
Learning to Navigate Through Crowded Environments

Peter Henry1, Christian Vollmer1,2, Brian Ferris1, and Dieter Fox1

1University of Washington, Department of Computer Science & Engineering, Seattle, WA
2Neuroinformatics and Cognitive Robotics Lab, Ilmenau University of Technology, Germany

Abstract— The goal of this research is to enable mobile
robots to navigate through crowded environments such as
indoor shopping malls, airports, or downtown side walks.
The key research question addressed in this paper is how
to learn planners that generate human-like motion behavior.
Our approach uses inverse reinforcement learning (IRL) to
learn human-like navigation behavior based on example paths.
Since robots have only limited sensing, we extend existing IRL
methods to the case of partially observable environments. We
demonstrate the capabilities of our approach using a realistic
crowd flow simulator in which we modeled multiple scenarios
in crowded environments. We show that our planner learned to
guide the robot along the flow of people when the environment
is crowded, and along the shortest path if no people are around.

I. INTRODUCTION

The goal of this research is to enable mobile robots

to navigate through crowded environments such as indoor

shopping malls, airports, or downtown side walks. Consider a

person trying to get to a certain store in a shopping mall. The

initially planned path to that store is based on the person’s

apriori knowledge about the layout of the mall and the

expected crowd motion patterns in different areas of the mall.

As the person moves with the flow through the mall, typically

tending to move on the right, she updates her estimates

of the people density and flow based on her observations.

Using these updated estimates, she continuously re-assesses

the appropriateness of the planned path and decides to follow

a different route if necessary. She also continuously trades

off crowd following behavior with the desire to reach the

target, moving against the crowd flow if necessary.

Ideally, we would like robots navigating through such

environments to move along paths similar to those of the

people. By moving with the flow of the people, for instance,

a robot could navigate more efficiently. An additional benefit

of such imitative behavior would be better predictability of

robot motion, thereby enabling more natural and socially

acceptable interactions between people and robots [12].

While existing robot control systems deployed in crowded

environments such as museums or railway stations have the

capability to plan paths, update world models on the fly, and

re-plan based on new information, these planning techniques

solely aim at reaching a goal as efficiently as possible [3],

[15], [18], [19].

The key research question addressed in this paper is how

one can learn planners that generate human-like motion

behavior. Our approach to this problem is to learn a motion

planner from example traces of people moving through

such environments. We use these example traces to learn

how people trade-off different factors such as “desire to

move with the flow”, “avoidance of high-density areas”,

“preference for walking on the right/left side”, and “desire

to reach the goal quickly”. Our learning technique is based

on the following model: First, people plan paths through an

environment that are optimal w.r.t. a cost function, even if

they are not doing so explicitly or even consciously. Second,

this cost function is a weighted combination of various

environmental factors, including factors that change over

time and are only partially observable (e.g., crowd density).

Third, a person continuously updates the values of these

factors based on local perceptions and, fourth, updates the

path to the goal if necessary.

To learn a path planner from example traces, we build

on inverse reinforcement learning (IRL), a novel framework

for learning from demonstrations [14]. IRL has been applied

successfully to different problems, including learning to

decide lane changing in a simulated highway scenario [2],

learning to navigate a vehicle through a parking lot [1]

and learning to plan routes through a street network [22].

However, these approaches assume that an agent has full

access to all factors that influence its decision making. In

our case, unfortunately, neither a person nor a robot have

complete knowledge of the density and flow of people in the

environment. Instead, these values must be estimated on the

fly. In this paper, we show how to perform such an estimation

using Gaussian processes [16] and we extend maximum

entropy inverse reinforcement learning [22] to handle this

more difficult scenario.

We evaluate our approach using the crowd motion simu-

lator developed by Treuille and colleagues [20] (see Fig. 1).

This simulator has been shown to generate realistic motion

patterns based on parameterizable path cost functions. This

simulator enables us to perform controlled experiments that

are realistic enough to be transferable to real world scenarios.

The experiments demonstrate that our approach is able to

successfully learn navigation paths from demonstrations.

