
Learning to Optimize under Non-Stationarity

Wang Chi Cheung David Simchi-Levi Ruihao Zhu

ISEM, NUS IDSS, MIT SDSC, MIT

Abstract

We introduce algorithms that achieve state-
of-the-art dynamic regret bounds for non-
stationary linear stochastic bandit setting.
It captures natural applications such as dy-
namic pricing and ads allocation in a chang-
ing environment. We show how the difficulty
posed by the non-stationarity can be over-
come by a novel marriage between stochas-
tic and adversarial bandits learning algo-
rithms. Defining d,BT , and T as the prob-
lem dimension, the variation budget, and the
total time horizon, respectively, our main
contributions are the tuned Sliding Win-
dow UCB (SW-UCB) algorithm with opti-

mal eO(d2/3(BT +1)1/3T 2/3) dynamic regret,
and the tuning free bandit-over-bandit (BOB)
framework built on top of the SW-UCB algo-
rithm with best eO(d2/3(BT + 1)1/4T 3/4) dy-
namic regret.

1 Introduction

Multi-armed bandit (MAB) problems are online prob-
lems with partial feedback, when the learner is sub-
ject to uncertainty in his/her learning environment.
Traditionally, most MAB problems are studied in the
stochastic [6] and adversarial [7] environments. In the
former, the model uncertainty is static and the partial
feedback is corrupted by a mean zero random noise.
The learner aims at estimating the latent static envi-
ronment and converging to a static optimal decision.
In the latter, the model is dynamically changed by an
adversary. The learner strives to hedge against the
changes, and compete favorably in comparison to cer-
tain benchmark policies.

While assuming a stochastic environment could be too

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

simplistic in a changing world, sometimes the assump-
tion of an adversarial environment could be too pes-
simistic. Recently, a stream of research works (see
Related Works) focuses on MAB problems in a drift-
ing environment, which is a hybrid of a stochastic and
an adversarial environment. Although the environ-
ment can be dynamically and adversarially changed,
the total change (quantified by a suitable metric)
in a T step problem is upper bounded by BT (=
Θ(T ⇢) for some ⇢ 2 (0, 1)), the variation budget. The
feedback is corrupted by a mean zero random noise.
The aim is to minimize the dynamic regret, which is
the optimality gap compared to the sequence of (pos-
sibly dynamically changing) optimal decisions, by si-
multaneously estimating the current environment and
hedging against future changes every time step. Most
of the existing works for non-stationary bandits have
focused on the the somewhat ideal case in which BT

is known. In practice, however, BT is often not avail-
able ahead. Though some efforts have been made to-
wards this direction [18, 21], how to design algorithms
with low dynamic regret when BT is unknown remains
largely as a challenging problem.

In this paper, we design and analyze novel algorithms
for the linear bandit problem in a drifting environment.
Our main contributions are listed as follows.

• When the variation budget BT is known, we char-
acterize the lower bound of dynamic regret, and de-
velop a tuned Sliding Window UCB (SW-UCB) algo-
rithm with matched dynamic regret upper bound up
to logarithmic factors.

• When BT is unknown, we propose a novel
Bandit-over-Bandit (BOB) framework that tunes
SW-UCB adaptively. The application of BOB on
SW-UCB algorithm achieves the best dependence on
T compared to existing literature.

Related Works. MAB problems with stochastic
and adversarial environments are extensively studied,
as surveyed in [11, 20]. To model inter-dependence
relationships among different arms, models for linear
bandits in stochastic environments have been studied.
In [5, 15, 23, 14, 1], UCB type algorithms for stochas-
tic linear bandits were studied, and Abbasi-Yadkori
et al. [1] possessed the state-of-art algorithm for the

Learning to Optimize under Non-Stationarity

problem. Thompson Sampling algorithms proposed in
[24, 4, 2] are able to bypass the high computational
complexities provided that one can efficiently sample
from the posterior on the parameters and optimize the
reward function accordingly. Unfortunately, achiev-
ing optimal regret bound via TS algorithms is possible
only if the true prior over the reward vector is known.

Authors of [9, 8] considered the K-armed bandits
in a drifting environment. They achieved the tight
dynamic regret bound Õ((KBT)

1/3T 2/3) when BT

is known. Wei et al. [25] provided refined regret
bounds based on empirical variance estimation, as-
suming the knowledge of BT . Subsequently, Karnin
et al. [18] considered the setting without knowing BT

and K = 2, and achieved a dynamic regret bound of
Õ(B0.18

T T 0.82 + T 0.77). In a recent work, [21] consid-
ered K-armed contextual bandits in drifting environ-
ments, and in particular demonstrated an improved

bound Õ(KB
1/5
T T 4/5) for the K-armed bandit prob-

lem in drifting environments when BT is not known,
among other results. [19] considered a dynamic pric-
ing problem in a drifting environment with linear de-
mands. Assuming a known variation budget BT , they

proved an Ω(B
1/3
T T 2/3) dynamic regret lower bound

and proposed a matching algorithm. When BT is not
known, they designed an algorithm with Õ(BTT

2/3)
dynamic regret. In [10], a general problem of stochas-
tic optimization under the known budgeted variation
environment was studied. The authors presented var-
ious upper and lower bound in the full feedback set-
tings. Finally, various online problems with full infor-
mation feedback and drifting environments are studied
in the literature [13, 17].

