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Abstract 

There are many applications in which it is desirable to order rather than classify 
instances. Here we consider the problem of learning how to order, given feedback 

in the form of preference judgments, i.e., statements to the effect that one instance 

should be ranked ahead of another. We outline a two-stage approach in which one 

first learns by conventional means a preference Junction, of the form PREF( u, v), 

which indicates whether it is advisable to rank u before v. New instances are 

then ordered so as to maximize agreements with the learned preference func­

tion. We show that the problem of finding the ordering that agrees best with 

a preference function is NP-complete, even under very restrictive assumptions. 

Nevertheless, we describe a simple greedy algorithm that is guaranteed to find a 
good approximation. We then discuss an on-line learning algorithm, based on the 

"Hedge" algorithm, for finding a good linear combination of ranking "experts." 

We use the ordering algorithm combined with the on-line learning algorithm to 
find a combination of "search experts," each of which is a domain-specific query 

expansion strategy for a WWW search engine, and present experimental results 

that demonstrate the merits of our approach. 

1 Introduction 

Most previous work in inductive learning has concentrated on learning to classify. However, 

there are many applications in which it is desirable to order rather than classify instances. 

An example might be a personalized email filter that gives a priority ordering to unread 
mail. Here we will consider the problem of learning how to construct such orderings, given 
feedback in the form of preference judgments, i.e., statements that one instance should be 

ranked ahead of another. 

Such orderings could be constructed based on a learned classifier or regression model, 
and in fact often are. For instance, it is common practice in information retrieval to rank 
documents according to their estimated probability of relevance to a query based on a 

learned classifier for the concept "relevant document." An advantage of learning orderings 

directly is that preference judgments can be much easier to obtain than the labels required 

for classification learning. 

For instance, in the email application mentioned above, one approach might be to rank 

messages according to their estimated probability of membership in the class of "urgent" 
messages, or by some numerical estimate of urgency obtained by regression. Suppose, 

however, that a user is presented with an ordered list of email messages, and elects to read 

the third message first. Given this election, it is not necessarily the case that message three 
is urgent, nor is there sufficient information to estimate any numerical urgency measures; 

however, it seems quite reasonable to infer that message three should have been ranked 

ahead of the others. Thus, in this setting, obtaining preference information may be easier 

and more natural than obtaining the information needed for classification or regression. 
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In the remainder of this paper, we will investigate the following two-stage approach to 

learning how to order. In stage one, we learn a preference junction, a two-argument 

function PREF( u, v) which returns a numerical measure of how certain it is that u should 

be ranked before v. In stage two, we use the learned preference function to order a set of 

new instances U; to accomplish this, we evaluate the learned function PREF( u, v) on all 

pairs of instances u, v E U, and choose an ordering of U that agrees, as much as possible, 

with these pairwise preference judgments. This general approach is novel; for related work 

in various fields see, for instance, references [2, 3, 1, 7, 10]. 

As we will see, given an appropriate feature set, learning a preference function can be 

reduced to a fairly conventional classification learning problem. On the other hand, finding 

a total order that agrees best with a preference function is NP-complete. Nevertheless, we 

show that there is an efficient greedy algorithm that always finds a good approximation to 

the best ordering. After presenting these results on the complexity of ordering instances 

using a preference function, we then describe a specific algorithm for learning a preference 

function. The algorithm is an on-line weight allocation algorithm, much like the weighted 

majority algorithm [9] and Winnow [8], and, more directly, Freund and Schapire's [4] 

"Hedge" algorithm. We then present some experimental results in which this algorithm is 

used to combine the results of several "search experts," each of which is a domain-specific 

query expansion strategy for a WWW search engine. 

2 Preliminaries 

Let X be a set of instances (possibly infinite). A preference junction PREF is a binary 

function PREF : X x X ~ [0,1]. A value of PREF(u, v) which is close to 1 or a is 

interpreted as a strong recommendation that u should be ranked before v. A value close to 

1/2 is interpreted as an abstention from making a recommendation. As noted above, the 

hypothesis of our learning system will be a preference function, and new instances will be 

ranked so as to agree as much as possible with the preferences predicted by this hypothesis. 

