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Abstract. In this paperwe presentTDLEAF(
�

), a variationon the TD(
�

) algorithmthat

enablesit to beusedin conjunctionwith game-treesearch.We presentsomeexperimentsin

whichourchessprogram“KnightCap”usedTDLEAF(
�

) to learnitsevaluationfunctionwhile

playing on Internetchessservers.The main successwe report is that KnightCapimproved

from a 1650rating to a 2150rating in just 308 gamesand3 daysof play. As a reference,

a rating of 1650correspondsto aboutlevel B humanplay (on a scalefrom E (1000) to A

(1800)),while 2150is humanmasterlevel. We discusssomeof thereasonsfor this success,

principle amongthem being the useof on-line, rather than self-play. We also investigate

whetherTDLEAF(
�

) canyield betterresultsin the domainof backgammon,whereTD(
�

)

haspreviously yieldedstrikingsuccess.
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2 J.BAXTER, A. TRIDGELL, AND L. WEAVER

1. Introduction

TemporalDifferencelearning,first introducedby Samuel(Samuel,1959)
and later extendedand formalizedby Sutton(Sutton,1988) in his TD( � )
algorithm,is aneleganttechniquefor approximatingtheexpectedlong term
futurecost(or cost-to-go) of a stochasticdynamicalsystemasa functionof
thecurrentstate.Themappingfrom statesto futurecostis implementedby a
parameterizedfunctionapproximatorsuchasa neuralnetwork. Theparame-
tersareupdatedonlineaftereachstatetransition,or possiblyin batchupdates
afterseveralstatetransitions.Thegoalof thealgorithmis to improve thecost
estimatesas the numberof observed statetransitionsand associatedcosts
increases.

Perhapsthemostremarkablesuccessof TD( � ) is Tesauro’sTD-Gammon,
a neuralnetwork backgammonplayer that was trainedfrom scratchusing
TD( � ) and simulatedself-play. TD-Gammonis competitive with the best
humanbackgammonplayers(Tesauro,1994). In TD-Gammonthe neural
network playeda dual role,bothasa predictorof theexpectedcost-to-goof
thepositionandasameanstoselectmoves.In any positionthenext movewas
chosengreedilyby evaluatingall positionsreachablefrom thecurrentstate,
andthenselectingthe move leadingto the positionwith smallestexpected
cost.The parametersof the neuralnetwork were updatedaccordingto the
TD( � ) algorithmaftereachgame.

Althoughtheresultswith backgammonarequitestriking, thereis linger-
ing disappointmentthatdespiteseveralattempts,they havenotbeenrepeated
for other boardgamessuchas othello, Go and the “drosophilaof AI” —
chess(Thrun,1995;Walker, Lister, & Downs,1993;Schraudolph,Dayan,&
Sejnowski, 1994).

Many authorshavediscussedthepeculiaritiesof backgammonthatmakeit
particularlysuitablefor TemporalDifferencelearningwith self-play(Tesauro,
1992; Schraudolphet al., 1994; Pollack, Blair, & Land, 1996). Principle
amongtheseare speedof play: TD-Gammonlearnt from several hundred
thousandgamesof self-play, representationsmoothness: theevaluationof a
backgammonpositionisareasonablysmoothfunctionof theposition(viewed,
say, as a vector of piece counts),making it easierto find a good neural
network approximation,andstochasticity: backgammonis a randomgame
which forcesat leastaminimal amountof explorationof searchspace.

As TD-Gammonin its original form only searchedone-plyahead,wefeel
this list shouldbe appendedwith: shallow search is good enoughagainst
humans. Thereare two possiblereasonsfor this; either one doesnot gain
a lot by searchingdeeperin backgammon(questionablegiven that recent
versionsof TD-Gammonsearchto three-plyandthis significantlyimproves
their performance),or humansaresimply incapableof searchingdeeplyand
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Learningto PlayChess 3

soTD-Gammonis only competingin a pool of shallow searchers.Although
weknow of nopsychologicalstudiesinvestigatingthedepthto whichhumans
searchin backgammon,it is plausiblethatthecombinationof highbranching
factorandrandommove generationmakes it quite difficult to searchmore
thanoneor two-ply ahead.In particular, randommovegenerationeffectively
preventsselective searchor “forward pruning” becauseit enforcesa lower
boundon thebranchingfactorat eachmove.

In contrast,findingarepresentationfor chess,othelloor Gowhichallowsa
smallneuralnetwork to ordermovesatone-plywith nearhumanperformance
is a far more difficult task. It seemsthat for thesegames,reliable tactical
evaluationis difficult to achieve without deeplookahead.As deeplookahead
invariably involvessomekind of minimaxsearch,which in turn requiresan
exponentialincreasein thenumberof positionsevaluatedasthesearchdepth
increases,the computationalcostof the evaluationfunction hasto be low,
ruling out theuseof expensive evaluationfunctionssuchasneuralnetworks.
Consequentlymost chessandothello programsuselinear evaluationfunc-
tions (the branchingfactor in Go makes minimax searchto any significant
depthnearlyinfeasible).

Ourgoalis to developtechniquesfor usingTD( � ) in domainsdominated
by search.In this paperwe introduceTDLEAF( � ), a variationon theTD( � )
algorithm,that canbe usedto learnan evaluationfunction for usein deep
minimaxsearch.TDLEAF( � ) differsfrom TD( � ) in thatinsteadof operating
on positionsthatoccurduring thegame,it operateson the leaf nodesof the
principal variation of a minimax searchfrom eachposition(alsoknown as
theprincipal leaves).

To test the effectivenessof TDLEAF( � ), we incorporatedit into our
own chessprogram— KnightCap. KnightCaphasa particularlyrich board
representationfacilitating computationof sophisticatedpositional features,
althoughthis is achieved at somecost in speed(KnightCap is about 10
timesslower thanCrafty — the bestpublic-domainchessprogram— and
6,000timesslower thanDeepBlue). We trainedKnightCap’s linear evalu-
ation function using TDLEAF( � ) by playing it on the FreeInternetChess
Server (FICS,fics.onenet.net) andon the InternetChessClub (ICC,
chessclub.com). Internetplay wasusedto avoid the prematureconver-
gencedifficultiesassociatedwith self-play. Themainsuccessstorywereport
is thatstartingfrom anevaluationfunctionin which all coefficientswereset
to zeroexcept the valuesof the pieces,KnightCapwent from a 1650-rated
playerto a 2150-ratedplayerin just threedaysand308games.KnightCapis
anongoingprojectwith new featuresbeingaddedto its evaluationfunction
all thetime.WeuseTDLEAF( � ) andInternetplay to tunethecoefficientsof
thesefeatures.

Simultaneouslywith the work presentedhere,Beal and Smith (Beal &
Smith,1997)reportedpositive resultsusingessentiallyTDLEAF( � ) andself-
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4 J.BAXTER, A. TRIDGELL, AND L. WEAVER

play (with somerandommove choice)when learningthe parametersof an
evaluationfunction thatonly computedmaterialbalancein chess.However,
they werenot comparingperformanceagainston-lineplayers,but werepri-
marily investigatingwhethertheweightswouldconvergeto “sensible”values
at leastasgoodasthenaive (1, 3, 3, 5, 9) valuesfor (pawn, knight, bishop,
rook,queen)(they did, in about2000games).