Apart from drifting environment, numerous research
works consider the switching environment, where the
time horizon is partitioned into at most S intervals,
and it switches from one stochastic environment to
another across different intervals. The partition is not
known to the learner. Algorithms are designed for
various bandits, assuming a known S [7, 16, 21], or
assuming an unknown S [18, 21]. Notably, the Sliding
Window UCB for theK-armed setting is first proposed
by Garivier et al. [16], while it is only analyzed under
switching environments.

Finally, it is worth pointing out that our Bandits-over-
Bandits framework has connections with algorithms
for online model selection and bandit corralling, see
e.g., [3] and references therein. This and similar tech-
niques have been investigated under the context of
non-stationary bandits in [21, 8]. Notwithstanding,
existing works either have no theoretical guarantee or
can only obtain sub-optimal dynamic regret bounds.

2 Problem Formulation

In this section, we introduce the notations to be used
throughout the discussions and the model formulation.

2.1 Notation

Throughout the paper, all vectors are column vectors,
unless specified otherwise. We define [n] to be the set
{1, 2, . . . , n} for any positive integer n. The notation
a : b is the abbreviation of consecutive indexes a, a +
1, . . . , b. We use kxk to denote the Euclidean norm
of a vector x 2 <d. For a positive definite matrix A 2
<d⇥d, we use kxkA to denote the matrix norm

p
x
>Ax

of a vector x 2 <d. We also denote x _ y and x ^
y as the maximum and minimum between x, y 2 <,
respectively. When logarithmic factors are omitted,
we use eO(·) to denote function growth.

2.2 Learning Model

In each round t 2 [T], a decision set Dt ✓ <d is pre-
sented to the learner, and it has to choose an action
Xt 2 Dt. Afterwards, the reward

Yt = hXt, ✓ti+ ⌘t

is revealed. Here, we allowDt to be chosen by an obliv-
ious adversary whose actions are independent of those
of the learner, and can be determined before the pro-
tocol starts [12]. ✓t 2 <d is an unknown d-dimensional
vector, and ⌘t is a random noise drawn i.i.d. from
an unknown sub-Gaussian distribution with variance
proxy R. This implies E [⌘t] = 0, and 8� 2 < we have

E [exp (�⌘t)] exp
⇣

�2R2

2

⌘
. Following the convention

of existing bandits literature [1, 4], we assume there ex-
ist positive constants L and S, such that kXk L and
k✓tk S holds for all X 2 Dt and all t 2 [T], and the
problem instance is normalized so that |hX, ✓ti| 1
for all X 2 Dt and t 2 [T].

Instead of assuming the stochastic environment, where
reward function remains stationary across the time
horizon, we allow it to change over time. Specifically,
we consider the general drifting environment: the sum
of `2 differences of consecutive ✓t’s should be bounded
by some variation budget BT = Θ(T ⇢) for some ⇢ 2
(0, 1), i.e.,

T�1X

t=1

k✓t+1 � ✓tk BT . (1)

We again allow the ✓t’s to be chosen adversarially by
an oblivious adversary. We also denote the set of all
possible obliviously selected sequences of ✓t’s that sat-
isfies inequality (1) as Θ(BT).

Wang Chi Cheung, David Simchi-Levi, Ruihao Zhu

The learner’s goal is to design a policy ⇡ to maximize
the cumulative reward, or equivalently to minimize
the worst case cumulative regret against the optimal
policy ⇡⇤, that has full knowledge of ✓t’s. Denoting
x⇤
t = argmaxx2Dt

hx, ✓ti, the dynamic regret of a given
policy ⇡ is defined as

RT (⇡) = sup
✓1:T2Θ(BT)

E

"
TX

t=1

hx⇤
t �Xt, ✓ti

#
,

where the expectation is taken with respect to the
(possible) randomness of the policy.

3 Lower Bound

We first provide a lower bound on the the regret to
characterize the best achievable regret.

Theorem 1. For any T � d, the dynamic regret of

any policy ⇡ satisfies RT (⇡) = Ω

⇣
d

2

3B
1

3

T T
2

3

⌘
.

Sketch Proof. The construction of the lower bound in-
stance is similar to the approach of [9]: nature divides
the whole time horizon into dT/He blocks of equal
length H rounds (the last block can possibly have less
than H rounds). In each block, the nature initiates a
new stationary linear bandit instance with parameters
from the set {±

p
d/4H}d. Nature also chooses the pa-

rameter for a block in a way that depends only on the
learner’s policy, and the worst case regret is Ω(d

p
H).

Since there is at least bT/Hc number of blocks, the
total regret is Ω(dT/

p
H). By examining the variation

budget constraint, we have that the smallest possible

H one can take is d(dT) 2

3B
� 2

3

T e. The statement then
follows. Please refer to Section A for the complete
proof.

