
Machine Learning 34, 151–175 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Learning to Parse Natural Language with Maximum
Entropy Models

ADWAIT RATNAPARKHI ∗ adwait@unagi.cis.upenn.edu
Department of Computer and Information Science, University of Pennsylvania, 200 South 33rd Street, Philadelphia,
PA 19104-6389

Editors: Claire Cardie and Raymond Mooney

Abstract. This paper presents a machine learning system for parsing natural language that learns from manually
parsed example sentences, and parses unseen data at state-of-the-art accuracies. Its machine learning technology,
based on the maximum entropy framework, is highly reusable and not specific to the parsing problem, while the
linguistic hints that it uses to learn can be specified concisely. It therefore requires a minimal amount of human
effort and linguistic knowledge for its construction. In practice, the running time of the parser on a test sentence
is linear with respect to the sentence length. We also demonstrate that the parser can train from other domains
without modification to the modeling framework or the linguistic hints it uses to learn. Furthermore, this paper
shows that research into rescoring the top 20 parses returned by the parser might yield accuracies dramatically
higher than the state-of-the-art.

Keywords: maximum entropy models, natural language processing, parsing

1. Introduction

The task of a natural language parser is to take a sentence as input and return a syntactic
representation that corresponds to the likely semantic interpretation of the sentence. For
example, some parsers, given the sentence

I buy cars with tires

would return a parse tree in the format:

∗The author is now at the IBM TJ Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598.

152 A. RATNAPARKHI

where the non-terminal labels denote the type of phrase (e.g., “PP” stands for prepositional
phrase). Accurate parsing is difficult because subtle aspects of word meaning—from the
parser’s view—dramatically affect the interpretation of the sentence. For example, given
the sentence

I buy cars with money

a parser might propose the following two parses

• (Unlikely:)

• (Likely:)

Both parses are grammatical, in the sense that a typical context free grammar for English will
allow both structures, but only one corresponds to the likely interpretation of the sentence.
A parser actually needs detailed semantic knowledge of certain key words in the sentence
in order to distinguish the likely parse; it needs to somehow know thatwith moneyrefers to
buyand notcars.

The parsers which currently show superior accuracies on freely occurring text are all
classified asstatisticalor corpus-based, since they automatically learn to approximate syn-
tactic and semantic knowledge for parsing from a large corpus of text, called atreebank,

LEARNING TO PARSE NATURAL LANGUAGE 153

that has been manually annotated with syntactic information. In order to evaluate the ac-
curacy of a statistical parser, we first train it on a subset of the treebank, test it on another
non-overlapping subset, and then compare the labelled syntactic constituents it proposes
with the labelled syntactic constituents in the annotation of the treebank. The labelled con-
stituent accuracies of the best parsers approach roughly 90% when tested on freely occurring
sentences in the Wall St. Journal domain.

2. Previous work

Recent corpus-based parsers differ in the simplicity of their representation and the degree of
supervision necessary, but agree in that they resolve parse structure ambiguities by looking
at certain cooccurrences of constituenthead wordsin the ambiguous parse. A head word of
a constituent, informally, is the one word that best represents the meaning of the constituent,
e.g., figure 1 shows a parse tree annotated with head words. Parsers vary greatly on how
head word information is used to disambiguate possible parses for an input sentence. Black
et al. (1993) introduceshistory-basedparsing, in which decision tree probability models,
trained from a treebank, are used to score the different derivations of sentences produced by
a hand-written grammar. Jelinek et al. (1994), Magerman (1995) also train history-based
decision tree models from a treebank for use in a parser, but do not require an explicit
hand-written grammar. These decision trees do not look at words directly, but instead
represent words as bitstrings derived from an automatic clustering technique. In contrast,
Hermjakob and Mooney (1997) use a rich semantic representation when training decision
tree and decision list techniques to drive parser actions.

Several other recent parsers use statistics of pairs of head words in conjunction with
chart parsing techniques to achieve high accuracy. Collins (1996, 1997) uses chart-parsing
techniques with head word bigram statistics derived from a treebank. Charniak (1997)

Figure 1. A parse tree annotated with head words.

154 A. RATNAPARKHI

uses head word bigram statistics with a probabilistic context free grammar, while Goodman
(1997) uses head word bigram statistics with a probabilistic feature grammar. Collins
(1996), Goodman (1997), Charniak (1997), Collins (1997) do not use general machine
learning algorithms, but instead develop specialized statistical estimation techniques for
their respective parsing tasks.

The parser in this paper attempts to combine the advantages of other approaches. It
uses a natural and direct representation of words in conjunction with a general machine
learning technique, maximum entropy modeling. We argue that the successful use of a simple
representation with a general learning technique is the combination that bothminimizes
human effortand maintains state-of-the-art parsing accuracy.

3. Parsing with maximum entropy models

The parser presented here constructs labelled syntactic parse trees with actions similar to
those of a standardshift-reduceparser. (Many other parsing techniques exist for natural
language, see Allen (1995) for an introduction.) The sequence of actions{a1, . . . ,an} that
construct a completed parse treeT are called thederivation of T . There is no explicit
grammar that dictates what actions are allowable; instead, all actions that lead to a well-
formed parse tree are allowable and maximum entropy probability models are used to score
each action. The maximum entropy models are trained by examining the derivations of the
parse trees in a treebank. The individual scores of the actions in a derivation are used to
compute a score for the whole derivation, and hence the whole parse tree. When parsing a
sentence, the parser uses a search procedure that efficiently explores the space of possible
parse trees, and attempts to find the highest scoring parse tree.

Section 3.1 describes the actions of the tree-building procedures, Section 3.2 describe the
maximum entropy probability models, and Section 3.3 describes the algorithm that searches
for the highest scoring parse tree.

3.1. Actions of the parser

The actions of the parser are produced byprocedures, that each take a derivationd=
{a1, . . . ,an}, and predict some actionan+1 to create a new derivationd′ = {a1, . . . ,an+1}.
The actions of the procedures are designed so that any possible complete parse treeT has
exactly onederivation.

