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Abstract Motion planning in high dimensional state spaces, such as for mo-
bile manipulation, is a challenging problem. Constrained manipulation, e.g.,
opening articulated objects like doors or drawers, is also hard since sampling
states on the constrained manifold is expensive. Further, planning for such
tasks requires a combination of planning in free space for reaching a desired
grasp or contact location followed by planning for the constrained manipu-
lation motion, often necessitating a slow two step process in traditional ap-
proaches. In this work, we show that combined planning for such tasks can be
dramatically accelerated by providing user demonstrations of the constrained
manipulation motions. In particular, we show how such demonstrations can
be incorporated into a recently developed framework of planning with experi-
ence graphs which encode and reuse previous experiences. We focus on tasks
involving articulation constraints, e.g., door opening or drawer opening, where
the motion of the object itself involves only a single degree of freedom. We
provide experimental results with the PR2 robot opening a variety of such
articulated objects using our approach, using full-body manipulation (after
receiving kinesthetic demonstrations). We also provide simulated results high-
lighting the benefits of our approach for constrained manipulation tasks.
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1 Introduction

In order to perform useful tasks robots must not only be able to move safely
through their environments but must also be able to manipulate objects in
them. Motion planners can be used to solve manipulation problems though
planning times suffer for more complex tasks. An example of such tasks is
constrained manipulation, e.g., opening doors or drawers. The motion required
for such tasks occurs on a constrained manifold, e.g., the motion of the gripper
is constrained to stay on the handle of the door with a firm grip.

Tasks such as opening doors or drawers are often addressed using two
stages of planning: a first stage where a motion planner is used to plan the
initial path to a contact or grasp location followed by a second stage where
a constrained plan is computed. This two stage approach can be slow since
the goal state of one stage needs to be fed as the start state for the next.
In particular, traditional approaches that plan from scratch every time are
unable to exploit previous experiences which is a huge disadvantage for tasks
like door or drawing opening which are essentially repetitive.

In this work we augment an existing Experience Graph planner [19] with
user generated demonstations in order to obtain fast planning times in such
challenging constrained problems. Experience Graphs (E-Graphs) are formed
from a collection of paths. These could be previous paths that the planner
generated or, as we show in this work, come from user demonstrations. Plan-
ning on E-Graphs is done with an A* based algorithm and therefore, the state
space is represented as a discretized graph. When planning with E-Graphs the
search is focused toward reusing parts of paths that look like they help find
a solution quickly. The planner guarantees completeness and a bound on the
sub-optimality of the solution cost with respect to the graph representing the
problem.

We show that by using demonstrations with Experience Graphs, motion
planning can be significantly sped up. This approach is flexible as we are still
running a complete planner which is focused on reuse when useful, but is not
forced or hard-coded to make a previous path work where it is not helpful.

2 Related Work

There has been a large amount of work within the field of “learning from
demonstration” which incorporates teacher examples to generate policies for
the robot [15] [13] [18] [2] [27]. Our work also uses demonstrations but differs
from these approaches. In learning from demonstration literature, the provided
examples show the desired behavior and therefore are goal (or reward) directed.
This means that the demonstrations are provided with the goal or reward of
the task already in mind. In our problem, demonstrations are given before
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knowing the goal or task. Some or all of the demonstrated movements may
be irrelevant for a given query and the planner determines this during the
search. The demonstrations are purely used to help search the state space
more efficiently.

In our approach the demonstrations are used to guide the planner to a so-
lution more quickly and avoid unnecessary exploration. There has been quite
a bit of research on incorporating prior information from prior searches into
the planning process. Perhaps the most straight forward reuse approach is the
PRM [12], which simply by begin a multi-query approach, reuses computa-
tion across trials. Bruce et. al. [5] extended RRTs to reuse cached plans and
bias the search towards waypoints from old paths. A feature-based approach
involves selecting a trajectory from a database from a similar scenario based
on the positions of the start, goal, and obstacles relative to the robot [9]. The
selected path is then tuned to fit the current scenario using a local optimizer.
In [10] a bi-directional RRT is used to draw the search toward a path from a
database which is most similar to the new motion planning problem (based
on distances to the start, goal and obstacles). MP-RRT extends the RRT to
replanning scenarios by maintaining a forest from the previously computed
RRTs [31]. Another family of planning methods that reuses previous search
effort are D* [26] and D* Lite [14]. Like E-Graphs, these are graph search
methods, unlike E-Graphs, these methods require either the start or the goal
to stay constant for any reuse to occur. Lightning [3], is a recent work that also
attempts to repair paths from a database of past paths using sampling-based
planners. We provide an experimental comparison against this state of the art
method. Planning on Experience Graphs is an A* based method for reusing
paths in new queries by guiding the search toward parts of old paths if they
appear as though they will help the planner find the goal faster [19]. This
method provides guarantees on completeness and solution quality which the
other methods we refered to lack. E-Graphs are able to do this regardless of the
quality of the paths put into the Experience Graph. We use this method in our
work. The method has been extended to anytime and incremental planning
scenarios as well [20].

This work is focused on planning to manipulate objects in the environment.
In particular, we deal with objects in the environment that inherently have con-
straints enforced on them. For instance, a cabinet door is constrained to swing
about its hinge. Planning with constraints has been addressed in the recent
past. Past approaches include local methods that provide fast smooth trajec-
tory generation while maintaining workspace constraints [30]. However, this
lacks global exploration of the state space and therefore is not guaranteed to
find a valid solution even if one exists. Sampling-based planners on constraint
manifolds allow for probabilistic completeness, [4] [17]. Other approaches in-
clude offline computation of constraint manifolds [28] and constructing an
atlas for the constraint manifold at runtime [23]. Reusing demonstrations can
help in improving the performance of planning for constraint tasks, something
that no existing approach exploits. We aim to show that our approach can
significantly improve its performance by reusing demonstrations while at the
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same time dealing robustly with changes in the environment, and gracefully
planning from scratch when necessary.

3 Experience Graphs

This section provides a description of how E-Graphs work (first introduced in
[19]).