This paper is organized as follows. After discussing related

work, we present our approach to learning navigation behav-

ior from demonstrations. Then, in Section IV, we describe

how Gaussian process regression can be used to estimate

dynamic environmental features. Experimental results are

presented in Section V, followed by a discussion.



II. RELATED WORK

Over the last decade, several mobile robots have been

deployed successfully in crowded environments such as

museums [3] railway stations [15], and exhibits [18], [19].

Typically, these systems solved the problem of navigating

through crowded environments by computing the shortest

path to the next goal and then following this path using a

local collision avoidance system [3]. None of these systems

attempt to make the robot move human-like or follow the

natural flow of people through the environment. In contrast,

our goal is to enable scenarios in which mobile robots are

not the focus of attention but become every day devices that

move through environments with only little special attention.

More recently, Kirby and colleagues [7] performed studies

to evaluate different navigation strategies for a robot moving

along with a single person. They found that people clearly

preferred moving with a robot that shows more human-

like navigation behavior. Mueller et. al. [13] developed a

technique that aims at efficiently navigating through crowded

spaces by following people. Their approach continuously

tracks people in the robot’s vicinity and chooses to follow

people that move in the direction of the goal. While such

a technique might result in more efficient navigation, the

approach relies on manually tuned heuristics and has no

explicit criterion for generating human-like behavior.

The graphics community has developed path planning

techniques for efficiently generating naturally looking anima-

tions of densely crowded scenes [20], [21], [10], [11]. While

these techniques result in very natural motion patterns, they

require manual parameter tuning and are not readily appli-

cable to robot path planning. In some cases [20], [21] this is

due to the fact that the planning techniques assume global

knowledge about properties such as the motion direction

and density of all people. Other work [10], [11] is focused

on mimicking group crowd behavior by matching into a

database of observed examples to generate plausible overall

animations. In contrast to these techniques, our approach

takes limited sensing into account and learns the parameters

underlying the planning technique. In this paper, we rely on

a crowd simulator [20] to generate scenarios that allow us

to evaluate our approach.

Over the last years, several researchers have developed

techniques for learning Markov Decision Process (MDP)

models by observing human experts performing a task. The

key idea underlying this family of techniques, which includes

inverse reinforcement learning [14], [22], maximum margin

planning [17], and apprenticeship learning [2], [1], is to learn

a reward (or cost) function that best explains the expert

decisions. Reward functions are represented by log-linear

functions of features describing a task environment. While

these techniques have been shown to work extremely well in

several applications, they assume that all feature values are

known and static during each demonstrated planning cycle.

In contrast, our scenario requires learning from example

paths that are the result of a (simulated) person updating

feature value estimates and re-planning on the fly.

Fig. 1. An overview of the test environment and crowd simulator.

Gaussian processes (GPs) have been applied successfully

by the spatial statistics community [4] and, more recently,

by the robotics [5] community to model environmental

properties. Here, we show how GPs can be used to estimate

models of the density and flow of people in a crowded

environment.

III. INVERSE REINFORCEMENT LEARNING WITH

PARTIALLY OBSERVABLE FEATURES

In order for a robot to learn how to navigate a crowded

space as humans do, we employ techniques based on

maximum entropy inverse reinforcement learning (MaxEnt

IRL) [22]. As in [23], we assume that a path, or trace,

τ through states si and actions ai,j has a cost that is a

linear combination of real-valued features fτ =
∑

ai,j∈τ fai,j

observed along the path. In our context, states si correspond

to discrete positions in the environment, actions ai,j are

transitions between positions si and sj , and vectors of real-

valued features for each action model information such as

the density of people in the state reached through that action.

The cost of a path τ is parameterized by feature weights θ:

cost(τ) = θ · fτ =
∑

ai,j∈τ

θ · fai,j
(1)

The original MaxEnt IRL model assumes that the agent

has full knowledge of the features in the action space, and

that these features remain constant for the duration of the

path. For a fixed start and end state, this results in a maximum

entropy distribution over paths parameterized by θ.