4 Sliding Window Regularized Least
Squares Estimator

As a preliminary, we introduce the sliding window reg-
ularized least squares estimator, which is the key tool
in estimating the unknown parameters {✓t}

T
t=1. De-

spite the underlying non-stationarity, we show that the
estimation error of this estimator can gracefully adapt
to the parameter changes.

Consider a sliding window of length w, and consider
the observation history {(Xs, Ys)}

t�1
s=1_(t�w) during the

time window (1 _ (t� w)) : (t� 1). The ridge regres-
sion problem with regularization parameter � (> 0) is
stated below:

min
✓2<d

� k✓k2 +
t�1X

s=1_(t�w)

(X>
s ✓ � Ys)

2. (2)

Denote ✓̂t as a solution to the regularized ridge re-
gression problem, and define matrix Vt�1 := �I +Pt�1

s=1_(t�w) XsX
>
s . The solution ✓̂t has the following

explicit expression:

✓̂t = V �1
t�1

0
@

t�1X

s=1_(t�w)

XsYs

1
A

=V �1
t�1

0
@

t�1X

s=1_(t�w)

XsX
>
s ✓s +

t�1X

s=1_(t�w)

⌘sXs

1
A . (3)

The difference ✓̂t � ✓t = has the following expression:

V �1
t�1

0
@

t�1X

s=1_(t�w)

XsX
>
s ✓s +

t�1X

s=1_(t�w)

⌘sXs

1
A� ✓t

=V �1
t�1

t�1X

s=1_(t�w)

XsX
>
s (✓s � ✓t) + V �1

t�1

t�1X

s=1_(t�w)

⌘sXs

� �✓t, (4)

The first term on the right hand side of eq. (4) is
the estimation inaccuracy due to the non-stationarity;
while the second term is the estimation error due to
random noise. We now upper bound the two terms
separately. We upper bound the first term in the `2
sense.

Lemma 1. For any t 2 [T], we have
������
V �1
t�1

t�1X

s=1_(t�w)

XsX
>
s (✓s � ✓t)

������

t�1X

s=1_(t�w)

k✓s � ✓s+1k .

Sketch Proof. Our analysis relies on bounding the
maximum eigenvalue of V �1

t�1

Pp
s=1_(t�w) XsX

>
s for

each p 2 {1_(t�w), . . . , t�1}. Please refer to Section
B of appendix for the complete proof.

Adopting the analysis in [1], we upper bound the sec-
ond term in the matrix norm sense.

Lemma 2 ([1]). For any t 2 [T] and any � 2 [0, 1],
we have with probability at least 1� �,
������

t�1X

s=1_(t�w)

⌘sXs � �✓t

������
V −1

t−1

R
s
d ln

✓
1 + wL2/�

�

◆

+
p
�S.

From now on, we shall denote

� := R

s
d ln

✓
1 + wL2/�

�

◆
+
p
�S (5)

Learning to Optimize under Non-Stationarity

for the ease of presentation. With these two lemmas,
we have the following deviation inequality type bound
for the latent expected reward of any action x 2 Dt in
any round t.

Theorem 2. For any t 2 [T] and any � 2 [0, 1], with
probability at least 1� �, it holds for all x 2 Dt that

���x>(✓̂t � ✓t)
��� L

t�1X

s=1_(t�w)

k✓s � ✓s+1k+ � kxkV −1

t−1

Sketch Proof. The proof is a direct application of Lem-
mas 1 and 2. Please refer to Section C of the appendix
for the complete proof.

5 Sliding Window-Upper Confidence
Bound (SW-UCB) Algorithm: A First
Order Optimal Strategy

In this section, we describe the Sliding Window Up-
per Confidence Bound (SW-UCB) algorithm. When
the variation budget BT is known, we show that
SW-UCB algorithm with a tuned window size achieves
a dynamic regret bound which is optimal up to
a multiplicative logarithmic factor. When the
variation budget BT is unknown, we show that
SW-UCB algorithm can still be implemented with a suit-
ably chosen window size so that the regret dependency
on T is optimal, which still results in first order opti-
mality in this case [19].

5.1 Design Intuition

In the stochastic environment where the linear reward
function is stationary, the well known UCB algorithm
follows the principle of optimism in face of uncertainty.
Under this principle, the learner selects the action that
maximizes the UCB, or the value of “mean plus confi-
dence radius” [6]. We follow the principle by choosing
in each round the action Xt with the highest UCB,
i.e.,

Xt =argmaxx2Dt

n
hx, ✓̂ti

+L

t�1X

s=1_(t�w)

k✓s � ✓s+1k+ � kxkV −1

t−1

9
=
;

=argmaxx2Dt

n
hx, ✓̂ti+ � kxkV −1

t−1

o
. (6)

When the number of actions is moderate, the optimiza-
tion problem (6) can be solved by an enumeration over
all x 2 Dt. Upon selecting Xt, we have

hx⇤
t , ✓̂ti+ L

t�1X

s=1_(t�w)

k✓s � ✓s+1k+ � kx⇤
t kV −1

t−1

hXt, ✓̂ti+ L
t�1X

s=1_(t�w)

k✓s � ✓s+1k+ � kXtkV −1

t−1

,

(7)

by virtue of UCB. From Theorem 2, we further have
with probability at least 1� �,

hx⇤
t , ✓t � ✓̂ti L

t�1X

s=1_(t�w)

k✓s � ✓s+1k+ � kx⇤
t kV −1

t−1

,

(8)

and

hXt, ✓̂ti+ L

t�1X

s=1_(t�w)

k✓s � ✓s+1k+ � kXtkV −1

t−1

hXt, ✓ti+ 2L

t�1X

s=1_(t�w)

k✓s � ✓s+1k+ 2� kXtkV −1

t−1

.

