dirt Road, Wet
Road, Reverse (×2), Bumps, Rain, B-Road (B5053), Country Road,
U-Turn (×3), Windy Road, Valley, Tyre Pressure A

V-Vta30
Rain, Wet Road, U-Turn (×2), A-Road (A53, A515), Inner Town
Driving, B-Road (B5053), Tyre Pressure A

V-Vtb1
Valley, rain, Wet-Road, Country Road, U-T urn (×2), Hard-Brake,
Swift-Manoeuvre, A—Road (A6, A6020, A623, A515), B-Road (B6405),
Round About (×3), day Time, Tyre Pressure A

V-Vtb2 Country Road, Wet Road, Dirt Road, Tyre Pressure A

V-Vtb3
Reverse, Wet Road, Dirt Road, Gravel Road, Night-time, Tyre
Pressure A

V-Vtb5

Dirt Road, Country Road, Gravel Road, Hard Brake, Wet Road, B
Road (B6405, B6012, B5056), Inner Town Driving, A-Road, Motorway
(M42, M1), Rush hour(Traffic) Round-About (×6), A-Road (A5, A42,
A38, A615, A6), Tyre Pressure A

V-Vw4
Round-About (×77), Swift-Manoeuvres, Hard-Brake, Inner City
Driving, Reverse, A-Road, Motorway (M5, M40, M42), Country Road,
Successive Left-Right Turns, Daytime, U-Turn (×3), Tyre Pressure D

V-Vw5
Successive Left-Right Turns, Daytime, Sharp Turn Left/Right, Tyre
Pressure D

V-Vw14b Motorway (M42), Night-time, Tyre Pressure D

V-Vw14c
Motorway (M42), Round About (×2), A-Road (A446), Night-time,
Hard Brake, Tyre Pressure D

V-Vfa01
A-Road (A444), Round About (×1), B–Road (B4116) Day Time, Hard
Brake, Tyre Pressure A

V-Vfa02
B-Road (B4116), Round About (×5), A Road (A42, A641), Motorway
(M1, M62) High Rise Buildings, Hard Brake, Tyre Pressure C

V-Vfb01a
City Centre Driving, Round-About (×1), Wet Road, Ring Road,
Night, Tyre Pressure C

V-Vfb01b
Motorway (M606), Round-About (×1), City Roads Traffic, Wet Road,
Changes in Acceleration in Short Periods of Time, Night, Tyre
Pressure C

V-Vfb02b
Round About (×1), Bumps, Successive Left Right Turns, Hard-Brake
(×7), Zig-zag (×6), Night, Tyre Pressure D

Table 2. IO-VNB data test subset used in the less challenging scenario.

Scenario IO-VNB Data Subset
Total Time Driven, Distance Covered,

Velocity and Acceleration

Motorway V-Vw12
1.75 min, 2.64 km, 82.6–97.4 km/h,

−0.06 to +0.07 g
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Table 3. IO-VNB data test subset used in the challenging scenarios.

Challenging Scenarios IO-VNB Data Subset
Total Time Driven, Distance

Covered, Velocity
and Acceleration

Roundabout

V-Vta11
1.0 min, 0.92 km, 26.8–97.7 km/h,

−0.45 to +0.15 g

V-Vfb02d
1.5 min, 0.84 km, 0.0–57.3 km/h,

−0.33 to +0.31 g

Changes in acceleration

V-Vfb02e
1.6 min, 1.52 km, 37.4–73.9 km/h,

−0.24 to +0.19 g

V-Vta12
1.0 min, 1.27 km, 44.7–85.3 km/h,

0.44 to +0.13 g

Hard Brake

V-Vw16b
2.0 min, 1.99 km, 1.3–86.3 km/h,

−0.75 to +0.29 g

V-Vw17
0.5 min, 0.54 km, 31.5–72.7 km/h,

−0.8 to +0.19 g

V-Vta9
0.4 min, 0.43 km, 48.9–87.7 km/h,

−0.6 to +0.14 g

Sharp Cornering and
Successive left and right turns

V-Vw6
2.1 min, 1.08 km, 3.3–40.7 km/h,

−0.34 to +0.26 g

V-Vw7
2.8 min, 1.23 km, 0.4–42.2 km/h,

−0.37 to +0.37 g

V-Vw8
2.7 min, 1.12 km, 0.0–46.4 km/h,

−0.37 to +0.27 g

3.1.1. Performance Evaluation Metrics

The performance of both the INS- and NN-based approaches are evaluated using the
metrics defined below:

Cumulative Root Squared Error (CRSE)—The CRSE measures the cumulative root
squared of the prediction error every second for the total duration of the GNSS outage
defined as 10 s. It ignores the contributions of the negative sign of the error estimations,
enabling a better understanding of the performance of the positioning techniques.

CRSE =
Nt

∑
t=1

√

epred
2 (20)

Cumulative Absolute Error (CAE)—The CAE measures the absolute error of the
prediction every second and summates the values throughout the duration of the GNSS
outage, contrastingly to the CRSE, signs are not ignored. This tool is useful to better
understand if the position technique is generally under or over predicting points and how
prediction variance affects the overall positioning of the vehicle after the 10 s outage period.

CAE = ∑
Nt

t=1
epred. (21)

Average Error Per Second (AEPS)—The AEPS measures the average error of the pre-
diction every second of the GNSS outage. It is useful to compare the general performance
of the models and has uses in showing any significant outliers.

AEPS =
1

Nt
. ∑

Nt

t=1
epred. (22)
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Mean (µ)—The mean of the CRSE, CAE and AEPS across all test sequences within
each scenario is evaluated to reveal the average performance of the positioning technique
in each scenario.

µCRSE =
1

Ns
∑

Ns

i=1
CRSE, µCAE =

1

Ns
∑

Ns

i=1
CAE, µAEPS =

1

Ns
∑

Ns

i=1
AEPS. (23)

Standard Deviation (σ)—The standard deviation measures the variation of the CRSEs,
CAEs and AEPSs of the sequences of each test scenario.

σCRSE =

√

∑(CRSEi − µ)2

Ns
, σCAE =

√

∑(CRSEi − µ)2

Ns
, σAEPS =

√

∑(CRSEi − µ)2

Ns
. (24)

where Nt is GNSS outage length of 10 s, t is the sampling period, epred is the prediction
error and Ns is the total number of test sequences in each scenario.

Minimum (min)—The minimum metric informs of the minimum CRSE, CAE and
AEPS of all sequences evaluated in each test scenario.

Maximum (max)—The maximum CRSE, CAE and AEPS provide information of the
maximum CRSE of all sequences evaluated in each test scenario. It provides information
on the possible accuracy of the positioning techniques in such scenarios. It is our rational
that the max metric holds more significance compared to the µ and min, as it captures the
performance of the vehicle in each challenging scenario explored and further informs on
the accuracy of the investigated techniques in each scenario.

3.1.2. Neural Network Comparative Analysis

The proliferation of Deep Learning and the internet of things on low memory devices,
increasing sensing and computing applications and capabilities promise to transform
the performance of such devices on complex sensing tasks. The key impediment to the
wider adoption and deployment of neural network-based sensing application is their high
computation cost. Therefore, there is the need to have a more compact parameterization
of the neural network models. To this end, we evaluate the performance of the MLP,
IDNN, vanilla RNN (vRNN), GRU and LSTM on the roundabout scenario across different
parameterization for model efficiency.

From our study, we observe that the IDNN, vRNN and GRU achieves a max CRSE
orientation rate of 0.34, followed by the LSTM recording a max CRSE of 0.35 rad/s, whilst
the MLP provided the worst performance of them all with a max CRSE of 0.97 rad/s.
In an almost similar fashion, the IDNN, vRNN, LSTM and GRU obtain a max CRSE
displacement of 17.96 m, whilst the MLP obtains a max CRSE of 156.23 m. However, as the
IDNN is characterised by a significantly lower number of parameters compared to the GRU,
LSTM and vRNN whilst providing similar CRSE scores across all NN studied and weight
connections explored, we adopt it for use in learning the sensor noise in the accelerometer
and gyroscope in this study. Table 4 shows the number of parameters characterizing each
NN across the various weights investigated; 8, 16, 32, 64, 96, 128, 192, 256 and 320.

