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Motivation 

Main Contributions 

Posterior Sampling Algorithm 

Upper Confidence Bound ( UCB) Algorithms 

Also known as Thompson Sampling, and 

Randomized Probability Matching. 

Algorithm is simple, often computationally efficient, 

and has been observed to have great empirical 

performance. 

  Appealing Heuristic: “Sample an action according 

to the probability the action is optimal”.  

 

Our Question: 

How do we think about this algorithm? Why does this 

work? Can we provide general theoretical 

guarantees? How do these guarantees depend on 

the problem instance? 

 

Risk Decompositions 

Because of the Risk Decomposition, existing analysis 

that provides bounds for specific UCB algorithms 

immediately gives new bounds on the Bayes Risk of PS 

 

The Challenge: Mathematical optimization is often 

used to guide decision making in complicated systems, 

but its effective use requires the ability to evaluate the 

performance impact of changes to the system. This is 

hard!  

Exciting Potential: Modern information technology 

gives system designers an unprecedented opportunity to 

cheaply test potential improvements to the system.  

Goal: Design methods that learn to attain near optimal 

performance through efficient experimentation. Inherent 

tradeoff between exploration and exploitation.  

 

An Example: Whenever a customer visits an ecommerce 

website a set of items that are available for purchase is 

displayed. The company can choose how to price these 

products, which deals appear, and the order in which 

they are displayed. How can it learn to do this near 

optimally? 

 
Mathematical Formulation 

 A Multiarmed  Bandit Problem with Correlated Arms:  

The goal is to choose an actions 𝐴𝑡 ∈ 𝒜 to maximize 

online performance  𝑓𝜃
𝑇
1 𝐴𝑡 . 

 Model uncertainty is captured by prior distribution over 

𝜃 ∈ Θ. 

 When an action 𝐴𝑡 is chosen, a reward is observed:  

𝑅𝑡 ≔ 𝑓𝜃 𝐴𝑡 + 𝑛𝑜𝑖𝑠𝑒 

Hope to bound performance relative to an algorithm 

that always chooses the optimal action: 

BayesRisk 𝑇 ≔ 𝔼  𝑓𝜃 𝐴∗ − 𝑓𝜃(𝐴𝑡)

𝑇

𝑡=1

 

Example: Linear Programming with Uncertain Objective 

New Theoretical Guarantees 

Bound for a general class of functions 

Goal: Give a unified analysis of many problems, and 

provide a bound that depends on the complexity of the 

class of functions  ℱ = 𝑓𝜃: 𝜃 ∈ Θ . 

 

“Theorem”: 

BayesRisk 𝑇 ≲ Dim𝐾(ℱ)Dim𝑀(ℱ, 𝑇−1)𝑇 

 

Dim𝐾(ℱ) = Kolmogorov Dimension. Roughly captures 

sensitivity to statistical over-fitting.  

Dim𝑀(ℱ) = Margin Dimension - A new notion that 

measures the degree of dependence among rewards 

generated by different actions.  

 

When 𝑓𝜃: 𝜃 ∈ Θ  is a class of linear or generalized linear 

models this matches the best bounds available for a UCB 

algorithm. Hence, this generalizes results on linear and 

generalized linear bandits.  

 

What is Margin Dimension? 

Def: Dim𝑀(ℱ, 𝜖)  is the length of the longest sequence in 𝒜 

such that each action is 𝜖 −independent of its predecessors. 

Def: An action 𝑎 ∈ 𝒜  is 𝜖 −dependent on 𝑎1, . . , 𝑎𝑛  with 

respect to ℱ  if any two functions 𝑓, 𝑓 ∈ ℱ satisfying 

 𝑓 − 𝑓 
2

𝑎𝑖
𝑛
1 ≤ 𝜖  satisfy 𝑓 𝑎 − 𝑓 (𝑎) ≤ 𝜖 

  Simulation With Gaussian Linear Model 
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For t=1,2,…. 

1. Sample 𝜽𝒕  from posterior using MCMC 

2. Select 𝑨𝒕 ∈ 𝒂𝒓𝒈𝒎𝒂𝒙𝒂𝒇𝜽𝒕
(𝒂)  using an optimization 

algorithm.  

3. Observe Reward 

For t=1,2,…. 

1. Set 𝑼𝒕 𝒂  to be the largest value of 𝒇𝜽 𝒂  that is 

statistically plausible given observed data.  

2. Play 𝑨𝒕 ∈ 𝒂𝒓𝒈𝒎𝒂𝒙𝒂𝑼𝒕(𝒂)  
3. Observe Reward 

UCB Risk Decomposition 

If 𝑓
𝜃
 has range ,0, 𝑅𝑚𝑎𝑥- the Bayes Risk of a UCB algorithm 

executed with upper confidence indices 𝑈𝑡: 𝑡 ≥ 1  is 

bounded by: 

𝔼  𝑈𝑡 𝐴𝑡 − 𝑓𝜃(𝐴𝑡)

𝑇

𝑡=1

+ 𝑅𝑚𝑎𝑥  ℙ(𝑓𝜃 𝐴∗ > 𝑈𝑡(𝐴
∗)

𝑇

𝑡=1

) 

 

Posterior Sampling Risk Decomposition  

New Proposition: For all upper confidence indices 

𝑈𝑡: 𝑡 ≥ 1  the Bayes Risk of PS is bounded by:   

𝔼  𝑈𝑡 𝐴𝑡 − 𝑓𝜃(𝐴𝑡)

𝑇

𝑡=1

+ 𝑅𝑚𝑎𝑥  ℙ(𝑓𝜃 𝐴∗ > 𝑈𝑡 𝐴∗ )

𝑇

𝑡=1

 

 

Interpretation: 

 “Performance can only be bad if you’re learning a lot.” 