The procedures are calledTAG, CHUNK, BUILD, andCHECK, and are applied in three left-
to-right passes over the input sentence; the first pass appliesTAG, the second pass applies
CHUNK, and the third pass appliesBUILD andCHECK. The passes, the procedures they apply,
and the actions of the procedures are summarized in Table 1. Typically, the parser explores
many different derivations when parsing a sentence, but for illustration purposes, figures 2–8
trace one possible derivation for the sentence “I saw the man with the telescope”, using
the consituent labels and part-of-speech tags of the University of Pennsylvania treebank
(Marcus, Santorini, & Marcinkiewicz, 1994).

The actions of the procedures are scored with maximum entropy probability models
that use information in the local context to compute their probabilities. (A more detailed

LEARNING TO PARSE NATURAL LANGUAGE 155

Table 1. Tree-building procedures of parser.

Pass Procedure Actions Description

First Pass TAG A POS tag in tag set Assign POS Tag to word

Second Pass CHUNK Start X , Join X , Other Assign Chunk tag to
POS tag and word

Third Pass BUILD Start X , Join X , whereX is a Assign current tree to start a new con-
constituent label in label set stituent, or to join the previous one

CHECK Yes, No Decide if current constituent
is complete

Figure 2. Initial sentence.

Figure 3. The result after first pass.

Figure 4. The result after second pass.

Figure 5. The result of chunk detection.

Figure 6. An application ofBUILD in which Join VP is the action.

156 A. RATNAPARKHI

Figure 7. The most recently proposed constituent (shown under ?).

Figure 8. An application ofCHECK in whichNo is the action, indicating that the proposed constituent in figure 7
is not complete.BUILD will now process the tree marked with ?. The derivation of this partially complete tree is
{PRP, VBD, DT, NN, IN, DT, NN, Start NP, Other, Start NP, Join NP, Other, Start NP, Join NP, Start S, no, Start
VP, no, Join VP, no}.

discussion of the probability models will occur in Section 3.2.) Using three passes instead
of one pass allows the use of more local context. For example, the model for theCHUNK

procedure will have the output fromTAG in its left and right context, and the models for the
BUILD andCHECKprocedures will have the output ofTAG andCHUNK and their left and right
contexts. If all these procedures were implemented in one left-to-right pass, the model for
CHUNK would not have the output ofTAG in its right context, and the models forBUILD and
CHECK would not have the output ofTAG andCHUNK in their right context.

3.1.1. First pass. The first pass takes an input sentence, shown in figure 2, and usesTAG

to assign each word a part-of-speech (POS) tag. The result of applyingTAG to each word
is shown in figure 3. The tagging phase resembles other stand-alone statistical taggers in
the literature (Weischedel et al., 1993) but is integrated into the parser’s search procedure,
so that the parser does not need to commit to a single POS tag sequence.

3.1.2. Second pass.The second pass takes the output of the first pass and usesCHUNK to
determine the “flat” phrase chunks of the sentence, where a phrase is “flat” if and only if it
is a constituent whose children are not constituents. Starting from the left,CHUNK assigns
each (word, POS tag) pair a “chunk” tag, eitherStart X , Join X , or Other , whereX is
a constituent label. Figure 4 shows the result after the second pass. The chunk tags are then
used for chunk detection, in which any consecutive sequence of wordswm, . . . , wn (m≤ n)
are grouped into a “flat” chunkX if wm has been assignedStart X andwm+1, . . . , wn

have all been assignedJoin X . The result of chunk detection, shown in figure 5, is a forest
of trees and serves as the input to the third pass.

LEARNING TO PARSE NATURAL LANGUAGE 157

The granularity of the chunks, as well as the possible constituent labels of the chunks,
are determined from the treebank that is used to train the parser. Examples of constituents
that are marked as flat chunks in the Wall St. Journal domain of the Penn treebank include
noun phrases such asa nonexecutive director, adjective phrases such as 61years old, and
quantifier phrases such asabout$370million.

The chunking in our second pass differs from other chunkers in the literature (Ramshaw
& Marcus, 1995; Church, 1988) in that it finds chunks of all constituent labels, and not just
noun phrase chunks. Our multi-pass approach is similar to the approach of the parser in
Abney (1991), which also first finds chunks in one pass, and then attaches them together in
the next pass.

3.1.3. Third pass. The third pass always alternates between the use ofBUILD andCHECK,
and completes any remaining constituent structure.BUILD decides whether a tree will start
a new constituent or join the incomplete constituent immediately to its left. Accordingly, it
annotates the tree with eitherStart X , whereX is any constituent label, or withJoin X ,
whereX matches the label of the incomplete constituent to the left.BUILD always processes
the leftmost tree without anyStart X orJoin X annotation. Figure 6 shows an application
of BUILD in which the action isJoin VP . After BUILD, control passes toCHECK, which finds
the most recently proposed constituent, and decides if it is complete. The most recently
proposed constituent, shown in figure 7, is the rightmost sequence of treestm, . . . , tn (m≤ n)
such thattm is annotated withStart X and tm+1, . . . , tn are annotated withJoin X .
If CHECK decidesyes , then the proposed constituent takes its place in the forest as an
actual constituent, on whichBUILD does its work. Otherwise, the constituent is not finished
and BUILD processes the next tree in the forest,tn+1. We forceCHECK to answerno if
the proposed constituent is a “flat” chunk, since such constituents must be formed in the
second pass. (Otherwise, flat chunks would not have unique derivations.) Figure 8 shows
the result whenCHECK looks at the proposed constituent in figure 7 and decidesNo. The
third pass terminates whenCHECK is presented with a constituent that spans the entire
sentence.

A complete derivation for ann word sentence consists ofn actions ofTAG, n actions of
CHUNK, and alternating actions ofBUILD andCHECK. For reference purposes, the derivation
of the partially completed tree in figure 8 is included in the caption. The constituent labels
produced byBUILD, i.e., the types ofX in theStart X andJoin X actions, are determined
from the treebank that is used to train the parser.

Table 2 compares the actions ofBUILD andCHECK to the operations of a standard shift-
reduce parser. TheNo and Yes actions ofCHECK correspond to the shift and reduce

Table 2. Comparison ofBUILD andCHECK to operations of a shift-reduce parser.

Procedure Actions Similar shift-reduce parser action

CHECK No Shift

CHECK Yes Reduceα, whereα is CFG rule of proposed constituent

BUILD Start X , Join X Determinesα for subsequent reduce operations

158 A. RATNAPARKHI

actions, respectively. The important difference is that while a shift-reduce parser creates a
constituent in one step (reduceα), the proceduresBUILD andCHECK create it over several
steps in smaller increments.

