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Learning to Move Amid Uncertainty
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Scheidt, Robert A., Jonathan B. Dingwell, and Ferdinando A.
Mussa-Ivaldi. Learning to move amid uncertainty. J Neurophysiol
86: 971-985, 2001. We studied how subjects learned to make move-
ments against unpredictable perturbations. Twelve healthy human
subjects made goal-directed reaching movements in the horizontal
plane while holding the handle of a two-joint robotic manipulator. The
robot generated viscous force fields that perturbed the limb perpen-
dicular to the desired direction of movement. The amplitude (but not
the direction) of the viscous field varied randomly from trial to trial.
Systems identification techniques were employed to characterize how
subjects adapted to these random perturbations. Subject performance
was quantified primarily using the peak deviation from a straight-line
hand path. Subjects adapted their arm movements to the sequence of
random force-field amplitudes. This adaptive response compensated
for the approximate mean from the random sequence of perturbations
and did not depend on the statistical distribution of that sequence.
Subjects did not adapt by directly counteracting the mean field
strength itself on each trial but rather by using information about
perturbations and movement errors from a limited number of previous
trials to adjust motor commands on subsequent trials. This strategy
permitted subjects to achieve near-optimal performance (defined as
minimizing movement errors in a least-squares sense) while main-
taining computational efficiency. A simple model using information
about movement errors and perturbation amplitudes from a single
previous trial predicted subject performance in stochastic environ-
ments with a high degree of fidelity and further predicted key perfor-
mance features observed in nonstochastic environments. This suggests
that the neural structures modified during motor adaptation require
only short-term memory. Explicit representations regarding move-
ments made more than a few trials in the past are not used in
generating optimal motor responses on any given trial.

INTRODUCTION

A remarkable and well-studied ability of the human brain is
that of adapting the execution of limb movements to physical
changes in operating conditions such as those that naturally
occur during growth, aging, and exposure to altered mechani-
cal environments (Bock 1990; Conditt et al. 1997a; Dizio and
Lackner 1995; Goodbody and Wolpert 1998; Happee 1993;
Lackner and Dizio 1994; Scheidt and Rymer 2000; Shadmehr
and Mussa-Ivaldi 1994; Thoroughman and Shadmehr 1999).
This process is known as motor adaptation. Motor adaptation is
a form of learning that evolves over a series of movements
whereby some original performance of a given task is restored
in the presence of an external perturbation. This ability to adapt
to environmental changes has played an important role in

human survival. A species unable to compensate for prevailing
winds or the refraction of light through water would be ill
suited to use the basic tools (such as spears and nets) necessary
for fighting off foes and obtaining food. In such instances,
environmental perturbations influence the control of upper
limb movement in an unpredictable way.

A number of studies have investigated the processes in-
volved in motor adaptation by exposing subjects to specific
perturbations and quantifying the changes in their responses
over time. For example, some experiments have explored the
changes in reaching and pointing movements of the hand
induced by displacements or deformations of the visual field
(Flanagan and Rao 1995; Held and Freedman 1963; Helmholtz
1925; Wolpert et al. 1995). Other experiments have perturbed
the moving arm with mechanical disturbances that emulated
the effects of inertial loads and/or viscoelastic media (Bock
1990; Lackner and Dizio 1994; Shadmehr and Brashers-Krug
1997; Shadmehr and Mussa-Ivaldi 1994). Each of these studies
employed perturbations with fixed and repeatable structures.
For example, Shadmehr and Mussa-Ivaldi (1994) used a ro-
botic device to apply mechanical forces to the hand. These
forces had a fixed linear dependence on the speed of the
subject’s hand.

However, the perturbations that people encounter in every-
day life do not always have a repeatable and consistent struc-
ture. Consider, for example, a worker whose job might be to
sort packages of varying size and weight into bins, bags, or
slots. Each of these packages will have different inertial prop-
erties and will impose different loads on the arm as it moves
toward the desired target position. If the worker carries out this
task for a prolonged time, is it reasonable to expect some
adaptation to take place? In this case, the perturbations are not
fixed but vary from object to object and follow a given statis-
tical distribution depending both on the object properties and
on the sequence of movements in the task. Can the motor
system adapt to a variable environment? And if so, how is this
adaptation accomplished? Does the motor system use informa-
tion it acquires on a trial-by-trial basis, or does it attempt to
extract some definable statistical property about the perturba-
tions it encounters, such as the mean or the most likely (i.e., the
mode) perturbation? Can subject behavior in a stochastic en-
vironment reveal how the neural mechanisms involved in mo-
tor adaptation use information from previous trials to modify
motor commands on subsequent trials? These questions were
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addressed in a set of experiments that employed engineering
methods of systems identification and a robotic system to
generate sequences of perturbing force fields having magni-
tudes that varied randomly from trial to trial.

In the present experiments, adaptation was examined in the
context of goal-directed reaching movements. Twelve subjects
executed reaching movements between two targets in the hor-
izontal plane while holding the handle of a two-joint robotic
manipulator. The robot applied perturbing forces to the arm
during each movement. The amplitude (but not the direction)
of the perturbing force field varied randomly from trial to trial.
Each subject’s motor response to the sequence of perturbing
fields was quantified using the peak deviation from a straight-
line hand path. The trial-to-trial sequences of motor errors were
analyzed, and the results demonstrated that subjects did adapt
their motor behavior in response to the random sequences of
force fields presented at the hand. Furthermore subjects com-
pensated for the approximate mean field of the stochastic
sequence. This behavior did not depend on specific distribution
properties of the sequence. Finally, subjects accomplished this
adaptation by using memories of the most recent perturbations
and the most recent performances only. Adaptation was not
accomplished by directly counteracting the mean field strength
on each individual trial. The present findings are consistent
with recent experiments that suggested a prominent function of
prefrontal cortex in the early stages of motor adaptation to
perturbing fields (Shadmehr and Holcomb 1997).

METHODS

Twelve human subjects with no known neuromotor disorders con-
sented to participate in this study. Subjects executed half-second,
20-cm reaching movements with their dominant arm in the horizontal
plane while holding the handle of a two-joint, robotic manipulator
(Fig. 1A). The robot was comprised of a five-bar linkage with torque
motors controlled by a dedicated PC (Scheidt et al. 2000). Subjects
were instructed to “reach from the beginning target to the ending
target in one half second.” The computer provided qualitative feed-
back of movement duration after each trial (either too fast: <0.45 s,
too slow: >0.55 s, or just right: 0.45—0.55 s). Subjects were instructed
to relax after each movement while the manipulandum moved the
hand slowly back to the beginning target. This protocol was designed
for allowing subjects to experience the limb’s mechanical environ-
ment along a limited set of trajectories. Reaching movements were
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directed away from the subject’s body along a line (the positive y axis)
passing through the center of rotation of the shoulder. The subjects’
arms were supported against gravity by a sling attached to the 8-ft
ceiling. The support was adjusted so that the upper arm was abducted
by 90°. The shoulders were restrained using a Velcro torso support.
“Beginning” and “end” targets corresponding to a 20-cm reach in the
plane of the arm were presented on a computer monitor just above the
manipulandum. The position of the hand was displayed as a small
cursor on the overhead monitor. Subjects could see both their arm and
the cursor representing it at all times.

