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Abstract

Question answering (QA) systems are sen-

sitive to the many different ways natural

language expresses the same information

need. In this paper we turn to paraphrases

as a means of capturing this knowledge

and present a general framework which

learns felicitous paraphrases for various

QA tasks. Our method is trained end-to-

end using question-answer pairs as a su-

pervision signal. A question and its para-

phrases serve as input to a neural scor-

ing model which assigns higher weights to

linguistic expressions most likely to yield

correct answers. We evaluate our approach

on QA over Freebase and answer sentence

selection. Experimental results on three

datasets show that our framework con-

sistently improves performance, achieving

competitive results despite the use of sim-

ple QA models.

1 Introduction

Enabling computers to automatically answer ques-

tions posed in natural language on any domain or

topic has been the focus of much research in re-

cent years. Question answering (QA) is challeng-

ing due to the many different ways natural lan-

guage expresses the same information need. As a

result, small variations in semantically equivalent

questions, may yield different answers. For exam-

ple, a hypothetical QA system must recognize that

the questions “who created microsoft” and “who

started microsoft” have the same meaning and that

they both convey the founder relation in order to

retrieve the correct answer from a knowledge base.

Given the great variety of surface forms for se-

mantically equivalent expressions, it should come

as no surprise that previous work has investigated

the use of paraphrases in relation to question an-

swering. There have been three main strands of

research. The first one applies paraphrasing to

match natural language and logical forms in the

context of semantic parsing. Berant and Liang

(2014) use a template-based method to heuristi-

cally generate canonical text descriptions for can-

didate logical forms, and then compute paraphrase

scores between the generated texts and input ques-

tions in order to rank the logical forms. Another

strand of work uses paraphrases in the context of

neural question answering models (Bordes et al.,

2014a,b; Dong et al., 2015). These models are typ-

ically trained on question-answer pairs, and em-

ploy question paraphrases in a multi-task learning

framework in an attempt to encourage the neural

networks to output similar vector representations

for the paraphrases.

The third strand of research uses paraphrases

more directly. The idea is to paraphrase the

question and then submit the rewritten version

to a QA module. Various resources have been

used to produce question paraphrases, such as

rule-based machine translation (Duboue and Chu-

Carroll, 2006), lexical and phrasal rules from the

Paraphrase Database (Narayan et al., 2016), as

well as rules mined from Wiktionary (Chen et al.,

2016) and large-scale paraphrase corpora (Fader

et al., 2013). A common problem with the gen-

erated paraphrases is that they often contain in-

appropriate candidates. Hence, treating all para-

phrases as equally felicitous and using them to an-

swer the question could degrade performance. To

remedy this, a scoring model is often employed,

however independently of the QA system used to

find the answer (Duboue and Chu-Carroll, 2006;

Narayan et al., 2016). Problematically, the sepa-

rate paraphrase models used in previous work do

not fully utilize the supervision signal from the

training data, and as such cannot be properly tuned
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Figure 1: We use three different methods to generate candidate paraphrases for input q. The question and

its paraphrases are fed into a neural model which scores how suitable they are. The scores are normalized

and used to weight the results of the question answering model. The entire system is trained end-to-end

using question-answer pairs as a supervision signal.

to the question answering tasks at hand. Based

on the large variety of possible transformations

that can generate paraphrases, it seems likely that

the kinds of paraphrases that are useful would de-

pend on the QA application of interest (Bhagat

and Hovy, 2013). Fader et al. (2014) use features

that are defined over the original question and its

rewrites to score paraphrases. Examples include

the pointwise mutual information of the rewrite

rule, the paraphrase’s score according to a lan-

guage model, and POS tag features. In the context

of semantic parsing, Chen et al. (2016) also use

the ID of the rewrite rule as a feature. However,

most of these features are not informative enough

to model the quality of question paraphrases, or

cannot easily generalize to unseen rewrite rules.

In this paper, we present a general framework

for learning paraphrases for question answering

tasks. Given a natural language question, our

model estimates a probability distribution over

candidate answers. We first generate paraphrases

for the question, which can be obtained by one or

several paraphrasing systems. A neural scoring

model predicts the quality of the generated para-

phrases, while learning to assign higher weights

to those which are more likely to yield correct an-

swers. The paraphrases and the original question

are fed into a QA model that predicts a distribution

over answers given the question. The entire sys-

tem is trained end-to-end using question-answer

pairs as a supervision signal. The framework is

flexible, it does not rely on specific paraphrase or

QA models. In fact, this plug-and-play functional-

ity allows to learn specific paraphrases for differ-

ent QA tasks and to explore the merits of different

paraphrasing models for different applications.