Sutton and Barto (Sutton & Barto, 1998) have outlined, but not im-
plemented,a schemefor combiningTD-style backupswith deepminimax
search.Theirmethodwouldcalculateall theone-stepdifferencesseenduring
theconstructionof thesearchtree.

The remainderof this paper is organizedas follows. In section2 we
describethe TD( � ) algorithm as it appliesto games.The TDLEAF( � ) al-
gorithm is describedin section 3. Experimentalresults for Internet-play
with KnightCapare given in section4, while section5 looks at applying
TDLEAF( � ) to backgammonwhere TD( � ) has had its greatestsuccess.
Section7 containssomediscussionandconcludingremarks.

2. The TD( � ) algorithm applied to games

In thissectionwedescribetheTD( � ) algorithmasit appliesto playingboard
games.We discussthealgorithmfrom thepoint of view of anagentplaying
thegame.

Let � denotethe set of all possibleboardpositionsin the game.Play
proceedsin a seriesof movesat discretetime steps�����
	��
	������ . At time� the agentfinds itself in someposition ������� , andhasavailablea setof
moves,or actions ����� (the legal moves in position ��� ). The agentchooses
an action ������� � and makes a transition to state �����! with probability"$# � � 	%� ���! 	&�(' . Here � ���! is thepositionof theboardafter theagent’s move
and the opponent’s response.When the gameis over, the agentreceives a
scalarreward,typically “1” for awin, “0” for adraw and“-1” for a loss.

For easeof notationwe will assumeall gameshave a fixed lengthof )
(this is not essential).Let * # �,+-' denotethe reward received at the end of
thegame.If we assumethat theagentchoosesits actionsaccordingto some
function � # �.' of thecurrentstate� (sothat � # �.'/�0�1� ), theexpectedreward
from eachstate�2�2� is givenby354 # �.'768�:9 �<;>= � * # �,+-'?	 (1)

where the expectation is with respect to the transition probabilities"$# �@�A	%�����! <	&� # ���B'%' andpossiblyalsowith respectto the actions � # �@�B' if the
agentchoosesits actionsstochastically.
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For very largestatespaces� it is notpossiblestorethevalueof
3 4 # �.' for

every �C�C� , so insteadwe might try to approximate
3 4

usinga parameter-
ized function class D3 6E�GFIHKJMLNH , for examplelinear functions,splines,
neuralnetworks,etc. D3 #PO 	%QR' is assumedto bea differentiablefunctionof its
parametersQS� # QR �	�������	%Q J ' . Theaim is to find a parametervector QT�UHVJ
that minimizessomemeasureof error betweenthe approximation D3 #PO 	%QW'
and

3 4 #PO ' . The TD( � ) algorithm,which we describenow, is designedto do
exactly that.

Suppose�5 �	������<	%�,+/XE �	%�,+ is a sequenceof statesin one game.For a
givenparametervector Q , definethe temporal differenceassociatedwith the
transition�@�!LY�����! byZ � 68� D3 # � ���! 	%QW'K[ D3 # � � 	%QW'?� (2)

Notethat
Z � measuresthedifferencebetweentherewardpredictedby D3 #PO 	%QW'

attime �]\�� , andtherewardpredictedby D3 #PO 	%QW' attime � . Thetrueevaluation
function

3 4
hastheproperty9 � �_^a` = � �@b 3 4 # �@���! c'$[ 3 4 # ���B'ed.�Gfa	

so if D3 #PO 	%QW' is a goodapproximationto
3 4

, 9 � �_^(` = � � Z � shouldbe closeto

zero.For easeof notationwewill assumethat D3 # � + 	%QR'g�h* # � + ' always,so
thatthefinal temporaldifferencesatisfiesZ +iXE 7�jD3 # �.+W	%QR'V[kD3 # �,+/XE �	%QR'V�G* # �.+�'K[lD3 # �.+iXE �	%QW'?�
Thatis,

Z +/XE is thedifferencebetweenthetrueoutcomeof thegameandthe
predictionat thepenultimatemove.

At theendof thegame,theTD( � ) algorithmupdatestheparametervectorQ accordingto theformula

QT68�hQm\Cn +iXE o ��p! �q D3 # � � 	%QR' rs +iXE o t p,� �
t Xu� Z �wvx (3)

where q D3 #PO 	%QW' is thevectorof partialderivativesof D3 with respectto its
parameters.The positive parametern controlsthe learningrateandwould
typically be “annealed”towardszeroduring the courseof a long seriesof
games.The parameter�h� b fa	��cd controlsthe extent to which temporaldif-
ferencespropagatebackwardsin time. To seethis, compareequation(3) for���Gf :

gen.tex; 19/01/2001; 10:19; p.5



6 J.BAXTER, A. TRIDGELL, AND L. WEAVER

Qy68�-Qm\Cn +iXE o ��p! q D3 # �@�%	%QR' Z �
��Qm\Cn +iXE o ��p! �q D3 # �@�%	%QR'iz D3 # �����! <	%QW'K[ D3 # ���%	%QW'e{ (4)

and ���|� :
Q�68�hQm\}n +iXE o ��p! q D3 # �@�%	%QR'iz~* # �,+-'$[ D3 # ���%	%QW'e{/� (5)

Considereachtermcontributing to thesumsin equations(4) and(5). For ���f theparametervectoris beingadjustedin suchawayasto move D3 # ���%	%QW' —
thepredictedreward at time � —closerto D3 # � ���! 	%QW' —the predictedreward
at time �V\T� . In contrast,TD(1) adjuststhe parametervectorin suchaway
asto move the predictedreward at time step � closerto the final reward at
time step ) . Valuesof � betweenzero and one interpolatebetweenthese
two behaviours. Note that (5) is equivalent to gradientdescenton the error

function 9 # QR'�68�y� +iXE ��p! z�* # �,+-'K[ D3 # ���%	%QW'e{�� .
Successive parameterupdatesaccordingto the TD( � ) algorithmshould,

over time, leadto improvedpredictionsof theexpectedreward D3 #PO 	%QW' . Pro-
vided the actions � # ���B' are independentof the parametervector Q , it can
be shown that for linear D3 #PO 	%QR' , the TD( � ) algorithmconvergesto a near-
optimalparametervector(Tsitsikilis & Roy, 1997).Unfortunately, thereis no
suchguaranteeif D3 #PO 	%QW' is non-linear(Tsitsikilis & Roy, 1997),or if � # ���B'
dependson Q (Bertsekas& Tsitsiklis,1996).