An Experience Graph GE is a collection of previously planned paths (ex-
periences). Planning with Experience Graphs uses weighted A* to search the
original graph G (which represents the planning problem) but tries to reuse
paths in GE in order to minimize the exploration of the original graph G (as
GE is dramatically smaller than G). This is done by modifying the heuris-
tic computation of weighted A* to drive the search toward paths in GE that
appear to lead towards the goal.

Weighted A* maintains an OPEN list of states (initialized with only the
start state) which have been discovered but not yet expanded. When a state
s is expanded, each neighbor s′ (a state connected to it directly by an edge)
may have its cost from the start, g(s′) updated if by reaching it through s was
cheaper and if so, s′ is put in OPEN with a priority of f(s′) = g(s′) + εh(s′).
Where h(s′) is a heuristic estimate for the remaining cost to the goal and ε ≥ 1.
Weighted A* works by iteratively expanding the state in OPEN with the
minimum priority until the goal state has the minimum priority, at which point
the algorithm terminates. If the heuristic is admissible (never overestimates
the cost to the goal) then the solutions are guaranteed to be no larger than
ε times the cost of an optimal solution [22]. If the heuristic function is also
consistent, h(s) ≤ c(s, s′)+h(s′)∀s, s′ and h(sgoal) = 0, the same guarantee is
maintained when not allowing a state to be expanded more than once [16].

As stated eariler, the key to planning with Experience Graphs is creating a
heuristic function hE which is biased to follow edges in the E-Graph which lead
to the goal. The E-Graph heuristic hE(s0) for some state s0 is computed by
dynamic programming by finding the shortest path from the goal to s0 through
a graph which only contains E-Graph vertices, the goal, and s0. There are two
types of edges in this graph: pairs of states may be connected by an E-Graph
edge, or connected by the original heuristic penalized by εE . Essentially, the
path computation from the goal to the state in question penalizes traveling off
of GE but traveling on edges of GE is not. Formally, for any state s0 in the
original graph:

hE(s0) = min
π

λ−2
∑

i=0

min
{

εEhG(si, si+1), c
E(si, si+1)

}

(1)

where π is a path 〈s0 . . . sλ−1〉 and sλ−1 = sgoal and εE is a scalar ≥ 1. As
shown later, the heuristic is εE-consistent and therefore guarantees that the
solution cost will be no worse than εE times the cost of the optimal solution
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(a) GE

(b) εE = 1

(c) εE → ∞

Fig. 1 Effect of εE . The light gray circles and lines show the original graph. The darkened
states and edges in (a) show the E-Graph. In (b) and (c) the dark gray circles show states
explored by the planner in order to find a solution. The light dashed line shows the heuristic
path from the start state. Notice that when εE is large, this path travels along the E-Graph
and avoids most obstacles (there are few explored states). On the other hand when εE is
small, the heuristic (in this case euclidean distance) drives the search into several obstacles
and causes many more expansions. It should be noted that ε > 1 is used in these examples.

when running A* search to find a path. More generally, planning with Expe-
rience Graphs using weighted A* search inflates the entire hE heuristic by ε.
Consequently, the cost of the solution is bounded by ε · εE times the optimal
solution cost.

Equation 1 is computed by finding the shortest path from s0 to the goal
in a simplified version of the planning problem where there are two kinds of
edges. The first set are edges that represent the same connectivity as hG in
the original planning problem but their cost is inflated by εE . The second set
of edges are from GE with their costs cE (∞ if the edge is not in GE). As εE

increases, the heuristic computation goes farther out of its way to use helpful
E-Graph edges. Note that the edges that use hG allow hE to guide the search
to connect previous path segments and connect to the goal state, which might
not lie on the E-Graph.

Figure 1 shows the effect of varying the parameter εE . As it gets large, the
heuristic is more focused toward E-Graph edges. It draws the search directly
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Fig. 2 A two link planar arm and a drawer that can be manipulated.

to the E-Graph, connects prior path segments, and only searches off of the
E-Graph when there aren’t any useful experiences (such as around the last
obstacle). There are very few expansions and much of the exploration of the
space is avoided. As εE approaches 1 (optimality) it ignores GE and expands
far more states.

4 Demonstration-based Experiences

The main contribution of our paper is in showing how demonstrations can be
integrated into planning with Experience Graphs. The use of demonstrations
in conjunction with Experience Graphs is not as simple as just adding the
demonstrations into the graph as additional experiences for several reasons.
First, demonstrations may not lie on the original graph. Second, since the
demonstrations show how to manipulate an object (e.g., how to open a door),
they require adding a new dimension to the state-space, the dimension along
which the object is being manipulated. Consequently, the underlying graph as
well as Experience Graph must be updated, to include this dimension. Finally,
the heuristic used in the graph search will need to be improved to guide the
search towards the object that needs to be manipulated as well guide it in how
to manipulate the object. We describe how to address these challenges in this
section. We will use a running example of a 2 link planar manipulator opening
a drawer to make the explanation clearer (Figure 2).

4.1 Notations and Overall Framework

First we’ll go through some definitions and notations and briefly describe the
overall framework.

The original graph representing the planning problem is G = 〈V,E〉. Each
vertex v ∈ V represents a robot state: coord(v) ∈ R

n. We also assume a
database of demonstrations D = 〈T1 . . . Tm〉. Each Ti is a set of discretized
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trajectories corresponding to the ith object in the environment that can be
manipulated. Tb = {〈ab11 . . . a

b
1k1

〉 . . . 〈abℓ1 . . . a
b
ℓkℓ

〉} where abij ∈ Tb is the jth

point in the ith trajectory for object b. abij ∈ R
n+1. The extra dimension

corresponds to the state of the manipulated object, which we will term z.
In Figure 2 this would be how far the drawer is pulled open. We will use
zcoord(abij) to represent the value of the state of the object b at abij . For every
object b, we also use Zb to represent the set of all values of z that are present
in Tb. Formally, Zb = {z|∃aij ∈ Tb s.t. z = zcoord(aij)}.