We evaluate our approach on QA over Free-

base and text-based answer sentence selection. We

employ a range of paraphrase models based on

the Paraphrase Database (PPDB; Pavlick et al.

2015), neural machine translation (Mallinson

et al., 2016), and rules mined from the WikiAn-

swers corpus (Fader et al., 2014). Results on three

datasets show that our framework consistently im-

proves performance; it achieves state-of-the-art re-

sults on GraphQuestions and competitive perfor-

mance on two additional benchmark datasets us-

ing simple QA models.

2 Problem Formulation

Let q denote a natural language question, and a its

answer. Our aim is to estimate p (a|q), the condi-

tional probability of candidate answers given the

question. We decompose p (a|q) as:

p (a|q) =
∑

q′∈Hq∪{q}

pψ
(
a|q′

)

︸ ︷︷ ︸

QA Model

pθ
(
q′|q

)

︸ ︷︷ ︸

Paraphrase Model

(1)

where Hq is the set of paraphrases for question q,

ψ are the parameters of a QA model, and θ are the

parameters of a paraphrase scoring model.

As shown in Figure 1, we first generate candi-

date paraphrases Hq for question q. Then, a neu-

ral scoring model predicts the quality of the gen-

erated paraphrases, and assigns higher weights to

the paraphrases which are more likely to obtain



Input: what be the zip code of the largest car manufacturer
what be the zip code of the largest vehicle manufacturer PPDB
what be the zip code of the largest car producer PPDB
what be the postal code of the biggest automobile manufacturer NMT
what be the postcode of the biggest car manufacturer NMT
what be the largest car manufacturer ’s postal code Rule
zip code of the largest car manufacturer Rule

Table 1: Paraphrases obtained for an input ques-

tion from different models (PPDB, NMT, Rule).

Words are lowercased and stemmed.

the correct answers. These paraphrases and the

original question simultaneously serve as input to

a QA model that predicts a distribution over an-

swers for a given question. Finally, the results of

these two models are fused to predict the answer.

In the following we will explain how p (q′|q) and

p (a|q′) are estimated.

2.1 Paraphrase Generation

As shown in Equation (1), the term p (a|q) is

the sum over q and its paraphrases Hq. Ide-

ally, we would generate all the paraphrases of q.

However, since this set could quickly become in-

tractable, we restrict the number of candidate para-

phrases to a manageable size. In order to in-

crease the coverage and diversity of paraphrases,

we employ three methods based on: (1) lexical

and phrasal rules from the Paraphrase Database

(Pavlick et al., 2015); (2) neural machine trans-

lation models (Sutskever et al., 2014; Bahdanau

et al., 2015); and (3) paraphrase rules mined from

clusters of related questions (Fader et al., 2014).

We briefly describe these models below, however,

there is nothing inherent in our framework that is

specific to these, any other paraphrase generator

could be used instead.

2.1.1 PPDB-based Generation

Bilingual pivoting (Bannard and Callison-Burch,

2005) is one of the most well-known approaches

to paraphrasing; it uses bilingual parallel corpora

to learn paraphrases based on techniques from

phrase-based statistical machine translation (SMT,

Koehn et al. 2003). The intuition is that two

English strings that translate to the same foreign

string can be assumed to have the same meaning.

The method first extracts a bilingual phrase table

and then obtains English paraphrases by pivoting

through foreign language phrases.

Drawing inspiration from syntax-based SMT,

Callison-Burch (2008) and Ganitkevitch et al.

