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Abstract 

We have previously described an unsupervised learning procedure that 
discovers spatially coherent propertit>_<; of the world by maximizing the in­

formation that parameters extracted from different parts of the sensory 
input convey about some common underlying cause. When given random 

dot stereograms of curved surfaces, this procedure learns to extract sur­
face depth because that is the property that is coherent across space. It 
also learns how to interpolate the depth at one location from the depths 

at nearby locations (Becker and Hint.oll. 1992). 1n this paper, we pro­

pose two new models which handle surfaces with discontinuities. The first 
model attempts to detect cases of discontinuities and reject them. The 
second model develops a mixture of expert interpolators. It learns to de­

tect the locations of discontinuities and to invoke specialized, asymmetric 
interpolators that do not cross the discontinuities . 

1 Introd uction 

Standard backpropagation is implausible as a model of perceptual learning because 

it requires an external teacher to specify the desired output of the network. We 

have shown (Becker and Hinton, 1992) how the external teacher can be replaced 
by internally derived teaching signals. These signals are generated by using the 

assumption that different parts of the perceptual input have common causes in 

the external world. Small modules that look at separate but related parts of the 
perceptual input discover these common causes by striving to produce outputs that 

agree with each other (see Figure 1 a). The modules may look at different modalities 

(e.g. vision and touch), or the same modality at different times (e.g. the consecutive 

2-D views of a rotating 3-D object), or even spatially adjacent parts of the same 

image. In previous work, we showed that when our learning procedure is applied 
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to adjacent patches of 2-dimensional images, it allows a neural network that has no 
prior knowledge of the third dimension to discover depth in random dot stereograms 

of curved surfaces. A more general version of the method allows the network to 
discover the best way of interpolating the depth at one location from the depths 

at nearby locations. We first summarize this earlier work, and then introduce 
two new models which allow coherent predictions to be made in the presence of 

discontinuities. 

a) 

left 

rightm~m~ 

patch A patch B 

Figure 1: a) Two modules that receive input from corresponding parts of stereo 

images. The first module receives input from stereo patch A, consisting of a hori­

zontal strip from the left image (striped) and a corresponding strip from the right 

image (hatched). The second module receives input from an adjacent stereo patch 

B . The modules try to make their outputs, da and db, convey as much informa­

tion as possible about some underlying signal (i. e., the depth) which is common to 

both patches. b) The architecture of the interpolating network, consisting of multiple 

copies of modules like those in a) plus a layer of interpolating units. The network 

tries to maximize the information that the locally extracted parameter de and the 

contextually predicted parameter de convey about some common underlying signal. 

We actually used 10 modules and the central 6 modules tried to maximize agreement 

between their outputs and contextually predicted values. We used weight averaging 

to constrain the interpolating function to be identical for all modules. 

2 Learning spatially coherent features in images 

The simplest way to get the outputs of two modules to agree is to use the squared 

difference between the outputs as a cost function, and to adjust the weights in each 

module so as to minimize this cost. Unfortunately, this usually causes each module 

to produce the same constant output that is unaffected by the input to the module 
and therefore conveys no information about it. What we want is for the outputs 

of two modules to agree closely (i.e. to have a small expected squared difference) 

relative to how much they both vary as the input is varied. When this happens, the 
two modules must be responding to something that is common to their two inputs. 

In the special case when the outputs, da , db, of the two modules are scalars, a good 
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measure of agreement is: 

(1) 

where V is the variance over the training cases. If da and db are both versions 

of the same underlying Gaussian signal that have been corrupted by independent 
Gaussian noise, it can be shown that I is the mutual information between the 

underlying signal and the average of da and db. By maximizing I we force the two 

modules to extract as pure a version as possible of the underlying common signal. 

2.1 The basic stereo net 

We have shown how this principle can be applied to a multi-layer network that learns 
to extract depth from random dot stereograms (Becker and Hinton, 1992). Each 
network module received input from a patch of a left image and a corresponding 

patch of a right image, as shown in Figure 1 a). Adjacent modules received input 
from adjacent stereo image patches, and learned to extract depth by trying to 

maximize agreement between their outputs. The real-valued depth (relative to the 

plane of fixation) of each patch of the surface gives rise to a disparity between 

features in the left and right images; since that disparity is the only property that 

is coherent across each stereo image, the output units of modules were able to learn 

to accurately detect relative depth. 

2.2 The interpolating net 

The basic stereo net uses a very simple model of coherence in which an underlying 

parameter at one location is assumed to be approximately equal to the parameter at 
a neighbouring location. This model is fine for the depth of fronto-parallel surfaces 

but it is far from the best model of slanted or curved surfaces. Fortunately, we can 
use a far more general model of coherence in which the parameter at one location 

is assumed to be an unknown linear function of the parameters at nearby locations. 