3. Minimax search and TD( � )

For argument’s sake, assumeany action � taken in state� leadsto predeter-
minedstatewhich we will denoteby ���� . Onceanapproximation D3 #PO 	%QR' to3 4

hasbeenfound,we canuseit to chooseactionsin state� by picking the
action ������� whosesuccessorstate� � � minimizestheopponent’s expected
reward : � 4 # �.'768� argmin�����,� D3 # � � � 	%QW'?� (6)`

If successorstatesareonlydeterminedstochasticallyby thechoiceof � , wewouldchoose

theactionminimizing theexpectedrewardover thechoiceof successorstates.

gen.tex; 19/01/2001; 10:19; p.6



Learningto PlayChess 7

H
3

I
-9

D

J
-5

K
-6

E
3 -5

B

L
4*

M
2

F

N
-9

O
5

G
4 5

C
-5 4

4
A

Figure 1. Full breadth,3-ply searchtreeillustratingtheminimaxrule for propagatingvalues.

Eachof the leaf nodes(H–O) is given a scoreby the evaluation function, ����������K� . These

scoresare thenpropagatedbackup the treeby assigningto eachopponent’s internalnode

the minimum of its children’s values,andto eachof our internalnodesthe maximumof its

children’s values.The principle variation is thenthe sequenceof bestmovesfor eitherside

startingfrom theroot node,andthis is illustratedby a dashedline in thefigure.Notethatthe

scoreat the root nodeA is the evaluationof the leaf node(L) of the principal variation.As

therearenotiesbetweenany siblings,thederivativeof A’sscorewith respectto theparameters�
is just � ������E���K� .

This was the strategy usedin TD-Gammon.Unfortunately, for gameslike
othelloandchessit is very difficult to accuratelyevaluateapositionby look-
ing only one move or ply ahead.Most programsfor thesegamesemploy
someform of minimaxsearch.In minimax search,one builds a tree from
position � by examiningall possiblemovesfor thecomputerin thatposition,
thenall possiblemovesfor theopponent,andthenall possiblemovesfor the
computerandso on to somepredetermineddepth

Z
. The leaf nodesof the

treearethenevaluatedusingaheuristicevaluationfunction(suchas D3 #PO 	%QR' ),
andtheresultingscoresarepropagatedbackup thetreeby choosingat each
stagethemove which leadsto the bestpositionfor the playeron themove.
SeeFigure 3 for an examplegametree and its minimax evaluation.With
referenceto the figure,notethat the evaluationassignedto the root nodeis
the evaluationof the leaf nodeof the principal variation; the sequenceof
movestaken from theroot to the leaf if eachsidechoosesthebestavailable
move.

In practicemany engineeringtricks areusedto improve theperformance
of theminimaxalgorithm, n2[I� searchbeingthemostfamous.

Let D3�� # �!	%QR' denotetheevaluationobtainedfor state� byapplying D3 #PO 	%QW'
to the leaf nodesof a depth

Z
minimax searchfrom � . Our aim is to find a

parametervector Q suchthat D3�� #PO 	%QR' is a good approximationto the ex-
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Figure 2. A searchtreewith a non-uniqueprincipalvariation(PV). In thiscasethederivative

of the root nodeA with respectto the parametersof the leaf-nodeevaluation function is

multi-valued,either � ��@���R���$� or � ��@�������K� . Exceptfor transpositions(in which caseH and

L areidenticalandthederivative is single-valuedanyway), such“collisions” arelikely to be

extremelyrare,soin TDLEAF(
�

) weignorethemby choosingaleafnodearbitrarily from the

availablecandidates.

pectedreward
3 4

. Oneway to achieve this is to apply the TD( � ) algorithm
to D3�� # �5	%QW' . Thatis, for eachsequenceof positions�� �	������<	%�,+ in agamewe
definethetemporaldifferencesZ � 68�¡D3�� # �@���! �	%QR' [lD3�� # ���%	%QW' (7)

asper equation(2), and then the TD( � ) algorithm (3) for updatingthe
parametervector Q becomes

Qy68�:Q}\Cn +/XE o ��p! 1q D3�� # ���%	%QW' rs +/XE o t p,� �
t Xu� Z � vx � (8)

One problemwith equation(8) is that for
Z�¢ � , D3�� # �5	%QW' is not nec-

essarilya differentiablefunction of Q for all valuesof Q , even if D3 #PO 	%QW' is
everywheredifferentiable.This is becausefor somevaluesof Q therewill be
“ties” in theminimaxsearch,i.e. therewill bemorethanonebestmoveavail-
ablein someof thepositionsalongtheprincipalvariation,which meansthat
theprincipalvariationwill notbeunique(seeFigure2). Thus,theevaluation
assignedto the root node, D3�� # �5	%QW' , will be the evaluationof any oneof a
numberof leafnodes.

Fortunately, undersomemild technicalassumptionson thebehaviour ofD3 # �5	%QW' , it canbeshown that for eachstate� , thesetof Q£�MHVJ for whichD3�� # �!	%QR' is not differentiablehasLebesguemeasurezero.Thusfor all states
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Learningto PlayChess 9� andfor “almost all” Q¤�GHVJ , D3�� # �5	%QR' is a differentiablefunction of Q .
Notethat D3�� # �5	%QW' is alsoa continuousfunctionof Q whenever D3 # �5	%QW' is a
continuousfunctionof Q . This implies thateven for the “bad” pairs # �!	%QR' ,q D3�� # �!	%QR' is only undefinedbecauseit is multi-valued.Thus we can still
arbitrarily choosea particularvaluefor q D3�� # �!	%QR' if Q happensto land on
oneof the badpoints.One final point to note is that as we searchdeeper,
discontinuitiesin thegradientarelikely to becomemoredenseandsomost
stepsin parameterspacearelikely to stepclearacrossseveraldiscontinuities.
However, this did not seemto hurt us in our experimentswith chess,proba-
bly becausethegradientdoesnot changeall that radicallybetweenadjacent
regionsin parameterspace(of constantgradient).

Basedon theseobservationswe modified the TD( � ) algorithm to take
accountof minimaxsearchin analmosttrivial way: insteadof working with
therootpositions�5 �	�������	%�,+ , theTD( � ) algorithmis appliedto theleafposi-
tionsfoundby minimaxsearchfrom therootpositions.Wecall thisalgorithm
TDLEAF( � ). Full detailsaregivenin Figure3.

4. TDLEAF( � ) and chess

In this sectionwe describetheoutcomeof severalexperimentsin which the
TDLEAF( � ) algorithmwasusedto train the weightsof a linear evaluation
function in our chessprogram“KnightCap”. For detailsaboutthe program
itself, seeAppendixA.