While the use of maximum entropy models together with shift-reduce parsing is novel (to
our knowledge), shift-reduce parsing techniques have been popular in the natural language
literature. Aho, Sethi, and Ullman (1988) describe shift-reduce parsing techniques (for
programming languages) in detail, Marcus (1980) uses shift-reduce parsing techniques
for natural language, and Briscoe and Carroll (1993) describe probabilistic approaches to
LR parsing, a type of shift-reduce parsing. Other recent machine learning approaches to
shift-reduce parsing include Magerman (1995) and Hermjakob and Mooney (1997).

3.2. Probability models that use context to predict parsing actions

The parser uses ahistory-basedapproach (Black et al., 1993), in which a probability
pX(a | b) is used to score an actiona of procedureX ∈ {TAG,CHUNK, BUILD,CHECK}, de-
pending on the partial derivationb (also called acontextor history) that is available at the
time of the decision. The conditional probability modelspX are estimated under the max-
imum entropy framework. The advantage of this framework is that we can use arbitrarily
diverse information in the contextb when computing the probability of an actiona of some
procedureX.

While any contextb is a rich source of information, it is difficult to knowexactlywhat
information is useful for parsing. However, we would like to implement the following
inexact intuitions about parsing:

• Using constituent head words is useful.
• Using combinations of head words is useful.
• Using less-specific information is useful.
• Allowing limited lookahead is useful.

The above intuitions are implemented in the maximum entropy framework asfeatures, and
each feature is assigned a “weight” which corresponds to how useful it is for modeling
the data. We will later show that a mere handful of guidelines are sufficient to completely
describe the feature sets used by the parsing models.

3.2.1. The maximum entropy framework.The maximum entropy framework is a clean
way for experimenters to combine evidence thought to be useful in modeling data. While
the exact nature of the evidence is task dependent, the framework itself is independent of the
parsing task and can be used for many other problems, like language modeling for speech
recognition (Lau, Rosenfeld, & Roukos, 1993; Rosenfeld, 1996) and machine translation
(Berger et al., 1996). The basic unit of evidence in this framework is afeature, a function f :

f : A× B→ {0, 1} (1)

whereA is the set of possible actions, andB is the set of possible contexts. A feature, given
an(a, b) pair, captures any information inb that might be useful for predictinga. Given a

LEARNING TO PARSE NATURAL LANGUAGE 159

training setT ={(a1, b1), . . . , (an, bn)}, define p̃(a, b) as the observed probability of the
pair (a, b) in the training set, and defineEp̃ f j as the observed expectation of featuref j :

Ep̃ f j =
∑
a,b

p̃(a, b) f j (a, b)

Intuitively, Ep̃ f j is just the normalized count of the featuref j in the training setT . (We
will later describe in Section 3.2.3 how to obtain training sets from a treebank.) We desire a
conditional probability modelp∗ that is consistent with the observed expectation off j , but
also one that is likely to generalize well to unseen data. The Principle of Maximum Entropy
(Jaynes, 1957) recommends that we choose the modelp∗ with the highest entropy over the
set of those models that are consistent with the observed expectations, i.e., the model is
that is maximally noncomittal beyond meeting the observed evidence. We follow the con-
ditional maximum entropy framework described in Berger et al. (1996), which choosesp∗

such that

p = argmax
p∈P

H(p)

P = {p | Ep f j = Ep̃ f j j = 1, . . . , k}
Ep f j =

∑
a,b

p̃(b)p(a | b) f j (a, b)

H(p) = −
∑
a,b

p̃(b)p(a | b) log p(a | b)

where f1, . . . , fk are the features in the model,p̃(b) is the observed probability of a context
b in the training set,P is the set of consistent models,Ep f j is the model’s expectation of
f j , andH(p) is the entropy of the modelp, averaged over the contexts of the training set.
The form of the solution forp∗ is

p∗(a | b) = 1

Z(b)

k∏
j=1

α
f j (a,b)
j

Z(b) =
∑
a∈A

k∏
j=1

α
f j (a,b)
j

(2)

whereα1, . . . , αk are the parameters of the model (α j > 0), andZ(b) is a normalization
factor.

There is an interesting relationship between maximum likelihood estimates of models of
form (2) and maximum entropy models. It also the case that:

p∗ = argmax
q∈Q

L(q)

Q =
{

p | p(a | b) = 1

Z(b)

k∏
j=1

α
f j (a,b)
j

}

160 A. RATNAPARKHI

L(p) =
∑
(a,b)

p̃(a, b) log p(a | b)

whereQ is the set of models of form (2), and whereL(p) is proportional to the log-likeli-
hood of the training set according to the modelp. Thereforep∗ = argmaxq∈QL(q)=
argmaxp∈P H(p) and p∗ can be viewed under both the maximum entropy and maximum
likelihood frameworks: it maximizes the entropy over the set of consistent modelsP and
maximizes likelihood over the set of models of form (2),Q. The duality is appealing since
as a maximum entropy model,p∗ will not assume anything beyond the evidence, and as a
maximum likelihood model,p∗ will have a close fit to the observed data. The maximum
entropy framework and its duality with maximum likelihood estimation are discussed in
more detail elsewhere (Berger, Della Pietra, & Della Pietra, 1996; Della Pietra, Della Pietra,
& Lafferty, 1997).

An advantage of this framework is that there are no independence assumptions or inherent
restrictions on the features beyond the form (1). Therefore, experimenters can add arbitrarily
diverse or complicated features to the parsing models. This advantage is significant because
informative features in parsing (described below in Section 3.2.2) are often inter-dependent
by nature.

3.2.2. Features. All evidence in the maximum entropy framework must be expressed
through features, and any feature is implemented with a functioncp:B → {true, false},
called acontextual predicate. A contextual predicate checks for the presence or absence
of useful information in a contextb∈B and returns true or false accordingly. In this
implementation of the maximum entropy framework, every featuref has the format

f (a, b) =
{

1 if cp(b) = true && a = a′

0 otherwise

and therefore expresses a cooccurrence relationship between some actiona′ and some
linguistic fact about the context captured bycp.