Furthermore, we observe that the number of weighted parameters has little influence
on the performance of the displacement and orientation rate estimation model. However,
we notice that the number of time steps in the recurrent NN models (recurrent in both
layer architecture and input structure such as the IDNN) significantly influences the
accuracy of the model’s prediction in both the orientation and displacement estimation.
The performance of the IDNN across several time steps ranging from 2–14 are presented in
Tables 5 and 6.
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Table 4. Number of trainable parameters in each neural network (NN) across various

weighted connections.

Number of
Weighted

Connections
Number of Trainable Parameters

MLNN
(2-Layer)

vRNN
(2-Layer)

GRU
(2-Layer)

LSTM
(2-Layer)

IDNN
(2-Layer)

8 33 65 185 245 65

16 97 225 657 873 161

32 321 833 2465 3281 449

64 1153 3201 9537 2705 1409

128 4353 12,545 37,505 49,985 4865

192 9601 28,033 83,905 111,841 10,369

256 16,897 49,665 148,737 198,273 17,921

320 26,241 77,441 232,001 309,281 27,521

Table 5. The performance evaluation based on the Cumulative Root Squared Error (CRSE) metric of

the Input Delay Neural Network (IDNN) in each investigated scenario across several time steps on

the orientation rate estimation.

Number of
Time Steps

Motorway
(Rad/s)

Roundabout
(Rad/s)

Quick Changes
in Vehicle

Acceleration
(Rad/s)

Hard Brake
(Rad/s)

Sharp
Cornering

(Rad/s)

2 0.05 0.41 0.38 0.28 0.52

3 0.06 0.62 0.33 0.33 0.56

4 0.06 0.59 0.34 0.35 0.51

5 0.06 0.60 0.38 0.34 0.41

6 0.05 0.61 0.39 0.35 0.43

7 0.05 0.63 0.37 0.32 0.47

8 0.05 0.60 0.37 0.32 0.46

9 0.05 0.60 0.35 0.34 0.45

10 0.06 0.61 0.35 0.28 0.51

11 0.06 0.58 0.36 0.25 0.50

12 0.05 0.38 0.38 0.28 0.51

13 0.06 0.62 0.33 0.32 0.51

14 0.06 0.59 0.34 0.35 0.49

Table 6. Showing the performance evaluation based on the CRSE metric of the IDNN in each investigated scenario across

several time steps on the displacement estimation.

NN
Number of
Time Steps

Motorway (m) Roundabout (m)
Quick Changes in

Vehicle
Acceleration (m)

Hard Brake (m)
Sharp

Cornering (m)

IDNN
2 651.41 702.17 571.99 648.57 425.56

4 616.60 655.22 546.76 580.01 373.03
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Table 6. Cont.

NN
Number of
Time Steps

Motorway (m) Roundabout (m)
Quick Changes in

Vehicle
Acceleration (m)

Hard Brake (m)
Sharp

Cornering (m)