Finally, we assume that the objects we are manipulating lie on one dimen-
sional manifolds in a higher dimensional space. For instance, when opening a
cabinet, the door is constrained to move on a one dimensional manifold. The
planner infers how to operate the manipulated objects automatically from one
or more demonstrations. There is no prior model of any of the objects the
robot interacts with. Instead we assume there is a stationary point of contact
on the object that the robot’s end-effector comes into contact with during
manipulation. For simplicity, the algorithm will be described with only one
possible contact point on the object, however, the algorithm works with an ar-
bitrary number of demonstrations starting from any number of contact points.
In our experimental analysis, we show how this works. During demonstration,
we observe the movement of this contact point along a curve, which z param-
eterizes. As stated earlier, coord(v) specifies the complete configuration of the
robot. We then use a domain specific function y = ϕ(coord(v)) to compute
the coordinate of the contact point on the robot, given the robot’s configu-
ration (i.e., forward kinematics). This function is many-to-one. In Figure 2
this corresponds to the pose of the end-effector and would be computed from
coord(v) using forward kinematics. Note that in our simple example there are
two states x that could produce the same y (corresponding to an elbow up or
down configuration). The drawer handle’s constraint manifold is the small line
segment which would be traced by the handle while opening the drawer.

planToManipulate(G,D, sstart, zgoal, obj)

1: T = Tobj ∈ D

2: Gmanip = buildGraph(G, T )
3: GE = createEGraph(T )
4: π = findPath(Gmanip, G

E , T , sstart, zgoal)
5: returnπ

The planToManipulate algorithm shows the high-level framework. First
it selects the demonstrations from D that correspond to object obj. Then it
constructs a new graph Gmanip to represent the planning problem. This graph
represents the robot’s own motion (as before), contact with the object, and
manipulation of the object by the robot. The createEGraph function uses the
demonstration to create the Experience Graph GE as well as to augment the
graph with a new dimension. Finally, a planner is run on the two graphs as
described in [19]. The following sections describe the construction of the graph
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Gmanip = 〈Vmanip, Emanip〉 and a new heuristic to guide search for motions
that manipulate the objects.

Fig. 3 The graph construction. The layered planes show how the original graph is duplicated
for each value of z ∈ Z. The aij elements are points on a demonstrated trajectory. During the
demonstration the robot’s state changes (movement within the plane) as well as the object’s
state (movement between planes). Each aij element is in a set of states Ωj . In addition to this
state Ωj contains s s.t. withinError

(

ϕ(coord(s)), ϕ(coord(aij))
)

∧ zcoord(s) = zcoord(aij).

4.2 Task-based Redefinition of States

The provided demonstrations change the state space in two significant ways.
First, the manipulated object adds a new dimension to the graph. Secondly,
the demonstration may contain robot states that do not fall on any state in the
original graph. In order to handle this, we construct a new vertex set Vmanip

as shown below.

Vmanip =Vorig ∪ Vdemo, where

Vorig =
{

v|
〈

coord(v), zcoord(v)
〉

=
〈

coord(u), z
〉

∀u ∈ V, z ∈ Z
}

Vdemo =
{

v|
〈

coord(v), zcoord(v)
〉

= aij ∈ T
}
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The new vertex set is a combination of the old vertices and the vertices from
the demonstrations. The vertex set Vorig contains the vertices in the original
graph but repeated for each possible value of the new variable z. The set Vdemo

is the set of vertices that exist in the demonstration trajectories. In Figure 3
the planes show the layers of the original graph repeated for each value of z.
Additionally, we can see the states that come from the demonstration.

4.3 Task-based Redefinition of Transitions

The demonstrations not only change the state space, but also affect the con-
nectivity of the graph due to the additional dimension as well as motions
in the demonstration that are not used in the original graph. We introduce
two functions which are used in the definition of the new edge set Emanip. The
connectable(u, v) function returns true if two states can be connected in a sim-
ple collision free manner, such as by linear interpolation. The function is only
applicable if the two states u and v are very close (such as when state u and
v fall in the same “discretized bin”). The withinError function determines if
two contact poses are close enough to each other to be considered equivalent.
The allowable error off the manifold is up to the user (not smaller than the
discretization) but depends on the compliance of the object and robot.

Emanip =Eorig ∪ Edemo ∪ Ebridge ∪ Ez where

Eorig =
{

(u, v)|∃ũ, ṽ ∈ V s.t. coord(ũ) = coord(u)∧

coord(ṽ) = coord(v)∧

(ũ, ṽ) ∈ E∧

zcoord(u) = zcoord(v)
}

Edemo =
{

(u, v)|
〈

coord(u), zcoord(u)
〉

= ai,j ∈ T ∧

〈

coord(v), zcoord(v)
〉

= ai,j+1 ∈ T
}

Ebridge =
{

(u, v)|
〈

coord(u), zcoord(u)
〉

∈ T ∧

∃ṽ ∈ V s.t. coord(ṽ) = coord(v)∧

connectable(u, v)∧

zcoord(u) = zcoord(v)
}

Ez =
{

(u, v)|∃(ũ, ṽ) ∈ Edemo s.t.

withinError
(

ϕ(coord(u)), ϕ(coord(ũ))
)

∧

zcoord(u) = zcoord(ũ)∧

withinError
(

ϕ(coord(v)), ϕ(coord(ṽ))
)

∧

zcoord(v) = zcoord(ṽ)
}
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The new edge set Emanip is a combination of edges from the original graph
Eorig (replicated for each value of z), edges that come from demonstrations
Edemo, “bridge edges” Ebridge, and Z edges Ez.

Bridge edges connect demonstration states to states in the discretized orig-
inal graph. The two states must be connectable and must also share the same
z-value (the manipulated object must be in the same state). For example, in
Figure 2 a bridge edge may be added whenever the euclidean distance be-
tween the two joint angles of demonstration state and an original graph state
are within a small distance of each other and the drawer is pulled open the
same amount.