4.1. EXPERIMENTS WITH KNIGHTCAP

In our mainexperimentwe took KnightCap’s evaluationfunctionandsetall
but thematerialparametersto zero.Thematerialparameterswereinitialized
to thestandard“computer”values:1 for apawn,4 for aknight,4 for abishop,
6 for a rook and12 for a queen.With theseparametersettingsKnightCap
(underthepseudonym “WimpKnight”) wasstartedontheFreeInternetChess
server (FICS,fics.onenet.net) againstbothhumanandcomputerop-
ponents.WeplayedKnightCapfor 25gameswithoutmodifyingits evaluation
functionsoasto geta reasonableideaof its rating.After 25 gamesit hada
blitz (fasttime control) ratingof ��¥�¦
f¨§h¦
f � , which put it at aboutB-grade
humanperformance(on a scalefrom E (1000) to A (1800)), althoughof
coursethe kind of gameKnightCapplayswith just materialparametersset
is verydifferentto humanplayof thesamelevel (KnightCapmakesnoshort-
term tacticalerrorsbut is positionallycompletelyignorant).We thenturned©

Thestandarddeviation for all ratingsreportedin this sectionis about50.
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10 J.BAXTER, A. TRIDGELL, AND L. WEAVER

Let D3 #PO 	%QR' bea classof evaluationfunctionsparameterizedby Qª�2H J . Let�� �	�������	%�.+ be ) positionsthat occurredduring thecourseof a game,with* # �,+�' theoutcomeof thegame.For notationalconvenienceset D3 # �,+«	%QR'i68�* # � + ' .
1. For eachstate��¬ , compute D3�� # ��¬A	%QR' by performingminimax searchto

depth
Z

from ��¬ andusing D3 #PO 	%QR' to scorethe leaf nodes.Note that
Z

mayvary from positionto position.

2. Let �@­¬ denotethe leaf nodeof the principle variation startingat �@¬ . If

thereis morethanoneprincipal variation,choosea leaf nodefrom the

availablecandidatesat random.NotethatD3�� # � ¬ 	%QR'g� D3 # � ­¬ 	%QR'?� (9)

3. For �V�|�
	������®	&)¯[°� , computethetemporaldifferences:Z � 68� D3 # � ­���! 	%QR'V[ D3 # � ­� 	%QR'?� (10)

4. UpdateQ accordingto theTDLEAF( � ) formula:

Q�68�hQm\Cn +iXE o ��p! q D3 # � ­� 	%QR' rs +iXE o t p,� �
t Xu� Z � vx2� (11)

Figure 3. TheTDLEAF(
�

) algorithm

on the TDLEAF( � ) learningalgorithm,with �m�£fa�8± andthe learningraten��²�
��f . Thevalueof � waschosenheuristically, basedon thetypical delay
in movesbeforeanerrortakeseffect,while n wassethigh enoughto ensure
rapidmodificationof theparameters.A coupleof minor modificationsto the
algorithmweremade:[ Theraw (linear)leafnodeevaluations D3 # � ­¬ 	%QW' wereconvertedtoascore

between[«� and � by computing³ ­¬ 68�:´&µ�¶u·2z¸��D3 # � ­¬ 	%QR'e{/�

gen.tex; 19/01/2001; 10:19; p.10
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This ensuredsmall fluctuationsin the relative valuesof leaf nodesdid
notproducelargetemporaldifferences(thevalues

³ ­¬ wereusedin place
of D3 # �,­¬ 	%QW' in theTDLEAF( � ) calculations).Theoutcomeof thegame* # �.+-' wassetto 1 for a win, [«� for a lossand f for a draw. � wasset

to ensurethata valueof ´&µ�¶u· z � D3 # � ­¬ 	%QW' { �¹fa�º��¦ wasequivalentto a

materialsuperiorityof 1 pawn (initially).[ Thetemporaldifferences,
Z �V� ³ ­���! [ ³ ­� , weremodifiedin thefollow-

ing way. Negative valuesof
Z � wereleft unchangedasany decreasein

theevaluationfrom onepositionto thenext canbeviewed asmistake.
However, positive valuesof

Z � canoccursimply becausetheopponent
hasmadea blunder. To avoid KnightCaptrying to learn to predict its
opponent’s blunders,we set all positive temporaldifferencesto zero
unlessKnightCappredictedtheopponent’s move» .[ The value of a pawn was kept fixed at its initial value so as to allow
easyinterpretationof weightvaluesasmultiplesof thepawn value(we
actuallyexperimentedwith notfixing thepawn valueandfoundit made
little difference:after1764gameswith anadjustablepawn its valuehad
fallenby lessthan7 percent).

Within 300 gamesKnightCap’s rating hadrisen to 2150,an increaseof
500pointsin threedays,andto a level comparablewith humanmasters.At
this point KnightCap’s performancebegan to plateau,primarily becauseit
doesnot have an openingbookandso will repeatedlyplay into weaklines.
Wehavesinceimplementedanopeningbooklearningalgorithmandwith this
KnightCapnow playsataratingof 2400–2500(peak2575)ontheothermajor
Internetchessserver: ICC, chessclub.com ¼ . It often beatsInternational
Mastersatblitz. Also,becauseKnightCapautomaticallylearnsits parameters
we have beenable to adda large numberof new featuresto its evaluation
function:KnightCapcurrentlyoperateswith 5872features(1468featuresin
four stages:opening,middle,endingandmating½ ). With thisextraevaluation¾

In a laterexperimentwe only setpositive temporaldifferencesto zeroif KnightCapdid

not predicttheopponent’s move and theopponentwasratedlessthanKnightCap.After all,

predictinga strongeropponent’s blundersis a useful skill, althoughwhetherthis madeany

differenceis not clear.¿
Thereappearsto be a systematicdifferenceof around200–250pointsbetweenthe two

servers,soa peakratingof 2575on ICC roughlycorrespondsto a peakof 2350on FICS.We

transferredKnightCapto ICC becausetherearemorestrongplayersplayingthere.À
In reality therearenot1468independent“concepts”perstagein KnightCap’s evaluation

functionasmany of thefeaturescomein groupsof 64,onefor eachsquareon theboard(like

thevalueof placinga rookon a particularsquare,for example).
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12 J.BAXTER, A. TRIDGELL, AND L. WEAVER

power KnightCapeasilybeatsversionsof Crafty restrictedto searchonly as
deepasitself. However, a big caveatto all this optimisticassessmentis that
KnightCaproutinelygetscrushedby fasterprogramssearchingmoredeeply.
It is quiteunlikely thiscanbeeasilyfixedsimplyby modifyingtheevaluation
function,sincefor this to work onehasto beableto predicttacticsstatically,
somethingthat seemsvery difficult to do. If onecould find an effective al-
gorithm for “learning to searchselectively” therewould be potentialfor far
greaterimprovement.

Note that we have twice repeatedthe original learningexperimentand
founda similar rateof improvementandfinal performancelevel. Therating
asa functionof thenumberof gamesfrom oneof theserepeatrunsis shown
in Figure4 (we did not recordthis informationin thefirst experiment).Note
thatin thiscaseKnightCaptooknearlytwiceaslong to reachthe2150mark,
but thiswaspartlybecauseit wasoperatingwith limited memory(8Mb) until
game500at which point thememorywasincreasedto 40Mb (KnightCap’s
searchalgorithm— MTD(f) (Plaat,Schaeffer, Pijls, & deBruin, 1996)— is
amemoryintensive variantof n –� andwhenlearningKnightCapmuststore
the whole position in the hashtableso small memorysignificantly impacts
uponperformance).Anotherreasonmayalsohave beenthat for a portionof
therun we wereperformingparameterupdatesafterevery four gamesrather
thanevery game.