IDNN

6 610.61 599.22 524.41 577.19 346.92

8 592.27 595.09 474.55 557.50 292.78

10 3.60 17.96 8.71 15.80 14.55

12 3.23 19.52 8.62 19.36 14.43

14 3.63 20.53 9.58 20.45 12.71

vRNN

2 17.11 55.58 33.30 64.09 42.64

4 7.87 47.92 22.45 51.81 25.95

6 7.28 29.10 16.56 25.28 22.58

8 3.83 21.08 10.27 16.39 14.02

10 3.60 17.96 8.71 15.80 14.55

12 3.23 19.52 8.62 19.36 14.43

14 3.63 20.53 9.58 20.45 12.71

GRU

2 21.19 51.54 36.66 62.04 45.82

4 25.01 42.62 30.11 45.05 26.19

6 20.24 33.72 24.64 23.87 22.20

10 3.60 17.96 8.71 15.80 14.55

8 11.33 24.14 15.16 17.59 15.47

12 3.23 19.52 8.62 19.36 14.43

14 3.63 20.53 9.58 20.45 12.71

LSTM

2 32.97 54.21 34.74 60.78 37.53

4 18.20 41.62 26.73 51.94 28.21

6 6.19 33.82 16.48 34.68 20.39

8 4.12 21.75 11.49 16.18 13.8227

10 3.60 17.96 8.71 15.80 14.55

12 3.23 19.52 8.62 19.36 14.43

14 3.63 20.53 9.58 20.45 12.71

3.1.3. Training of the IDNN Model

The displacement and orientation model were trained using the Keras–Tensorflow
platform on the data subsets presented in Table 1, characterised by 800 min of drive time
over a total travel distance of 760 km. The models are trained using a mean absolute error
loss function and an adamax optimiser. In the hidden layers, 10% of units were dropped
from the hidden layers in the IDNN to avoid overfitting. Furthermore, to avoid learning
bias, all the features that were fed to the neural network were standardised between 0
and 1. Table 7 highlights the parameters characterising the training of the neural network
approaches investigated.
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Table 7. Training parameters for the IDNN.

Parameters Displacement Estimation Orientation Estimation

Learning rate 0.004 0.001

Dropout 10% 10%

Sequence Length See Table 3 See Table 2

Hidden layers 2 2

Hidden neurons 32 per layer 32 per layer

Batch Size 256 256

Epochs 40 60

3.1.4. Testing of the IDNN Model

The data subsets used to investigate the performance of the INS and Neural Networks
on the challenging scenarios are presented in Tables 2 and 3. Although then evaluated
on complex scenarios as previously mentioned, such as illustrated in Figures A1–A3 in
Appendix A, the performance of the INS and NN modelling technique is first examined
on the V-Vw12 dataset, which presents a relatively easier scenario; i.e., an approximate
straight-line travel on the motorway. The evaluation of the latter scenario aims at gauging
the performance of the technique in a relatively simpler driving situation. Nonetheless,
the Motorway scenario could be challenging to track due to the huge distance covered per
second. The evaluation is conducted on sequences of 10 s with a prediction frequency of
1 s. GPS outages are assumed on the test scenarios, for the purpose of the investigation.

4. Results and Discussion

The performance of the dead reckoned INS (INS DR) and proposed NN approaches are
analysed comparatively across several GPS outage simulated sequences, each of 10 s length.
The positioning techniques are first analysed on a less challenging scenario involving
vehicle travel on an approximate straight line on the motorway. Further analysis is then
done on more challenging scenarios such as hard brake, roundabouts, quick changes in
acceleration and sharp cornering and successive left and right turns using the performance
metrics defined in Section 3.1.

4.1. Motorway Scenario

In evaluating the performance of the INS and the NN approaches on vehicular motion
tracking, both techniques are investigated on a less challenging trajectory characterised
by an approximate straight-line drive on the motorway. The results, as shown on Table 8,
show that across all 9 test sequences, the INS records its best and average displacement
and orientation rate CRSE of 1.63 m, 15.01 m, and 0.08 rad/s, 0.13 rad/s, respectively.
However, we observe that the NN outperforms the INS significantly on the displacement
and orientation estimation across all metrics, as illustrated in Figure 4. Comparatively, the
best and average displacement and orientation rate CRSE of the NN approach is recorded
as 0.84 m and 1.93 m, and 0.08 rad/s and 0.13 rad/s. Essentially, this shows that the
NN is able to offer up to an 89% improvement on the displacement max CRSE metric
after about 268 m of travel. Achieving a CAE best of 0.16 m Northwards and 0.016 m
Eastwards, the results also indicate that it is possible to estimate the vehicle position
with lane-level accuracy using the proposed approach. Being the lowest errors across all
scenarios evaluated as shown in Figures 4–7, we can infer that this was the least challenging
scenario due to minimal accelerations and directional change. Furthermore, the reliability
of the NN in consistently tracking the vehicles’ motion with such accuracy is highlighted
by its low standard deviation of 0.84. Figure 8b shows the trajectory of the vehicle along
the motorway.
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Table 8. Showing the performance of the IDNN and dead reckoned Inertial Navigation Systems (INS

DR) on the motorway scenario.