Z edges generalize the demonstrations in order to create edges on the ob-
ject’s constraint manifold that may not have existed in the demonstrations.
This means that if the contact point of the robot at state u is very close to that
of state ũ, withinError(ϕ(coord(u)), ϕ(coord(ũ))), the object is in the same
state (zcoord(u) = zcoord(ũ)), these conditions are also true for v and ṽ, and ũ
is connected to ṽ in the demonstrations, then we will connect u to v (provided
the action is collision free, as with any edge in the graph). These edges allow
the planner to find ways to manipulate the object other than exactly how it
was done in demonstrations. This is especially important if part or all of the
specific demonstration is invalid (due to collision) but it may still be possible
to manipulate the object. Figure 3 shows this using the cloud-shaped Ω. Any
of the states that fall in Ωi can connect to states in Ωi+1 or Ωi−1.

4.4 Task-based Heuristic

Since the goal is to manipulate an object to a particular state (for instance,
open a drawer), the search will be slow unless the heuristic guides the planner
to modify the object toward the goal configuration. With that in mind we
outline a heuristic that takes into account the motion of the robot required to
reach contact with the object as well the manipulation of that object.

We introduce a two part heuristic hG
env built on top of the original heuristic

for the environment hG. The E-Graph heuristic hE described in section III will
now use hG

env instead of hG. For any state s = 〈x, z〉 we are trying to provide
an admissible (underestimating) guess for the remaining cost to get to the goal
(have z = zgoal). The general idea is that hG

env(s) estimates the cost of getting
the robot in contact with the object plus the cost of manipulating the object
so that the variable z moves through all the required values to become zgoal.
More formally,

hG
env(s) = min

vz...vzgoal



hG(s, vz) +

zgoal−1
∑

k=z

hG(vk, vk+1)




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vk ∈
{

v ∈ Vmanip|∃aij ∈ T , s.t.

withinError
(

ϕ(coord(aij)), ϕ(coord(v))
)

∧ zcoord(aij) = k
}

This computation has the contact point pass through all the poses shown
in the demonstration (between the z of state s and the goal z). There may
be many robot configurations to choose from for each of these contact poses
in order to get a minimum sequence. In our experiments, we chose a heuristic
hG(a, b) that computes the linear distance that the contact point travels be-
tween the two robot configurations [7]. An advantage of this heuristic is that
we do not need to consider the set of all robot configurations. Since all the
robot configurations in a set (e.g., all possible states to choose for some vk)
have the same contact point, they are equivalent inputs to this heuristic func-
tion (so any state with that contact point will do). Therefore, the sequence of
vz . . . vzgoal

can just be that segment of a demonstration. This makes hG
env easy

to compute. Specifically, the choices of vk to search over becomes significantly
smaller.

vk ∈{v ∈ Vdemo| ∧ zcoord(v) = k}

Therefore hG
env can be computed using a Dijkstra search over the vertices from

the demonstration and s, starting from the set of vertices from the demon-
strations which have z-value of zgoal. As we are running a Dijkstra search
backward, our edges will be directed from any demonstration state with z-
value i to any with value i− 1. Finally, all demonstration states with value z
connect to state s. We are therefore searching on a directed acyclic graph with
the number of vertices on the order of the number of vertices in the demon-
strations (which is typically very smaller), making this computation efficient.
Additionally, the Dijkstra computes the minimum of the summation on the
right first, which could be computed once at the start of planning and cached.
When hG

env is queried with some s, only the final edge to it must be chosen
from the vertices with zcoord(s).

4.5 Theoretical Properties

As we showed earlier, it is possible for edges (motions) in the demonstration
to not exist in the original graph. These extra edges can help the planner find
cheaper solutions than what it would have been able to achieve without them.
It also may be able to solve queries for which there was no solution in the
original graph G alone.

An important thing to note is that while the quality of the demonstration
can dramatically affect the planning times and the solution cost, the planner
always has a theoretical upper bound on the solution cost with respect to the
optimal cost in graph Gmanip.
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Theorem 1 For a finite graph G and finite Experience Graph GE, our plan-

ner terminates and finds a path in Gmanip that connects sstart to a state s
with zcoord(s) = zgoal if one exists.

We are searching the graphGmanip withWeighted A* (a complete planner),
if a solution exists on this graph, our algorithm will find it.

Our planner provides a bound on the sub-optimality of the solution cost.
The proof for this bound depends on our heuristic function hE being εE-
consistent.

Lemma 1 If the original heuristic function hG(u, v) is consistent, then the

heuristic function hE is εE-consistent.

From Equation 1, for any s, s′ ∈ V G, (s, s′) ∈ EG.

hE(s) ≤ min{εEhG(s, s′), cE(s, s′)}+ hE(s′)

hE(s) ≤ εEhG(s, s′) + hE(s′)

hE(s) ≤ εEc(s, s′) + hE(s′)

The argument for the first line comes from Equation 1 by contradiction.
Suppose the line is not true. Then, during the computation of hE(s), a shorter
path π could have been found by traveling to s′ and connecting to s with
min{εEhG(s, s′), cE(s, s′)}. The last step follows from hG being admissible.
Therefore, hE is εE-consistent.

Theorem 2 For a finite graph G and finite Experience Graph GE, our plan-

ner terminates and the solution it returns is guaranteed to be no worse than

ε · εE times the optimal solution cost in Gmanip.

Consider h′(s) = hE(s)/εE . h′(s) is clearly consistent. Then, εhE(s) =
ε · εEh′(s). The proof that ε · εEh′(s) leads to Weighted A* (without re-
expansions) returning paths bounded by ε · εE times the optimal solution
cost follows from [16].

It is interesting to note that since we are running a full planner in the
original state space, for a low enough solution bound, the planner can find ways
to manipulate the environment objects more efficiently (cheaper according to
the planner’s cost function) than the user demonstrations.

5 Experimental Results

We tested our approach by performing a series of mobile manipulation tasks
with the PR2 robot including opening drawers and doors. All the tasks in-
volve manipulation with a single arm, coupled with motion of the base. The
end-effector of the right arm of the PR2 is restricted to be level i.e., its roll
and pitch are restricted to a fixed value (zero). This results the arm moving in
a 5 dimensional space parameterized by the position of the right end-effector
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(x,y,z), the yaw of the end-effector and an additional degree of freedom corre-
sponding to the shoulder roll of the right arm. We consider the overall motion
of the robot to be in a 9 dimensional state space: the 5 degrees of freedom
mentioned above for the arm, the three degrees of freedom for the base and
the an additional degree of freedom for the vertical motion of the torso (spine).