The robotic manipulator applied perturbing force fields to the arm
during each movement. A perpendicular viscous field was designed to
deflect the hand perpendicularly from its intended path with a force
proportional to hand velocity along its path (Fig. 1B). The forces
applied to the subject’s hand during the ith movement were defined

Fy 0 -1 %

R @
where X and y were the two components of the hand velocity along the
medial/lateral (x) and proximal/distal (y) directions, Fy and F, were
the two components of the force applied by the robot along the same
directions. B; was a random real number between 0 and 30 Newton
second/meter (Ns/m) such that the amplitude (but not the direction) of
the perturbing force field varied randomly from trial to trial. Move-
ments were always made along the positive y direction, and perturbing
forces were always directed to the left. It must be stressed that during
each movement, subjects experienced variable forces that depended
linearly on their instantaneous hand speed. However, the magnitude of
the environmental impedance, B;, remained constant for the duration
of each individual movement and changed only between trials. Sub-
jects could experience peak hand forces up to 30 or 40 N in this field.
Subjects could perform the task easily in the time allotted; however,
reaching accuracy was influenced by the perturbations. During each
trial, instantaneous hand positions were recorded using rotational
encoders on the robot’s motors and hand forces were recorded using
a 6 degree-of-freedom load cell mounted at the handle of the robot.

Two stochastic perturbation sequences were used. In experiment 1,
four subjects were presented with a sequence of 200 trials in which the
force-field gain, B; (Fig. 2A), followed a Gaussian distribution (Fig.
2B). This distribution had a nonzero mean corresponding to informa-
tion about the perturbation sequence that subjects might learn. The
mean perturbation amplitude was 15.2 Ns/m with a variance of 24.7
Ns/m. This sequence was designed to ensure insignificant correlation
between perturbation magnitudes on consecutive trials separated by
more than 40 trials (Fig. 2C). The significance of each correlation
term was evaluated by comparing the correlation magnitude at each

4
-— € «— «— , i
«— — — — - FIG. 1. A: schematic representation of the 2 degree-of-freedom
- = = = - robotic manipulandum used in the present experiments. B: graph-
o - - - - - ical representation of the perpendicular field presented to the sub-
E o jects. Perturbing forces were directed perpendicular to the direction
> — —- —_ — — of intended motion with amplitudes proportional to hand velocity
— — — — — along the intended movement direction. Force-field gains (but not
'i '; '; '; '; direction) varied randomly from trial to trial.
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FIG. 2. A: the trial-to-trial sequence of force-field gains (B;) used in experiment 1 (4 subjects). B: unimodal Gaussian probability
density function used to generate the random sequence in A. C: autocorrelation of the Gaussian sequence shown in A. The two horizontal
lines correspond to the 95% confidence interval bounds (i.e., the 2¢ limits) on the correlation magnitudes. Note that no correlation term
within the 1st 40 trials (except the unit autocorrelation at 0 lag) exceeded the 95% bounds to attain significance at the P < 0.05 level.
D: the trial-to-trial sequence of force-field gains (B;) used in experiment 2 (8 subjects). E: bimodal probability density function used to
generate the random sequence in D. F: autocorrelation of the bimodal sequence shown in D. The two horizontal lines correspond to the
95% confidence interval bounds on the correlation magnitudes. While each unimodal subpopulation contained no significant correlations
within 40 trials, the shuffling process used to combine the 2 individual populations gave rise to spurious correlations at trial lags <40 trials.

integer lag value to an estimate of the 95% confidence interval
bounding zero correlation (20 = 2/A/N) (Box et al. 1994). All four
subjects were exposed to the same sequence of perturbations. In
experiment 2, eight subjects were presented with a sequence of 400

trials with a bimodal probability density function (Fig. 2, D and E).
This bimodal sequence was constructed by shuffling together two
unimodal sequences with individual Gaussian distributions having
means of 6 Ns/m (175 trials) and 25 Ns/m (225 trials), respectively.
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While each individual subpopulation contained no significant corre-
lations between perturbations separated by as many as 40 trials, the
shuffling process used to construct the bimodal population gave rise to
spurious correlations at trial lags <40 trials (Fig. 2F). All eight
subjects were exposed to the same sequence of perturbations. This
bimodal stochastic perturbation sequence had greatly differing mean
(15.5 Ns/m) and mode (25 Ns/m) values and was constructed to
distinguish whether subjects adapt more closely to the mean or the
mode of a given perturbation sequence or whether adaptation gets
“trapped” in the smaller, local maximum designed into the bimodal
probability distribution function.

Data analysis

Simple measures of kinematic and kinetic behavior were used to
assess subject motor performance on each trial during this goal-
directed reaching task. “Movement error” was defined as the peak
deviation of the hand from a straight-line trajectory passing between
the initial and final targets (Krakauer et al. 1999). Movement error
was used to quantify kinematic performance, assuming that subjects
intended to make straight-line movements of their hands. This mea-
sure of motor performance has previously been found to motivate
motor adaptation during reaching (Scheidt et al. 2000). The peak hand
force that was generated perpendicular to the direction of movement
quantified dynamic performance.

An exponential function was fitted to the trial series of movement
errors to characterize the rate at which subjects compensated for the
random sequence of perturbation gains. This model had three free
parameters: gain, A, time-constant, A, and offset, C

E =A™+ C (@)

where E; was the computed movement error on trial i. The exponential
captured the overall rate of change in movement error, while the
constant (C) described any steady-state bias in these time series. The
free parameters of this model were fit using a simplex search algo-
rithm (Press et al. 1988).

A regression analysis of movement error versus perturbation am-
plitude was performed to determine the field strength (i.e., perturba-
tion gain) that subjects adapted to. The strength of correlation between
these two variables and the linearity of this relationship were also
evaluated. The amplitude of the field strength to which subjects
adapted was estimated from the zero crossing of the resulting regres-
sion line since the perturbation gain value at which the regression line
passed through zero error indicated the field strength at which subjects
would exhibit error-free (straight line) trajectories. This analysis,
however, provides no explanation for how subjects adapted to this
particular field strength. Subjects could adapt by directly counteract-
ing this “zero error” perturbation magnitude itself on each and every
trial; i.e., by executing a control strategy that anticipated the same
constant field trial after trial. If so, movement errors would vary
linearly with perturbation strength. Alternatively, subjects could em-
ploy a continuously evolving strategy of using information about
perturbations and movement errors from a limited number of previous
trials to adjust performance on subsequent trials. Because such a
strategy could also result in a linear relationship between movement
error and perturbation strength, the regression analysis described in
the preceding text could not distinguish these two possibilities.

The preceding regression analysis was extended to evaluate the
dependence of movement errors on previous perturbations and previ-
ous errors using autocorrelation and cross-correlation analyses. Spe-
cifically, the autocorrelation profile of the movement error trial se-
quence and the cross-correlation between the error and perturbation
gain trial sequences were calculated. If subjects anticipate a constant
field strength when exposed to an uncorrelated sequence of perturba-
tions (e.g., the mean field strength), then their performance on each
trial must also be uncorrelated with that of previous trials. This
hypothesis was directly tested by this analysis.