The contextual predicates for a procedureX are denoted byCPX, and Table 3 specifies
the guidelines, or templates, for creatingCPX, whereX ∈ {TAG, CHUNK, BUILD, CHECK}.
The templates are only linguistic hints, in that they do not specify the information itself,
but instead, specifythe locationof the useful information in a contextb. The templates use
indices relative to the tree that is currently being modified. For example, if the current tree is
the 5th tree,cons (−2) looks at the constituent label, head word, and start/join annotation of
the 3rd tree in the forest. The actual contextual predicates inCPX are obtained automatically,
by recording certain aspects of the context (specified by the templates) in which procedure
X was used in the derivations of the trees in the treebank. For example, an actual contextual
predicatecp∈ CPBUILD , derived (automatically) from the templatecons (0), might be

cp(b) =
{

true if the 0th tree ofb has label “NP” and head word “he”

false otherwise

LEARNING TO PARSE NATURAL LANGUAGE 161

Table 3. Contextual information used by probability models (∗ = all possible less specific contexts are used,
†= if a less specific context includes a word, it must include the head word of the current tree, i.e., the 0th tree.)

Procedure Templates Description Templates used

TAG See Ratnaparkhi (1996)

CHUNK chunkandpostag(n)∗ The word, POS tag, and chunk chunkandpostag(0),
tag ofnth leaf. Chunk tag chunkandpostag(−1),
omitted ifn≥ 0 chunkandpostag(−2)

chunkandpostag(1),
chunkandpostag(2)

chunkandpostag(m, n)∗ chunkandpostag(m) & chunkandpostag(−1, 0),
chunkandpostag(n) chunkandpostag(0, 1)

default Returns true for any context

BUILD cons(n) The head word, constituent (or cons(0), cons(−1), cons(−2),
POS) label, and start/join anno-cons(1), cons(2)
tation of thenth tree. Start/join
annotation omitted ifn≥ 0

cons(m, n)∗ cons(m) & cons(n) cons(−1, 0), cons(0, 1)

cons(m, n, p)† cons(m), cons(n), & cons(p) cons(0,−1,−2), cons(0, 1, 2),
cons(−1, 0, 1)

punctuation The constituent we could join (1) bracketsmatch, iscomma,
contains a “[” and the current endofsentence
tree is a “]”; (2) contains a “,”
and the current tree is a “,”; (3)
spans the entire sentence and
current tree is “.”

default Returns true for any context

CHECK checkcons(n)∗ The head word, constituent (or checkcons(last),
POS) label of thenth tree, and checkcons(begin)
the label of proposed consti-
tuent.beginandlastare
first and last child (resp.)
of proposed constituent

checkcons(m, n)∗ checkcons(m) & checkcons(n) checkcons(i, last)
begin≤ i < last

production Constituent label of parent (X), production= X→ X1, . . . , Xn

and constituent or POS labels
of children (X1, . . . , Xn) of
proposed constituent

surround(n)∗ POS tag and word of thenth leaf surround(1), surround(2),
to the left of the constituent, if surround(−1), surround(−2)
n< 0, or to the right of the
constituent, ifn> 0

default Returns true for any context

162 A. RATNAPARKHI

In order to obtain this predicate, there must exist a derivation in the manually parsed example
sentences in whichBUILD decides an action in the presence of some partial derivationb,
such that the 0th tree ofb had a constituent label “NP” and head word “he”. Constituent
head words are found, when necessary, with the algorithm in Black et al. (1993), Magerman
(1995).

Contextual predicates which look at head words, or especially pairs of head words, may
not be reliable predictors for the procedure actions due to their sparseness in the training
set. Therefore, for each lexically based contextual predicate, there also exist one or more
corresponding less specific contextual predicates which look at the same context, butomit
one or more words. For example, the templatescons(0, 1∗), cons(0∗, 1), cons(0∗, 1∗) are
the same ascons(0, 1) but omit references to the head word of the 1st tree, the 0th tree, and
both the 0th and 1st tree, respectively. The less specific contextual predicates should allow
the model to provide reliable probability estimates when the words in the history are rare.
Less specific predicates are not enumerated in Table 3, but their existence is indicated with
a ∗ and†. Thedefaultpredicates in Table 3 return true for any context and are the least
specific (and most frequent) predicates; they should provide reasonable estimates when the
model encounters a context in which every other contextual predicate is unreliable.

The contextual predicates attempt to capture the intuitions about parsing information
discussed earlier. For example, predicates derived from templates likecons(0) look at
constituent head words, while predicates derived from templates likecons(−1, 0) look at
combinations of head words. Predicates derived from templates likecons(−1∗, 0) look
at less specific information, while predicates derived from templates likecons(0, 1, 2) use
limited lookahead. Furthermore, the information expressed in the predicates is always local
to where the parsing action is taking place. The contextual predicates forTAG, discussed
elsewhere (Ratnaparkhi, 1996), look at the previous 2 words and tags, the current word,
and the following 2 words. The contextual predicates forCHUNK look at the previous 2
words, tags, and chunk labels, as well as the current and following 2 words and tags.
BUILD uses head word information from the previous 2 and current trees, as well as the
following 2 chunks, whileCHECK looks at the surrounding 2 words and the head words of
the children of the proposed constituent. The intuitions behind the contextual predicates
are not linguistically deep, and as a result, the information necessary for parsing can be
specified concisely with only a few templates.

3.2.3. Training events. The contextual predicates for a procedureX are used to encode
the derivations in the treebank as a set of training eventsTX ={(a1, b1), . . . , (aN, bN)}.
Each(a, b) ∈ TX represents an action of procedureX in a derivation and is encoded as
(a, cp1, . . . , cpk), wherecp1, . . . , cpk are contextual predicates such thatcpi ∈ CPX and
cpi (b)= true, for 1≤ i ≤ k, and whereb is the context in which actiona occurred for
procedureX. For example, figure 9 shows the encoding of a partial derivation in which the
BUILD procedure predictsJoin VP . While any contextb∈B is, in practice, encoded as a
sequence of contextual predicates, the encoding is just an implementation choice; the mathe-
matics of the maximum entropy framework do not rely upon any one particular encoding of
the space of possible contextsB. The training eventsTX for a procedureX ∈ {TAG, CHUNK,
BUILD, CHECK} are used for feature selection and parameter estimation, described below.