(9)

Combining inequalities (7), (8), and (9), we establish
the following high probability upper bound for the ex-
pected per round regret, i.e., with probability 1� �,

hx⇤
t�Xt, ✓ti 2L

t�1X

s=1_(t�w)

k✓s � ✓s+1k+2� kXtkV −1

t−1

.

(10)
The regret upper bound of the SW-UCB algorithm (to
be formalized in Theorem 3) is thus

2
X

t2[T]

L

t�1X

s=1_(t�w)

k✓s � ✓s+1k+ � kXtkV −1

t−1

= eO
✓
wBT +

dTp
w

◆
. (11)

If BT is known, the learner can set w =

bd2/3T 2/3B
�2/3
T c and achieve a regret upper bound

eO(d2/3B
1/3
T T 2/3). If BT is not known, which is often

the case in practice, the learner can set w = b(dT)2/3c
to obtain a regret upper bound eO(d2/3(BT + 1)T 2/3).

5.2 Design Details

In this section, we describe the details of the
SW-UCB algorithm. Following its design guideline, the
SW-UCB algorithm selects a positive regularization pa-
rameter � (> 0), and initializes V0 = �I. In each round

t, the SW-UCB algorithm first computes the estimate ✓̂t
for ✓t according to eq. 3, and then finds the action Xt

with largest UCB by solving the optimization prob-
lem (6). Afterwards, the corresponding reward Yt is
observed. The pseudo-code of the SW-UCB algorithm is
shown in Algorithm 1.

Wang Chi Cheung, David Simchi-Levi, Ruihao Zhu

Algorithm 1 SW-UCB algorithm

1: Input: Sliding window size w, dimension d, vari-
ance proxy of the noise terms R, upper bound of
all the actions’ `2 norms L, upper bound of all the
✓t’s `2 norms S, and regularization constant �.

2: Initialization: V0 �I.
3: for t = 1, . . . , T do

4: ✓̂t V �1
t�1

⇣Pt�1
s=1_(t�w) XsYs

⌘
.

5: Xt argmaxx2Dt

n
x>✓̂t

6: + kxkV −1

t−1

R

r
d ln

⇣
1+wL2/�

�

⌘
+
p
�S

��
.

7: Yt hXt, ✓ti+ ⌘t.
8: Vt �I +

Pt
s=1_(t�w+1) XsX

>
s .

9: end for

5.3 Regret Analysis

We are now ready to formally state a regret upper
bound of the SW-UCB algorithm.

Theorem 3. The dynamic regret of the
SW-UCB algorithm is upper bounded as

RT (SW-UCB algorithm) = eO
✓
wBT +

dTp
w

◆
.

When Bt (> 0) is known, by taking w =

O((dT)2/3B
�2/3
T), the dynamic regret of the

SW-UCB algorithm is

RT (SW-UCB algorithm) = eO
⇣
d

2

3B
1

3

T T
2

3

⌘
.

When Bt is unknown, by taking w = O((dT)2/3), the
dynamic regret of the SW-UCB algorithm is

RT (SW-UCB algorithm) = eO
⇣
d

2

3 (BT + 1)T
2

3

⌘
.

Sketch Proof. The proof utilizes the fact that the
per round regret of the SW-UCB algorithm is upper
bounded by the UCB of the chosen action, and decom-
poses the UCB into two separated terms according to
Lemmas 1 and 2, i.e.,

regret in round t = regret due to non-stationarity in

round t+ regret due to estimation error in round t.

The first term can be upper bounded by a intuitive
telescoping sum; while for the second term, although
a similar quantity is analyzed by the authors of [1]
using a (beautiful) matrix telescoping technique un-
der the stationary environment, we note that due to
the “forgetting principle” of the SW-UCB algorithm, we
cannot directly adopt the technique. Our proof thus
makes a novel use of the Sherman-Morrison formula
to overcome the barrier. Please refer to Section D of
appendix for the complete proof.