IDNN (m) INS DR (m)
IDNN
(Rad/s)

INS DR
(Rad/s)

CRSE

max 3.23 30.11 0.05 0.21

min 0.84 1.63 0.02 0.08

µ 1.93 15.01 0.04 0.13

σ 0.84 9.12 0.01 0.03

CAE

max 2.56 30.11 0.02 0.13

min 0.19 0.04 0.00 0.04

µ 0.96 13.33 0.01 0.10

σ 0.84 10.17 0.01 0.03

AEPS (/s)

max 0.06 0.30 0.00 0.00

min 0.00 0.01 0.00 0.00

µ 0.02 0.15 0.00 0.00

σ 0.02 0.10 0.00 0.00

Total Distance
Covered by vehicle

max 268.40

min 234.47

µ 251.29

Number of Sequences evaluated 9

μ
σ

μ

Figure 4. Showing the evolution of the estimation error over time in the motorway scenario based on the (a) Displacement

CRSE, (b) Displacement cumulative absolute error (CAE), (c) Orientation rate CRSE and (d) Orientation rate CAE.
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Figure 5. Showing the comparison of the CAE performance of the IDNN and INS DR across all investigated scenarios on

the (a) displacement estimation and (b) orientation rate estimation.

Figure 6. Showing the comparison of the average error per second (AEPS) performance of the IDNN and INS DR across all

investigated scenarios on the (a) displacement estimation and (b) orientation rate estimation.

Figure 7. Showing the comparison of the CRSE performance of the IDNN and INS DR across all investigated scenarios on

the (a) displacement estimation and (b) orientation rate estimation.
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Figure 8. Sample trajectory of the (a) V-Vta11 roundabout data subset of the Inertia and Odometry

Vehicle Navigation Dataset (IO-VNBD) and (b) V-Vw12 motorway data subset of the IOVNBD.

4.2. Roundabout Scenario

The roundabout scenario is one of the most challenging for both the vehicular dis-
placement and orientation rate estimation. The difficulty encountered by the INS and NN
in accurately tracking the vehicle’s motion is graphically shown in Figure 9 with a com-
parative illustration to other investigated scenarios presented in Figures 5–7. The results
so obtained as presented on Table 10 show that the NN recorded a lower displacement
(maximum CRSE and CAE of 17.96 m and 16.80 m) than the INS (maximum CRSE and
CAE displacement of 171.92 m) as well as a lower orientation rate (maximum CRSE and
CAE of 0.38 rad/s and 0.05 rad/s, respectively) compared to the INS (maximum CRSE and
CAE of 5.71 rad/s and 2.14 rad/s, respectively). The relatively lower standard deviation
across all analysed metrics is evidence that the NN is able to more consistently track the
vehicles position and orientation on the roundabout scenario but less consistently on other
investigated scenarios. The roundabout scenario study was carried out across 11 test
sequences over a maximum travel distance of approximately 197 m. Figure 8a shows a
sample trajectory of the vehicle on the roundabout scenario analysis.

Table 9. Showing the performance of the IDNN and INS DR on the roundabout scenario.

IDNN (m) INS DR (m)
IDNN
(Rad/s)

INS DR
(Rad/s)

CRSE

max 17.96 171.92 0.38 5.71

min 2.36 19.42 0.02 0.17

µ 8.63 78.32 0.17 1.48

σ 5.51 52.33 0.13 1.77

CAE

max 16.80 171.92 0.05 2.14

min 0.5 19.42 0.00 0.03

µ 5.47 −57.60 0.01 0.62

σ 5.35 54.20 0.02 0.76

AEPS (/s)

max 0.34 1.76 0.01 0.08

min 0.00 0.23 0.00 0.00

µ 0.10 0.89 0.00 0.02

σ 0.10 0.49 0.00 0.03
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Table 10. Cont.

IDNN (m) INS DR (m)
IDNN
(Rad/s)

INS DR
(Rad/s)

Total Distance
Covered by vehicle

max 196.71

min 19.89

µ 104.93

Number of Sequences evaluated 11

/

μ
σ

μ −
σ

μ
σ

μ

Figure 9. Showing the evolution of the estimation error over time in the roundabout scenario based on the (a) Displacement

CRSE, (b) Displacement CAE, (c) Orientation rate CRSE and (d) Orientation rate CAE.