Wealsorepeatedtheexperimentusinganothervariantof TD( � ), in which
thetemporaldifferencescalculatedwerethosebetweenthepositionsactually
occurringin the game,even thoughthesepositionshadbeenselectedby a
deepminimax searchratherthan the usualone-ply searchassociatedwith
TD( � ). We have dubbedthis variant “TD-DIRECTED( � )” . With it we ob-
served a 200 point rating rise over 300 games.A significantimprovement,
but much slower than TDLEAF( � ) and a lower peak.Its performanceon
backgammonis discussedin section5.

Plotsof variousparametersasa functionof thenumberof gamesplayed
areshown in Figure5 (theseplotsarefrom thesameexperimentin Figure4).
Eachplot containsthreegraphscorrespondingto thethreedifferentstagesof
theevaluationfunction:opening,middleandendingÁ .

Finally, we comparedthe performanceof KnightCap with its learnt
weightsto KnightCap’s performancewith asetof hand-codedweights,again
by playing the two versionson ICC. Thehand-codedweightswereclosein
performanceto the learntweights(perhaps50-100ratingpointsworse).We
alsotestedtheresultof allowing KnightCapto learnstartingfrom thehand-
codedweights,andin thiscaseit seemsthatKnightCapperformsbetterthanÂ

KnightCapactuallyhasa fourth andfinal stage“mating” which kicks in whenall the

pawnsareoff, but thisstageonly usesa few of thecoefficients(opponent’s king mobiliity and

proximity of ourking to theopponent’s king).
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Figure 4. KnightCap’s rating asa function of gamesplayed(secondexperiment).Learning

wasturnedon atgame0.

whenstartingfrom just materialvalues(peakperformancewas2632com-
paredto 2575,but thesefiguresareverynoisy).Weareconductingmoretests
to verify theseresults.However, it shouldnot betoo surprisingthat learning
from agoodqualitysetof hand-craftedparametersis betterthanjust learning
from materialparameters.In particular, someof thehandcraftedparameters
have very high values(the value of an “unstoppablepawn”, for example)
which can take a very long time to learnundernormalplaying conditions,
particularlyif they arerarelyactive in theprincipal leaves.It is not yet clear
whethergiven a sufficient numberof gamesthis dependenceon the initial
conditionscanbemadeto vanish.

4.2. DISCUSSION

Thereappearto be a numberof reasonsfor the remarkablerate at which
KnightCapimproved.

1. As all thenon-materialweightswereinitially zero,evensmallchangesin
theseweightscouldcausevery large changesin the relative orderingof
materiallyequalpositions.Henceevenaftera few gamesKnightCapwas
playingasubstantiallybettergameof chess.
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for eachof thethreestagesin theevaluationfunction.
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2. It seemsto be importantthatKnightCapstartedout life with intelligent
materialparameters.This put it close in parameterspaceto many far
superiorparametersettings.

3. MostplayersonFICSpreferto playopponentsof similarstrength,andso
KnightCap’s opponentsimprovedasit did. This mayhave hadtheeffect
of guidingKnightCapalongapathin weightspacethatled to astrongset
of weights.

4. KnightCapwaslearningon-line,not by self-play. Theadvantageof on-
line play is that there is a great deal of information provided by the
opponent’s moves.In particular, againsta strongeropponentKnightCap
wasbeingshown positionsthat1) couldbeforced(againstKnightCap’s
weak play) and 2) were mis-evaluatedby its evaluation function. Of
course,in self-play KnightCap can also discover positionswhich are
misevaluated,but it will not find thekinds of positionsthatarerelevant
to strongplay againstotheropponents.In this setting,onecanview the
informationprovided by the opponent’s movesas partially solving the
“exploration”partof theexploration/exploitation tradeoff.

To further investigatethe importanceof some of these reasons,we
conductedseveralmoreexperiments.

Goodinitial conditions
A secondexperimentwas run in which KnightCap’s coefficients were all
initialisedto thevalueof apawn. Thevalueof apawn needsto bepositive in
KnightCapbecauseit is usedin many otherplacesin thecode:for example
we deemtheMTD searchto have convergedif nGÅS�Æ\mfa��f�±�Ç PAWN. Thus,
to setall parametersequalto thesamevalue,thatvaluehadto beapawn.

Playing with the initial weight settingsKnightCaphad a blitz rating of
around1250. After more than 1000 gameson FICS KnightCap’s rating
has improved to about 1550, a 300 point gain. This is a much slower
improvement than the original experimentÈ . We do not know whether
the coefficients would have eventually converged to good values,but it is
clear from this experiment that starting near to a good set of weights is
importantfor fastconvergence.An interestingavenuefor furtherexploration
here is the effect of � on the learningrate. Becausethe initial evaluation
function is completelywrong, therewould be somejustification in setting�h�Y� early on so that KnightCaponly tries to predict the outcomeof theÉ

Weranthisexperimentthreetimes,with theresultreportedbeingthebestachieved.Since

themainexperimentsucceededon all threeoccasionsit wasrun, it is unlikely thattheslower

ratingsimprovementin this experimentis dueto vagariesin thetrainingenvironment
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16 J.BAXTER, A. TRIDGELL, AND L. WEAVER

gameandnottheevaluationsof latermoves(whichareextremelyunreliable).

Self-play
Learningby self-playwas extremelyeffective for TD-Gammon,but a sig-
nificant reasonfor this is the randomnessof backgammonwhich ensures
that with high probability different gameshave substantiallydifferent se-
quencesof moves,andalsothespeedof playof TD-Gammonwhichensured
that learning could take place over several hundred-thousandgames.Un-
fortunately, chessprogramsareslow, andchessis a deterministicgame,so
self-playby adeterministicalgorithmtendsto resultin alargenumberof sub-
stantiallysimilar games.This is not a problemif thegamesseenin self-play
are“representative” of the gamesplayedin practice,however KnightCap’s
self-playgameswith only non-zeromaterialweightsareverydifferentto the
kind of gameshumansof thesamelevel wouldplay.

To demonstratethatlearningby self-playfor KnightCapis notaseffective
aslearningagainstrealopponents,werananotherexperimentin whichall but
thematerialparameterswereinitialisedtozeroagain,but thistimeKnightCap
learntby playing againstitself. After 600 games(twice as many as in the
original FICSexperiment),we playedtheresultingversionagainstthegood
versionthat learnton FICS for a further 100 gameswith the weight values
fixed.Theself-playversionscoredonly 11%againstthegoodFICSversion.

5. Experiment with backgammon

For our backgammonexperimentwe were fortunateto have Mark Land
(ComputerScienceDepartment,Universityof California,SanDiego)provide
uswith thesourcecodefor his LGammonprogramwhich usesself-playand
TD( � ) to train a backgammonplayingneuralnetwork. Thecodehasserved
asbotha baseon which to implementTDLEAF( � )-basedtraining,andasa
benchmarkfor measuringthesuccessof this training.