These correlation analysis results were then used to guide construc-
tion of a model of motor adaptation during reaching. Specifically,
movement error on each trial was modeled as a linear combination of
previous movement errors as well as present and previous perturba-
tion amplitudes. The result was a parametric model of motor adapta-
tion that was linear in its inputs

i-L i-M
€ = :2 aj€_;+ k:EO byBiy )

Jj=1

where a; and b, were coefficients weighting the relative importance of
previous errors (€, ;) and previous perturbation magnitudes (B, ) on
subsequent errors, j and k were indices of summation while L and M
were limits on the number of significant terms in the model. Values
for L and M were obtained directly from the correlation analysis. This
model represents an autoregressive process with external input (i.e.,
an ARX model) (Ljung 1999). Terms with nonzero a, coefficients are
autoregressive terms because they define the dependence of the cur-
rent movement error on previous movement errors. Terms with non-
zero b, coefficients are moving average terms of the external input
because they define the dependence of the current movement error on
a sliding window average of current and previous perturbation am-
plitudes. Because Eg. 3 defines a discrete-time difference equation,
the stability and steady-state behavior of this model of motor adap-
tation was analyzed using z transform techniques (Oppenheim and
Schafer 1989).

The capacity of this model to predict subjects’ adaptation to the
random sequence of perturbations was evaluated. These predictions
were compared with the predictions of two alternate, but viable,
learning algorithms. The first alternative model accumulated an ex-
plicit representation of the mean perturbation strength by “memoriz-
ing” the perturbation sequence trial by trial. This explicit representa-
tion of the running-average mean perturbation was used to
compensate for the perturbation on the next trial. The second alter-
native model was an incremental learning algorithm that utilized local
weighting of the most recent movement errors to predict and com-
pensate for the magnitude of the next perturbation. This model in-
cluded the possibility of nonuniform and nonlinear attention models
whereby learning could either attend closely to or ignore trials where
the perturbation amplitude was “surprising” or “irrelevant” (Atkeson
et al. 1997). Each model was first fit from the subjects’ data from the
initial 100 movements in the experiments. The performance of each
model was then evaluated according to its ability to predict subject
movement errors on the last 100 movements. Model performance was
quantified using the variance accounted for (VAF) as a measure of
goodness-of-fit

var (residuals)
VAF =1 — )
var (data)

RESULTS

Subjects compensate for the approximate mean of the
random trial sequence of perturbations

An overhead view of averaged hand paths made during exper-
iment 1 (Fig. 3A; unimodal perturbation sequence) shows that
subjects exhibited substantial kinematic deviations to both the left
and right even though they experienced forces that pushed only to
the left. To compare across trials, hand-path data were aligned
with respect to the onset of movement (the point in time when
hand speed first exceeded 0.1 m/s; Fig. 3B) and averaged into six
“bins” of 5 Ns/m width each (0-5, 5-10, 10-15, etc.). Move-
ments from trials with field strengths >20 Ns/m resulted in
trajectories that deviated markedly to the left (i.e., in the direction
of the applied force). However, hand-path deviations were con-
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Results from experiment 1 (unimodal perturbation sequence). A: overhead view of averaged hand paths from 1 subject

across the entire experiment. Trials were averaged into 6 “bins” of 5 Ns/m width (0-5, 5-10, 10-15, etc.). Trials with field strengths
=25 Ns/m were undercompensated (left-most profile), while trials with field strengths =5 Ns/m were overcompensated (right-most
profile). Movements were truncated at the point of time near the end of movement where the hand speed profile reached a transient
minimum. Average trajectories after the time of truncation are shown with triangular symbols. B: average hand speed profiles for
the same subject. The vertical dashed line indicates the approximate time at which hand speed reached a transient minimum,
separating the hand speed profile into 2 peaks. C: movement errors for this subject plotted against trial number. The dark, solid line
represents the exponential best-fit estimate of movement error (Eg. 2). D: perpendicular hand force profiles obtained by averaging
the data in the same manner as in A and B. E: scatter plot of movement error vs. perturbation strength, exhibiting a nearly linear
relationship (r = 0.82). F: best-fit linear regressions from the scatter plots of all subjects from experiment 1 (0.73 < r < 0.84).

sistently toward the right (i.e., opposite to the direction of the
applied force) for fields with gains <10 Ns/m. Movements made
in weaker fields had hand-path errors that were approximately
mirror symmetric to those made in stronger fields. Kinematic
errors made in the weakest fields were nearly identical to re-
sponses observed when perturbing force fields were unexpectedly
removed after adaptation (Scheidt et al. 2000). This finding is
consistent with traditional measures of aftereffects of adaptation

(Shadmehr and Mussa-Ivaldi 1994). These aftereffects are a clear
indication that subjects compensated for the perturbations by
adopting some automatic and predictive mechanism. Force fields
roughly corresponding to both the mean (average) and mode
(most likely) disturbance (10—15 Ns/m) resulted in movements
with the least curvature. Note that these movements were only
approximately straight, corresponding to the steady-state bias in
movement error (constant C in Egq. 2).
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Average hand speed profiles (Fig. 3B) typically demon-
strated two distinct peaks. The secondary peak in the hand
speed profile could be the result of several mechanisms includ-
ing, but not limited to, active correction under visual feedback,
reflex-mediated adjustments due to the mismatch between the
intended and actual final joint posture (the mismatch being due
to the perturbation) or the interaction of limb and manipulan-
dum dynamics (Shadmehr and Mussa-Ivaldi 1994). The
present experiment was not designed to distinguish between
these alternatives. Therefore movements were truncated at the
point of time near the end of movement where the hand speed
profile reached a transient minimum (vertical line in Fig. 3B,
solid lines in Fig. 3A returning to final target location). This
limited subsequent analysis to the portion of movement that
was predominantly feedforward.

An exponential function (Eq. 2) was fit to the movement
error trial series (dark solid line in Fig. 3C), confirming the
presence of a steady-state bias in movement error. Figure 3C
shows a rapid decrease in movement error within the first
10-20 trials (time constant = 2.4 trials). Time constants (A
in Eq. 2) for all four subjects averaged 3.2 = (.74 trials
(mean = SE mean). The residual steady-state movement
error (constant C in Eq. 2) was observed in all four subjects
(average 12.3 *£ 2.7 mm), indicating that subjects compen-
sated only approximately for the mean of the random trial
sequence. These observations were consistent across all four
subjects exposed to the unimodal perturbation sequence.
Subjects did indeed adapt in response to the random se-
quence of perturbations.

Profiles of the hand forces generated perpendicular to the
direction of movement (Fig. 3D) provide further evidence of
adaptation to the stochastic sequence of perturbations. Subject-
generated forces dominated movements made in the weakest
fields (the smallest force profile with biphasic shape), whereas
robot-generated forces dominated movements made in the
strongest fields (the largest profile with monophasic shape).
The initial peak in perpendicular force generated by the subject
in the weakest field (~12 N) was directed opposite to the
forces imposed by the robot and was not necessary to move the
hand toward the target. This excessive force caused the limb to
deviate substantially from the target, producing a kinetic after-
effect of adaptation. Consequently, restoring forces (the nega-
tively directed peak in Fig. 3E) were required to move the limb
to the final target.

An analysis of movement error versus perturbation ampli-
tude (Fig. 3, E and F) indicated that these two variables were
well fit by a linear relationship within the range of our exper-
iment (r = 0.82 in Fig. 3E; 0.73 < r < 0.84 for all 4 subjects).
The point of zero error on these regression lines indicates the
field strength that was best compensated for through the adap-
tive process (13.5 Nm/s in Fig. 3E; 12.9 = 1.2 Ns/m for all 4
subjects in Fig. 3F). This adapted field strength approximated,
but did not quite attain, the mean value of the distribution (P <
0.01; Student’s r-test rejecting the null hypothesis Hy: B,gup =
B = 15.2 Ns/m). Thus subjects compensated for force fields
somewhat less than (but coarsely approximating) the mean
gain (i.e., B; =~ B), greatly undercompensated large force-field
gains (i.e., B; >> B), and greatly overcompensated small force-
field gains (i.e., B; < B).