Figure 9. Encoding a derivation with contextual predicates.

164 A. RATNAPARKHI

3.2.4. Feature selection.Feature selection refers to the process of choosing a useful subset
of featuresSX from the set of all possible featuresPX for use in the maximum entropy model
corresponding to procedureX. If CPX are all the contextual predicates used to encode the
training eventsTX, andAX are the possible actions for procedureX, the set of possible
featuresPX for use inX’s model are:

PX =
{

f | f (a, b) =
{

1 if cp(b) = true && a = a′

0 otherwise

wherecp ∈ CPX anda′ ∈ AX

}

Thus any contextual predicatecp that occurs with any actiona′ can potentially be a feature.
However, many of these features occur infrequently, and are therefore not reliable sources
of evidence since their behavior in the training events may not represent their behavior in
unseen data. For example, it is unlikely that all of the contextual predicates in Figure 9
would form reliable features.

We use a very simple feature selection strategy: assume that any feature that occurs
less than 5 times is noisy and discard it. Feature selection with a count cutoff does not
yield a minimal feature set; many of the selected features will be redundant. However,
in practice, it yields a feature set that is mostly noise-free with almost no computational
expense. Therefore, the selected features for use in procedureX’s model are

SX =
{

f | f (a, b) =
{

1 if cp(b) = true && a = a′

0 otherwise

wherecp ∈ CPX anda′ ∈ AX,
∑

(a,b)∈TX

f (a, b) ≥ 5

}

In this approach, the burden of deciding the contribution of each selected feature towards
modeling the data falls to the parameter estimation algorithm.

3.2.5. Parameter estimation.Each training setTX is used to estimate the parameters of
a corresponding probability modelpX of the form (2), whereX ∈ {TAG, CHUNK, BUILD,
CHECK}. Each featuref j corresponds to a parameterα j , which can be viewed as a “weight”
that reflects the importance or usefulness of the feature.

The parameters{α1, . . . , αk} of each model are found automatically with theGeneralized
Iterative Scalingalgorithm (Darroch & Ratcliff, 1972), which is summarized below:

1. Add a “correction” featurefk+1 to the model, defined as

fk+1(a, b) = C −
k∑

j=1

f j (a, b)

LEARNING TO PARSE NATURAL LANGUAGE 165

whereC is some constant≥1 such that for any(a, b) pair:

k+1∑
j=1

f j (a, b) = C

2. Estimate the parameters using the following iterative algorithm:

α
(0)
j = 1

α
(n+1)
j = α(n)j

[
Ep̃ f j

Ep(n) f j

] 1
C

where

Ep(n) f j =
∑
(a,b)

p̃(b)p(n)(a | b) f j (a, b)

p(n)(a | b) = 1

Z(b)

l∏
j=1

(
α
(n)
j

) f j (a,b)

The algorithm guarantees that the likelihood of the training set is non-decreasing, i.e.,
L(pn+1)≥ L(pn), and that the sequence{pn | n= 1, 2, . . .} will eventually converge top∗,
the maximum likelihood estimate for models of form (2).

In practice, the parameter updates can be stopped after some fixed number of iterations
(e.g., 100) or whenL(pn+1)− L(pn)< T whereT is some small heuristically set threshold.
The GIS algorithm is applied separately to the training setsTX to create the modelspX,
whereX ∈ {TAG, CHUNK, BUILD, CHECK}.
3.2.6. Scoring parse trees.We then use the modelspTAG, pCHUNK, pBUILD , and pCHECK to
define a functionscore, which the search procedure uses to rank derivations of incomplete
and complete parse trees. For notational convenience, defineq as follows

q(a | b) =


pTAG(a | b) if a is an action fromTAG

pCHUNK(a | b) if a is an action fromCHUNK

pBUILD(a | b) if a is an action fromBUILD

pCHECK(a | b) if a is an action fromCHECK

Let deriv(T)={a1, . . . ,an} be the derivation of a parseT , whereT is not necessarily
complete, and where eachai is an action of some tree-building procedure. By design, the
tree-building procedures guarantee that{a1, . . . ,an} is the only derivation for the parseT .
Then the score ofT is merely the product of the conditional probabilities of the individual
actions in its derivation:

score(T) =
∏

ai∈deriv(T)

q(ai | bi)

wherebi is the context in whichai was decided.

166 A. RATNAPARKHI

3.3. Search

The search heuristic attempts to find the best parseT∗, defined as:

T∗ = argmax
T∈trees(S)

score(T)

wheretrees(S) are all the complete parses for an input sentenceS.
The heuristic employs a breadth-first search (BFS) which does not explore the entire

frontier, but rather, explores only at most the topK scoring incomplete parses in the frontier,
and terminates when it has foundM complete parses, or when all the hypotheses have been
exhausted. Furthermore, if{a1, . . . ,an} are the possible actions for a given procedure on a
derivation with contextb, and they are sorted in decreasing order according toq(ai | b), we
only consider exploring those actions{a1, . . . ,am} that hold most of the probability mass,
wherem is defined as follows:

m= max
m

m∑
i=1

q(ai | b) < Q

and whereQ is a threshold less than 1. The search also uses atag dictionary, described in
Ratnaparkhi (1996), that is constructed from training data and reduces the number of actions
explored by the tagging model. Thus there are three parameters for the search heuristic,
namelyK , M , andQ and all experiments reported in this paper useK = 20, M = 20, and
Q= .95.1 Figure 10 describes the topK BFS and the semantics of the supporting functions.

It should be emphasized that ifK > 1, the parser does not commit to a single POS or
chunk assignment for the input sentence before building constituent structure. All three of
the passes described in Section 3.1 are integrated in the search, i.e., when parsing a test
sentence, the input to the second pass consists ofK of the top scoring distinct POS tag
assignments for the input sentence. Likewise, the input to the third pass consists ofK of
the top scoring distinct chunk and POS tag assignments for the input sentence.

The topK BFS described above exploits the observed property that the individual steps
of correct derivations tend to have high probabilities, and thus avoids searching a large
fraction of the search space. Since, in practice, it only does a constant amount of work
to advance each step in a derivation, and since derivation lengths are roughly proportional
to the sentence length, we would expect it to run in linear observed time with respect to
sentence length. Figure 11 confirms our assumptions about the linear observed running
time.