4.3. Quick Changes in Vehicles Acceleration Scenario

The results presented in Table 11 illustrate the performance of the NN-based approached
over the INS in the quick changes in acceleration scenario. From observation, it can be seen
that the neural network significantly outperforms the INS across all metrics employed, with
a maximum CRSE of 8.62 m, 0.33 rad/s for the INS against 79.05 m and 0.67 rad/s for the
INS over a maximum distance of approximately 220 m covered. This shows, as expected,
that the INS and NN found it more challenging to estimate the displacement of the vehicle
compared to the orientation rate. On other metrics, the NN obtains an average CAE,
CRSE and AEPS of 5.30 m, 0.93 m and 0.05 m/s compared to that of the INS recorded
as 38.92 m, 26.23 m and 0.43 m/s2 across all 13 test sequences evaluated offering up to a
92% improvement on the INS orientation rate estimation. Figure 10 graphically illustrates
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the evolution of the error across sample sequences on the CRSE and CAE metrics. A
comparison of the performance of both approaches across all scenarios investigated is
further presented in Figures 5–7.

𝜎

Figure 10. Showing the evolution of the estimation error over time in the quick changes in acceleration scenario based on

the (a) Displacement CRSE, (b) Displacement CAE, (c) Orientation rate CRSE and (d) Orientation rate CAE.

Table 11. Showing the performance of the IDNN and INS DR on the quick changes in

acceleration scenario.

IDNN (m) INS DR (m) IDNN (Rad/s) INS DR (Rad/s)

CRSE

max 8.62 79.05 0.33 0.67

min 2.37 17.72 0.03 0.15

µ 5.30 38.92 0.16 0.28

σ 2.19 16.72 0.10 0.13

CAE

max 3.95 79.05 0.05 0.65

min 2.37 17.72 0.00 0.00

µ 0.93 26.23 0.02 0.18

σ 2.83 32.44 0.01 0.17
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Table 11. Cont.

IDNN (m) INS DR (m) IDNN (Rad/s) INS DR (Rad/s)

AEPS (/s)

max 0.15 0.91 0.01 0.02

min 0.01 0.02 0.00 0.00

µ 0.05 0.43 0.00 0.00

σ 0.03 0.25 0.00 0.00

Total
Distance
Covered

max 220.08

min 137.72

µ 168.62

Number of
Sequences evaluated

13

4.4. Hard Brake Scenario

The performance of the NN over the INS in the hard-brake scenario is evaluated
over 17 test sequences averaging 188 m of travel with a 259 m maximum journey length.
From Table 12, we observe that much to our expectations, the hard brake scenario proves
to be more of a challenge for the accelerometer than the gyroscope as the INS struggles
to accurately estimate the displacement and orientation rate of the vehicle within the
simulated GPS outage period. As further emphasized on Figures 5 and 11, Figures 6 and 7,
the NN significantly outperforms the INS DR across all performance metrics employed by
max and average CRSE of 15.80 m, 0.25 rad/s and 6.82 m, 0.09 rad/s for the NN compared
to 133.12 m, 1.89 rad/s and 41.07 m and 0.37 rad/s, respectively, of the INS DR. The
reliability of the NN in consistently correcting the INSs estimations to such accuracy is
further established by its σ value of 4.23 and 0.08.

Table 12. Showing the performance of the IDNN and INS DR on the hard brake scenario.

IDNN (m) INS DR (m)
IDNN
(Rad/s)

INS DR
(Rad/s)

CRSE

max 15.80 133.12 0.25 1.89

min 1.15 5.74 0.03 0.06

µ 6.82 41.07 0.09 0.37

σ 4.23 33.75 0.08 0.48

CAE

max 14.75 133.12 0.05 1.17

min 0.08 1.37 0.00 0.01

µ 0.44 26.50 0.02 0.21

σ 3.89 34.70 0.01 0.33

AEPS (/s)

max 0.21 1.97 0.00 0.01

min 0.01 0.01 0.00 0.00

µ 0.06 0.47 0.00 0.00

σ 0.06 0.43 0.00 0.00

Total
Distance
Covered

max 258.79

min 73.39

µ 188.48

Number of
Sequences evaluated

17
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4.5. Sharp Cornering and Successive Left–Right Turns Scenario