The particular linear function that is appropriate can be learned by the network. 

We used a network of the type shown in Figure 1 b). The depth computed locally 

by a module, dc, was compared with the depth predicted by a linear combination de 
of the outputs of nearby modules, and the network tried to maximize the agreement 

between de and de. 

The contextual prediction, dc, was produced by computing a weighted sum of 

the outputs of two adjacent modules on either side. The interpolating weights 

used in this sum, and all other weights in the network, were adjusted so as to 

maximize agreement between locally computed and contextually predicted depths. 

To speed the learning, we first trained the lower layers of the network as be­

fore, so that agreement was maximized between neighbouring locally computed 

outputs. This made it easier to learn good interpolating weights. When the 

network was trained on stereograms of cubic surfaces, it learned interpolating 

weights of -0.147,0.675,0.656, -0.131 (Becker and Hinton, 1992). Given noise 
free estimates of local depth, the optimal linear interpolator for a cubic surfa.ce 

is -0.167,0.667,0.667, -0.167. 
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3 Throwing out discontinuities 

If the surface is continuous, the depth at one patch can be accurately predicted from 

the depths of two patches on either side. If, however, the training data contains cases 

in which there are depth discontinuities (see figure 2) the interpolator will also try 
to model these cases and this will contribute considerable noise to the interpolating 

weights and to the depth estimates. One way of reducing this noise is to treat the 

discontinuity cases as outliers and to throw them out. Rather than making a hard 
decision about whether a case is an outlier, we make a soft decision by using a 

mixture model. For each training case, the network compares the locally extracted 

depth, dc, with the depth predicted from the nearby context, de. It assumes that 

de - de is drawn from a zero-mean Gaussian if it is a continuity case and from a 
uniform distribution if it is a discontinuity case. It can then estimate the probability 
of a continuity case: 
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Figure 2: Top: A curved surface strip with a discontinuity created by fitting 2 

cubic splines through randomly chosen control points, 25 pixels apart, separated by 

a depth discontinuity. Feature points are randomly scattered on each spline with an 

average of 0.22 features per pixel. Bottom: A stereo pair of "intensity" images 

of the surface strip formed by taking two different projections of the feature points, 

filtering them through a gaussian, and sampling the filtered projections at evenly 

spaced sample points. The sample values in corresponding patches of the two images 

are used as the inputs to a module. The depth of the surface for a particular zmage 

region is directly related to the disparity between corresponding features in the left 

and right patch. Disparity ranges continuously from -1 to + 1 image pixels. Each 

stereo image was 120 pixels wide and divided into 10 receptive fields 10 pixels wide 

and separated by 2 pixel gaps, as input for the networks shown in figure 1. The 

receptive field of an interpolating unit spanned 58 image pixels, and discontinuities 

were randomly located a minimum of 40 pixels apart, so only rarely would more 

than one discontinuity lie within an interpolator's receptive field. 
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(2) 

where N is a gaussian, and kdi3eont is a constant representing a uniform density. 1 

We can now optimize the average information de and de transmit about their com­

mon cause. We assume that no information is transmitted in discontinuity cases, 

so the average information depends on the probability of continuity and on the 

variance of de + de and de - de measured only in the continuity cases. 

(3) 

We tried several variations of this mixture approach. The network is quite good at 
rejecting the discontinuity cases, but this leads to only a modest improvement in 

the performance of the interpolator. In cases where there is a depth discontinuity 

between da and db or between dd and de the interpolator works moderately well 
because the weights on da or de are small. Because of the term Peont in equation 

3 there is pressure to include these cases as continuity cases, so they probably 
contribute noise to the interpolating weights. In the next section we show how to 

avoid making a forced choice between rejecting these cases or treating them just 

like all the other continuity cases. 

4 Learning a mixture of expert interpolators 

The presence of a depth discontinuity somewhere within a strip of five adjacent 

patches does not entirely eliminate the coherence of depth across these patches. It 
just restricts the range over which this coherence operates. So instead of throwing 

out cases that contain a discontinuity, the network could try to develop a number 

of different, specialized interpolators each of which captures the particular type of 

coherence that remains in the presence of a discontinuity at a particular location. 

If, for example, there is a depth discontinuity between de and de, an extrapolator 

with weights of -1.0, +2.0,0, ° would be an appropriate predictor of de . 