When performing a task, an additional degree of freedom is added to the
state space corresponding to the articulated object, bringing the dimensional-
ity of the state space to a total of ten. A possible goal for the planner would
be to move the joint of an object to a specified z-value e.g., moving a cabinet
door from the closed to open position. This requires the creation of plans for
the combined task of grasping the handle of the cabinet door by coordinated
motion of the base, spine and right arm of the robot, followed by moving the
gripper appropriately (again using coordinated motions of the base, spine and
right arm) along the circular arc required to open the cabinet door.

The planner can support arbitrary cost functions (as long as no motion
results in negative cost), though the heuristic must be chosen to be consistent
with respect to the cost function. The cost function we used for the planner
is a weighted sum of end effector linear and angular motion, base linear and
angular motion, motion of the spine, and motion of the arm’s redundant joint.

Kinesthetic demonstration, where the user manually moves the robot along
a desired path to execute the task, was used to record paths for different
tasks. The values of the state space variables were recorded along the de-
sired paths. Once the demonstrations have been recorded, the robot replays
the demonstrated trajectories to execute the given task. As it executes the
demonstrations, it uses its 3D sensors to record information about the chang-
ing environment. The 3D sensor’s trace (represented as a temporal series of
occupancy grids in 3D) represents the motion of the target object (e.g., the
cabinet door) throughout the demonstration.

The stored temporal sensor information provides information about the
evolution of the changing environment, particularly for use in collision check-
ing. Forward kinematics is used to determine the demonstrated workspace
trajectory for the contact point of the gripper and the articulated object. This
information, along with the recorded state data, represents data that can be
fed back into the E-Graph for later use.

5.1 Robot Results

Our planner was implemented in five different scenarios with the PR2 robot:
opening a cabinet (45cm wide door), opening a drawer with an external handle
attached (extends 30cm), opening an overhead kitchen cabinet (45cm wide
door), opening a freezer (61cm door), and opening a bread box (handle is
18cm offset from hinge). The overall goal for each task is for the robot to start
from an arbitrary position, move to the desired task location, grasp the handle
and open the cabinet or drawer.
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For each scenario, a full 3D map of the environment was first built using
the stereo sensors on the robot. The opening part of the task was then demon-
strated with the robot by a user. The robot then replayed the demonstrated
motion on its own, recording the additional visual sensor data needed in the
process to complete the demonstration. This data is available to the planner
for incorporation into the E-Graph.

The planner was then tested using different start states. This required the
planner to generate motions that would move the robot to a location where
it could grasp the handle on the drawer/cabinet/freezer/box. Note that this
part of the motion had not been demonstrated to the planner. The planner
also had to generate the motion required to open the objects. Again, note that
the robot could be in a different start state at the beginning of its motion
for opening the objects as compared to the start state for the demonstrated
motion. Further, there may be additional obstacles in the environment that
the planner needs to deal with. Figure 4 shows still images of these trials.
It should be noted that for the bread box trial, roll and pitch of the gripper
were added as additional degrees of freedom (bringing the search space to 11
dimensions).

Table 1 shows the planning times for these demonstrations. While the
weighted A* planner solution time is shown, only the E-Graph planner result
was executed on the robot. In two cases, the weighted A* was unable to pro-
duce a plan in the allotted 60 seconds. Weighted A* was run with ε = 20,
while our planner ran with ε = 2 and εE = 10 for an equivalent bound of 20.

Table 1 Planning times in seconds for opening a file drawer, Ikea cabinet, overhead kitchen
cabinet, freezer, and bread box.

E-Graph Weighted A*
Drawer 2.06 2.96
Cabinet 1.83 12.87
Kitchen Cabinet 2.87 (unable to plan)
Freezer 1.52 7.81
Bread Box 1.04 (unable to plan)

5.2 Simulation Results

A separate set of simulated tests was conducted to measure the performance
of the planner and compare it to weighted A* (without re-expansions) and a
sampling-based approach. Weighted A* was run with ε = 20, while our planner
ran with ε = 2 and εE = 10 for an equivalent bound of 20. The environments
were generated by rigidly transforming two target objects (cabinet and drawer)
to various locations in a room (the robot start pose was constant). Figure 5
shows a snapshot of the simulation environment.
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Fig. 4 PR2 opening an Ikea cabinet, metal drawer, overhead kitchen cabinet, freezer door,
and bread box, respectively. Each sequence shows the execution of the completely planned
full-body motion which approaches, grasps, and opens each object. The numerical results of
these real robot experiments are shown in Table 1.

Table 2 shows planning statistics of weighted A* versus planning with E-
Graphs. These results show that using the Experience Graph allows us to find
solutions with fewer expansions and therefore, in less time.

Table 2 A comparison between E-Graphs and weighed A* over 35 simulations

E-Graph Weighted A*
Mean(s) Std dev(s) Mean(s) Std dev(s)

Drawer 2.75 1.73 7.25 16.62
Cabinet 1.74 0.70 54.69 43.49

We also compared against Constrained Bi-directional Rapidly-Exploring
Random Tree (CBiRRT), which is designed to help the RRT algorithm deal
with planning on constraints which may be small compared to the state space
and therefore difficult to sample [4]. Like most RRT algorithms this method
repeatedly chooses a random sample, and tries to extend the nearest neighbor
in the search tree toward it (since this is bi-directional, it grows both). The



16 Mike Phillips et al.

Fig. 5 The simulation environment. The red boxes represent example locations of the target
object to be manipulated. The green boxes represent the contact point that the robot gripper
should attempt to grasp.

primary difference is that the extension is done by taking small unconstrained
steps (like a linear step in c-space) followed by a projection step back on
to the constaints. We use a state variable to represent how far the object has
moved (like in our approach). If the object is “closed” then the projection does
nothing (the robot does not have to be holding the contact point). If the object
is in any other state then it has been moved, and we project configurations so
the robot is holding the contact point. The constraint manifold learned in our
approach is used for the projection step. For the goal state (the root of the
backward tree) we provided the final configuration from the demonstration.