(2011) extended this idea to syntactic paraphrases,
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Figure 2: Overview of NMT-based paraphrase

generation. NMT1 (green) translates ques-

tion q into pivots g1 . . . gK which are then back-

translated by NMT2 (blue) where K decoders

jointly predict tokens at each time step, rather than

only conditioning on one pivot and independently

predicting outputs.

leading to the creation of PPDB (Ganitkevitch

et al., 2013), a large-scale paraphrase database

containing over a billion of paraphrase pairs in

24 different languages. Pavlick et al. (2015) fur-

ther used a supervised model to automatically la-

bel paraphrase pairs with entailment relationships

based on natural logic (MacCartney, 2009). In our

work, we employ bidirectionally entailing rules

from PPDB. Specifically, we focus on lexical (sin-

gle word) and phrasal (multiword) rules which we

use to paraphrase questions by replacing words

and phrases in them. An example is shown in

Table 1 where we substitute car with vehicle and

manufacturer with producer.

2.1.2 NMT-based Generation

Mallinson et al. (2016) revisit bilingual pivoting in

the context of neural machine translation (NMT,

Sutskever et al. 2014; Bahdanau et al. 2015) and

present a paraphrasing model based on neural net-

works. At its core, NMT is trained end-to-end to

maximize the conditional probability of a correct

translation given a source sentence, using a bilin-

gual corpus. Paraphrases can be obtained by trans-

lating an English string into a foreign language

and then back-translating it into English. NMT-

based pivoting models offer advantages over con-

ventional methods such as the ability to learn con-

tinuous representations and to consider wider con-

text while paraphrasing.

In our work, we select German as our pivot

following Mallinson et al. (2016) who show that

it outperforms other languages in a wide range

of paraphrasing experiments, and pretrain two

NMT systems, English-to-German (EN-DE) and



Source Target

the average size of what be average size
be locate on which continent what continent be a part of

language speak in what be the official language of
what be the money in what currency do use

Table 2: Examples of rules used in the rule-based

paraphrase generator.

German-to-English (DE-EN). A naive implemen-

tation would translate a question to a German

string and then back-translate it to English. How-

ever, using only one pivot can lead to inaccu-

racies as it places too much faith on a single

translation which may be wrong. Instead, we

translate from multiple pivot sentences (Mallinson

et al., 2016). As shown in Figure 2, question q

is translated to K-best German pivots, Gq =
{g1, . . . , gK}. The probability of generating para-

phrase q′ = y1 . . . y|q′| is decomposed as:

p
(
q′|Gq

)
=

|q′|
∏

t=1

p (yt|y<t,Gq)

=

|q′|
∏

t=1

K∑

k=1

p (gk|q) p (yt|y<t, gk)

(2)

where y<t = y1, . . . , yt−1, and |q′| is the length

of q′. Probabilities p (gk|q) and p (yt|y<t, gk) are

computed by the EN-DE and DE-EN models, re-

spectively. We use beam search to decode tokens

by conditioning on multiple pivoting sentences.

The results with the best decoding scores are con-

sidered candidate paraphrases. Examples of NMT

paraphrases are shown in Table 1.

Compared to PPDB, NMT-based paraphrases

are syntax-agnostic, operating on the surface level

without knowledge of any underlying grammar.

Furthermore, paraphrase rules are captured im-

plicitly and cannot be easily extracted, e.g., from

a phrase table. As mentioned earlier, the NMT-

based approach has the potential of perform-

ing major rewrites as paraphrases are generated

while considering wider contextual information,

whereas PPDB paraphrases are more local, and

mainly handle lexical variation.

2.1.3 Rule-Based Generation

Our third paraphrase generation approach uses

rules mined from the WikiAnswers corpus (Fader

et al., 2014) which contains more than 30 mil-

lion question clusters labeled as paraphrases by

WikiAnswers1 users. This corpus is a large re-

source (the average cluster size is 25), but is rel-

atively noisy due to its collaborative nature – 45%
of question pairs are merely related rather than

genuine paraphrases. We therefore followed the

method proposed in (Fader et al., 2013) to har-

vest paraphrase rules from the corpus. We first ex-

tracted question templates (i.e., questions with at

most one wild-card) that appear in at least ten clus-

ters. Any two templates co-occurring (more than

five times) in the same cluster and with the same

arguments were deemed paraphrases. Table 2

shows examples of rules extracted from the cor-

pus. During paraphrase generation, we consider

substrings of the input question as arguments, and

match them with the mined template pairs. For ex-

ample, the stemmed input question in Table 1 can

be paraphrased using the rules (“what be the zip

code of ”, “what be ’s postal code”) and (“what

be the zip code of ”, “zip code of ”). If no ex-

act match is found, we perform fuzzy matching by

ignoring stop words in the question and templates.