Risk is bounded by the uncertainty about the actions the 

algorithm selects.  We expect to learn a lot by sampling 

an action if we’re really uncertain about its value. 

 A close theoretical connection between UCB algorithms 

and Posterior Sampling.  

 Crucial advantage of Posterior Sampling: UCB 

decomposition depends on the upper confidence 

bounds that are explicitly constructed and used. 

Posterior Sampling bound depends on the best possible 

choice of confidence bounds.  

 

 

Model  Bayes Risk Bound:     

(Up to Log-Factors) 

Any Finite Action Space 

𝒜 = K 
𝐾𝑇 

 

Linear Model:  

𝑓𝜃 𝑎 = 𝜙 𝑎 𝑇𝜃, for known 

feature vector 𝜙 𝑎 ∈ ℝ𝑑.  

𝑑 𝑇 

Generalized Linear Model: 

𝑓𝜃 𝑎 = 𝑔(𝜙 𝑎 𝑇𝜃), , for 

known feature vector 

𝜙 𝑎 ∈ ℝ𝑑 and function 𝑔 

𝑑 𝑇 

Sparse Linear Model 

𝑓𝜃 𝑎 = 𝜙 𝑎 𝑇𝜃, and we 

expect 𝜃 is sparse.  

𝔼 𝑑 𝜃 0𝑇 

Gaussian Process 

𝑓𝜃(𝑎) 𝑎 ∈ 𝒜  sampled 

from a GP.  

𝛾𝑇 log 𝒜 𝑇 

 

• 𝛾𝑇:= Maximum 𝑇 period 

information gain about 

𝑓𝜃(𝑎) 𝑎 ∈ 𝒜  

• Extensions to infinite 𝒜 

Approx. Less than 

Input Structural Model and 

Prior Beliefs   

 

Choose Action  

Update Beliefs Receive Reward 

 Study a promising, but poorly understood, posterior 

sampling (PS) algorithm for selecting actions.  

Show PS satisfies a risk decomposition similar to that 

of upper confidence bound (UCB) algorithms. This 

connects the two types of algorithms, providing insight 

into why PS works well, and its potential advantages.  

Use the risk decomposition to establish theoretical  

guarantees:  

 Convert existing analysis of specific UCB algorithms 

to give guarantees for PS in important special cases 

 A general bound that depends on a new measure of 

the complexity of a problem instance: the Margin 

Dimension.  

 Guiding Principle: “Optimism in the face of uncertainty.”  

 Encourages the selection of poorly understood 

actions. 

There is a very large literature on these algorithms, 

and they can work extremely well.  

Drawback: We need to construct the upper confidence 

bound 𝑈𝑡(𝑎). This choice dramatically affects 

performance and computational tractability. 

• Want to solve LP: max
𝑎∈𝒜

𝜃𝑇𝑎 

• 𝒜 ⊂ ℝ𝑑  is a polyhedron expressed in terms of linear 

inequalities. (e.g. 𝒜 = *𝑎: 𝑎𝑇𝑏𝑖 ≤ 𝑐𝑖  𝑖 = 1, . . , 𝑛+ ) 

•  Multivariate Gaussian Prior: 𝜃~𝑁(𝜇0, Σ0) .  
 

Assume noise is Gaussian, so posterior is multivariate 

Gaussian 𝜃~𝑁(𝜇𝑡 , Σ𝑡)  and (𝜇𝑡, Σ𝑡) are given in closed 

form.  

Posterior Sampling 

1. Sample 𝜃𝑡~𝑁(𝜇𝑡 , Σ𝑡) 

2. Choose 

𝐴𝑡 ∈ argmax𝑎∈𝒜*𝜃𝑇𝑎+  

Action Selection: Solve an LP!  

 

 

 

UCB Algorithm 

 𝑈𝑡 𝑎 = 𝜇𝑡
𝑇𝑎 + 𝛽 𝑎 Σ𝑡

−1 

Action Selection: Solve: 

argmax𝑎∈𝒜*𝜇𝑡
𝑇𝑎 + 𝛽 𝑎 Σ𝑡

−1+ 

This is NP Hard  

 

Uncertainty 

Bonus Predicted 

Reward 

 𝑓𝜃 𝑎 = 𝜙 𝑎 𝑇𝜃, for a known feature vector 𝜙 𝑎 ∈ ℝ𝑑  

Gaussian Prior (𝜃~𝑁(𝜇0, Σ0))  and Gaussian noise.  

Simulation trial with 100 actions with randomly drawn 

feature vectors and 𝑑 = 10. 

 Results averaged across 5000 trials.   

 

Conclusion: posterior sampling outperforms the best 

UCB algorithms in the literature ([1] and [12]), but in this 

simple setting a UCB algorithm that is tuned to the time 

horizon outperforms them all.  