6 Bandit-over-Bandit (BOB)
Algorithm: Automatically Adapting
to the Unknown Variation Budget

In Section 5, we have seen that, by properly tun-
ing w, the learner can achieve a first order optimal
eO
�
d2/3(BT + 1)T 2/3

�
regret bound even if the knowl-

edge of BT is not available. However, in the case of
an unknown and large BT , i.e., BT = Ω(T 1/3), the
bound becomes meaningless as it is linear in T. To
handle this case, we wish to design an online algorithm
that incurs a dynamic regret of order eO

�
d⌫B1��

T T �
�

for some ⌫ 2 [0, 1] and � 2 (0, 1), without knowing
BT . Note from Theorem 1, no algorithm can achieve

a dynamic regret of order o(d2/3B
1/3
T T 2/3), so we must

have � � 2
3 . In this section, we develop a novel Bandit-

over-Bandit (BOB) algorithm that achieves a regret of

Õ(d2/3B
1/4
T T 3/4). Hence, (BOB) still has a dynamic re-

gret sublinear in T whenBT = Θ(T ⇢) for any ⇢ 2 (0, 1)
and BT is not known, unlike the SW-UCB algorithm.

6.1 Design Challenges

Reviewing Theorem 3, we know that setting the win-
dow length w to a fixed value

w⇤ =
j
(dT)2/3(BT + 1)�2/3

k
(12)

can give us a eO
�
d2/3(BT + 1)1/3T 2/3

�
regret bound.

But when BT is not provided a priori, we need to also
“learn” the unknown BT in order to properly tune
w. In a more restrictive setting in which the differ-
ences between consecutive ✓t’s follow some underlying
stochastic process, one possible approach is applying
a suitable machine learning technique to learn the un-
derlying stochastic process at the beginning, and tune
the parameter w accordingly. In the more general set-
ting, however, this strategy cannot work as the change
between consecutive ✓t’s can be arbitrary (or even ad-
versarially) as long as the total variation is bounded
by BT .

6.2 Design Intuition

The above mentioned observations as well as the
established results motivate us to make use of the
SW-UCB algorithm as a sub-routine, and “hedge”
against the changes of ✓t’s to identify a reasonable
fixed window length [7]. To this end, we describe the
main idea of the Bandit-over-Bandit (BOB) algorithm.
The BOB algorithm divides the whole time horizon into
dT/He blocks of equal length H rounds (the last block
can possibly have less than H rounds), and specifies
a set J (✓ [H]) from which each wi is drawn from.
For each block i 2 [dT/He], the BOB algorithm first

Learning to Optimize under Non-Stationarity

selects a window length wi (2 J), and initiates a new
copy of the SW-UCB algorithm with the selected win-
dow length as a sub-routine to choose actions for this
block. On top of this, the BOB algorithm also main-
tains a separate algorithm for adversarial multi-armed
bandits, e.g., the EXP3 algorithm, to govern the se-
lection of window length for each block, and thus the
name Bandit-over-Bandit. Here, the total reward of
each block is used as feedback for the EXP3 algorithm.

To determine H and J , we first consider the regret of
the BOB algorithm. Since the window length is con-
strained to be in J, and is less than or equal to H, w⇤

is not necessarily the optimal window length in this
case, and we hence denote the optimally tuned win-
dow length as w†. By design of the BOB algorithm, its
regret can be decomposed as the regret of an algorithm
that optimally tunes the window length wi = w† for
each block i plus the loss due to learning the value w†

with the EXP3 algorithm,

E [RegretT (BOB algorithm)]

=E

"
TX

t=1

hx⇤
t , ✓ti �

TX

t=1

hXt, ✓ti
#

=E

2
4

TX

t=1

hx⇤
t , ✓ti �

dT/HeX

i=1

i·H^TX

t=(i�1)H+1

⌦
Xt

�
w†
�
, ✓t
↵
3
5

+E

2
4
dT/HeX

i=1

i·H^TX

t=(i�1)H+1

⌦
Xt

�
w†
�
, ✓t
↵

�
dT/HeX

i=1

i·H^TX

t=(i�1)H+1

hXt (wi) , ✓ti

3
5 . (13)

Here for a round t in block i, Xt(w) refers to the ac-
tion selected in round t by the SW-UCB algorithm with
window length w ^ (t� (i� 1)H � 1) initiated at the
beginning of block i.

By Theorem 3, the first expectation in eq. (13) can be
upper bounded as

E

2
4

TX

t=1

hx⇤
t , ✓ti �

dT/HeX

i=1

i·H^TX

t=(i�1)H+1

⌦
Xt

�
w†
�
, ✓t
↵
3
5

=E

2
4
dT/HeX

i=1

i·H^TX

t=(i�1)H+1

⌦
x⇤
t �Xt

�
w†
�
, ✓t
↵
3
5

=

dT/HeX

i=1

eO
✓
w†BT (i) +

dHp
w†

◆

= eO
✓
w†BT +

dTp
w†

◆
, (14)

where BT (i) =
P(i·H^t)�1

t=(i�1)H+1 k✓t � ✓t+1k is the total

variation in block i.

We then turn to the second expectation in eq. (13).
We can easily see that the number of rounds for the
EXP3 algorithm is dT/He and the number of possible
values of wi’s is |J |. Denoting the maximum absolute
sum of rewards of any block as random variable Q, the
authors of [7] gives the following regret bound.