2.2 Paraphrase Scoring

Recall from Equation (1) that pθ (q
′|q) scores the

generated paraphrases q′ ∈ Hq ∪ {q}. We esti-

mate pθ (q
′|q) using neural networks given their

successful application to paraphrase identification

tasks (Socher et al., 2011; Yin and Schütze, 2015;

He et al., 2015). Specifically, the input ques-

tion and its paraphrases are encoded as vectors.

Then, we employ a neural network to obtain the

score s (q′|q) which after normalization becomes

the probability pθ (q
′|q).

Encoding Let q = q1 . . . q|q| denote an input

question. Every word is initially mapped to a

d-dimensional vector. In other words, vector qt
is computed via qt = Wqe (qt), where Wq ∈
R
d×|V| is a word embedding matrix, |V| is the

vocabulary size, and e (qt) is a one-hot vector.

Next, we use a bi-directional recurrent neural net-

work with long short-term memory units (LSTM,

Hochreiter and Schmidhuber 1997) as the ques-

tion encoder, which is shared by the input ques-

tions and their paraphrases. The encoder recur-

sively processes tokens one by one, and uses the

encoded vectors to represent questions. We com-

pute the hidden vectors at the t-th time step via:

1wiki.answers.com

wiki.answers.com


−→
h t = LSTM

(−→
h t−1,qt

)

, t = 1, . . . , |q|

←−
h t = LSTM

(←−
h t+1,qt

)

, t = |q|, . . . , 1
(3)

where
−→
h t,
←−
h t ∈ R

n. In this work we follow the

LSTM function described in Pham et al. (2014).

The representation of q is obtained by:

q =
[−→
h |q|,

←−
h 1

]

(4)

where [·, ·] denotes concatenation, and q ∈ R
2n.

Scoring After obtaining vector representations

for q and q′, we compute the score s (q′|q) via:

s
(
q′|q

)
= ws ·

[
q,q′,q⊙ q′

]
+ bs (5)

where ws ∈ R
6n is a parameter vector, [·, ·, ·] de-

notes concatenation, ⊙ is element-wise multipli-

cation, and bs is the bias. Alternative ways to com-

pute s (q′|q) such as dot product or with a bilinear

term were not empirically better than Equation (5)

and we omit them from further discussion.

Normalization For paraphrases q′ ∈ Hq ∪ {q},
the probability pθ (q

′|q) is computed via:

pθ
(
q′|q

)
=

exp{s (q′|q)}
∑

r∈Hq∪{q}
exp{s (r|q)}

(6)

where the paraphrase scores are normalized over

the set Hq ∪ {q}.

2.3 QA Models

The framework defined in Equation (1) is rela-

tively flexible with respect to the QA model being

employed as long as it can predict pψ (a|q
′). We il-

lustrate this by performing experiments across dif-

ferent tasks and describe below the models used

for these tasks.

Knowledge Base QA In our first task we use

the Freebase knowledge base to answer questions.

Query graphs for the questions typically contain

more than one predicate. For example, to answer

the question “who is the ceo of microsoft in 2008”,

we need to use one relation to query “ceo of mi-

crosoft” and another relation for the constraint “in

2008”. For this task, we employ the SIMPLE-

GRAPH model described in Reddy et al. (2016,

2017), and follow their training protocol and fea-

ture design. In brief, their method uses rules to

convert questions to ungrounded logical forms,

which are subsequently matched against Freebase

subgraphs. The QA model learns from question-

answer pairs: it extracts features for pairs of ques-

tions and Freebase subgraphs, and uses a logistic

regression classifier to predict the probability that

a candidate answer is correct. We perform entity

linking using the Freebasee/KG API on the origi-

nal question (Reddy et al., 2016, 2017), and gener-

ate candidate Freebase subgraphs. The QA model

estimates how likely it is for a subgraph to yield

the correct answer.

Answer Sentence Selection Given a question

and a collection of relevant sentences, the goal

of this task is to select sentences which contain

an answer to the question. The assumption is

that correct answer sentences have high semantic

similarity to the questions (Yu et al., 2014; Yang

et al., 2015; Miao et al., 2016). We use two bi-

directional recurrent neural networks (BILSTM)

to separately encode questions and answer sen-

tences to vectors (Equation (4)). Similarity scores

are computed as shown in Equation (5), and then

squashed to (0, 1) by a sigmoid function in order

to predict pψ (a|q
′).