Table 3 A comparison between E-Graphs and CBiRRT

E-Graph time (s) CBiRRT time (s)
Mean Std dev Mean Std dev

Drawer 2.76 1.88 44.31 28.39
Cabinet 1.94 0.76 1.72 1.60

E-Graph base motion (m) CBiRRT base motion (m)
Mean Std dev Mean Std dev

Drawer 0.61 0.30 1.51 0.45
Cabinet 0.88 0.27 1.53 0.34

E-Graph arm motion (rad) CBiRRT arm motion (rad)
Mean Std dev Mean Std dev

Drawer 5.37 2.74 5.50 2.04
Cabinet 6.83 2.00 4.42 0.86

E-Graph consistency CBiRRT consistency
Drawer 0.33 10.70
Cabinet 0.37 3.93
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Table 3 compares E-Graphs to CBiRRT. In the first section of the table we
can see that the planning times for the two approaches are similar for simpler
scenarios though E-Graphs perform better on others (across 35 trials). We
expect E-Graphs to continue to perform better than sampling planners as
tasks become more complicated since there is more room for reuse of prior
experience. We also found the E-Graph solutions to be of similar or better
quality (refer to the base and arm distance metrics in the middle of the table).
At the bottom of the table, we see results from a consistency experiment.
Consistency measures how similar output of a planner is, given similar inputs
(start and goal). In many domains, this kind of path predictability is critical
for people to be comfortable around robots. We tested this by choosing 5
similar start poses for the robot and 5 similar locations of the cabinet/drawer.
We then plan between all pairs to get 25 paths. We used the dynamic time
warping similarity metric [24] to compare the methods. Having a value closer
to 0 means the paths are more similar. Since this method is for comparing pairs
of paths, we performed an all-pairs comparison and then took the average path
similarity. We can see that E-Graphs produce more consistent paths due to
the deterministic nature of the planner.

5.3 Using a Partially Valid Demonstration

This scenario demonstrates the capability of using a partial E-Graph. An ob-
stacle was intentionally placed to obstruct a portion of the provided experience.
We show that the E-Graph planner derives as much of the solution as it can
from the provided experience before doing a normal weighted A* search to
replace the portion of the experience that is in collision.

Figure 6 shows the specific case. On the left we see the final configuration
from the demonstration which is in significant collision with an obstacle. It is
clear that simply playing back the demonstration to open this cabinet would
fail (even small modifications on the joints would not be sufficient). In the im-
age on the right we can see that the planner generates a valid final pose (and a
valid path leading up to it) by lowering the elbow. The E-Graph planner actu-
ally uses the first half of the demonstration (which is valid) and then generates
new motions for the rest. We can see from the final pose, that the motion is
dramatically different from the demonstration in order to accomodate the new
obstacle.

Table 4 shows the time performance of this trial. The weighted A* performs
worse because it must build the solution from scratch. The partial E-Graph
solution completes in an order of magnitude less time. Figure 7 shows that
when using none of the E-Graph (planning from scratch) a similar solution is
found but it takes much longer. For comparison, the planning statistics for the
provided demonstration without the obstacle is shown as well. We see that the
partial E-Graph only took slightly more time than the case where the obstacle
is removed (and the complete demonstration could be used).
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(a) The second half of the demonstration
is in collision with an obstacle. The last
pose is shown here.

(b) The planner reuses as much of the
demonstration as it can and then gener-
ates the rest from scratch. The final pose
in the path is shown. The elbow has been
dropped to accomodate the obstace.

Fig. 6

The end result of this simulation shows that the E-Graph planner can
take full advantage of provided experiences, even when parts of the provided
experience are invalid.

Fig. 7 A similar solution is found when planning from scratch.

Table 4 Performance statistics for partial E-Graph planning.

Planning time Expansions
Weighted A* 51.90 16402
Partial E-Graph 2.22 59
Complete E-Graph (without obstacle) 2.08 47
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(a) A demonstration with the elbow to
the right. The optional “Right Obstacle”
is shown also.

(b) A demonstration with the elbow
down. The optional “Under Obstacle” is
shown also.

Fig. 8 Two different demonstrations for opening a drawer. The gray cube in each picture
is an obstacle used in some of the experiments which was chosen to block part of only its
corresponding demonstration.

5.4 Multiple Demonstrations

In this experiment we show how several demonstrations can be used to teach
the planner to manipulate an object. Our results indicate that this leads to
an increased level of robustness to additional obstacles and clutter. Specifi-
cally, in this experiment we provide two different demonstrations for opening
a drawer. Figure 8 shows the last configuration in each of the two demonstra-
tions. Figure 8a corresponds to a demonstration where the elbow is held out
to the right while pulling open the drawer. This figure also shows the optional
“Right Obstacle” which is used in some of our trials. When this obstacle is
used, only this demonstration is blocked. On the other hand, Figure 8b depicts
a demonstration where the elbow is held downward. The figure also shows the
optional “Under Obstacle” which is used in some of our trials. This obstacle
only blocks this elbow down demonstration.

We ran experiments in 3 different environments (no added obstacle, adding
the under obstacle, and adding the right obstacle). Additionally, for each of
these we tried all combinations of providing demonstrations (elbow to the
right, elbow down, both demonstrations, and no demonstrations). In the case
with no demonstration, the planner was still provided the trajectory that the
contact point needs to follow, but specific configuration space trajectories were
not added to the E-Graph.

Table 5 shows the results of our experiments. We can see that opening the
drawer in this scenario was sufficiently difficult that without any demonstration
(the “None” row) the planner was unable to find a solution within 60 seconds,
which was our chosen timeout. The elbow right demonstration allows us to
plan except when an obstacle is added on the right to invalidate part of the E-
Graph. Similarly, the elbow down demonstration works well unless the under



20 Mike Phillips et al.

obstacle is added. By providing the planner with both demonstrations, the E-
Graph heuristic guides the search to follow the demonstration that allows it to
avoid following the less informative original heuristic as much as possible. In
this case, that results in the planner avoiding the demonstration where some
poses have been invalidated by the newly introduced obstacle. Therefore, by
providing multiple demonstrations, the planner can become more robust to
added clutter.