Figure 3 shows the system of five expert interpolators that we used for predicting 

de from the neighboring depths. To allow the system to invoke the appropriate 

interpolator, each expert has its own "controller" which must learn to detect the 

presence of a discontinuity at a particular location (or the absence of a discontinu­
ity in the case of the interpolator for pure continuity cases). The outputs of the 
controllers are normalized, as shown in figure 3, so that they form a probability dis­

tribution. We can think of these normalized outputs as the probability with which 

the system selects a particular expert. The controllers get to see all five local depth 
estimates and most of them learn to detect particular depth discontinuities by using 

large weights of opposite sign on the local depth estimates of neighboring patches. 

lWe empirically select a good (fixed) value of kdiseont, and we choose a starting value 

of Veont{de - de) (some proportion of the initial variance of de - de), and gradually shrink 
it during learning. 
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Figure 3: The architecture of the mixture of interpolators and discontinuzty detec. 

tors . We actually used a larger modular network and equality constraints between 

modules, as described in figure 1 b), with 6 copies of the architecture shown here . 

Each copy received input from different but overlapping parts of the input. 

Figure 4 shows the weights learned by the experts and by their controllers. As 

expected, there is one interpolator (the top one) that is appropriate for continuity 
cases and four other interpolators that are appropriate for the four different loca­
tions of a discontinuity. In interpreting the weights of the controllers it is important 
to remember that a controller which produces a small X value for a particular case 
may nevertheless assign high probability to its expert if all the other controllers 

produce even smaller x values. 

4.1 The learning procedure 

In the example presented here, we first trained the network shown in figure 1 b) 
on images with discontinuities. We then used the outputs of the depth extracting 

layer, da, ... ,de as the inputs to the expert interpolators and their controllers. The 
system learned a set of expert interpolators without backpropagating derivatives all 

the way down to the weights of the local depth extracting modules. So the local 
depth estimates d a , ... ,de did not change as the interpolators were learned . 

To train the system we used an unsupervised version of the competing experts 

algorithm described by Jacobs, Jordan, Nowlan and Hinton (1991) . The output of 

the ith expert, de,i, is treated as the mean of a Gaussian distribution with variance 0- 2 

and the normalized output of each controller, Pi , is treated as the mixing proportion 
of that Gaussian. So, for each training case, the outputs of the experts and their 

controllers define a probability distribution that is a mixture of Gaussians . The aim 
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Figure 4: a) Typical weights lear~ed by the five competing interpolators and cor­

responding five discontinuity detectors. Positive weights are shown in white, and 

negative weights in black. b) The mean probabilities computed by each discontinuity 

detector are plotted against the the distance from the center of the units' receptive 

field to the nearest discontinuity. The probabilistic outputs are averaged over an 

ensemble of 1000 test cases. If the nearest discontinuity is beyond ± thirty pixels, 

it is outside the units' receptive field and the case is therefore a continuity example. 

of the learning is to maximize the log probability density of the desired output, de, 

under this mixture of Gaussians distribution. For a particular training case this log 

probability is given by: 

'" 1 ((d e -dei )2) 
log P( de) = log L.,; Pi to= exp - 2 2 ' 

. v2~u u 
I 

(4) 

By taking derivatives of this objective function we can simultaneously learn the 

weights in the experts and in the controllers. For the results shown here, the 

nework was trained for 30 conjugate gradient iterations on a set of 1000 random 

dot stereograms with discontinuities. 

The rationale for the use of a variance ratio in equation 1 is to prevent the variances 

of da and db collapsing to zero. Because the local estimates d1 , ... , ds did not change 

as the system learned the expert interpolators, it was possible to use (de - dc,d 2 in 
the objective function without worrying about the possibility that the variance of 

de across cases would collapse to zero during the learning . Ideally we would like to 
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refine the weights of the local depth estimators to maximize their agreement with 

the contextually predicted depths produced by the mixture of expert interpolators. 

One way to do this would be to generalize equation 3 to handle a mixture of expert 

interpolators: 

(5) 

Alternatively we could modify equation 4 by normalizing the difference (de - de.i )2 
by the actual variance of dc, though this makes the derivatives considerably more 

complicated. 

5 Discussion 

The competing controllers in figure 3 explicitly represent which regularity applies in 

a particular region. The outputs of the controllers for nearby regions may themselves 

exhibit coherence at a larger spatial scale, so the same learning technique could be 

applied recursively. In 2-D images this should allow the continuity of depth edges 

to be discovered. 

The approach presented here should be applicable to other domains which contain 

a mixture of alternative local regularities aCl·OSS space or time. For example, a l·igiJ 

shape causes a linear constraint between the locations of its parts in an image, so if 
there are many possible shapes, there are many alternative local regularities (Zemel 

and Hinton, 1991). 

Our learning procedure differs from methods that try to capture as much informa­

tion as possible about the input (Linsker, 1988; Atick and Redlich, 1990) because 

we ignore information in the input that is not coherent across space. 
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