R. A. SCHEIDT, J. B. DINGWELL, AND F. A. MUSSA-IVALDI

Adaptation to the approximate mean, not to the mode

An overhead view of averaged hand paths made by one
subject from experiment 2 (Fig. 4A; bimodal perturbation
sequence) shows that again, movements were either deflected
to the left or to the right. Average hand speed profiles (Fig. 4B)
exhibited the same biphasic pattern found in experiment 1.
Consequently, the data from experiment 2 were truncated in
same way as in experiment 1. The truncated and averaged hand
movements (Fig. 4A) exhibited consistent deviations toward
the right when movements were made in fields with strengths
of =10 Ns/m and toward the left when movements were made
in fields with strengths of =20 Ns/m. Force fields roughly
corresponding to the mean disturbance (10—15 Ns/m) resulted
in trajectories with the least curvature although they were not
ideally straight. These results demonstrate that adaptation to a
sequence of perturbations with randomly varying magnitudes
converges to the approximate mean perturbation magnitude
rather than the most likely magnitude.

Fitting an exponential function (Eg. 2) to the movement
error trial series (dark solid line in Fig. 4C) produced results
that varied widely across subjects [time constant A = 54.8 *
18.2 (SE) trials; range = [11.2, 167] trials; n = 8]. Conse-
quently, this traditional measure of learning suggests that the
bimodal perturbation sequence abolished (or at least slowed)
the initial rapid learning observed in experiment 1. However, as
shown in the following text, subject performance in both
experiments can be described using a single, parsimonious
description of motor adaptation.

Figure 4D displays average perpendicular hand force pro-
files measured at the handle in the bimodal experiment. The
overall shape of the profiles was similar to those observed in
the unimodal experiment with the initial peak in perpendicular
force generated in the weakest fields giving rise to the unde-
sirable deviation from the target indicative of aftereffects of
adaptation. Again this is a kinetic aftereffect of adaptation
similar to that observed in the first experiment. As in the
unimodal experiment, the hand force profiles were smooth and
the restoring forces generated at the end of the movement did
not appear to be distinct pulses.

As in the unimodal experiment, subjects exposed to the
bimodal perturbation sequence exhibited a linear relationship
between movement error and perturbation strength (» = 0.85 in
Fig. 4E; 0.83 < r < 0.94 for all 8 subjects). Again, the point
of zero error on these regression lines was taken as the field
strength that was best compensated for through the adaptive
process. These eight subjects adapted to an average field
strength of 11.33 Ns/m with a 95% confidence interval of
[8.61, 14.04] Ns/m (Fig. 4F). For all eight subjects, the major
and minor peaks of the bimodal probability density function (6
and 25 Ns/m, respectively) both fell outside this 95% confi-
dence interval. However, although the adapted field strength in
the bimodal sequence was substantial, subjects did not quite
compensate for the mean perturbing field (B = 15.5 Ns/m),
even after 300-400 movements. Somewhat paradoxically,
subjects actually adapted to a perturbing field strength that was
experienced rarely.

Only recent memories contribute to adaptation

The Gaussian-distributed random trial sequence (Fig. 2, A
and B) was used to perturb subjects while adapting because this
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FIG. 4. Results from experiment 2 (bimodal perturbation sequence). A: overhead view of averaged hand paths from 1 subject.
Trials were averaged into 6 bins of 5 Ns/m width (0-5, 5-10, 10-15, etc.). As in experiment 1, trials with field strengths =25 Ns/m
were undercompensated (left-most profile), whereas trials with field strengths =5 Ns/m were overcompensated (right-most profile).
Movements were truncated at the point of time near the end of movement where the hand speed profile reached a transient
minimum. Average trajectories after the time of truncation are shown with triangular symbols. B: average hand speed profiles for
the same subject. The vertical dashed line indicates the approximate time at which hand speed reached a transient minimum,
separating the hand speed profile into 2 peaks. C: movement errors for this subject plotted against trial number. The dark, solid line
represents the exponential best-fit estimate of movement error (Eq. 2). Note that movement error was not well fit by a falling
exponential function in the bimodal experiment. D: perpendicular hand force profiles obtained by averaging the data in the same
manner as in A and B. E: scatter plot of movement error vs. perturbation strength, exhibiting a nearly linear relationship (» = 0.85).
F: best-fit linear regressions from the scatter plots of all subjects from experiment 2 (0.83 < r < 0.94).

input to the motor adaptation process was both uncorrelated
from trial to trial (up to a lag of 40 trials; Fig. 2C) and “rich”
spectrally (Marmarelis and Marmarelis 1978). Driving each
subject’s motor system with an uncorrelated trial sequence
ensured that any trial-to-trial correlations observed in that
subject’s motor output did not originate from the perturbation
sequence but rather from information processing within the

neuromotor controller. Despite this lack of correlation in the
sequence of perturbing fields, significant trial-to-trial correla-
tions were observed in subjects’ motor output (Fig. 5). Corre-
lations between movement error and perturbation gain (Fig.
5A) exceeded statistical significance (>95% CI) not only on
concurrent trials (i.e., lag = 0) but also on the preceding trial
(lag = +1). The sign of the correlation at lag 1 was opposite
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Correlation analysis of motor performance during adaptation for a typical subject from experiment 1. A: cross-correlation

magnitude between movement error and perturbation gain. Horizontal lines correspond to 95% confidence interval bounds (i.e., the
20 limits) on the correlation magnitudes. Movement error on a given trial correlated with perturbation gain on that same trial and
with perturbation gain on the previous trial as subjects compensated for the most recently experienced perturbation. B: autocor-
relogram of movement error. Movement error on a given trial correlated with movement error on the previous trial. C:
cross-correlation magnitude between peak perpendicular hand force and the perturbation gain, exhibiting a lag-1 correlation with
perturbation amplitude. D: cross-correlation magnitude between peak perpendicular hand force and movement error, which also
exhibited a significant correlation with previous movement error (lag = +1), consistent with A.

that at lag O, indicating that subjects attempted to reduce
movement error on each trial by countering the previous per-
turbation. Significant correlations between movement error and
perturbation gain extended back no more than two trials for all
of the four subjects exposed to the perturbation sequence with
the unimodal distribution. Movement errors on a given trial
also exhibited substantial correlations with errors generated in
the preceding trial (Fig. 5B). By definition, the autocorrelation
function is symmetric about O lag. Thus correlations at any
given lag are reflected at the corresponding lead with no
violation of causality. Significant autocorrelation terms were
found at a lag of one trial for three of the four subjects (the
remaining subject showed no significant correlations beyond
lag 0). Again, the sign of this correlation was negative indi-
cating that subjects attempted to reduce movement errors on
each trial by countering movement errors generated on the
previous trial.