Table 5 Performance with multiple demonstrations

Demonstrations No obstacle Right Obstacle Under Obstacle
Elbow right 1.37 (unable to plan) 9.35
Elbow down 1.52 3.69 (unable to plan)
Both 1.16 2.88 9.81
None (unable to plan) (unable to plan) (unable to plan)

5.5 Comparison against another reuse planner

In this section we compare planning with Experience Graphs to another motion
planner that leverages reuse, Lightning [3]. Lightning, is a portfolio method
which runs two planners in parallel, a planning from scratch (PFS) method
and a retrieve-and-repair method (RR). Lightning terminates when either of
the methods succeed and the resulting path is put back into a path database
which the RR module can draw upon during future planning episodes. The
PFS can use any planner but in the authors’ implementation they use RRT-
Connect [11], which is considered to be one of the faster sampling-based plan-
ners. The RR method first selects a small number of paths from a database
which may solve the problem quickly (paths that have endpoints near the start
and goal). It augments the paths by adding segments which connect the start
and the goal to the path (e.g., by linear interpolation). It then collision checks
the small set of augmented paths and selects the one with the least invalid
portions. This path will be repaired by using a motion planner to reconnect
broken sections. Again, while any planner could be used, RRT-Connect is cho-
sen for the authors’ implementation.

We compare against Lightning on single arm manipulation planning for
the PR2 robot (7 degree of freedom), for which, the authors provide an im-
plementation. We used a simulated kitchen environment with 100 randomly
chosen starts and goals in difficult areas as shown in Figure 9. We used a
weighted A* based arm planner [7] and ran it both with and without using
E-Graphs. Finally, we made a planning portfolio more similar to Lightning.
We ran the weighted A* planner (without E-Graphs) in parallel with the same
planner using E-Graphs. Our planner uses a fast collision checker that repre-
sents the robot as a set of spheres. We set up Lightning to use the same fast
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Fig. 9 The pink spheres show the location of the gripper for the start and goals states of
our experiments. Planning is performed with the right arm.

collision checker. Both E-Graphs and Lightning start out with no prior ex-
perience but both are allowed to remember every path they generate (so by
the end, both methods have around 100 paths). We give methods 10 seconds
to plan, after which it is considered a failure. A shortcutter is run on both
methods after planning is finished (included in planning times). Additionally,
the environment does not change between queries and therefore previous paths
don’t need to be collision checked (though additions to those paths to solve
new queries do). Lightning collision checks previous paths before using them
so we disabled this in order to not have it do unnecessary computation. We
used the default parameters for Lightning which include using 1 thread for
the PFS planner and 4 threads to collision check potential paths for the RR
planner.

The results of the experiments are shown in Table 6. We can see that E-
Graphs has the fastest median planning time among Lightning, and weighted
A*, though there are a number of outliers which give it a worse mean time
than Lightning. However, by using a simple portfolio with weighted A* and
E-Graphs, (much like Lightning with PFS and RR), many of the outliers are
eliminated. Our portfolio has slightly lower mean planning time than Light-
ning, substantially lower median planning time and uses only 2 threads com-
pared to Lightning’s 5.

Lightning has slightly better success rate that E-Graphs and better path
quality, while weighted A* has the best path quality. The weighted A* plan-
ner is minimizing the L2 norm in joint space, which is essentially what the
shortcutting does as well. The E-Graph path quality is partially worse due
to the planner going out of its way to reuse previous paths. Additionally, the
chosen heuristic is a 3D grid search which guides the end effector to the end
effector location on previous paths. This however is not enough to get the arm
on the E-Graph. After reaching the gripper position from a previous path the
planner needs to fix the gripper orientation and arm redundancy before it can
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Table 6 Comparing E-Graphs, weighted A* and Lightning

mean std dev median mean arm success threads
time(s) time(s) time(s) motion (rad) of 100 used

Weighted A* 0.84 1.31 0.4 6.62 87 1
E-Graphs 0.76 1.39 0.17 11.40 95 1
Portfolio 0.34 0.77 0.13 10.39 95 2
Lightning 0.36 0.33 0.33 7.64 99 5

Consistency(m)
Weighted A* 4.85
E-Graphs 4.82
Lightning 14.30

follow the previous path. This results in a relatively short end effector path
while not getting a short path in joint space. This could be resolved by using
a different heuristic hG, such as euclidean distance in joint space.

We also ran a consistency experiment. As discussed earlier, consistency
measures how similar paths from a planner are for similar inputs (start, goal,
environment). Planners that create similar paths for similar inputs are more
predictable, which is desirable when robot operate near people. We chose 100
random starts and goals from two regions (the start and goal are never from
the same region).

Again we used the dynamic time warping (DTW) similarity metric [24] to
compare the methods. DTW computes a similarity score for a pair of paths.
To do this, it first aligns the two paths by finding corresponding waypoints
between the two paths. Each waypoint will have at least 1 correspondence
in the other path (but they can have several). After correspondences have
been determined, the distances from each correspondence are summed. The
similarity score is therefore, the sum of the distances between the waypoints
on the paths after they have been aligned. Having a value closer to 0 means
the paths are more similar as the distances between corresponding waypoints
are small. Since this method is for comparing pairs of paths, we computed
the average pair-wise similarity (we computed DTW on all pairs of paths and
then averaged the scores). The waypoints in the paths used for the DTW
computation are the location of the end-effector, and therefore, the scores
reported are in meters. Both E-Graphs and weighted A* exhibit much more
consistent behavior than Lightning. In fact we can see that they are about
3 times more consistent, meaning that Lightning tends to have 3 times as
much distance between pairs of paths. Figure 10 visually shows the paths
produced by E-Graphs and Lightning. The images clearly show that E-Graphs
has significantly less variance.
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Fig. 10 The top row shows all the paths produced by E-Graphs in the consistency experi-
ment. The bottom row shows those produced by Lightning. The pink spheres show the start
and goal locations of the gripper. The green lines are motion that the gripper traced during
each path.