P (τ |θ) =
1

Z(θ)
e−θ·fτ =

1

Z(θ)
e
∑

ai,j∈τ
−θ·fai,j (2)

Observe that increasing the linear combination of weights

and features causes the probability to decrease exponentially.

To match observed behavior, IRL learns cost weights for

the features such that the resulting planned paths are similar

to the provided example paths. To achieve this, it is necessary

and sufficient for the expected feature counts of the robot to

match the observed feature counts of the humans when the

cost is linear in those features [2].

We wish to find the parameters that maximize the likeli-

hood of the observed traces T :

θ∗ = argmax
θ

∑

τ∈T

logP (τ |θ) (3)



It can be shown that the gradient for a single path is the

difference between observed and expected feature counts [2].

We denote by f̃ the observed feature counts, which are simply

the sum of features for all actions taken on an example

trace τ . The expected feature counts can be obtained by

multiplying the probability of each action by the features

for that action, summed over all actions. Let Dai,j
be the

expected frequency of action ai,j , conditioned on θ, for all

paths τm between the start and goal state. Then the gradient

can be expressed as follows.

∇F = f̃ −
∑

ai,j

Dai,j
fai,j

(4)

Using online exponentiated gradient descent, the weights θ

are updated using the following formula.

θn+1 = θne
−γ∇F (5)

Performing these updates over all paths while gradually

reducing γ causes the weights to converge to θ∗. This is

the weight update technique used in [22] and a comparison

of exponentiated gradient descent with other techniques can

be found in [8]. Unfortunately, the number of paths is expo-

nential in the number of states. A tractable forward/backward

algorithm is given in [23], similar to forward/backward infer-

ence algorithms for Hidden Markov Models and Conditional

Random Fields [9]. This algorithm is given in Table I.

Forward/Backward Algorithm:

Input: start and goal states sstart and sgoal

∀si : Z
′

si
← 0

For N iterations (backward):

1: Z′

sgoal
← Z′

sgoal
+ 1

2: ∀ai,j : Z′

ai,j
← e

(−θ·fai,j
)
Z′

sj

3: ∀si : Z
′

si
←

∑
j Z

′

ai,j

∀si : Zsi ← 0

For N iterations (forward):

1: Zsstart ← Zsstart + 1

2: ∀ai,j : Zai,j
← Zsie

(−θ·fai,j
)

3: ∀sj : Zsj ←
∑

i Zai,j

Result: probability mass Z′

s and Zs for all states s.

TABLE I

After executing the forward/backward algorithm, we now

possess values Zsi and Z ′
si

for every state, where Zsi is

the accumulated probability mass of all paths from sstart to

si, and Z ′
si

is the probability mass of all paths from si to

sgoal. We can utilize these probabilities to compute Dai,j
,

which is the expected number of times action ai,j will be

executed over all paths from sstart to sgoal subject to the

current weights θ:

Dai,j
=

Zsie
(−θ·fai,j

)
Z ′
sj

Z ′
sstart

(6)

Intuitively, this computes the expectation for action ai,j by

multiplying the probability of all paths from sstart to si, then

multiplying by the unnormalized probability e
(−θ·fai,j

)
of

taking action ai,j , and finally multiplying by the probability

of all paths from sj to sgoal. The result is normalized by

dividing by the mass of all paths from sstart to sgoal,

which is Z ′
sstart

(or equivalently Zsgoal
). More details of

the MaxEnt IRL formulation can be found in [22], [23].

A. Partially observable, dynamic features

Our scenario differs from the original MaxEnt IRL ap-

proach in two significant ways. First, the features that will

allow a robot to move with people are as dynamic as the peo-

ple themselves. The density and velocity of crowds change

over time, both between traces and during the execution

of a single trace. During training, however, we only have

the final demonstrated traces, and not intermediate plans

that were formulated but not executed. For instance, the

event of changing a planned path based on an unforeseen

blockage is not labeled as such in the training data. The

second distinguishing aspect of our scenario is that the robot

has no global knowledge of dynamic features.