5.1. LGAMMON

Land’s LGammon program has been implementedalong the lines of
Tesauro’s TD-Gammon(Tesauro,1992, 1994). Like Tesauro,Land usesa
raw boardrepresentationcoupledwith somehand-codedfeatures,anduses
self-playbaseduponone-plysearchto generatetraining data.During each
game,thepositionsencounteredandtheirevaluationsarerecorded,with error
signalsandconsequentweightupdatesbeingcalculatedandappliedafterthe
game.
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Along with thecodefor LGammon,Landalsoprovided a setof weights
for theneuralnetwork. Theweightsarethosewhich LGammonhasusedfor
mostof thetimeit hasbeenplayingontheFirst InternetBackgammonServer
(FIBS, fibs.com).With theseweightsLGammonachieved a rating on FIBS
which rangedfrom 1600to 1680,significantlyabove themeanratingacross
all playersof about1500.For convenience,we referto theweightssimplyas
theFIBSweights.

5.2. EXPERIMENT WITH LGAMMON

The stochasticityinherentin backgammoncomplicatesthe implementation
of TD-DIRECTED( � ) and TDLEAF( � ). Using minimax searchto a depth
of one-ply with backgammonis simple,becausethe set of legal moves is
fully determinedby the boardpositionandthe dice roll. Searchingto two-
ply however, requiresconsideringfor eachpositionreachedin one-ply, the
twenty-onedistinctdicerolls which couldfollow, andthesubsequentmoves
which the opponentmay choose.Consequently, we have definedthe two-
ply evaluationof a positionin theobviousmanner, usingtheexpectedvalue
acrossthedice rolls, of the positionsreachablefrom eachone-plyposition.
Adapting the notationdefinedin section3 such that � � � �&Ê refers to board
position � subjectto action � , dice roll

Z
, and action Ë , we chooseaction� in accordancewith

� 4 # �E'768� argmin����� � # 9 ��ÌÍAÎ<= � ÌÍ argmin
Ê �
� � ÌÍAÎ D3 # � � � ��Ê 	%QR'%'?� (12)

wheretheexpectationis with respectto thetransitionprobabilities"K# ����Ï	%�@�� � ' .
TD-DIRECTED( � ) thenstoresandtrainsusingtheone-plypositions,even

thoughthesearechosenby thetwo-ply searchjustdescribed.Sincetheaver-
agingacrossdicerolls for depthtwo meansthereis not anexplicit principal
variation,TDLEAF( � ) approximatestheleaf nodewith theexpectationterm
of equation(12)whichcorrespondsto thebranchof thegametreeselected.

Similarly for the derivative of a two-ply terminal position under
TDLEAF( � ), we calculatetheexpectedvalueof the derivative with respect
to thesetransitionprobabilities.

Limit of learning
Our experiment sought to determine whether TDLEAF( � ) or TD-
DIRECTED( � ) couldfind betterweightsthanstandardTD( � ). To testthis,we
took two copiesof the FIBS weights,the endproductof a standardTD( � )
trainingrun,andtrainedonewith eachof ourvariantsandself-play.

The networks were trained for 50000games,and check-pointedevery
5000 games.To test the effectivenessof the training, the check-pointnet-
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18 J.BAXTER, A. TRIDGELL, AND L. WEAVER

works were playedagainstthe unmodifiedFIBS weightsfor 1600 games,
with bothsidessearchingto two-ply andthematchscorebeingrecorded.

The resultsfluctuatedaroundparity with the FIBS weights (the result
of training with standardTD( � ) for the durationof the training, with no
consistentor statisticallysignificantchangein relative performancebeing
observed.

If theoptimalnetworksfor two-ply andone-plyplayarenot thesame,we
would expectour variantsto achieve someimprovementover the courseof
50000gamesof training.That this didn’t happen,suggeststhat thesolution
foundby standardTD( � ), whichonly searchesto one-plyin training,is either
ator neartheoptimalfor two-ply play.

6. Future work

TDLEAF( � ) isageneralmethodfor combiningsearchandTD( � ). As such,it
shouldbeapplicableto domainswheresearchis beneficialandanevaluation
functionneedsto belearnt.Thisincludesgamessuchasothello,shogi,check-
ers,andGo.However, therearealsomany non-gamedomainsrequiringdeep
searchwhich may benefitfrom on-line learningof an evaluationfunction.
Theseinclude agentplanning,automatedtheoremproving, and instruction
schedulingin optimisingcompilers.

We alsoneednoteof the backgammonresultof section5, which shows
thatdeepersearchingTDLEAF( � ) andTD-DIRECTED( � ) don’t alwaysim-
prove on thesolutionof one-steplook-aheadTD( � ). This begsthequestion
of whetherour variantswill, in general,converge to solutionsof the same
quality as TD( � ). Obviously domainspecificcharacteristicscan influence
thisÐ , soempirically it is impossibleto prove, but a theoreticalresultwould
beuseful.

For domainswhereboth normal TD( � ) and TDLEAF( � ) are feasible,
the importantquestionof which convergesfasterremainsopen.Backgam-
mon may be an unusualcase,becausethe branchingfactor, inducedby the
stochasticityat eachturn, is quite large andmakes searchingan additional
ply expensive. Thus it is possiblethat TD( � ) converges fasterin termsof
CPUtime,thoughwe suspectthatTDLEAF( � ) mayconvergefasterin terms
of gamesplayed.Ñ

A chessprogramusingonly one-steplook-aheadwould losemostgamesagainstreason-

ablequality opponentsandwould thuslearnto valueall positionsaslost.This contrastswith

KnightCapwhosedeepsearchmakescompetingwith betterplayerspossible.
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7. Conclusion

We have introducedTDLEAF( � ), a variant of TD( � ) suitablefor training
an evaluationfunction usedin minimax search.The only extra requirement
of the algorithm is that the leaf-nodesof the principal variationsbe stored
throughoutthegame.

We presentedsomeexperimentsin which a chessevaluation function
wastrainedfrom B-gradeto masterlevel usingTDLEAF( � ) by on-lineplay
againsta mixtureof humanandcomputeropponents.Theexperimentsshow
both the importanceof “on-line” sampling(as opposedto self-play) for a
deterministicgamesuchaschess,andtheneedto startneara goodsolution
for fastconvergence,althoughjusthow nearis still not clear.

We alsodemonstratedthat in the domainof backgammon,TDLEAF( � )
andTD-DIRECTED( � ) wereunableto improve upona goodnetwork trained
by TD( � ). This suggeststhat the optimal network to usein 1-ply searchis
closeto theoptimalnetwork for 2-ply search.