6 Discussion

This method provides a novel framework to teach robots how to manipulate
constrained objects by demonstration and then incorporate those demonstra-
tions into a planner using Experience Graphs. However, there are several ways
this method could be improved and extended.

In this work, we deal with objects which can be manipulated on a one
dimensional manifold. We chose to represent this as a discretized curve that
the contact point on the robot must follow to manipulate the object. This
representation is simple, yet very expressive. While in our examples we used
objects that have commonly modeled joints (e.g., revolute and prismatic), the
representation supports arbitrary joints that exist on one dimensional man-
ifolds, including those that are more difficult to capture with a few model
parameters, such as a garage door or moving a toy train along tracks. The
chosen representation also offers the ability to demonstrate how to use new
objects very easily. A non-expert can give a demonstration as no programming
or modeling needs to be done (the motion of the contact point and the z di-
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mension is automatically computed and recorded). This being said, there are
drawbacks. One of them is that the minimim and maximum extent to which
the user demonstrated moving the object also defines the limits that planner
has. For example, if the demonstration only opens the cabinet halfway, the
planner will never be able to generate a plan that opens it all the way as it is
not represented. Whereas, a parametric method may be able to hypothesize
about how to continue moving the object beyond where the demonstration
ended.

Additionally, the approach assumes that the objects we manipulate exist on
one dimensional manifolds. We made this simplification because many objects
fall into this category, but also because the entire range of motion of the
object can be shown with a single demonstration. However, some objects in
constrained manipulation exist on multi-dimensional manifolds. For instance,
a robot sweeping a pile of dirt out of a room, where the dirt is constrained to
stay on the floor. Our planner can handle these kinds of objects but it would
always have to follow one of the contact trajectories provided. The planner
would really be viewing the object as having a set of one dimensional manifolds
which can all accomplish the task. The planner could be extended to truly
manipulate multi-dimensional manifolds, but it would require a generalization
step that takes a set of demonstrations and infers what manifold they are
drawn from. This potentially could cause the planner to produce invalid paths
when this generalization is incorrect and therefore, might require feedback and
potentially more examples from the teacher.

Along similar lines, it would be interesting to see if demonstrations for a
particular object can be generalized to other objects. For instance, if a demon-
stration is given on one cabinet, can we make use of that demonstration to
open a door that is a little wider? When given a novel object that the user
has not provided a kinesthetic demonstration for, we are missing two things:
the contact point trajectory for how to operate the object and a robot con-
figuration space trajectory which can be used in an Experience Graph. The
second of these, is not actually required but as shown in our experiments,
can greatly accelerate the planning process. However, given a contact point
for the object, it may be possible to adapt a similar robot trajectory using a
projection method like Jacobian pseudo-inverse [25]. When projecting a prior
demonstration to a new (but hopefully similar) object, some parts may fail due
to obstacles or joint limits, and therefore, the E-Graph will be seeded with a
partial robot trajectory. However, as was shown in our experiments, even this
can be beneficial in accelerating the planner.

In terms of scalability, providing a kinesthetic demonstration for how to
operate every object in a home is limiting. However, it may be possible to
extract a contact point trajectory for an object by observing how a human
performs tasks in the home (by tracking the motion of their hand). This would
be less time consuming for the human.

In our multiple demonstration experiment we show that having more demon-
strations can increase robustness. Specifically, we would block part of one
demonstration at a time and showed how we were still able to solve the prob-
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lem by using a different (completely valid) demonstration. However, there may
be cases where every demonstration is partially invalidated by added clutter.
In these cases, each demonstration could look equally helpful and in weighted
A* type planner, what generally happens is that each route is fully explored
before moving on to another. It may be easier to find a path to the goal from
some demonstrations than others (e.g., perhaps some demonstrations are eas-
ier to modify while keeping the same contact point trajectory). Therefore, the
time it takes to plan could vary wildly depending on if the planner chooses
(somewhat arbitrarily) a difficult or easy demonstration to explore first. One
way to alleviate this might be to employ a version of A* which searches mul-
tiple “branches” of the search space at the same time. One way to do this
might be to use a different heuristic for each demonstration [8,1]. Multiple
demonstrations could also be searched using parallel planners [29]. There are
also parallel versions of weighted A* which could be applied directly to the
algorithm used in this article [6,21].

While our method allows the contact point on the object to be different
with each demonstration, we make the assumption that the contact point on
the robot stays constant across all demonstrations (the point we compute
forward kinematics for). This may be limiting in scenarios where the robot
must alternate between using its two grippers to operate the object or in the
case of opening a spring-loaded door, when people often use contact with their
body to push it open. We would like to relax this restriction in the future to
support these kinds of tasks.

It would be interesting to see how much solution quality improves (at
the expense of planning time) when using a smaller value of εE . The anytime
version of Experience Graphs could be applied to reach a compromise between
planning time and quality [20].

Finally, while plans produced by the planner are valid with respect to the
input they are given, the final execution of the path is not always right. This
can happen because the location of the object we are going to manipulate has
some error due to sensor noise or during execution, the localization of the robot
drifts. Grabbing a small handle on the order of centimeters is difficult after
driving distances on the scale of meters. To combat this error we’ve attached
a visual fiducial (AR marker) to the objects that we use to correct pose error
as we get close to grasping the object. However, there are situaitons where
this could lead to a sub-optimal execution or even collision. A more principled
approach might be to replan regularly during execution to account for drift in
the path following. This can be done efficiently using Experience Graphs, as
we have shown in prior work [20].

7 Conclusion

In this work we presented a way to use Experience Graphs to improve the per-
formance of planning for constrained manipulation by providing user demon-
strations. The planner is able to find paths with bounded sub-optimality even
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though the demonstrations can be of arbitrary quality (and don’t even need to
be useful). Experimentally we provide results on high dimensional mobile ma-
nipulation tasks using the PR2 robot to open cabinets, freezers, bread boxes,
and drawers both in simulation and on the real robot.

In future work we would like to look into the use of demonstrations for
unconstrained manipulation and manipulation of objects that lie on multi-
dimensional manifolds.
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