In order to extend the MaxEnt IRL framework to this

scenario, we assume that a person updates his estimate of

the environment features at every time step and performs

re-planning every H ≥ 1 time steps. These assumptions

allow us to compute the gradients of the example paths

using a slightly modified training procedure. In a nutshell,

we update for each time step the dynamic features within a

small window around the person’s current location, thereby

simulating limited perceptual range (dynamic features out-

side this window are set to prior estimates). Each update

gives us the information available to the person at that point

in time. By assuming that the person plans a path based on

this information and sticks to this path for the next H time

steps, the gradient can be computed based on the difference

between observed and expected feature over the next H steps

only, instead of the complete path. However, since this update

occurs at every time step, we need to compute this H-step

difference for every time step in the path.

Specifically, we define the dynamic features for path τ

and action ai,j at time t to be ftτ and ftai,j
, respectively. The

probability of a path depends on the cost of the path, which is

obtained by adding the weighted features of the partial paths

from each time horizon. Letting at represent the action of τ

at timestep t, the probability of a path τ is now given as:

P (τ |θ) =
1

Z(θ)
e
∑

t

∑
0≤h<H

−θ·ft
at+h (7)

Because the features are dynamic, we compute a gradient

at every timestep of an example path and only H timesteps

into the future, as compared with (4) in the original IRL

formulation, which computes a single gradient for the entire

path. Our local gradient at timestep t is defined as:

∇F t = f̃t −
∑

ai,j∈H

Dt
ai,j

ftai,j
(8)

where all terms are now indexed by the timestep t. In

particular, f̃t is the observed features for the portion of the



example trace between timesteps t and t+H , and Dt
ai,j

is

the expectation of ai,j between t and t+H conditioned on

the current weights θ. We only compute expected features for

actions reachable from the current location within H steps,

hence the restricted summation in (8). However, note that we

must perform the full forward/backward algorithm in Table I

to compute even this subset of action expectation values. The

gradient ∇F t is used to update the weights as in equation (5),

but now the weights θ are updated t times for each training

path. A summary of our learning algorithm can be found in

Table II.

Learning Algorithm:

For all training paths τ :

For all timesteps t in path τ :

1: Update estimates of locally observable features

2: Compute Zs and Z′

s for all states using the algorithm in Table I

3: For actions ai,j ∈ H compute Dt
ai,j

with equation (6)

4: Compute the gradient ∇F t with equation (8)

5: Update the weights θ with equation (5)

TABLE II

B. Features and representation

In our current implementation, we use a grid represen-

tation of a two dimensional space. Additionally, our states

include a discrete approximation of orientation at 45 degree

intervals. Actions describe valid motion between these grid

cell states. We found it most natural to express features (and

hence costs) as corresponding to actions. Thus, features of

the grid cells are represented as features on all actions leading

into that grid cell’s states. Our features were chosen such that

they could be extracted from real robot sensors such as laser

range finders and cameras.

We conjecture that humans optimize the cost of paths

based on density and velocity of other nearby people (dy-

namic flow features), balanced against the distance traveled.

For density features, we divide the real-valued density into

four bins. Each action will have a value of 1 in exactly one

of these bins, and zero in the others. This technique allows

the learned weights to form a discrete approximation of a

non-linear cost function over density. To represent velocity

features, the average direction and magnitude of velocities

for people in nearby cells are measured. As each state

represents both a position and orientation, we use relative

velocity features, again discretized into four bins evenly

dividing the range of direction difference between 0 and

180 degrees. Each of these directional bins can have various

magnitudes, which we represent with three bins per direction.

In other words, relative direction and velocity magnitude

form a “cross-product” feature for each action consisting of

12 bins total. We want to learn how humans balance these

dynamic features against distance traveled, so each action,

or transition between grid cells, has a static feature for the

distance between the cells.

Fig. 2. Gaussian process mean model of pedestrian density over our
simulated environment shown in Fig. 1.

For training data, we extract demonstration traces from

the crowd simulator, where the traces consist of grid cells,

directions, and local observations of dynamic flow features.