Similar correlation analyses were performed on the peak
hand forces generated perpendicular to the intended direction
of movement (Fig. 5, C and D). Correlations between peak
hand force and perturbation gain (Fig. 5C) exceeded statistical

significance (>95% CI) only on concurrent trials (i.e., at 0 lag)
and at a lag of one trial. Significant correlations between peak
hand force and perturbation gain extended back no more than
two trials for all four subjects in experiment 1. Correlations
between movement error and peak hand force (Fig. 5D) ex-
ceeded statistical significance only on concurrent trials and, at
a lag of one trial, a result entirely consistent with the findings
of Fig. 5A.

The significant correlations at zero lag (Fig. 5, A, C, and D)
were due in part to mechanical interaction between the robot
and the finite impedance of the subject’s arm. Larger forces
imposed by the robot on the hand resulted in both larger
deviations of the hand from its intended path and in greater
forces being recorded at the handle. However, significant cor-
relations at nonzero lags cannot be explained by mechanical
interactions. These lag 1 correlations indicate that subjects
used explicit information regarding the strength of the pertur-
bation from the previous trial to preprogram the motor re-
sponse on each subsequent trial. Subjects also utilized infor-
mation about previous performance to update motor behavior
on subsequent trials. The lack of significant correlations be-
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yond two previous trials indicates that explicit memory repre-
sentation of more remote trials was not used during motor
adaptation. Had subjects adapted to the stochastic sequence of
perturbations by directly counteracting some constant field
strength on each trial (e.g., the mean), their motor output would
likewise be uncorrelated with the input. This hypothesis is
clearly refuted by the present findings. These findings support
the hypothesis that explicit information of only one or two
previous trials is sufficient to allow subjects to compensate for
the approximate mean field strength in a random sequence of
perturbations.

Predicting motor performance

The preceding analyses suggest that subject performance
(quantified by movement error) exhibited on any given trial, i
can be predicted solely from the field strength on that trial (B;)
and from the field strength and error exhibited on the previous
trial (B,; and €, ,, respectively)

€, =a€_, +bB;+ b B;_, 5)
Regression coefficients (a,, by, b;) were estimated over the
initial 100 trials for each subject in experiments I and 2 by
performing a multi-linear regression of movement error on
previous movement errors, previous perturbations and concur-
rent perturbations (Table 1). The ability of this model to predict
movement error in the last 100 movements in each experimen-
tal session was evaluated to determine how well the model
would generalize beyond the data set used to determine model
coefficients. The ability of this model to predict performance
for greatly differing perturbations sequences (i.e., unimodal vs.
bimodal distribution) was also evaluated. Model performance
was quantified using the variance accounted for (VAF; Eq. 4).
The percentage of VAF by this model from the unimodal
experiment was 79% for the subject shown in Fig. 6A and 71 =
3% (mean *= 1 SE) for all four subjects. The percentage of
VAF by this model from the bimodal experiment was 86% for
the subject shown in Fig. 6B and 84 = 2% for all eight
subjects. Thus a model incorporating limited explicit memory
of subject performance and perturbation magnitudes can pre-
dict movement errors with a high degree of fidelity. This
strongly suggests that motor adaptation is a continuously
evolving process whereby the average field in a sequence of
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perturbations is compensated using properly weighted cancel-
lation of both previous perturbation amplitudes and previous
movement errors.

Step response analysis

Although the model performed quite well in response to the
stochastic input sequences from which it was originally de-
rived, it was also important to determine how well this model
could predict behavior exhibited in response to nonstochastic
sequences of input perturbations. Equation 5 was used to
simulate movement errors in response to a step increase in
perturbation strength that included a simulated “catch trial”
near the end of the input sequence (Fig. 7A, fop). This input
sequence was specifically designed to mimic the constant force
field gains and catch trials used in previous motor adaptation
experiments (e.g., Shadmehr and Mussa-Ivaldi 1994). Average
coefficient values from the unimodal experiment (Table 1)
were used to define the model parameters. When presented
with a step increase in perturbation strength, the simulated
movement errors rapidly approached their asymptotic value
(within 3—4 trials) and exhibited a small steady-state error at
large trial numbers as did subjects in both experiments. The
model output also exhibited the classic behavior of an “after-
effect” (Shadmehr and Mussa-Ivaldi 1994) when the catch trial
was introduced at trial number 75. Furthermore, this model was
also able to account for the observations of Thoroughman and
Shadmehr (2000) that a single catch trial can transiently de-
grade the adapted state generated in response to a consistent
perturbing field. Consequently, this very simple model of mo-
tor adaptation succinctly captures the fundamental behavioral
characteristics exhibited in both the present experiment and in
more traditional experiments of motor adaptation.

Interpretation of model coefficients

To investigate how each term of the model related to ob-
served behaviors, the output of the model in response to the
same step input (Fig. 7A) was analyzed for various combina-
tions of model parameters (Fig. 7B). A model that does not rely
on prior experience, and thus has no memory (i.e., a;, = b, =
0; trace 1), can only respond to the current perturbation and
fails to adapt. This is the response one would expect if subjects
were only co-contracting their limb in response to the pertur-

TABLE 1. Equation 5 regression coefficients and goodness-of-fit measures for both the unimodal and bimodal experiments

Subject n a, by b, VAF r
Ul 0.29 —243 1.94 0.62 0.79
U2 0.43 —-3.99 3.73 0.73 0.85
U3 0.45 —5.37 4.66 0.77 0.88
U4 0.09 —3.84 2.85 0.70 0.84
B1 0.53 —4.29 2.23 0.87 0.93
B2 0.52 —2.55 2.62 0.80 0.89
B3 0.39 —4.32 3.47 0.86 0.93
B4 0.49 —4.40 3.35 0.86 0.93
BS5 0.29 —3.27 1.94 0.81 0.90
B6 0.52 —3.25 2.68 0.77 0.88
B7 0.53 —3.92 3.27 0.86 0.93
BS 0.62 —5.59 4.57 0.92 0.96
U 4 0.31 £0.11 —3.91 £ 0.60 3.29 = 0.58 0.71 = 0.03 0.84 = 0.02
B 8 0.49 = 0.04 —3.95 033 3.02=0.29 0.84 = 0.02 0.92 = 0.01

U and B values are means * SE.
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FIG. 6. Within-subject comparison of predicted (ARX model; Eq. 5) move-
ment errors with actual movement errors during the final 100 movements of the
experiment. Model parameters were evaluated from the Ist block of 100 trials.
A: prediction of performance for a typical subject in the unimodal perturbation
sequence. The dark line represents actual subject performance, while the thin
line represents the model prediction. The model accounted for 79% of the data
variance. B: prediction of subject performance in the bimodal perturbation
sequence (same line types as in A). The model accounted for 89% of the data
variance.

bations. Increased co-contraction might decrease the magni-
tude of the b, term, but unless the limb stiffness became
exceedingly large, a substantial residual offset would remain.
The amount of residual steady-state error in the adaptive re-
sponse is determined by the relative magnitudes of b, and b,.
When b, = —b, (trace 2), then the residual steady-state error
is eliminated. On the other hand, when the autoregressive term
in the model is removed (a; = 0; trace 3), the dynamics
associated with initial exposure to the perturbation are elimi-
nated while the steady-state error is reduced relative to the full
model (Fig. 7A). If this autoregressive term is instead doubled
(trace 4), the initial transients are extended and the steady-state
error is increased. Changing the sign of a, (traces 5 and 6) does
not alter the time course of adaptation but causes the model’s
response to oscillate within the envelope defined in Fig. 7, A
(bottom) and B (trace 4), respectively. Note, however, that
changing the sign of a; does in fact reduce (but not eliminate)
the steady-state error. Finally, not all choices of parameters
yield stable learning. Setting a; > 1.0 yields an unstable
algorithm that never adapts (trace 7).