2.4 Training and Inference

We use a log-likelihood objective for training,

which maximizes the likelihood of the correct an-

swer given a question:

maximize
∑

(q,a)∈D

log p (a|q) (7)

where D is the set of all question-answer training

pairs, and p (a|q) is computed as shown in Equa-

tion (1). For the knowledge base QA task, we pre-

dict how likely it is that a subgraph obtains the

correct answer, and the answers of some candidate

subgraphs are partially correct. So, we use the

binary cross entropy between the candidate sub-

graph’s F1 score and the prediction as the objec-

tive function. The RMSProp algorithm (Tieleman

and Hinton, 2012) is employed to solve this non-

convex optimization problem. Moreover, dropout

is used for regularizing the recurrent neural net-

works (Pham et al., 2014).

At test time, we generate paraphrases for the

question q, and then predict the answer by:

â = argmax
a′∈Cq

p
(
a′|q

)
(8)



where Cq is the set of candidate answers,

and p (a′|q) is computed as shown in Equation (1).

3 Experiments

We compared our model which we call PARA4QA

(as shorthand for learning to paraphrase for ques-

tion answering) against multiple previous systems

on three datasets. In the following we introduce

these datasets, provide implementation details for

our model, describe the systems used for compar-

ison, and present our results.

3.1 Datasets

Our model was trained on three datasets, repre-

sentative of different types of QA tasks. The first

two datasets focus on question answering over a

structured knowledge base, whereas the third one

is specific to answer sentence selection.

WEBQUESTIONS This dataset (Berant et al.,

2013) contains 3, 778 training instances and

2, 032 test instances. Questions were collected by

querying the Google Suggest API. A breadth-first

search beginning with wh- was conducted and the

answers were crowd-sourced using Freebase as the

backend knowledge base.

GRAPHQUESTIONS The dataset (Su et al.,

2016) contains 5, 166 question-answer pairs

(evenly split into a training and a test set). It was

created by asking crowd workers to paraphrase

500 Freebase graph queries in natural language.

WIKIQA This dataset (Yang et al., 2015) has

3, 047 questions sampled from Bing query logs.

The questions are associated with 29, 258 candi-

date answer sentences, 1, 473 of which contain the

correct answers to the questions.

3.2 Implementation Details

Paraphrase Generation Candidate paraphrases

were stemmed (Minnen et al., 2001) and lower-

cased. We discarded duplicate or trivial para-

phrases which only rewrite stop words or punc-

tuation. For the NMT model, we followed the im-

plementation2 and settings described in Mallinson

et al. (2016), and used English↔German as the

language pair. The system was trained on data

released as part of the WMT15 shared transla-

tion task (4.2 million sentence pairs). We also

had access to back-translated monolingual train-

ing data (Sennrich et al., 2016a). Rare words were

2github.com/sebastien-j/LV_groundhog

split into subword units (Sennrich et al., 2016b) to

handle out-of-vocabulary words in questions. We

used the top 15 decoding results as candidate para-

phrases. We used the S size package of PPDB

2.0 (Pavlick et al., 2015) for high precision. At

most 10 candidate paraphrases were considered.

We mined paraphrase rules from WikiAnswers

(Fader et al., 2014) as described in Section 2.1.3.

The extracted rules were ranked using the point-

wise mutual information between template pairs

in the WikiAnswers corpus. The top 10 candidate

paraphrases were used.

Training For the paraphrase scoring model, we

used GloVe (Pennington et al., 2014) vectors3 pre-

trained on Wikipedia 2014 and Gigaword 5 to ini-

tialize the word embedding matrix. We kept this

matrix fixed across datasets. Out-of-vocabulary

words were replaced with a special unknown sym-

bol. We also augmented questions with start-of-

and end-of-sequence symbols. Word vectors for

these special symbols were updated during train-

ing. Model hyperparameters were validated on

the development set. The dimensions of hid-

den vectors and word embeddings were selected

from {50, 100, 200} and {100, 200}, respectively.