E

2
4
dT/HeX

i=1

i·H^TX

t=(i�1)H+1

⌦
Xt

�
w†
�
, ✓t
↵

�
dT/HeX

i=1

i·H^TX

t=(i�1)H+1

hXt (wi) , ✓ti

3
5

E
"
eO

Q

r
|J |T

H

!#
. (15)

To proceed, we have to give a high probability upper
bound for Q.

Lemma 3.

Pr

Q H + 2R

s
H ln

Tp
H

!
� 1� 2

T
.

Sketch Proof. The proof makes use of the R-sub-
Gaussian property of the noise terms as well as the
union bound over all the blocks. Please refer to Sec-
tion E of the appendix for the complete proof.

Note that the regret of our problem is at most T, eq.
(15) can be further upper bounded as

E

2
4
dT/HeX

i=1

i·H^TX

t=(i�1)H+1

⌦
Xt

�
w†
�
, ✓t
↵

�
dT/HeX

i=1

i·H^TX

t=(i�1)H+1

hXt (wi) , ✓ti

3
5

E
"
eO

Q

r
|J |T

H

!�����Q H + 2HR
p
lnT

#

⇥ Pr
⇣
Q H + 2HR

p
lnT

⌘

+E

"
eO

Q

r
|J |T

H

!�����Q � H + 2HR
p
lnT

#

⇥ Pr
⇣
Q � H + 2HR

p
lnT

⌘

= eO
⇣p

H|J |T
⌘
+ T ·

2

T

= eO
⇣p

H|J |T
⌘
. (16)

Combining eq. (13), (14), and (16), the regret of the
BOB algorithm is

RT (BOB algorithm) = eO
✓
w†BT +

dTp
w†

+
p
H|J |T

◆
.

(17)

Wang Chi Cheung, David Simchi-Levi, Ruihao Zhu

Eq. (17) exhibits a similar structure to the regret of
the SW-UCB algorithm as stated in Theorem 3, and this
immediately indicates a clear trade-off in the design of
the block lengthH. On one hand, H should be small to
control the regret incurred by the EXP3 algorithm in
identifying w†, i.e., the third term in eq. (17); on the
other hand, H should also be large enough so that w†

can get close to w⇤ = b(dT)2/3(BT + 1)�2/3c so that
the sum of the first two terms in eq. (17) is minimized.
A more careful inspection also reveals the tension in
the design of J. Obviously, we hope that |J | is small,
but we also wish J to be dense enough so that it forms
a cover to the set H. Otherwise, even if H is large
and w† can approach w⇤, approximating w⇤ with any
element in J can cause a major loss.

These observations suggest the following choice of J.

J =
n
H0,

j
H

1

∆

k
, . . . , H

o
(18)

for some positive integer ∆. For the purpose of anal-
ysis, suppose the (unknown) parameter w† can be ex-
pressed as clipJ (bd✏T↵(BT + 1)�↵c) with some ↵ 2
[0, 1] and ✏ > 0 to be determined, where clipJ(x) finds
the largest element in J that does not exceed x. Notice
that |J | = ∆+1, the regret of the BOB algorithm then
becomes

RT (BOB algorithm)

= eO
⇣
d✏ (BT + 1)

1�↵
T↵H

2

∆

+d1�
✏

2 (BT + 1)
↵

2 T 1�↵

2 H
2

∆ +
p
HT∆

⌘

= eO
⇣
d✏ (BT + 1)

1�↵
T↵

+d1�
✏

2 (BT + 1)
↵

2 T 1�↵

2 +
p
HT

⌘
, (19)

where we have set ∆ = dlnHe in eq. (19); Since w† 2
J (or w† H), and H should not depend on BT , we
can set

H = bd✏T↵c , (20)

and the regret of the BOB algorithm (to be formalized
in Theorem 4) is upper bounded as

RT (BOB algorithm)

= eO
⇣
d✏ (BT + 1)

1�↵
T↵ + d1�

✏

2 (BT + 1)
↵

2 T 1�↵

2

+d
✏

2T
1

2
+↵

2

⌘

= eO
⇣
d

2

3 (BT + 1)
1

4 T
3

4

⌘
. (21)

Here, we have taken ↵ = 1/2 and ✏ = 2/3, but we have
to emphasize that the choice of w†,↵, and ✏ are purely

for an analysis purpose. The only parameters that we
need to design are

H =
j
d

2

3T
1

2

k
,∆ = dlnHe, J =

n
1,
j
H

1

∆

k
, . . . , H

o
,

(22)

which clearly do not depend on BT .