4. Experiments

Experiments were conducted on a treebank that is widely used in the statistical natural
language processing community, namely, the Wall St. Journal treebank (release 2) from the
University of Pennsylvania (Marcus, Santorini, & Marcinkiewicz, 1994). The maximum

LEARNING TO PARSE NATURAL LANGUAGE 167

Figure 10. Top K BFS search heuristic.

Figure 11. Observed running time of topK BFS on Section 23 of Penn Treebank WSJ, using one 167 MHz
Ultra SPARC processor and 256 MB RAM of a Sun Ultra Enterprise 4000.

168 A. RATNAPARKHI

Table 4. Sizes of training events, actions, and features.

Procedure Number of training events Number of actions Number of features

TAG 935655 43 119910

CHUNK 935655 41 230473

CHECK 1097584 2 182474

BUILD 1097584 52 532814

entropy parser was trained on Sections 2 through 21 (roughly 40000 sentences) of the
Wall St. Journal corpus, and tested on Section 23 (2416 sentences) for comparison with
other work. Table 4 describes the number of training events extracted from the Wall St.
Journal corpus, the number of actions in the resulting probability models, and the number
of selected features in the resulting probability models. It took roughly 30 hours to train all
the probability models, using one 167 MHz Sun UltraSPARC processor and 1 Gb of disk
space. Only the words, part-of-speech tags, constituent labels, and constituent boundaries
of the Penn treebank were used for training and testing. The other annotation, such as
the function tagsthat indiciate semantic properties of constituents, and thenull elements
that indicate traces and coreference, were removed for both training and testing. Previous
literature on statistical parsing has used the following measures, based on those proposed
in Black et al. (1991), for comparing a proposed parseP with the corresponding correct
treebank parseT :

Recall= # correct constituents inP

constituents inT

Precision= # correct constituents inP

constituents inP

A constituent inP is “correct” if there exists a constituent inT of the same label that
spans the same words.2 Table 5 shows results using these measures, as well as results using
the slightly more forgiving measures used in Magerman (1995). Table 5 shows that the
maximum entropy parser compares favorably to other state-of-the-art systems (Magerman,
1995; Collins, 1996; Goodman, 1997; Charniak, 1997; Collins, 1997) and shows that only
the results of Collins (1997) are better in both precision and recall. The parser of Hermjakob
and Mooney (1997) also performs well (90% labelled precision and recall) on the Wall St.
Journal domain, but uses a test set comprised of sentences with only frequent words and
recovers a different form of annotation, and is therefore not comparable to the parsers in
Table 5. Figure 12 shows the effects of training data size versus performance, and Table 6
shows the effect of varying the search parametersK and M on the parser’s speed and
accuracy. Parsing accuracy degrades asK andM are reduced, but even withK = 1 and
M = 1, accuracy is over 82% precision and recall.

LEARNING TO PARSE NATURAL LANGUAGE 169

Table 5. Results on 2416 sentences of Section 23 (0 to 100 words in length) of the WSJ Treebank. Evaluations
marked with¦ ignore quotation marks. Evaluations marked with? collapse the distinction between the constituent
labelsADVPandPRT, and ignoreall punctuation.

Parser Precision (%) Recall (%)

Maximum entropy¦ 86.8 85.6

Maximum entropy? 87.5 86.3

(Magerman, 1995)? 84.3 84.0

(Collins, 1996)? 85.7 85.3

(Goodman, 1997)? 84.8 85.3

(Charniak, 1997)? 86.7 86.6

(Collins, 1997)? 88.1 87.5

Table 6. Speed and accuracy on 5% random sample of test set, as a function of search parametersK andM .

K ,M Seconds/Sentence Precision Recall

20 2.07 87.9 87.1

15 1.58 87.7 86.9

10 1.07 87.7 86.9

7 0.76 87.4 86.6

5 0.56 87.3 86.8

3 0.35 86.1 86.1

1 0.14 82.4 83.4

Figure 12. Performance on Section 23 as a function of training data size. TheX axis represents random samples
of different sizes from Section 2 through 21 of the Wall St. Journal corpus.

170 A. RATNAPARKHI

4.1. Portability

Portability across domains is an important concern, since corpus-based methods will suffer
in accuracy if they are tested in a domain that is unrelated to the one in which they are trained
(e.g., see Sekine (1997)). Since treebank construction is a time-consuming and expensive
process, it is unlikely (in the near future) that treebanks will exist for every domain that we
could conceivably want to parse. It then becomes important to quantify the potential loss
in accuracy when training on a treebanked domain, like the Wall St. Journal, and testing
on a new domain. The experiments in this section address the following two practical
questions:

• How much accuracy is lost when the parser is trained on the Wall St. Journal domain,
and tested on another domain (compared to when the parser is trained and tested on the
Wall St. Journal)?
• How much does a small amount of additional training material (2000 sentences) on a

new domain help the parser’s accuracy on the new domain?

The new domains, namely “Magazine & Journal Articles”, “General Fiction”, and
“Adventure Fiction”, are from the Brown corpus (Francis & Kucera, 1982), a collection
of English text from Brown University that represents a wide variety of different domains.
These domains have been annotated in a convention similar to the text of the Wall St. Journal
treebank, as part of the Penn treebank project.

Table 8 describes the results of several different training schemes, and Table 7 describes
the training and test corpora. The feature sets of the parser were not changed in any way
when training from the Brown corpus domains. According to Table 8, the training schemes
for parsing a new domainD, ranked in order from best to worst, are:

1. Strategy 2: Train on a mixture of a lot of Wall St. Journal (WSJ) and a little ofD
2. Strategy 1: Train on a lot of WSJ
3. Strategy 3: Train on a little ofD

Table 7. Description of training and test sets.

Name Description Category

WSJ.train Sections 2 through 21 of the WSJ corpus Financial news

G.train First 2000 sentences of section G in Brown corpus Magazine articles

G.test Remaining 1209 sentences of section G in Brown corpus Magazine articles

K.train First 2000 sentences of section K in Brown corpus General fiction

K.test Remaining 2006 sentences of section K in Brown corpus General fiction

N.train First 2000 sentences of section N in Brown corpus Adventure fiction

N.test Remaining 2121 sentences of section N in Brown corpus Adventure fiction

LEARNING TO PARSE NATURAL LANGUAGE 171

Table 8. Portability experiments on the brown corpus. See Table 7 for the training and test sets.