DISCUSSION

The present experiments investigated the ability of unim-
paired humans to adapt to a viscous, perpendicular, force-field
environment having force-field gains that were unpredictable
(and uncorrelated) from trial to trial. Experiments were de-
signed to determine if subjects adapted to the mean force field
gain, the most likely field, or whether adaptation would depend
on other features of the perturbation sequence’s probability
density function. Correlation analyses were performed to de-
termine how much motor performance on any given trial was
correlated with performance on previous trials. It was found
that /) subjects adapted their motor behavior in response to the
random sequence of force field gains, 2) subjects compensated

A step input
looorosesed A 4 l
a1=0.31,b0=—3.91,b1=3.29 |
0 75
B 1"""“ =0,b =-391,b =0
a,=0,05=-091,b, = A
) a, =0.81,b =-3.91,b =391 /Xf
5 a1:0’bo=_3'91'b1:3'29 ﬂ/
4 a1:0.62,b0=-3.91,b1=3.29 n
s v( a1:-0.31,b0=-3.91,b1:3429 |
6 a1=—0.62,b0:-3.91,b1=3.29
W T
7
a = 1.10, bo= -3.91, b1 =3.29
Il
0 75
Trial Number
FIG. 7.  Step response analysis of a family of autoregressive models based

on Eq. 5. The coefficients for each model are described above the correspond-
ing response curves. A, top: input sequence corresponding to a step increase in
the strength of force-field perturbation, similar to the perturbations traditionally
used to study motor adaptation. Note that a “catch trial” (impulse) was
included near the end of the sequence to allow a direct comparison of the
model’s response to catch trial behavior described in the text. A, bottom:
response of a model derived from the average coefficients of the 4 subjects
participating in the unimodal experiment. Note that the model exhibits a
steady-state error as trial numbers become large as did subjects in both
experiments. B: 1: step response of a model with no memory; the response on
any given trial is only dependent on the current perturbation magnitude; 2:
response of a model that precisely compensates for the most recent perturba-
tion without either attenuation or amplification; b, = b,,. 3: response of a model
with no autoregressive term; a, = 0. 4: response of a model with its autore-
gressive term doubled; 5: model response when the sign of the autoregressive
term has been inverted; 6: model response when the autoregressive term has
been both inverted and doubled. 7: response of an unstable model a, > 1.0.
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for the approximate mean field of the stochastic sequence, not
the most likely field, and 3) subjects compensated using mem-
ories of only the most recent perturbations and the most recent
performances.

What did subjects adapt to?

Subjects experienced perturbing forces that were always
directed toward their left. If no adaptation had occurred, then
all movement errors would likewise have been directed toward
the left. However, for field strengths of <10 Ns/m, hand-path
deviations were made consistently toward the right in both
experiments (Figs. 3A and 4A). The presence of these oppo-
sitely directed errors (i.e., to the right) indicates that subjects
were directly opposing forces they anticipated encountering
and precludes the possibility that they were merely stiffening
the arm around some reference trajectory (Conditt et al. 1997a;
Flash 1987; Shadmehr and Mussa-Ivaldi 1994). Furthermore
movements made in stronger-than-average force fields were
undercompensated, whereas movements made in weaker-than-
average force fields were overcompensated, suggesting that
subjects were compensating approximately for the mean per-
turbing force field in both experiments. This finding was con-
firmed by linear regression analysis (Figs. 3£ and 4F).

Learning rates in the present study (Figs. 3C and 4C) were
slower than rates reported for compensation of inertial loads
(within 1 trial) (Bock 1993) but were substantially faster than
learning rates reported for consistent (but geometrically com-
plex) viscous environments when subjects were required to
reach in several different directions (more than 100 trials)
(Bhushan and Shadmehr 1999). Remarkably, the learning rates
observed in experiment I were almost identical to the rates at
which subjects regained adaptation to a predictable perturbing
environment after a single “catch trial” in which the perturbing
environment was unexpectedly removed (~3 trials) (Thor-
oughman and Shadmehr 2000). Clearly, subjects adapted to
these stochastic environments.

Adaptation modeled as an autoregressive process with
external input (ARX process)

Although the linear regression results demonstrated that
subjects compensated for the approximate mean perturbation
strength in both force-field environments, they did not suggest
how the central nervous system accomplished this adaptation.
Mathematically, the mean perturbation magnitude is defined as
the sum of the individual magnitudes divided by the number of
perturbations. Since subjects had no way of knowing all of the
perturbation magnitudes until the experiment was completed, it
was not possible for them to directly compute the mean field
strength. Subjects could have evaluated a “running average” of
all trials they experienced so far. However, this strategy would
require subjects to retain either explicit working memory of all
previously encountered perturbations or explicit memory of the
average of all previous perturbations along with a running total
of the number of previous perturbations. In either case, the
relative importance of the most recent perturbation would
decrease linearly as a function of the number of perturbations.

A less demanding alternative would be for subjects to rely
only on explicit information regarding only recent experiences.
Motor performance (and consequently motor adaptation) may
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rely on information about past movement performance and/or
past perturbations derived from a variety of sensory sources
(e.g., muscle spindles, Golgi tendon organs, slowly adapting
hand mechanoreceptors, vision, etc.). A general form of this
model, one that depends only on information regarding move-
ment errors and perturbation amplitudes (Eq. 3) was examined
in the present experiment. One important aspect of this model
is that information about experiences in the distant past is
retained implicitly in the autoregressive terms (i.e., if Eq. 3
contains at least one nonzero g; term).

The correlation analyses (Fig. 5) demonstrated that move-
ment error on a given trial i was well predicted from the field
strength on that trial (B;) and from the field strength (B,_;) and
movement error (€; ;) exhibited on the previous trial (Eq. 5).
Why do subjects compensate for previous movement errors
when the step response analysis suggests that learning would
be more rapid and effective if those errors were disregarded
altogether (i.e., set a; = 0 in Eg. 5) and the most recent
perturbation was canceled exactly (i.e., set b, = —b, in Egq. 5;
Fig. 7B, trace 2)? Are there unavoidable history dependencies
in the proprioceptive and/or visual sensory pathways that con-
strain the motor learning mechanisms in their “choice” of
compensatory strategies? It has been suggested that cancella-
tion of prior movement errors is important to motor adaptation
(e.g., Flanagan and Rao 1995; Scheidt et al. 2000; Wolpert et
al. 1995). Equation 5 suggests that compensating for the most
recent movement error exactly (i.e., a; = —1 in Eg. 5) would
be a counter-productive strategy since Eq. 5 becomes unstable
when |a,;| = 1. This can be seen by examining the stability of
Eq. 5 in the complex z-domain (Oppenheim and Schafer 1989).
The z transform of Eg. 5 is

E(z) = a,2 "E(z) + byB(z) + b,z 'B(2) 6)

Consequently, the model’s transfer function H(z) is

E@) (b + blzil)

HO =80 " —we) @
H(z) has a zero at z = —b,/b, (see Fig. 7B, trace 2) and a
single, real pole situated at z = a,. The location of the zero in
the unimodal and bimodal experiments was not significantly
different at the P < 0.05 level (P = 0.39; 2-sample #-test), and
the location of the system pole in the two experiments was also
not significantly different (P = 0.13). Therefore to the extent
that this linear model captures the mechanisms of adaptation,
we conclude that the process of adaptation is not sensitive to
the details of the distribution of the perturbing forces (e.g.,
mode, skewness, etc.), but only to its mean. The location of the
zero at 7 = —b,/b, is significant because in the steady state
(i.e., when z = 1) the transfer function is minimized when b, =
—b,. Furthermore, for any linear system to be stable, all the
poles of its transfer function must lie within the unit circle
defined in the complex z plane (i.e., |z < 1) (Oppenheim and
Schafer 1989). Therefore |a,| < 1 must be satisfied for Eq. 5 to
be stable. Perfect cancellation of the most recent movement
error (i.e., a; = 1) would cause the motor adaptation process to
become unstable (e.g., Fig. 7B, trace 7).