The dropout rate was selected from {0.2, 0.3, 0.4}.
The BILSTM for the answer sentence selection

QA model used the same hyperparameters. Pa-

rameters were randomly initialized from a uniform

distribution U (−0.08, 0.08). The learning rate

and decay rate of RMSProp were 0.01 and 0.95,

respectively. The batch size was set to 150. To

alleviate the exploding gradient problem (Pascanu

et al., 2013), the gradient norm was clipped to 5.

Early stopping was used to determine the number

of epochs.

3.3 Paraphrase Statistics

Table 3 presents descriptive statistics on the para-

phrases generated by the various systems across

datasets (training set). As can be seen, the av-

erage paraphrase length is similar to the average

length of the original questions. The NMT method

generates more paraphrases and has wider cover-

age, while the average number and coverage of the

other two methods varies per dataset. As a way

of quantifying the extent to which rewriting takes

place, we report BLEU (Papineni et al., 2002) and

TER (Snover et al., 2006) scores between the orig-

inal questions and their paraphrases. The NMT

3nlp.stanford.edu/projects/glove

github.com/sebastien-j/LV_groundhog
nlp.stanford.edu/projects/glove


Metric GRAPHQ WEBQ WIKIQA

NMT PPDB Rule NMT PPDB Rule NMT PPDB Rule

avg(|q|) 10.87 7.71 6.47

avg(|q′|) 10.87 12.40 10.51 8.13 8.55 7.54 6.60 7.85 7.15

avg(#q
′) 13.85 3.02 2.50 13.76 0.71 7.74 13.95 0.62 5.64

Coverage (%) 99.67 73.52 31.16 99.87 35.15 83.61 99.89 31.04 63.12

BLEU (%) 42.33 67.92 54.23 35.14 56.62 42.37 32.40 54.24 40.62

TER (%) 39.18 14.87 38.59 45.38 19.94 43.44 46.10 17.20 48.59

Table 3: Statistics of generated paraphrases across

datasets (training set). avg(|q|): average ques-

tion length; avg(|q′|): average paraphrase length;

avg(#q′): average number of paraphrases; cover-

age: the proportion of questions that have at least

one candidate paraphrase.

method and the rules extracted from WikiAnswers

tend to paraphrase more (i.e., have lower BLEU

and higher TER scores) compared to PPDB.

3.4 Comparison Systems

We compared our framework to previous work

and several ablation models which either do not

use paraphrases or paraphrase scoring, or are not

jointly trained.

The first baseline only uses the base QA mod-

els described in Section 2.3 (SIMPLEGRAPH and

BILSTM). The second baseline (AVGPARA) does

not take advantage of paraphrase scoring. The

paraphrases for a given question are used while the

QA model’s results are directly averaged to predict

the answers. The third baseline (DATAAUGMENT)

employs paraphrases for data augmentation dur-

ing training. Specifically, we use the question, its

paraphrases, and the correct answer to automati-

cally generate new training samples.

In the fourth baseline (SEPPARA), the para-

phrase scoring model is separately trained on para-

phrase classification data, without taking question-

answer pairs into account. In the experiments,

we used the Quora question paraphrase dataset4

which contains question pairs and labels indicat-

ing whether they constitute paraphrases or not. We

removed questions with more than 25 tokens and

sub-sampled to balance the dataset. We used 90%
of the resulting 275K examples for training, and

the remaining for development. The paraphrase

score s (q′|q) (Equation (5)) was wrapped by a

sigmoid function to predict the probability of a

question pair being a paraphrase. A binary cross-

entropy loss was used as the objective. The classi-

fication accuracy on the dev set was 80.6%.

4goo.gl/kMP46n

Method Average F1 (%)

GRAPHQ WEBQ

SEMPRE (Berant et al., 2013) 10.8 35.7
JACANA (Yao and Van Durme, 2014) 5.1 33.0
PARASEMP (Berant and Liang, 2014) 12.8 39.9
SUBGRAPH (Bordes et al., 2014a) - 40.4
MCCNN (Dong et al., 2015) - 40.8
YAO15 (Yao, 2015) - 44.3
AGENDAIL (Berant and Liang, 2015) - 49.7
STAGG (Yih et al., 2015) - 48.4 (52.5)
MCNN (Xu et al., 2016) - 47.0 (53.3)
TYPERERANK (Yavuz et al., 2016) - 51.6 (52.6)
BILAYERED (Narayan et al., 2016) - 47.2
UDEPLAMBDA (Reddy et al., 2017) 17.6 49.5

SIMPLEGRAPH (baseline) 15.9 48.5
AVGPARA 16.1 48.8
SEPPARA 18.4 49.6
DATAAUGMENT 16.3 48.7
PARA4QA 20.4 50.7
−NMT 18.5 49.5
−PPDB 19.5 50.4
−RULE 19.4 49.1

Table 4: Model performance on GRAPHQUES-

TIONS and WEBQUESTIONS. Results with addi-

tional task-specific resources are shown in paren-

theses. The base QA model is SIMPLEGRAPH.