These traces were collected from a simulation of normal

pedestrian traffic. It is worth noting that similar example

traces could be collected from real world pedestrians, using

either hand labeling or automatic extraction. These simula-

tions also provide our mean density and velocity models,

which we can use as initial estimates of dynamic feature

values in unobserved areas of the grid for both training and

planning.

We found that our training procedure along with these

features generated intuitively appealing results for weight

values. For instance, low cost weights were learned for

relative flow features moving in the same direction as the

agent, and much higher costs were obtained for flow features

moving in other directions.

IV. GAUSSIAN PROCESSES FOR ENVIRONMENTAL

FEATURE ESTIMATION

Even under the best of circumstances, a robot will only

be able to observe a small portion of the surrounding envi-

ronment. We wish to integrate a robot’s local observations

of density and flow direction in a sound way with priors

over the entire environment to produce a joint distribution

of expected environment state. We perform this integration

using Gaussian processes (GP) [16], a non-parametric model

that estimates Gaussian distributions over functions based on

training data.

Specifically, our environment is defined as a two-

dimensional coordinate plane over which the robot travels.

We wish to model features of density and direction of flow

for traffic in this environment. To do so, we consider (α, β),
where α is the (x, y) position in the coordinate plane and β

is a vector of three values representing traffic density, traffic

flow in the x component of the coordinate plane, and traffic

flow in the y component of the coordinate plane, respectively.

Given a set of features {(α1, β1) · · · (αn, βn)}, we learn

GPs that map from input locations, α, to density and flow

directions, β. A separate GP models each of the three

components of β. For each Gaussian process, we use a



standard Gaussian kernel, whose parameters are trained by

minimizing the log-likelihood of a GP over a training set. We

can then evaluate the GP over the entire environment and the

model will produce estimates of mean and variance, nicely

integrating areas of dense and sparse data coverage. One such

mean model of traffic density over our test environment can

be seen in Fig. 2.

To update this model based on new feature val-

ues, we proceed as follows. Given a set of ob-

servations {(α1, β1) · · · (αn, βn)} at time t, we evalu-

ate the mean model at locations {α1 · · ·αn} and sub-

tract the predicted mean from the actual observations

to produce a set of deviation-from-the-prior observations

{
(
α1, β1

)
· · ·

(
αn, βn

)
}. We construct a new GP with these

updated observations, again using a basic Gaussian kernel,

and evaluate the GP over the surrounding environment to get

a smooth estimate of the observed deviation from the mean

model prior. We add these estimated deviations to the mean

model prior to get the updated feature model. The resulting

technique correctly blends the new feature observations with

the prior model. Note that a simple addition of the new

observations to the prior GP would not result in a correct

estimate, since such an approach would not consider that

the new observations provide far more information about the

current situation than the (outdated) prior model.

V. EXPERIMENTAL RESULTS

Our primary goal is to generate robot paths similar to

those of humans in crowded environments. We use the crowd

motion simulator of [20] to obtain training data. So-called

“swarms” of people were given starting locations and goal

regions instigating natural crowd flows through a simulated

3D space. The density and velocity features are extracted

from this simulator, then smoothed and discretized to fit our

particular grid-based model. We argue that equivalent local

features are available with real world robotic sensors, such as

laser scanners and cameras. Additionally, as our framework

is quite general, novel features could be incorporated as well.

We also use this same crowd simulator to provide a testbed

for our planner. In order for our results to be realistic and

transferable to real robots, the planner and path following

systems are written as node processes in the Robot Operating

System (ROS) by Willow Garage [6]. We wrote a wrapper

for the crowd motion simulator in ROS to facilitate testing.

The robot is represented in the crowd simulator as a single

person, which allows the simulated crowds to react naturally

to the presence and motion of the robot.

The path planner uses cost weights learned previously

through IRL to define cost weights for all actions in the

map. Given best estimates for dynamic features, the linear

combination of weights and features gives a real valued cost

to each edge. The planner then uses A* search to compute the

best route to the goal for the current dynamic features. When

new sensor information is available, the dynamic features are

updated and a new planned path is generated from the current

location.