Explicit representation of the internal model

Since the relationship between movement error and pertur-
bation gain was reasonably well fit by a straight line (Figs. 3E
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and 4F), the ARX model of subject performance (Eq. 5) was
rearranged to yield an expression for the internal model of the
perturbing environment. Specifically, movement error gener-
ated on trial i was regarded as a function of the mismatch
between the actual perturbation experienced on that trial and
the expected (or adapted) perturbation magnitude: €; = AB; —
B qaptea)- Figures 3E and 4E demonstrate that this relationship
was reasonably described by a linear function

€; = k(Bl - Budaplcd) (8)

Re-arranging Eg. 5 into the form of Eq. 8§ yields

&=%@ﬁﬁ%w+ﬁ&0 (94)
by by
= bo(B; = Buapea) (9B)
where
Bugupes, = —(@/bo)er— — (bi/b)B,-. (10)

Equation 10 provides a very simple representation of the
subject’s prediction of the perturbation magnitude on trial i
based solely on explicit information about the error and per-
turbation magnitude on the most recent trial. However, even
this simple representation faithfully reproduced subjects’ be-
havior in the present experiment (Fig. 6). It is worth noting that
parameters estimated from the first 100 trials adequately ac-
counted for the time series of errors up to 300 trials following
parameter estimation. Thus the adaptive behaviors observed in
both the unimodal and bimodal experiments (Figs. 3 and 4)
were a consequence of the dynamics of a quasi-stationary
process with very limited memory. Motor performance would
be optimized by tuning the coefficients a,, b,, and b,. Both the
rate of adaptation and the steady-state error can be altered by
appropriate modification of these coefficients (Fig. 7).

How do the motor adaptation mechanisms estimate the most
recent movement error and perturbation strength?

Constructing the internal representation of the perturbing
field strength via Eq. 5 requires accurate estimation of €, ; and
B, ,. Movement error is likely to be sensed both visually (e.g.,
Wolpert et al. 1995) and proprioceptively (Dizio and Lackner
2000; Shadmehr and Mussa-Ivaldi 1994). The current experi-
ments were not designed to evaluate the relative contributions
of different feedback modalities to motor adaptation but rather
to explore how the neural mechanisms involved in motor
adaptation use information from previous movements (how-
ever that information is sensed) to modify motor commands on
subsequent movements. Both visual and proprioceptive feed-
back appear to be important (Conditt et al. 1997b), although it
is not yet clear how this feedback information is combined in
driving motor adaptation.

There are at least two ways the CNS could estimate the most
recent perturbation strength in keeping with the spirit of Eq. 10.
The first strategy would be to estimate the field strength di-
rectly using sensory organs sensitive to the kinetic demands of
the task (e.g., Golgi tendon organs, hand mechanoreceptors,
and indirectly, muscle spindle receptors since they are coupled
to the perturbation through limb tissues with finite impedance).
In this case, B,; would be “measured” directly and Eq. 10
would be implemented as written. The second way of estimat-
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ing the most recent perturbation strength would be to do so
indirectly and recursively, using only the most recent move-
ment error to update the previous estimation of the perturbing
field. In this case, Eg. 10 can be reformulated

Badapled,» = —(ay/by)ei_; — (bl/bo)Badapled,,, un

Here, movement errors drive the formation of the internal
model of the perturbations. Substituting the z transform of Egq.
11 into the z transform of Eq. 9B for By, (2) yields a
transfer function that is identical in structure to Eq. 7 except
that the algorithm’s single pole location is shifted to z = a; —
(b,/by). The coefficient values that ensure stability of the sys-
tem are therefore: |a, — (b,/by)| < 1. Using Eq. 11 and the
modified Eq. 9B to fit subject U2’s movement error data yields
the coefficients: a; = —0.34, b, = —4.2, by = 4.0. The
effective pole location for this system was z = 0.62 (compare
to Fig. 7B, trace 4). Since recursive estimation of B, ; via Egq.
11 does not alter the transfer function structure of Eq. 7, the
correlation analyses of Fig. 5 cannot distinguish between re-
cursive estimation of B,y,eq (Eq. 11) and estimation of
B gapiea Via proprioception of B, (Eq. 10). Consequently,
while force feedback gain from Golgi tendon organs is likely to
be quite low (cf. Houk and Rymer 1981), such information is
not necessary to construct an internal model of the perturbing
force field environments.

Comparison of the simple autoregressive model with
alternative learning strategies

If movement error is linearly related to the perturbing field
amplitude, €; = k(B; — B,gupeq)s then the optimal internal
model in terms of least square error (i.e., the B,g,yeq that
minimizes the sum of €) is given by the mean field

1 i—1
sz/

Bop!imal‘ = i £ 12)

In the present study, movement errors were linearly related
to perturbation amplitude (Figs. 3E and 4FE). This finding
supports the empirical claim that subjects adapted their reach-
ing movements so as to minimize deviations from a rectilinear
path (Shadmehr and Mussa-Ivaldi 1994). One plausible alter-
native to the learning strategy described by Eg. 5 would be for
subjects to “explicitly” learn the mean. In this case, Eq. 12 is
substituted into Eq. 5 for B, ; while the dependence on previous
movement errors (the €, term) is dropped

€ = byB, + b\ Bopima (3

Equation 13 was fit to subject U2’s initial perturbation and
movement error data set (1st 100 movements). The model’s
performance was then evaluated in the final 100 movements of
the experiment (Fig. 8A). This algorithm performed respect-
ably when perfect memory of all perturbations encountered
was available (VAF = 70%). This algorithm also quickly
converged to the (ideally) linear relationship between pertur-
bation gain and movement error (Fig. 8B). However, this
model failed to exhibit the significant lag 1 correlations be-
tween movement error and perturbation amplitude observed
experimentally (compare Fig. 8C to Fig. 5A4). The absence of
these lag 1 correlations arises from the fact that when all
previous movements are considered explicitly, the contribution
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of any one individual perturbation to the internal model of the
mean field becomes vanishingly small after only a few trials.
Therefore the simple adaptive mechanism of Eg. /0 permits
subjects to achieve near optimal performance (i.e., approxi-
mately minimizing squared errors) while maintaining compu-
tational efficiency since the autoregressive Eq. 10 approxi-
mates the ideal average of Eg. 12 with a very limited number
of memory elements. (The autoregressive term in Eg. 10 re-
tains indirect and exponentially weighted memory of all past
perturbations due to the nested dependence of €, ; on previous
errors.) Note also that Eqg. 12 defines optimal performance only
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when the underlying distribution of B, is stationary. In the
nonstationary case (such as the step input of Fig. 7A), the
model of Eq. 12 would respond very slowly since the incre-
mental contribution from each subsequent trial decreases pro-
gressively as the number of trials increases. Consequently,
adaptation in the sense of Eg. 5 strikes a desirable compromise
between decreasing movement errors in a stationary but po-
tentially unpredictable environment while allowing the motor
system to respond rapidly and appropriately to long-term
changes in the perturbing environment (Fig. 7A).