In standard classification learning, a hypothesis is constructed by combining primitive 

features. Similarly, in this paper, a preference function will be a combination of other 

preference functions. In particular, we will typically assume the availability of a set of N 
primitive preference functions RI , ... , RN. These can then be combined in the usual ways, 

e.g., with a boolean or linear combination of their values; we will be especially interested 

in the latter combination method. 

It is convenient to assume that the Ri'S are well-formed in certain ways. To this end, we 

introduce a special kind of preference function called a rank ordering. Let S be a totally 

ordered set l with' >' as the comparison operator. An ordering function into S is a function 

f : X ~ S. The function f induces the preference function Rj, defined as 

{
I if f (u) > f ( v) 

Rj(u,v) ~ 0
21 

if f(u) < f(v) 
otherwise. 

We call Rf a rank ordering for X into S. If Rf(u, v) = I, then we say that u is preferred 
to v, or u is ranked higher than v. 

It is sometimes convenient to allow an ordering function to "abstain" and not give a 

preference for a pair u, v. Let ¢> be a special symbol not in S, and let f be a function into 

S U {¢>}. We will interpret the mapping f (u) = ¢> to mean that u is "unranked," and let 

Rf (u, v) = ! if either u or v is unranked. 

To give concrete examples of rank ordering, imagine learning to order documents based on 

the words that they contain. To model this, let X be the set of all documents in a repository, 

)That is, for all pairs of distinct elements 8J, 82 E S, either 8) < 82 or 8) > 82 . 
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and for N words WI, ... , W N. let Ii (u) be the number of occurrences of Wi in u. Then 
Rf; will prefer u to v whenever Wi occurs more often in u than v. As a second example. 

consider a meta-search application in which the goal is to combine the rankings of several 

WWW search engines. For N search engines el, ... , eN. one might define h so that R'i 
prefers u to v whenever u is ranked ahead of v in the list Li produced by the corresponding 

search engine. To do this, one could let Ii(u) = -k for the document u appearing in the 

k-th position in the list L i • and let Ii( u) = </> for any document not appearing in L i . 

3 Ordering instances with a preference function 

We now consider the complexity of finding the total order that agrees best with a learned 
preference function. To analyze this. we must first quantify the notion of agreement between 

a preference function PREF and an ordering. One natural notion is the following: Let X 

be a set. PREF be a preference function. and let p be a total ordering of X. expressed 
again as an ordering function (i.e .• p( u) > p( v) iff u precedes v in the order). We define 

AGREE(p, PREF) to be the sum of PREF( u, v) over all pairs u, v such that u is ranked 

ahead of v by p: 

AGREE(p, PREF) = PREF(u, v). (1) 

u.v:p{ul>p{v) 

Ideally. one would like to find a p that maximizes AGREE(p, PREF). This general opti­
mization problem is of little interest since in practice, there are many constraints imposed 

by learning: for instance PREF must be in some restricted class of functions. and will 
generally be a combination of relatively well-behaved preference functions R i . A more 
interesting question is whether the problem remains hard under such constraints. 

The theorem below gives such a result. showing that the problem is NP-complete even if 

PREF is restricted to be a linear combination of rank orderings. This holds even if all the 

rank orderings map into a set S with only three elements. one of which mayor may not be 
</>. (Clearly. if S consists of more than three elements then the problem is still hard.) 

Theorem 1 The following decision problem is NP-complete: 

Input: A rational number 1\,; a set X; a set S with lSI ~ 3; a collection of 
N ordering functions Ii : X -t S; and a preference function PREF defined as 

PREF(u, v) = L~I wiR'i (u, v) where w = (WI, ... ,WN) is a weight vector in [0, l]N 

with L~I Wi = 1. 

Question: Does there exist a total order p such that AGREE(p, PREF) ~ I\,? 

The proof (omitted) is by reduction from CYCLIC-ORDERING [5. 6]. 