6.3 Design Details

We are now ready to describe the details of the
BOB algorithm. With H,∆ and J defined as eq. (22),
the BOB algorithm additionally initiates the parameter

� = min

(
1,

s
(∆+ 1) ln(∆+ 1)

(e� 1)dT/He

)
,

sj,1 = 1 8j = 0, 1, . . . ,∆. (23)

for the EXP3 algorithm [7]. The BOB algorithm then
divides the time horizon T into dT/He blocks of length
H rounds (except for the last block, which can be less
than H rounds). At the beginning of each block i 2
[dT/He] , the BOB algorithm first sets

pj,i = (1� �)
sj,iP∆

u=0 su,i
+

�

∆+ 1
8j = 0, 1, . . . ,∆,

(24)

and then sets ji = j with probability pj,i for all
j = 0, . . . ,∆. The selected window length is thus
wi =

⌅
Hji/∆

⇧
. Afterwards, the BOB algorithm se-

lects actions Xt by running the SW-UCB algorithm with
window length wi for each round t in block i,
and the total collected reward is

Pi·H^T
t=(i�1)H+1 Yt =

Pi·H^T
t=(i�1)H+1hXt, ✓ti + ⌘t. Finally, the rewards are

rescaled by dividing 2H+4R
q
H ln(T/

p
H), and then

added by 1/2 so that it lies within [0, 1] with high prob-
ability, and the parameter sji,i+1 is set to

sji,i · exp

0
@ �

(∆+ 1)pji,i

0
@1

2
+

Pi·H^T
t=(i�1)H+1 Yt

2H + 4R
q

H ln Tp
H
)

1
A
1
A ;

(25)

while su,i+1 is the same as su,i for all u 6= ji. The
pseudo-code of the BOB algorithm is shown in Algo-
rithm 2.

6.4 Regret Analysis

We are now ready to present the regret analysis of the
BOB algorithm.

Theorem 4. The dynamic regret of the
BOB algorithm with the SW-UCB algorithm as a
sub-routine is

RT (BOB algorithm) = eO
⇣
d

2

3 (BT + 1)
1

4 T
3

4

⌘
.

Learning to Optimize under Non-Stationarity

Algorithm 2 BOB algorithm

1: Input: Time horizon T , the dimension d, variance
proxy of the noise terms R, upper bound of all the
actions’ `2 norms L, upper bound of all the ✓t’s `2
norms S, and a constant �.

2: Initialize H,∆, J by eq. (22), �, {sj,1}
∆
j=0 by eq.

(23).
3: for i = 1, 2, . . . , dT/He do
4: Define distribution (pj,i)

∆
j=0 by eq. (24).

5: Set jt j with probability pj,i.
6: wi

⌅
Hjt/∆

⇧
.

7: V(i�1)H = �I.
8: for t = (i� 1)H + 1, . . . , i ·H ^ T do

9: ✓̂t V �1
t�1

⇣Pt�1
s=[(i�1)H+1]_(t�wi)

XsYs

⌘
.

10: Pull arm Xt argmaxx2Dt

n
x>✓̂t

+ kxkV −1

t−1

h
R
p
d ln (T (1 + wiL2/�)) +

p
�S
io

.

11: Observe Yt = hXt, ✓ti+ ⌘t.
12: Vt �I +

Pt
s=[(i�1)H+1]_(t+1�wi)

XsX
>
s .

13: end for

14: Define sji,i+1 according to eq. (25)
15: Define su,i+1 su,i 8u 6= ji
16: end for

Sketch Proof. The proof of the theorem essentially fol-
lows Section 6.2, and we thus omit it.

7 Numerical Experiments

As a complement to our theoretical results, we conduct
numerical experiments on synthetic data to compare
the regret performances of the SW-UCB algorithm and
the BOB algorithm with a modified EXP3.S algorithm
analyzed in [8]. Note that the algorithms in [8] are
designed for the stochastic MAB setting, a special case
of us, we follow the setup of [8] for fair comparisons.
Specifically, we consider a 2-armed bandit setting, and
we vary T from 3 ⇥ 104 to 2.4 ⇥ 105 with a step size
of 3 ⇥ 104. We set ✓t to be the following sinusoidal
process, i.e., 8t 2 [T],

✓t =

✓
0.5 + 0.3 sin (5BT⇡t/T)

0.5 + 0.3 sin (⇡ + 5BT⇡t/T)

◆
. (26)

The total variation of the ✓t’s across the whole time
horizon is upper bounded by

p
2BT = O(BT). We also

use i.i.d. normal distribution with R = 0.1 for the
noise terms.

Known Constant Variation Budget. We start
from the known constant variation budget case, i.e.,
BT = 1, to measure the regret growth of the two op-
timal algorithms, i.e., the SW-UCB algorithm and the
modified EXP3.S algorithm, with respect to the to-
tal number of rounds. The log-log plot is shown in

Fig. 1. From the plot, we can see that the regret of
SW-UCB algorithm is only about 20% of the regret of
EXP3.S algorithm.

10
2

10
3

10
4

10
5

Number of rounds

10
2

10
3

C
u

m
u

la
ti

v
e

re
g

re
t

SW-UCB

Modified EXP3.S

Figure 1: Log-log plot for BT = O(1).

Unknown Time-Dependent Variation Budget.

We then turn to the more realistic time-dependent
variation budget case, i.e., BT = T 1/3. As the
modified EXP3.S algorithm does not apply to
this setting, we compare the performances of the
SW-UCB algorithm and the BOB algorithm. The log-log
plot is shown in Fig. 2. From the results, we verify
that the slope of the regret growth of both algorithms
roughly match the established results, and the regret
of BOB algorithm’s is much smaller than that of the
SW-UCB algorithm’s.