A second alternative learning strategy describes what could
be called “careless learning” and was motivated in part by the
observation that subjects never made ideally straight move-
ments and almost always had peak hand deviations exceeding
~1 cm (Figs. 3F and 4E). Perhaps subjects considered move-
ments with such small errors “good enough” for the specified
task? This form of learning is careless in the sense that the
learner does not attend to small movement errors. The internal
representation of the perturbation in a careless learning model
would be updated only when the learner is “surprised” (i.e.,
when the movement errors experienced on a given trial exceed
a minimum threshold value, €, ..q.010)- An attention model that
describes how well movement errors are attended to is

U(e) = ul€; — €preshola) 4

where u(*) is the unit step function. The update rule for the
internal model then becomes

A A —b, a,
Budupmd, = Buduplcd, T U(G)[(T - 1>Budup[ca, T E Ey—lj| (15)
0 0
Note that if €4,,.qhoiqa = O, then the update rule of Egq. 15 simply
reverts to that of Eq. 11. The selection of €;,,.q,14 SPECIfies how
“attentive” the adaptation process is to small movement errors.
Setting €,,,.sno1a 1arge implies that the internal representation of
the perturbation will adapt only on “exceptional” trials where
large movement errors indicate that the model’s prediction of
the most recent perturbation was grossly inaccurate.

The attention model of Eq. 14 with €, ool = 5 mm is
shown in Fig. 9A. The careless learning algorithm (Eq. 15) was
fit to subject U2’s initial movement error data (1st 100 move-
ments). The model’s performance was then evaluated in the
final 100 movements (Fig. 9B). Even though the algorithm
neglected the smallest movement errors, overall performance
was respectable when driven by the unimodal perturbation
sequence (VAF = 64%). However, when the same model was

FIG. 8. Simulation results of a learning algorithm that accumulates an
explicit representation of the mean perturbing field (Eq. /2). A: model perfor-
mance in the unimodal perturbation sequence. The thick line represents subject
performance while the thin line represents the model prediction. The model
accounted for 70% of the data variance. B: scatter plot of algorithm predictions
of movement errors (triangles) and subject performance (filled dots) vs. per-
turbation amplitude in the unimodal sequence of perturbations. Thick lines
represent the linear regressions fitting the dependence of algorithm-predicted
movement errors and subject-generated movement errors on perturbation am-
plitude (O crossings of 14.4 and 14.6 Ns/m, respectively) C: cross-correlation
magnitude between simulated movement error and perturbation gain for the
learning algorithm that accumulates an explicit representation of the mean
perturbing field. The two horizontal lines correspond to the 95% confidence
interval bounds (i.e., the 20 limits) on the correlation magnitudes. Compen-
sation for the explicit average perturbation did not predict the significant lag-1
correlation between movement errors and perturbation gain seen in the sub-
jects’ data (e.g., Fig. 5A).
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driven by the bi-modal sequence, the algorithm’s performance
suffered (Fig. 9C). Movement errors were negatively biased,
indicating an inability of the model to compensate for the
sequence of perturbations as well as the subject did. With
€nreshold — O mm, the careless learning algorithm compensated
only for the approximate mean of the minor peak in the
bimodal distribution (4.9 Ns/m, Fig. 9D). Consequently, a
learning algorithm that performs well in the unimodal sequence
may perform poorly in the bimodal sequence unless movement
errors are attended to carefully. The residual curvature ob-
served while reaching in both stochastic perturbation se-
quences was likely due to biomechanical constraints and/or
information processing within the motor control systems and
not due to inattention to very small movement errors.
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Relation to studies requiring adaptation to consistent
perturbation sequences

A recent study of reaching movements by Thoroughman and
Shadmehr (2000) examined movement errors generated by
subjects exposed to predictable perturbing environments with
periodic “catch trials” where the predictable perturbation was
unexpectedly removed. Movement errors generated in the con-
stant-gain curl-field just after exposure to a catch trial were
substantially larger than errors generated just prior to the catch
trial. This increase in error was attributed to an “unlearning” of
the internal model of the environment. This increase in error
decayed on subsequent movements to the same target and was
undetectable by about the third trial following a catch trial.
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FIG. 9. Simulation results of a learning algorithm that updates its internal model when the field strength experienced on a given
trial deviates from the predicted field by more than some minimum value (Eq. 15). A: the attention model U(e;) for a learning

algorithm that attends only to movement errors that exceeded €

threshold

= 5 mm. B: comparison of algorithm and subject

performance in the unimodal sequence of perturbations. The thick line represents actual subject performance while the thin line
represents the model’s prediction of subject performance. The model accounted for 64% of the data variance. C: comparison of
algorithm and subject performance in the bimodal perturbation sequence. Line types are as in B. D: scatter plot of algorithm
predictions of movement errors (triangles) and subject performance (filled dots) vs. perturbation amplitude in the bimodal sequence.
The thick lines represent the linear regressions of algorithm-predicted movement errors on perturbation amplitude (left-most
diagonal line) and that of subject-generated movement errors on perturbation amplitude (right-most diagonal line).
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This decay rate was comparable to the rate of adaptation
observed in experiment 1 from the present study, even though
the perturbation sequence used in experiment 1 was random.
The decay rates obtained experimentally were comparable to
the rate predicted by Eq. 5 (Fig. 7A). Thoroughman and Shad-
mehr fit a system of equations to their movement error data that
captured this experimentally observed unlearning behavior.
Following a rearrangement of terms and substitution of indices,
it can be shown that their system of equations can be repre-
sented in the form of Eq. 5. The similarity in experimental
observations and the successes in equivalent modeling tech-
niques between the present study and that of Thoroughman and
Shadmehr (2000) suggest that the processes involved in adapt-
ing to consistent perturbing environments are the same as those
involved in adapting to stochastic perturbing environments.

In conclusion, a sequence of perpendicular viscous force
fields with stochastically varying gains triggered an adaptive
process that compensated for the approximate mean field gain
from that sequence. Furthermore the force-field gain that sub-
jects adapted to was not the most frequently experienced gain
nor was adaptation dependent on the particular distribution of
perturbations. Although adaptation to the mean field gain
would be optimal in the sense that squared movement error
would be minimized in the steady state, this strategy is com-
putationally costly and does not allow sufficient flexibility to
accommodate efficient learning of nonstationary environments.
A simple model of motor performance that depended only on
movement error and perturbation gain from the previous trial
(Eg. 5) achieved substantial reduction in movement error,
while allowing a rapid and appropriate response to long-term
changes in the distribution of perturbations (Fig. 7). This
simple model predicted subject performance with ~84% vari-
ance accounted for (VAF). These findings support the hypoth-
esis that the neural structures modified as a result of motor
adaptation do not explicitly retain memories of performances
or perturbations beyond one or two trials in the past.

We extend special thanks to Dr. Chris Raasch for creating Fig. 1A.
This work was supported by National Institutes of Health Grants NS-35673
and P5SOMH-48185.
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