Although this problem is hard when lSI ~ 3. it becomes tractable for linear combinations 

of rank orderings into a set S of size two. In brief. suppose one is given X, Sand PREF as 
in Theorem 1, save that S is a two-element set. which we assume without loss of generality 

to be S = {O, I}. Now define p(u) = Li Wdi(U). It can be shown that the total order 
defined by p maximizes AGREE(p, PREF). (In case of a tie, p( u) = p( v) for distinct u 
and v. p defines only a partial order. The claim still holds in this case for any total order 

which is consistent with this partial order.) Of course, when lSI = 2, the rank orderings 

are really only binary classifiers. The fact that this special case is tractable underscores the 

fact that manipulating orderings can be computationally more difficult than performing the 

corresponding operations on binary classifiers. 

Theorem 1 implies that we are unlikely to find an efficient algorithm that finds the optimal 

total order for a weighted combination of rank orderings. Fortunately. there do exist efficient 

algorithms for finding an approximately optimal total order. Figure 1 summarizes a greedy 
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Algorithm Order-By-Preferences 
Inputs: an instance set X; a preference function PREF 

Output: an approximately optimal ordering function p 
let V = X 
for each v E V do7l'(v) = LUEVPREF(v,u) - LUEVPREF(u,v) 
while V is non-empty do 

let t = argmaxuEv 71'(u) 

let pet) = IVI 
V=V-{t} 
for each v E V do 71'(v) = 71'(v) + PREF(t, v) - PREF(v, t) 

endwhile 

Figure 1: A greedy ordering algorithm 

algorithm that produces a good approximation to the best total order, as we will shortly 

demonstrate. The algorithm is easiest to describe by thinking of PREF as a directed 

weighted graph where, initially, the set of vertices V is equal to the set of instances X, 
and each edge u -t v has weight PREF( u, v). We assign to each vertex v E V a potential 
value 71'( v), which is the weighted sum of the outgoing edges minus the weighted sum of 

the ingoing edges. That is, 71'(v) = LUEV PREF(v,u) - LUEV PREF(u, v) . The greedy 
algorithm then picks some node t that has maximum potential, and assigns it a rank by 

setting pet) = lVI, effectively ordering it ahead of all the remaining nodes. This node, 

together with all incident edges, is then deleted from the graph, and the potential values 

71' of the remaining vertices are updated appropriately: This process is repeated until the 

graph is empty; notice that nodes removed in subsequent iterations will have progressively 

smaller and smaller ranks. 

The next theorem shows that this greedy algorithm comes within a factor of two of optimal. 

Furthermore, it is relatively simple to show that the approximation factor of 2 is tight. 

Theorem 2 Let OPT(PREF) be the weighted agreement achieved by an optimal total 
orderfor the preference junction PREF and let APPROX(PREF) be the weighted agreement 

achieved by the greedy algorithm. Then APPROX(PREF) ;::: !OPT(PREF). 

4 Learning a good weight vector 

In this section, we look at the problem of learning a good linear combination of a set of 

preference functions. Specifically, we assume access to a set of ranking experts which 

provide us with preference functions Ri of a set of instances. The problem, then, is to learn 

a preference function of the form PREF(u,v) = L~I wiRi(U,V). We adopt the on-line 
learning framework first studied by Littlestone [8J in which the weight Wi assigned to each 

ranking expert Ri is updated incrementally. 

Learning is assumed to take place in a sequence of rounds. On the t-th round, the learning 

algorithm is provided with a set X t of instances to be ranked and to a set of N preference 

functions R~ of these instances. The learner may compute R!( u, v) for any and all preference 

functions R~ and pairs u, v E X t before producing a final ordering Pt of xt. Finally, the 

learner receives feedback from the environment. We assume that the feedback is an arbitrary 

set of assertions of the form "u should be preferred to v." That is, formally we regard the 

feedback on the t-th round as a set Ft of pairs (u, v) indicating such preferences. 

The algorithm we propose for this problem is based on the "weighted majority algorithm" [9J 

and, more directly, on the "Hedge" algorithm [4]. We define the loss of a preference function 
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Allocate Weights for Ranking Experts 

Parameters: 

(3 E [0,1] , initial weight vector WI E [0, I]N with l:~1 wl = 1 

N ranking experts, number of rounds T 

Do fort = 1,2, ... ,T 

1. Receive a set of elements X t and preference functions R~, ... , R'N. 
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2. Use algorithm Order-By-Preferences to compute ordering function Pt which ap-

proximatesPREFt(u,v) = E~I wiRHu,v). 