10
3

10
4

10
5

Number of rounds

10
3

10
4

C
u

m
u

la
ti

v
e

re
g

re
t

SW-UCB

BOB

Figure 2: Log-log plot for BT = O(T 1/3).

References

[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári.
Improved algorithms for linear stochastic bandits.
In Proceedings of the 24th Annual Conference on
Neural Information Processing Systems (NIPS),
2011.

[2] M. Abeille and A. Lazaric. Linear thompson sam-
pling revisited. In Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and
Statistics (AISTATS), 2017.

[3] A. Agarwal, H. Luo, B. Neyshabur, and R. E.
Schapire. Corralling a band of bandit algorithms.

Wang Chi Cheung, David Simchi-Levi, Ruihao Zhu

In Proceedings of the 30th Annual Conference on
Learning Theory (COLT), 2017.

[4] S. Agrawal and N. Goyal. Thompson sampling
for contextual bandits with linear payoffs. In Pro-
ceedings of the 30th International Conference on
Machine Learning (ICML), 2013.

[5] P. Auer. Using confidence bounds for
exploitation-exploration trade-offs. In Journal
of Machine Learning Research, 3:397–422, 2002.,
2002.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-
time analysis of the multiarmed bandit problem.
Machine learning, 47, 235–256, 2002.

[7] P. Auer, N. Cesa-Bianchi, Y. Freund, and
R. Schapire. The nonstochastic multiarmed ban-
dit problem. In SIAM Journal on Computing,
2002, Vol. 32, No. 1 : pp. 48–77, 2002.

[8] O. Besbes, Y. Gur, and A. Zeevi. Optimal
exploration-exploitation in a multi-armed-bandit
problem with non-stationary rewards. In Avail-
able at: https://ssrn.com/abstract=2436629, year
= 2018,.

[9] O. Besbes, Y. Gur, and A. Zeevi. Stochastic
multi-armed bandit with non-stationary rewards.
In Proceedings of the 27th Annual Conference on
Neural Information Processing Systems (NIPS),
2014.

[10] O. Besbes, Y. Gur, and A. Zeevi. Non-stationary
stochastic optimization. In Operations Research,
2015, 63 (5), 1227–1244, 2015.

[11] S. Bubeck and N. Cesa-Bianchi. Regret Analy-
sis of Stochastic and Nonstochastic Multi-armed
Bandit Problems. Foundations and Trends in Ma-
chine Learning, 2012, Vol. 5, No. 1: pp. 1–122,
2012.

[12] N. Cesa-Bianchi and G. Lugosi. Prediction,
Learning, and Games. Cambridge University
Press, 2006.

[13] C. Chiang, T. Yang, C. Lee, M. Mahdavi, C. Lu,
R. Jin, and S. Zhu. Online optimization with
gradual variations. In Proceedings of the 25th
Conference on Learning Theory (COLT), 2012.

[14] W. Chu, L. Li, L. Reyzin, and R. Schapire. Con-
textual bandits with linear payoff functions. In
Proceedings of the the 14th International Confer-
ence on Artificial Intelligence and Statistics (AIS-
TATS), 2011.

[15] V. Dani, T. Hayes, and S. Kakade. Stochastic lin-
ear optimization under bandit feedback. In Pro-
ceedings of the 21st Conference on Learning The-
ory (COLT), 2008.

[16] A. Garivier and E. Moulines. On upper-
confidence bound policies for switching bandit
problems. In The 22nd International Conferenc
on Algorithmic Learning Theory (ALT), 2011.

[17] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and
K. Sridharan. Online optimization : Competing
with dynamic comparators. In Proceedings of the
18th International Conference on Artificial Intel-
ligence and Statistics (AISTATS), 2015.

[18] Z. Karnin and O. Anava. Multi-armed bandits:
Competing with optimal sequences. In Procedding
of the 29th Annual Conference on Neural Infor-
mation Processing Systems (NIPS), 2016.

[19] N. Keskin and A. Zeevi. Chasing demand: Learn-
ing and earning in a changing environments.
In Mathematics of Operations Research, 2016,
42(2), 277–307, 2016.

[20] T. Lattimore and C. Szepesvári. Bandit Algo-
rithms. Cambridge University Press 2018, 2018.

[21] H. Luo, C. Wei, A. Agarwal, and J. Langford. Effi-
cient contextual bandits in non-stationary worlds.
In Proceedings of the 31st Conference on Learning
Theory (COLT), 2018.

[22] R. Rigollet and J. Hütter. High Dimensional
Statistics. Lecture Notes, 2018, 2018.

[23] P. Rusmevichientong and J. Tsitsiklis. Linearly
parameterized bandits. In Mathematics of Oper-
ations Research, 35(2):395–411, 2010, 2010.

[24] D. Russo and B. V. Roy. Learning to optimize via
posterior sampling. In Mathematics of Operations
Research, 2014.

[25] C.-Y. Wei, Y.-T. Hong, and C.-J. Lu. Track-
ing the best expert in non-stationary stochastic
environments. In Proceedings of the 29th An-
nual Conference on Neural Information Process-
ing (NIPS), 2016.