KnightCap is freely available on the web from
http://wwwsyseng.anu.edu.au/lsg/knightcap.html .
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Appendix

A. KNIGHTCAP

KnightCapis a reasonablysophisticatedcomputerchessprogramfor Unix
systems.It hasall the standardalgorithmicfeaturesthat modernchesspro-
gramstend to have as well as a numberof featuresthat are much less
common.This sectionis meantto give thereaderanoverview of thetypeof
algorithmsthathave beenchosenfor KnightCap.Spacelimitationspreventa
full explanationof all of thedescribedfeatures,aninterestedreadershouldbe
ablefind explanationsin thewidely availablecomputerchessliterature(see
for example(Marsland& Schaeffer, 1990))or by examiningthesourcecode:
http://wwwsyseng.anu.edu.au/lsg.
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A.1. BOARD REPRESENTATION

This is whereKnightCapdiffersmostfrom otherchessprograms.Theprin-
cipalboardrepresentationusedin KnightCapis the topiecesarray. This is an
arrayof 32bit wordswith oneword for eachsquareontheboard.Eachbit in
aword representsoneof the32piecesin thestartingchessposition(8 pieces
+ 8 pawnsfor eachside).Bit Ò onsquareÓ is setif pieceÒ is attackingsquareÓ .

The topiecesarrayhasproved to be a very powerful representationand
allows theeasydescriptionof many evaluationfeatureswhicharemorediffi-
cult or toocostlywith otherrepresentations.Thearrayisupdateddynamically
aftereachmovein suchawaythatfor thevastmajorityof movesonly asmall
proportionof thetopiecesarrayneedbedirectly examinedandupdated.

A simpleexampleof how thetopiecesarrayis usedin KnightCapis deter-
miningwhethertheking is in check.Whereasanin check()functionis often
quiteexpensive in chessprograms,in KnightCapit involvesjust onelogical
AND operationin thetopiecesarray. In asimilar fashiontheevaluationfunc-
tion canfind commonfeaturessuchasconnectedrooksusingjustoneor two
instructions.

The topiecesarrayis alsousedto drive themove generatorandobviates
theneedfor astandardmovegenerationfunction.

A.2. SEARCH ALGORITHM

The basis of the searchalgorithm used in KnightCap is MTD(f) (Plaat
et al., 1996).MTD(f) is a logical extensionof the minimal-window alpha-
betasearchthat formalizesthe placementof the minimal searchwindow to
producewhatis in effect abisectionsearchover theevaluationspace.

The variation of MTD(f) that KnightCap usesincludessomeconver-
genceaccelerationheuristicsthatpreventthevery slow convergencethatcan
sometimesplagueMTD(f) implementations.Theseheuristicsaresimilar in
conceptto themomentumtermscommonlyusedin neuralnetwork training.

TheMTD(f) searchalgorithmis appliedwithin a standarditerative deep-
ening framework. The searchbegins with the depth obtained from the
transpositiontable for the initial searchpositionandcontinuesuntil a time
limit is reachedin the search.Searchorderingat the root nodeensuresthat
partial ply searchresultsobtainedwhenthe timer expirescanbe usedquite
safely.
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A.3. NULL MOVES

KnightCapusesa recursive null move forward pruningtechnique.Whereas
most null move using chessprogramsusea fixed Ô value (the numberof
additionalply to prunewhentrying a null move) KnightCapinsteadusesa
variable Ô valuein an asymmetricfashion.The initial Ô valueis 3 andthe
algorithmthenteststheresultof thenull move search.If it is thecomputers
sideof thesearchandthenull move indicatesthat thepositionis “good” for
thecomputerthenthe Ô valueis decreasedto 2 andthenull move is retried.

Theeffect of this null move systemis thatmostof thespeedof a Ô¹�¹Õ
systemis obtained,while makingnomorenull movedefensiveerrorsthananÔy�:� system.It is essentiallyapessimisticsystem.

A.4. SEARCH EXTENSIONS

KnightCapusesa large numberof searchextensionsto ensurethat critical
lines are searchedto sufficient depth.Extensionsare indicatedthrough a
combinationof factorsincludingcheck,null-movematethreats,pawn moves
to thelast two ranksandrecaptureextensions.In additionKnightCapusesa
singleply razoringsystemwith a0.9pawn razoringthreshold.

A.5. ASYMMETRIES

There are quite a numberof asymmetricsearchand evaluation terms in
KnightCap,with a leaningtowardspessimistic(i.e. careful)play. Apart from
the asymmetricnull move andsearchextensionssystemsmentionedabove,
KnightCapalsousesanasymmetricsystemto decidewhatmovesto try in the
quiescencesearchandseveralasymmetricevaluationtermsin theevaluation
function(suchasking safetyandtrappedpiecefactors).

When combinedwith the TDLEAF( � ) algorithm KnightCapis able to
learnappropriatevaluesfor theasymmetricevaluationterms.

A.6. TRANSPOSITION TABLES

KnightCap usesa standardtwo-deeptranspositiontable with a 128 bit
transpositiontable entry. Each entry holds separatedepth and evaluation
informationfor thelower andupperbound.

The ETTC (enhancedtranspositiontable cutoff) techniqueis usedboth
for move orderingandto reducethetreesize.Thetranspositiontableis also
usedto feedthebooklearningsystemandto initialize thedepthfor iterative
deepening.
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A.7. MOVE ORDERING

Themoveorderingsystemin KnightCapusesacombinationof thecommonly
usedhistory(Schaeffer, 1989),killer, refutationandtranspositiontableorder-
ing techniques.With a relatively expensive evaluationfunction KnightCap
canafford to spenda considerableamountof CPU time on move ordering
heuristicsin orderto reducethetreesize.

A.8. PARALLEL SEARCH

KnightCaphasbeenwritten to takeadvantageof paralleldistributedmemory
multi-computers,usinga parallelismstrategy that is derived naturally from
the MTD(f) searchalgorithm.Somedetailson the methodologyusedand
parallelismresultsobtainedareavailablein (Tridgell,1997).Theresultsgiven
in thispaperwereobtainedusingasingleCPUmachine.