3. Order X t using Pt . 
4. Receive feedback Ft from the user. 

5. Evaluate losses Loss(RL Ft) as defined in Eq. (2). 

6. Set the new weight vector w!+ 1 = w! . (3Loss(R: ,Ft) / Zt where Zt is a normalization 

constant, chosen so that E~I w!+1 = 1. 

Figure 2: The on-line weight allocation algorithm. 

R with respect to the user's feedback F as 

L (R F) ~ E(U,V)EF(1 - R(u,v)) 
oss , IFI' (2) 

This loss has a natural probabilistic interpretation. If R is viewed as a randomized prediction 

algorithm that predicts that u will precede v with probability R(u, v), then Loss(R, F) is 

the probability of R disagreeing with the feedback on a pair (u, v) chosen uniformly at 

random from F. 

We now can use the Hedge algorithm almost verbatim, as shown in Figure 2. The algorithm 

maintains a positive weight vector whose value at time t is denoted by w t = (wf, . . . , w'N). 
If there is no prior knowledge about the ranking experts, we set all initial weights to be 

equal so that wI = 1/ N. The weight vector w t is used to combine the preference functions 

of the different experts to obtain the preference function PREFt = E~ I w~ R~. This, in 

tum, is converted into an ordering Pt on the current set of elements Xl using the method 

described in Section 3. After receiving feedback pt, the loss for each preference function 

Loss(RL Ft) is evaluated as in Eq. (2) and the weight vector w t is updated using the 

mUltiplicative rule W!+I = w~ . (3LQss(R: ,Ft) / Zt where (3 E [0, 1] is a parameter, and Zt is 

a normalization constant, chosen so that the weights sum to one after the update. Thus, based 

on the feedback, the weights of the ranking experts are adjusted so that experts producing 

preference functions with relatively large agreement with the feedback are promoted. 

We will briefly sketch the theoretical rationale behind this algorithm. Freund and 

Schapire [4] prove general results about Hedge which can be applied directly to this loss 

function. Their results imply almost immediately a bound on the cumulative loss of the 

preference function PREFt in terms of the loss of the best ranking expert, specifically 

T T 

LLoss(PREFt,Ft ) ~ a,Bm~n LLoss(RLFt) +c,BlnN 
l 

t=1 t=1 

where a,B = InO / (3) / (1 - (3) and C,B = 1/( I - (3). Thus, if one of the ranking experts has 

low loss, then so will the combined preference function PREFt . 

However, we are not interested in the loss ofPREFt (since it is not an ordering), but rather in 

the performance of the actual ordering Pt computed by the learning algorithm. Fortunately, 
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the losses of these can be related using a kind of triangle inequality. It can be shown that, 

for any PREF, F and p: 

OISAGREE(p PREF) 
Loss(Rp, F) ~ IFI ' + Loss(PREF, F) (3) 

where, similar to Eq. (1), OISAGREE(p, PREF) = Lu,v:p(u»p(v)(l - PREF(u, v)). Not 

surprisingly, maximizing AGREE is equivalent to minimizing DISAGREE. 

So, in sum, we use the greedy algorithm of Section 3 to minimize (approximately) the first 
term on the right hand side ofEq. (3), and we use the learning algorithm Hedge to minimize 

the second term. 

5 Experimental results for metasearch 

We now present some experiments in learning to combine the results of several WWW 
searches. We note that this problem exhibits many facets that require a general approach 
such as ours. For instance, approaches that learn to combine similarity scores are not 
applicable since the similarity scores of WWW search engines are often unavailable. 

We chose to simulate the problem of learning a domain-specific search engine. As test 
cases we picked two fairly narrow classes of queries-retrieving the home pages of ma­
chine learning researchers (ML), and retrieving the home pages of universities (UNIV). 
We obtained a listing of machine learning researchers, identified by name and affiliated 
institution, together with their home pages, and a similar list for universities, identified by 
name and (sometimes) geographical location. Each entry on a list was viewed as a query, 
with the associated URL the sole relevant document. 