Fig. 3. A view of the robot’s path (black), a human path (orange/dark
gray), and the shortest path (green/light gray). There are two crowd flows,
each moving along the right side of the walkway. Note that the robot moves
with the flow on the right side and then crosses the oncoming crowd flow
in a manner similar to the human path at the end of its journey.

Shortest Path Learned Path

Mean Distance 1.4 0.9

Maximum Distance 3.3 2.3

TABLE III

As a quantitative evaluation we selected various start and

goal points in the lane formation scenario shown in Fig. 4.

We consider the path taken by the crowd simulator from start

to goal as the ground truth path. We then compare this path

to the path generated by our approach (Learned path). As

a baseline, we also compare the shortest Euclidean distance

path (Shortest path) to the ground truth. To compare two

paths, we compute for each position on the path the shortest

distance to any position on the other path. From this we can

compute the mean distance and maximum distance for a pair

of paths. The results, averaged over six runs, are shown in

Table III. From these results we conclude that our learned

cost function provides a more natural path through crowded

scenarios than a simple Euclidean distance based planner.

Fig. 3 shows an example of the path followed by our

robot (black), the path of a human from the crowd simulator

(orange/dark gray), and the simple shortest path (green/light

gray). As can be seen, the path generated with our system

matches nicely with the path of the simulated human. The

reason this occurs is that our robot senses the crowd flow

on the right side of the walkway and has learned low cost

weights for walking with flows. Contrast this with the clearly

disruptive and inefficient simple shortest path, which moves

against the flow of the crowd.

One of the properties of the original global crowd simula-

tor is lane formation. In the lane formation scenario shown in

Fig. 4, there are three crowd flows, with the top and bottom

flow moving right, and the middle flow moving left (against

the robot’s desired direction of travel). In the upper panel in



Fig. 4. The robot plans a path in the lane formation scenario. The robot
is shown as a black circle, the path taken so far (and planned) by our
robot is black, and the shortest path is green (light gray). The portion of
the robot’s path to its right is its planned path when it is at the position
shown. There are three crowd flows: the top and bottom flows are moving
right, and the middle flow moves left, against the robot. Upper panel: The
robot can observe some of the oncoming flow, and plans a path to avoid
the oncoming crowd. Note that beyond the locally observable features, the
robot’s planned future path takes it back to the middle. Lower panel: The
conclusion of the lane formation scenario, showing that the robot has moved
with the top crowd flow which was also moving right.

Fig. 4, the shortest path clearly moves against the flow. The

planned path moves into a correct flow, but then reverts to the

shortest path outside the sensor range. In the lower panel, we

can see that the robot has continued to move with the correct,

rightward moving flow, as it has obtained additional dynamic

feature information as it moves forward. Our learned cost

function planner smoothly reverts to following the shortest

path in the absence of crowd flows. Note that the system

was not trained on the lane formation scenario, yet exhibits

natural, efficient behavior.

These properties of the algorithm can be seen in an

accompanying video. Longer videos can be found at

http://www.cs.washington.edu/robotics/crowd.

VI. CONCLUSION

We showed how to extend inverse reinforcement learning

to deal with dynamic and partially observed features. The

resulting system is able to learn to imitate human pedestrian

behavior in crowded environments. With only a local sensor

model, we use Gaussian processes to extend local informa-

tion beyond the sensor range in a principled manner.

Our evaluation was performed within a realistic crowd

simulator, and produced natural paths that integrated with

existing crowd flows. We conjecture that our work produces

more socially acceptable motion that will allow robots to

perform tasks seamlessly in crowded environments.

In future work we hope to learn weights based on real

world crowds, and implement the system on an actual robot.

In a scenario with multiple robots distributed throughout the

environment, the Gaussian process model will allow their

local sensor readings to be combined across the map to allow

more accurate density and flow information, enabling better

path planning for each robot individually.

ACKNOWLEDGEMENTS

This research has been supported by ONR MURI grant

N00014-09-1-1052, by the NSF under grant numbers IIS-

0705898 and IIS-0812671, and by Toyota InfoTechnology

Center USA.