The sharp cornering and successive right–left turn scenario appears to be one of the
most challenging for the INS on the CAE metric (see Figures 5–7 and Figure 12). This
scenario investigation involves analysis on 40 test sequences over a maximum travel
distance of approximately 109 m. Reporting on the results presented in Table 13, it can be
observed that the INS has a maximum CRSE and CAE displacement of 92.06 m compared
to 12.71 m and 8.49 m, respectively, of the NN. On the orientation rate, the NN performs
significantly better than the INS with a maximum CRSE and CAE of 0.41 rad/s and
0.13 rad/s against the INS’s performance of 4.29 rad/s and 3.47 rad/s. These results
further highlight the capability of the NN to significantly improve vehicular localisation
during GPS outages with its reliability assured by its relatively low standard division. An
example trajectory of the vehicle during the sharp cornering and successive left and right
turn is shown in Figure 13.

μ
σ

μ
σ

μ
σ

μ

Figure 11. Showing the evolution of the estimation error over time in the hard brake scenario based on the (a) Displacement

CRSE, (b) Displacement CAE, (c) Orientation rate CRSE and (d) Orientation rate CAE.
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Figure 12. Showing the evolution of the estimation error over time in the hard brake scenario based on the (a) Displacement

CRSE, (b) Displacement CAE, (c) Orientation rate CRSE and (d) Orientation rate CAE.

 

Figure 13. Trajectory of V-Vw8 sharp cornering and successive left and right turns data subset of the IO-VNBD.
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Table 13. Showing the performance of the IDNN and INS DR on the sharp cornering and successive

left and right turns scenario.

IDNN (m) INS DR (m)
IDNN
(Rad/s)

INS DR
(Rad/s)

CRSE

max 12.71 92.06 0.41 4.29

min 1.43 5.20 0.06 0.19

µ 6.77 39.35 0.19 1.99

σ 2.83 26.91 0.09 1.42

CAE

max 8.49 92.06 0.13 3.47

min 0.10 2.02 0.00 0.01

µ 0.01 11.34 −0.01 −0.07

σ 2.29 28.84 0.04 2.03

AEPS (/s)

max 0.25 0.94 0.02 0.16

min 0.00 0.00 0.00 0.00

µ 0.06 0.38 0.00 0.02

σ 0.07 0.30 0.00 0.04

Total
Distance
Covered

max 109

min 21

µ 75

Number of
Sequences evaluated

40

5. Conclusions

We propose a Neural Network-based approach inspired by the operation of the
feedback control system to improve the localisation of autonomous vehicles and robots
alike in challenging GPS deprived environments. The proposed approach is analytically
compared to the INS specifically in scenarios characterised by hard braking, roundabouts,
quick changes in vehicular acceleration, motorway, sharp cornering and successive left
and right turns. By estimating the displacement and orientation rate of the vehicle within
a GPS outage period, we showed that the Neural Network-based positioning approach
outperforms the INS significantly in all investigated scenarios, by providing up to 89.55%
improvement on the displacement estimation and 93.35% on the orientation rate estimation.

Nevertheless, we encountered the problem of poor model generalisation due to the
varying characteristics of the sensor noise and bias in different journey domains as well
as slight variations in the vehicular environment, trajectory and dynamics. These factors
cause discrepancies between the training data and test data, hindering better estimations.
There is, therefore, the need to create a model capable of accounting for the variations in
the sensor’s characteristics and environments towards the end purpose of robustly and
accurately tracking the motion of the vehicle in various terrains. This will be the subject of
our future research.
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Appendix A

Figure A1. The variations in the (a) vehicle’s angular velocity in the roundabout scenario and (b) vehicle’s acceleration in

the quick changes in acceleration scenario.

 
 

 

 

 

 

 

 

 

Figure A2. The variations in the vehicle’s acceleration in the hard brake scenario.

 
 

 

 

 

 

 

 

 

Figure A3. The variations in the vehicle’s angular velocity in the sharp cornering and successive left and right turn scenario.
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