Test corpus accuracy (Precision/Recall)

Strategy Description G K N
Average accuracy
(Precision/Recall)

Strategy 1 Train on WSJ.train, 80.2%/79.5% 79.1%/78.8% 80.6%/79.9% 80.0%/79.4%
test on X.test

Strategy 2 Train on WSJ.train 81.0%/80.5% 80.9%/80.3% 82.0%/81.0% 81.3%/80.6%
+X.train, test on X.test

Strategy 3 Train on X.train, 78.2%/76.3% 77.7%/76.7% 78.7%/77.6% 78.2%/76.9%
test on X.test

All experiments on a particular new domain (G, K, and N) are controlled to use the same
test set, and the additional training sets G.train, K.train, and N.train all consist of 2000
sentences from their respective domain. Compared to the accuracy achieved when training
and testing on the Wall St. Journal (86.8% precision/85.6% recall as shown in Table 5), we
conclude that:

• on average, we lose 6.8% precision and 6.2% recall when training on the Wall St. Journal
and testing on the Brown corpus (strategy 1),
• on average, we lose 5.5% precision and 5% recall when training on the Wall St. Journal

and the domain of interest, and testing on that same domain (strategy 2).

The discussion thus far has omitted one other possibility, namely, that the lower Brown
corpus performance in strategies 1 and 2 is due to some inherent difficulty in parsing the
Brown corpus text, and not to the mismatch in training and test data. A quick glance at
figure 12 and Table 8 dispels this possibility, since training on roughly 2000 sentences of
the Wall St. Journal yields 79% precision and 78% recall, which is only slightly higher (1%)
than the results on the Brown corpus under identical circumstances (strategy 3), roughly
78% precision 77% recall. It follows that the Brown corpus is only slightly more difficult to
parse than the Wall St. Journal corpus, and that the training domain/test domain mismatch
must account for most of the accuracy loss when using strategies 1 and 2.

4.2. Reranking the top N

It is often advantageous to produce the topN parses instead of just the top 1, since additional
information can be used in a secondary model that re-orders the topN and hopefully
improves the quality of the top ranked parse. Suppose there exists aperfectreranking
scheme that, for each sentence, magically picks thebestparse from the topN parses
produced by the maximum entropy parser, where thebestparse has the highest average
precision and recall when compared to the treebank parse. The performance of this perfect
scheme is then an upper bound on the performance of an actual reranking scheme that might
be used to reorder the topN parses. Figure 13 shows that the perfect scheme would achieve

172 A. RATNAPARKHI

Figure 13. Precision and recall of a “perfect” reranking scheme for the topN parses of Section 23 of the WSJ
Treebank, as a function ofN. Evaluation ignores quotation marks.

Figure 14. Exact match of a “perfect” reranking scheme for the topN parses of Section 23 of the WSJ Treebank,
as a function ofN. Evaluation ignores quotation marks.

roughly 93% precision and recall, which is a dramatic increase over the top 1 accuracy of
87% precision and 86% recall. Figure 14 shows that the “Exact Match”, which counts the
percentage of times the proposed parseP is identical (excluding POS tags) to the treebank
parseT , rises substantially to about 53% from 30% when the perfect scheme is applied.
It is not surprising that the accuracy improves by looking at the topN parses, but it is
suprising—given the thousands of partial derivations that are explored and discarded—that
the accuracy improves drastically by looking atonly the top20 completed parses. For
this reason, research into reranking schemes appears to be a promising and practical step
towards the goal of improving parsing accuracy.

LEARNING TO PARSE NATURAL LANGUAGE 173

5. Comparison with previous work

When compared to other parsers, the accuracy of the maximum entropy parser is state-of-
the-art. It performs slightly better than or equal to most of the other systems compared in
Table 5, and performs only slightly worse than Collins (1997). However, the differences in
accuracy are fairly small, and it is unclear if the differences will matter to the performance
of applications that require parsed input. The main advantage of the maximum entropy
parser is not its accuracy, but that it achieves the accuracy using only simple facts about
data that have been derived from linguistically obvious intuitions about parsing. As a result,
the evidence it needs can be specified concisely, and the method can be re-used from other
tasks, resulting in a minimum amount of effort on the part of the experimenter.

Furthermore, the maximum entropy parser combines some of the best aspects of other
work. For example, the parsers of Black et al. (1993), Jelinek et al. (1994), Magerman
(1995) use a general learning technique—decision trees—to learn parsing actions, and need
to represent words as bitstrings derived from a statistical word clustering technique. The
maximum entropy parser also uses a general learning technique, but uses natural linguis-
tic representations of words and constituents, and therefore does not require a (typically
expensive) word clustering procedure.

Other parsers, like those of Collins (1996), Goodman (1997), Charniak (1997), Collins
(1997) use natural linguistic representations of words and constituents, but do not use general
machine learning techniques. Instead, they use custom-built statistical models that combine
evidence in clever ways to achieve high parsing accuracies. While it is always possible to
tune such methods to maximize accuracy, the methods are specific to the parsing problem
and require non-trivial research effort to develop. In contrast, the maximum entropy parser
uses an existing modeling framework that is essentially independent of the parsing task,
and saves the experimenter from designing a new, parsing-specific statistical model.

In general, more supervision typically leads to higher accuracy. For example, Collins
(1997) uses the semantic tags in the Penn treebank while the other, slightly less accurate
parsers in Table 5 discard this information. Also, Hermjakob and Mooney (1997) uses
a hand-constructed knowledge base and subcategorization table and report 90% labelled
precision and recall, using a different test set and evaluation method. The additional infor-
mation used in these approaches, as well as the word clusters used in Magerman (1995),
could in theory be implemented as features in the maximum entropy parser. Further research
is needed to see if such additions to the parser’s representation will improve the parser’s
accuracy.

The portability of all the parsers discussed here is limited by the availability of treebanks.
Currently, few treebanks exist, and constructing a new treebank requires a tremendous
amount of effort. It is likely that all current corpus-based parsers will parse text less
accurately if the domain of the text is not similar to the domain of the treebank that was
used to train the parser.