REFERENCES

[1] P. Abbeel, D. Dolgov, A. Ng, and S. Thrun. Apprenticeship learning
for motion planning with application to parking lot navigation. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2008.
[2] P. Abbeel and A. Ng. Apprenticeship learning via inverse reinforce-

ment learning. In Proc. of the International Conference on Machine

Learning, 2004.
[3] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer,

D. Schulz, W. Steiner, and S. Thrun. Experiences with an interactive
museum tour-guide robot. Artificial Intelligence, 114(1-2):3–55, 1999.

[4] N. Cressie. Statistics for spatial data, revised edition. Wiley, 1993.
[5] B. Ferris, D. Hähnel, and D. Fox. Gaussian processes for signal

strength-based location estimation. In Proc. of Robotics: Science and

Systems (RSS), 2006.
[6] Willow Garage. Robot operating system (ros).

http://www.willowgarage.com/pages/software/ros-platform.
[7] R. Kirby, J. Forlizzi, and R. Simmons. Natural person-following

behavior for social robots. In Proc. of Human-Robot Interaction, 2007.
[8] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient

exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 1997.

[9] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
Proc. of the International Conference on Machine Learning, 2001.

[10] K.H. Lee, M. G. Choi, Q. Hong, and J. Lee. Group behavior from
video: A data-driven approach to crowd simulation. In Proceedings

of the Eurographics Symposium on Computer Animation, 2007.
[11] A. Lerner, Y. Chrysanthou, and D. Lischinski. Crowds by example.

In Eurographics, 2007.
[12] M. Michalowski, S. Sabanovic, C. DiSalvo, D. Busquets, L. Hiatt,

N. Melchior, and R. Simmons. Socially distributed perception:
GRACE plays social tag at AAAI-05. Autonomous Robots, 22, 2007.

[13] J. Mueller, C. Stachniss, K. Arras, and W. Burgard. Socially inspired
motion planning for mobile robots in populated environments. In
Proc. of International Conference on Cognitive Systems, 2008.

[14] A. Ng and S. Russell. Algorithms for inverse reinforcement learning.
In Proc. of the International Conference on Machine Learning, 2000.

[15] E. Prassler, J. Scholz, and P. Fiorini. A robotic wheelchair for crowded
public environments. IEEE Robotics & Automation Mag., 7(1), 2001.

[16] C.E. Rasmussen and C.K.I. Williams. Gaussian processes for machine

learning. The MIT Press, 2005.
[17] N. Ratliff, J. Bagnell, and M. Zinkevich. Maximum margin planning.

In Proc. of the International Conference on Machine Learning, 2006.
[18] R. Siegwart, K. Arras, S. Bouabdallah, D. Burnier, G. Froide-

vaux, X. Greppin, B. Jensen, A. Lorotte, L. Mayor, M. Meisser,
R. Philippsen, R. Piguet, G. Ramel, G. Terrien, and N. Tomatis. Robox
at expo.02: A large-scale installation of personal robots. Robotics and

Autonomous Systems, 42, 2003.
[19] R. Simmons et.al. GRACE: An autonomous robot for the AAAI robot

challenge. AAAI Magazine, 24(2), 2003.
[20] A. Treuille, S. Cooper, and Z. Popović. Continuum crowds. ACM

Transactions on Graphics (Proc. of SIGGRAPH), 25(3), 2006.
[21] J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. Lin.

Interactive navigation of individual agents in crowded environments.
In Proc. of ymposium on Interactive 3D Graphics and Games, 2008.

[22] B. Ziebart, A. Maas, J. Bagnell, and A. Dey. Maximum entropy
inverse reinforcement learning. In Proc. of the National Conference

on Artificial Intelligence (AAAI), 2008.
[23] B. Ziebart, A. Maas, J. Bagnell, and A. Dey. Navigate like a cabbie:

Probabilistic reasoning from observed context-aware behavior. In
International Conference on Ubiquitous Computing (UbiComp), 2008.