Best results in each group are shown in bold.

Finally, in order to assess the individual con-

tribution of different paraphrasing resources, we

compared the PARA4QA model against versions

of itself with one paraphrase generator removed

(−NMT/−PPDB/−RULE).

3.5 Results

We first discuss the performance of PARA4QA on

GRAPHQUESTIONS and WEBQUESTIONS. The

first block in Table 4 shows a variety of systems

previously described in the literature using aver-

age F1 as the evaluation metric (Berant et al.,

2013). Among these, PARASEMP, SUBGRAPH,

MCCNN, and BILAYERED utilize paraphrasing

resources. The second block compares PARA4QA

against various related baselines (see Section 3.4).

SIMPLEGRAPH results on WEBQUESTIONS and

GRAPHQUESTIONS are taken from Reddy et al.

(2016) and Reddy et al. (2017), respectively.

Overall, we observe that PARA4QA outper-

forms baselines which either do not employ para-

phrases (SIMPLEGRAPH) or paraphrase scoring

(AVGPARA, DATAAUGMENT), or are not jointly

trained (SEPPARA). On GRAPHQUESTIONS, our

model PARA4QA outperforms the previous state

of the art by a wide margin. Ablation experiments

with one of the paraphrase generators removed

goo.gl/kMP46n


Method MAP MRR

BIGRAMCNN (Yu et al., 2014) 0.6190 0.6281
BIGRAMCNN+CNT (Yu et al., 2014) 0.6520 0.6652
PARAVEC (Le and Mikolov, 2014) 0.5110 0.5160
PARAVEC+CNT (Le and Mikolov, 2014) 0.5976 0.6058
LSTM (Miao et al., 2016) 0.6552 0.6747
LSTM+CNT (Miao et al., 2016) 0.6820 0.6988
NASM (Miao et al., 2016) 0.6705 0.6914
NASM+CNT (Miao et al., 2016) 0.6886 0.7069
KVMEMNET+CNT (Miller et al., 2016) 0.7069 0.7265

BILSTM (baseline) 0.6456 0.6608
AVGPARA 0.6587 0.6753
SEPPARA 0.6613 0.6765
DATAAUGMENT 0.6578 0.6736
PARA4QA 0.6759 0.6918
−NMT 0.6528 0.6680
−PPDB 0.6613 0.6767
−RULE 0.6553 0.6756

BILSTM+CNT (baseline) 0.6722 0.6877
PARA4QA+CNT 0.6978 0.7131

Table 5: Model performance on WIKIQA. +CNT:

word matching features introduced in Yang et al.

(2015). The base QA model is BILSTM. Best re-

sults in each group are shown in bold.

show that performance drops most when the NMT

paraphrases are not used on GRAPHQUESTIONS,

whereas on WEBQUESTIONS removal of the rule-

based generator hurts performance most. One rea-

son is that the rule-based method has higher cov-

erage on WEBQUESTIONS than on GRAPHQUES-

TIONS (see Table 3).

Results on WIKIQA are shown in Table 5. We

report MAP and MMR which evaluate the rela-

tive ranks of correct answers among the candi-

date sentences for a question. Again, we observe

that PARA4QA outperforms related baselines (see

BILSTM, DATAAUGMENT, AVGPARA, and SEP-

PARA). Ablation experiments show that perfor-

mance drops most when NMT paraphrases are re-

moved. When word matching features are used

(see +CNT in the third block), PARA4QA reaches

state of the art performance.