6. Conclusion

The maximum entropy parser achieves state-of-the-art parsing accuracy, and minimizes
the human effort necessary for its construction through its use of both a general learning

174 A. RATNAPARKHI

technique, and a simple representation derived from a few intuitions about parsing. Those
results which exceed those of the parser presented here require much more human effort
in the form of additional resources or annotation. In practice, it parses a test sentence
in linear time with respect to the sentence length. It can be trained from other domains
without modification to the learning technique or the representation. Lastly, this paper
clearly demonstrates that schemes for reranking the top 20 parses deserve research effort
since they could yield vastly better accuracy results.

The high accuracy of the maximum entropy parser also has interesting implications for
future applications of general machine learning techniques to parsing. It shows that the
procedures and actions with which a parser builds trees can be designed independently of
the learning technique, and that the learning technique can utilize the exactly same sorts
of information, e.g., words, tags, and constituent labels, that might normally be used in a
more traditional, non-statistical natural language parser. This implies that it is feasible to
use maximum entropy models and other general learning techniques to drive the actions
of other kinds of parsers trained from more linguistically sophisticated treebanks. Perhaps
a better combination of learning technique, parser, and treebank will exceed the current
state-of-the-art parsing accuracies.

Acknowledgments

The author would like to thank Mike Collins and Mitch Marcus of the University of
Pennsylvania for their many helpful comments on this work. The author would also like to
thank the three anonymous reviewers of this paper for their constructive comments. This
work was supported by ARPA grant N66001-94C-6043.

Notes

1. The parametersK , M , andQ were optimized for speed and accuracy on a “development set” which is separate
from the training and test sets.

2. The precision and recall measures do not count part-of-speech tags as constituents.

References

Abney, S. (1991). Parsing by Chunks. In R. Berwick, S. Abney, & C. Tenny (Eds.),Principle-based parsing.
Kluwer Academic Publishers.

Aho, A.V., Sethi, R., & Ullman, J.D. (1988).Compilers: Principles techniques and tools. Addison Wesley.
Allen, J. (1995).Natural language understanding. Benjamin/Cummings Publishing.
Berger, A., Della Pietra, S.A., & Della Pietra, V.J. (1996). A maximum entropy approach to natural language

processing.Computational Linguistics, 22(1), 39–71.
Black, E. et al. (1991). A procedure for quantitatively comparing the syntactic coverage of English grammars.

Proceedings of the February 1991 DARPA Speech and Natural Language Workshop(pp. 306–311).
Black, E., Jelinek, F., Lafferty, J., Magerman, D.M., Mercer, R., & Roukos, S. (1993). Towards history-based

grammars: Using Richer models for probabilistic parsing.Proceedings of the 31st Annual Meeting of the ACL,
Columbus, OH.

Briscoe, T., & Carroll, J. (1993). Generalized probabilistic LR parsing of natural language (Corpora) with
unification-based grammars.Computational Linguistics, 19(1).

LEARNING TO PARSE NATURAL LANGUAGE 175

Charniak, E. (1997). Statistical parsing with a context-free grammar and word statistics.Fourteenth National
Conference on Artificial Intelligence, Providence, RI.

Church, K. (1988). A stochastic parts program and noun phrase chunker for unrestricted text.Proceedings of the
Second Conference on Applied Natural Language Processing.

Collins, M.J. (1996). A new statistical parser based on bigram lexical dependencies.Proceedings of the 34th
Annual Meeting of the ACL.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing.Proceedings of the 35th Annual
Meeting of the ACL, and 8th Conference of the EACL, Madrid, Spain. ACL.

Darroch, J.N., & Ratcliff, D. (1972). Generalized iterative scaling for log-linear models.The Annals of Mathe-
matical Statistics, 43(5), 1470–1480.

Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997). Inducing features of random fields.IEEE Transactions
Pattern Analysis and Machine Intelligence, 19(4).

Francis, W.N., & Kucera, H. (1982).Frequency analysis of English usage: Lexicon and grammar. Boston, MA:
Houghton Mifflin.

Goodman, J. (1997). Probabilistic feature grammars.Proceedings of the International Workshop on Parsing
Technologies.

Hermjakob, U., & Mooney, R.J. (1997). Learning parse and translation decision from examples with rich context.
Proceedings of the 35th Annual Meeting of the ACL, and 8th Conference of the EACL, Madrid, Spain. ACL.

Jaynes, E.T. (1957). Information theory and statistical mechanics.Physical Review, 106, 620–630.
Jelinek, F., Lafferty, J., Magerman, D.M., Mercer, R., Ratnaparkhi, A., & Roukos, S. (1994). Decision tree parsing

using a hidden derivational model.Proceedings of the Human Language Technology Workshop(pp. 272–277).
Plainsboro, NJ: ARPA.

Lau, R., Rosenfeld, R., & Roukos, S. (1993). Adaptive language modeling using the maximum entropy principle.
Proceedings of the Human Language Technology Workshop(pp. 108–113). ARPA.

Magerman, D.M. (1995). Statistical decision-tree models for parsing.Proceedings of the 33rd Annual Meeting of
the ACL.

Marcus, M.P. (1980).A theory of syntactic recognition for natural language. Cambridge, MA: MIT Press.
Marcus, M.P., Santorini, B., & Marcinkiewicz, M.A. (1994). Building a large annotated corpus of English: The

Penn Treebank.Computational Linguistics, 19(2), 313–330.
Ramshaw, L.A., & Marcus, M.P. (1995). Text chunking using transformation-based learning. In D. Yarowsky, &

K. Church (Eds.),Proceedings of the Third Workshop on Very Large Corpora, Cambridge, MA.
Ratnaparkhi, A. (1996). A maximum entropy part of speech tagger. In E. Brill, & K. Church (Eds.),Conference

on Empirical Methods in Natural Language Processing, University of Pennsylvania.
Rosenfeld, R. (1996). A maximum entropy approach to adaptive statistical language modeling.Computer, Speech,

and Language, 10.
Sekine, S. (1997). The domain dependence of parsing.Proceedings of the Fifth Conference on Applied Natural

Language Processing(pp. 96–102). Washington, DC.
Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L., & Palmucci, J. (1993). Coping with ambiguity and

unknown words through probabilistic models.Computational Linguistics, 19(2), 359–382.