A.9. EVALUATION FUNCTION

The heartof any chessprogramis its evaluationfunction. KnightCapuses
quite a slow evaluation function that evaluatesa numberof computation-
ally expensive features.Theevaluationfunctionalsohasfour distinctstages:
Opening,Middle, EndingandMating, eachwith its own setof parameters
(but thesamefeatures).Wehave listedthenamesof all KnightCap’s features
in tableA.9. Notethatsomeof thefeatureshavemorethanoneparameteras-
sociatedwith them,for examplethereare64parametersassociatedwith rook
position,onefor eachsquare.Thesefeaturesall begin with “I”. To summa-
rize just a few of themoreobscurefeatures:IOPENING KING ADVANCE
is a bonusfor the rank of the king in the opening,it has 8 parameters,
one for eachrank. IMID KING ADVANCE is the samebut appliesin the
middle game(the fact that we have separatefeaturesfor the openingand
middle gamesis a hangover from KnightCap’s early days when it didn’t
haveseparateparametersfor eachstage).IKING PROXIMITY is thenumber
of moves betweenour king and the opponentsking. It is very useful for
forcing matesin the ending.Again thereis one parameterfor eachof the
8 possiblevalues.IPOSBASE is the basescorefor controlling eachof the
squares.IPOSKINGSIDE andIPOS QUEENSIDEaremodificationsadded
to IPOS BASEaccordingasKnightCapis castledon theking or queensides
respectively. TheMOBILITY scoresarethenumberof movesavailableto a
piece,thresholdingat 10. Thereis a separatescorefor eachrank the piece
is on, hencethe total numberof parametersof 80. TheSMOBILITY scores
arethe same,but now the squarethe pieceis moving to hasto be safe(i.e
controlledby KnightCap).THREAT andOPPONENTSTHREAT arecom-
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putedby doinga minimaxsearchon thepositionin which only capturesare
consideredandeachpiececanmove only once.Its not clear this helpsthe
evaluationmuch,but it certainly improvesmove ordering(the bestcapture
is given a high weight in the ordering).IOVERLOADED PENALTY is a
penaltythatis appliedto eachpiecefor thenumberof otherwisehungpieces
it is defending.There is a separatepenalty for eachnumber, thresholding
at 15 (this could be donebetter:we shouldhave a basescoretimesby the
numberof pieces,andhave KnightCaplearnthebasescoreanda perturba-
tion on the basescorefor eachnumber).IQ KING ATTACK OPPONENT
and INOQ KING ATTACK OPPONENTare bonusesfor the number of
piecesKnightCaphasattackingthe squaresaroundthe enemyking, both
with andwithoutqueensontheboard.IQ KING ATTACK COMPUTERand
INOQ KING ATTACK COMPUTERare the samething for the opponent
attackingKnightCap’s king. Notethatthis asymmetryallows KnightCapthe
freedomto learn to be cautiousby assigninggreaterweight to opponent
piecesattackingits own king that it doesto its own piecesattackingthe
opponent’s king. It can of coursealso usethis to be aggressive. For more
informationon thefeatures,seeeval.c in KnightCap’s sourcecode.

Themostcomputationallyexpensive partof theevaluationfunctionis the
“boardcontrol”. This functionevaluatesacontrolfunctionfor eachsquareon
theboardto try to determinewho controlsthesquare.Controlof a squareis
essentiallydefinedby determiningwhethera playercanusethesquareasa
flight squarefor apiece,or if aplayercontrolsthesquarewith apawn.

Despitethe fact that the boardcontrol function is evaluatedincremen-
tally, with the control of squaresonly being updatedwhen a move affects
thesquare,thefunctiontypically takesaround30%of thetotal CPUtime of
theprogram.This high costis consideredworthwhilebecauseof theflow-on
effectsthatthis calculationhason otheraspectsof theevaluationandsearch.
Theseflow-oneffectsincludetheability of KnightCapto evaluatereasonably
accuratelythepresenceof hung,trappedandimmobilepieceswhich is nor-
mally a severeweaknessin computerplay. We have alsonotedthatthemore
accurateevaluationfunctiontendsto reducethesearchtreesizethusmaking
up for thedecreasednodecount.

A.10. MODIFICATION FOR TDLEAF( � )

Themodificationsmadeto KnightCapfor TDLEAF( � ) affecteda numberof
theprogram’s subsystems.Thelargestmodificationsinvolvedtheparameter-
ization of the evaluationfunction so that all evaluationparametersbecame
partof a singlelong weightvector. All tunableevaluationknowledgecould
thenbedescribedin termsof thevaluesin thisvector.

The next major modificationwasthe additionof the full boardposition
in all datastructuresfrom which anevaluationvaluecouldbeobtained.This
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TableI. KnightCap’s featuresandthe numberof parameterscorrespondingto each.

Mostof thefeaturesareself-explanatory, seethetext for adescriptionof themoreob-

scureones.NotethatKnightCap’s largenumberof parametersis obtainedby summing

all thenumbersin this tableandthenmultiplying by thenumberof stages(four).

Feature # Feature #

BISHOPPAIR 1 CASTLE BONUS 1

KNIGHT OUTPOST 1 BISHOPOUTPOST 1

SUPPORTED KNIGHT OUTPOST 1 SUPPORTED BISHOPOUTPOST 1

CONNECTEDROOKS 1 SEVENTH RANK ROOKS 1

OPPOSITEBISHOPS 1 EARLY QUEEN MOVEMENT 1

IOPENING KING ADVANCE 8 IMID KING ADVANCE 8

IKING PROXIMITY 8 ITRAPPEDSTEP 8

BLOCKED KNIGHT 1 USELESSPIECE 1

DRAW VALUE 1 NEAR DRAW VALUE 1

NO MATERIAL 1 MATING POSITION 1

IBISHOP XRAY 5 IENDING KPOS 8

IROOK POS 64 IKNIGHT POS 64

IPOSBASE 64 IPOS KINGSIDE 64

IPOSQUEENSIDE 64 IKNIGHT MOBILITY 80

IBISHOP MOBILITY 80 IROOK MOBILITY 80

IQUEEN MOBILITY 80 IKING MOBILITY 80

IKNIGHT SMOBILITY 80 IBISHOP SMOBILITY 80

IROOK SMOBILITY 80 IQUEEN SMOBILITY 80

IKING SMOBILITY 80 IPIECE VALUES 6

THREAT 1 OPPONENTSTHREAT 1

IOVERLOADED PENALTY 15 IQ KING ATTACK COMPUTER 8

IQ KING ATTACK OPPONENT 8 INOQ KING ATTACK COMPUTER 8

INOQ KING ATTACK OPPONENT 8 QUEEN FILE SAFETY 1

NOQUEEN FILE SAFETY 1 IPIECE TRADE BONUS 32

IATTACK VALUE 16 IPAWN TRADE BONUS 32

UNSUPPORTED PAWN 1 ADJACENT PAWN 1

IPASSEDPAWN CONTROL 21 UNSTOPPABLE PAWN 1

DOUBLED PAWN 1 WEAK PAWN 1

ODD BISHOPSPAWN POS 1 BLOCKED PASSED PAWN 1

KING PASSED PAWN SUPPORT 1 PASSEDPAWN ROOK ATTACK 1

PASSEDPAWN ROOK SUPPORT 1 BLOCKED DPAWN 1

BLOCKED EPAWN 1 IPAWN ADVANCE 7

IPAWN ADVANCE1 7 IPAWN ADVANCE2 7

KING PASSED PAWN DEFENCE 1 IPAWN POS 64

IPAWN DEFENCE 12 ISOLATED PAWN 1

MEGA WEAK PAWN 1 IWEAK PAWN ATTACK VALUE 8
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involved the substitutionof a structurefor the usualscalarevaluationtype,
with theevaluationfunctionfilling in theevaluatedpositionandotherboard
stateinformationduring eachevaluationcall. Similar additionsweremade
to the transpositiontableentriesso that the resultof a searchwould always
have availableto it thepositionassociatedwith theleaf nodein theprincipal
variation.This significantlyenlargesthe transpositiontableandmeansthat
to operateeffectively with the MTD(f) searchalgorithm(itself a memory-
hungry n - � variant), KnightCapreally needsat least30Mb of hashtable
whenlearning.

Theonly othersignificantmodificationthatwasrequiredwasanincrease
in thebit resolutionof theevaluationtypesothata numericalpartialderiva-
tiveof theevaluationfunctionwith respectto theevaluationcoefficientvector
couldbeobtainedwith reasonableaccuracy.
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