Examples of paraphrases and their probabil-

ities pθ (q
′|q) (see Equation (6)) learned by

PARA4QA are shown in Table 6. The two ex-

amples are taken from the development set of

GRAPHQUESTIONS and WEBQUESTIONS, re-

spectively. We also show the Freebase relations

used to query the correct answers. In the first ex-

ample, the original question cannot yield the cor-

rect answer because of the mismatch between the

question and the knowledge base. The paraphrase

contains “role” in place of “sort of part”, increas-

ing the chance of overlap between the question and

Examples pθ (q
′|q)

(music.concert performance.performance role)
what sort of part do queen play in concert 0.0659

what role do queen play in concert 0.0847
what be the role play by the queen in concert 0.0687
what role do queen play during concert 0.0670
what part do queen play in concert 0.0664
which role do queen play in concert concert 0.0652

(sports.sports team roster.team)
what team do shaq play 4 0.2687

what team do shaq play for 0.2783
which team do shaq play with 0.0671
which team do shaq play out 0.0655
which team have you play shaq 0.0650
what team have we play shaq 0.0497

Table 6: Questions and their top-five paraphrases

with probabilities learned by the model. The Free-

base relations used to query the correct answers

are shown in brackets. The original question is

underlined. Questions with incorrect predictions

are in red.

the predicate words. The second question contains

an informal expression “play 4”, which confuses

the QA model. The paraphrase model generates

“play for” and predicts a high paraphrase score

for it. More generally, we observe that the model

tends to give higher probabilities pθ (q
′|q) to para-

phrases biased towards delivering appropriate an-

swers.

We also analyzed which structures were mostly

paraphrased within a question. We manually in-

spected 50 (randomly sampled) questions from

the development portion of each dataset, and their

three top scoring paraphrases (Equation (5)). We

grouped the most commonly paraphrased struc-

tures into the following categories: a) question

words, i.e., wh-words and and “how”; b) ques-

tion focus structures, i.e., cue words or cue phrases

for an answer with a specific entity type (Yao and

Van Durme, 2014); c) verbs or noun phrases in-

dicating the relation between the question topic

entity and the answer; and d) structures requir-

ing aggregation or imposing additional constraints

the answer must satisfy (Yih et al., 2015). In the

example “which year did Avatar release in UK”,

the question word is “which”, the question focus

is “year”, the verb is “release”, and “in UK” con-

strains the answer to a specific location.

Figure 3 shows the degree to which different

types of structures are paraphrased. As can be

seen, most rewrites affect Relation Verb, espe-

cially on WEBQUESTIONS. Question Focus, Re-

lation NP, and Constraint & Aggregation are more
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Figure 3: Proportion of linguistic phenomena sub-

ject to paraphrasing within a question.

Method Average F1 (%)

Simple Complex

SIMPLEGRAPH 20.9 12.2
PARA4QA 27.4 (+6.5) 16.0 (+3.8)

Table 7: We group GRAPHQUESTIONS into sim-

ple and complex questions and report model per-

formance in each split. Best results in each group

are shown in bold. The values in brackets are ab-

solute improvements of average F1 scores.

often rewritten in GRAPHQUESTIONS compared

to the other datasets.

Finally, we examined how our method fares on

simple versus complex questions. We performed

this analysis on GRAPHQUESTIONS as it contains

a larger proportion of complex questions. We con-

sider questions that contain a single relation as

simple. Complex questions have multiple rela-

tions or require aggregation. Table 7 shows how

our model performs in each group. We observe

improvements for both types of questions, with

the impact on simple questions being more pro-

nounced. This is not entirely surprising as it is eas-

ier to generate paraphrases and predict the para-

phrase scores for simpler questions.

4 Conclusions

In this work we proposed a general framework

for learning paraphrases for question answering.

Paraphrase scoring and QA models are trained

end-to-end on question-answer pairs, which re-

sults in learning paraphrases with a purpose. The

framework is not tied to a specific paraphrase gen-

erator or QA system. In fact it allows to in-

corporate several paraphrasing modules, and can

serve as a testbed for exploring their coverage

and rewriting capabilities. Experimental results

on three datasets show that our method improves

performance across tasks. There are several direc-

tions for future work. The framework can be used

for other natural language processing tasks which

are sensitive to the variation of input (e.g., tex-

tual entailment or summarization). We would also

like to explore more advanced paraphrase scoring

models (Parikh et al., 2016; Wang and Jiang, 2016)

as well as additional paraphrase generators since

improvements in the diversity and the quality of

paraphrases could also enhance QA performance.
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