We then constructed a series of special-purpose "search experts" for each domain. These 
were implemented as query expansion methods which converted a name, affiliation pair 
(or a name, location pair) to a likely-seeming Altavista query. For example, one expert 
for the ML domain was to search for all the words in the person's name plus the words 
"machine" and "learning," and to further enforce a strict requirement that the person's last 
name appear. Overall we defined 16 search experts for the ML domain and 22 for the UN IV 
domain. Each search expert returned the top 30 ranked documents. In the ML domain there 
were 210 searches for which at least one search expert returned the named home page; for 
the UNIV domain, there were 290 such searches. 

For each query t, we first constructed the set X t consisting of all documents returned by all 
of the expanded queries defined by the search experts. Next, each search expert i computed 
a preference function R~. We chose these to be rank orderings defined with respect to an 
ordering function If in the natural way: We assigned a rank of if = 30 to the first listed 
document, Ii = 29 to the second-listed document, and so on, finally assigning a rank of 
Ii = 0 to every document not retrieved by the expanded query associated with expert i. 

To encode feedback, we considered two schemes. In the first we simulated complete 
relevance feedback-that is, for each query, we constructed feedback in which the sole 
relevant document was preferred to all other documents. In the second, we simulated the 
sort of feedback that could be collected from "click data," i.e., from observing a user's 
interactions with a metasearch system. For each query, after presenting a ranked list of 
documents, we noted the rank of the one relevant document. We then constructed a feedback 
ranking in which the relevant document is preferred to all preceding documents. This would 
correspond to observing which link the user actually followed, and making the assumption 
that this link was preferred to previous links. 

To evaluate the expected performance of a fully-trained system on novel queries in this 
domain, we employed leave-one-out testing. For each query q, we removed q from the 
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ML Domain University Domain 

Top 1 Top lO Top 30 Av. rank Top 1 Top lO Top 30 Av. rank 

Learned System (Full Feedback) 114 185 198 4.9 111 225 253 7.8 
Learned System ("Click Data") 93 185 198 4.9 87 229 259 7.8 

Naive 89 165 176 7.7 79 157 191 14.4 

Best (Top 1) 119 170 184 6.7 112 221 247 8.2 
Best (Top 10) 114 182 190 5.3 111 223 249 8.0 

Best (Top 30) 97 181 194 5.6 111 223 249 8.0 

Best (Av. Rank) 114 182 190 5.3 111 223 249 8.0 

Table 1: Comparison of learned systems and individual search queries 

query set, and recorded the rank of q after training (with (3 = 0.5) on the remaining 
queries. For click data feedback, we recorded the median rank over 100 randomly chosen 
permutations of the training queries. 

We the computed an approximation to average rank by artificially assigning a rank of 31 
to every document that was either unranked, or ranked above rank 30. (The latter case is 
to be fair to the learned system, which is the only one for which a rank greater than 30 is 
possible.) A summary of these results is given in Table 1, together with some additional 
data on "top-k performance"-the number of times the correct homepage appears at rank 
no higher than k. In the table we give the top-k performance (for three values of k) and 
average rank for several ranking systems: the two learned systems, the naive query (the 
person or university's name), and the single search expert that performed best with respect 
to each performance measure. The table illustrates the robustness of the learned systems, 
which are nearly always competitive with the best expert for every performance measure 
listed; the only exception is that the system trained on click data trails the best expert in 
top-k performance for small values of k. It is also worth noting that in both domains, the 
naive query (simply the person or university's name) is not very effective. Even with the 
weaker click data feedback, the learned system achieves a 36% decrease in average rank 

over the naive query in the ML domain, and a 46% decrease in the UNIV domain. 

To summarize the experiments, on these domains, the learned system not only performs 
much better than naive search strategies; it also consistently performs at least as well as, 
and perhaps slightly better than, any single domain-specific search expert. Furthermore, the 
performance of the learned system is almost as good with the weaker "click data" training 
as with complete relevance feedback. 
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