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principle amongthem being the use of on-line, rather than self-play We also investigate
whetherTDLEAF()) canyield betterresultsin the domainof backgammonwhere TD(\)
haspreviously yieldedstriking success.
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2 J.BAXTER, A. TRIDGELL, AND L. WEAVER

1. Introduction

TemporalDifferencelearning, first introducedby Samuel(Samuel,1959)
and later extendedand formalized by Sutton (Sutton,1988)in his TD())
algorithm,is an eleganttechniquefor approximatinghe expectedong term
future cost(or cost-to-g9 of a stochastiadynamicalsystemasa function of
thecurrentstate. The mappingfrom statego futurecostis implementedy a
parameterizefunctionapproximatorsuchasa neuralnetwork. The parame-
tersareupdatednlineaftereachstatetransition,or possiblyin batchupdates
afterseveralstatetransitions.The goalof thealgorithmis to improve the cost
estimatesas the numberof obsered statetransitionsand associatedosts
increases.

Perhapshemostremarkablesuccessf TD()) is Tesauras TD-Gammon,
a neuralnetwork backgammorplayer that was trainedfrom scratchusing
TD(A) and simulatedself-play TD-Gammonis competitve with the best
humanbackgammorplayers (Tesauro,1994). In TD-Gammonthe neural
network playeda dualrole, bothasa predictorof the expectedcost-to-goof
thepositionandasameando selectmoves.In ary positionthenext movewas
chosengreedilyby evaluatingall positionsreachabldérom the currentstate,
andthen selectingthe move leadingto the positionwith smallestexpected
cost. The parameter®f the neuralnetwork were updatedaccordingto the
TD(A) algorithmaftereachgame.

Althoughthe resultswith backgammorarequite striking, thereis linger
ing disappointmenthatdespiteseveral attemptsthey have notbeenrepeated
for other board gamessuchas othello, Go and the “drosophilaof Al” —
chesqThrun,1995;Walker, Lister, & Downs,1993;SchraudolphDayan,&
Sejnavski, 1994).

Many authorshave discussethepeculiaritiesof backgammorthatmale it
particularlysuitablefor TemporaDifferencdearningwith self-play(Tesauro,
1992; Schraudolphet al., 1994; Pollack, Blair, & Land, 1996). Principle
amongtheseare speedof play. TD-Gammonlearntfrom several hundred
thousandyamesof self-play representatiorsmoothnesshe evaluationof a
backgammopositionis areasonablgmoothfunctionof theposition(viewed,
say as a vector of piece counts),makingit easierto find a good neural
network approximation,and stodasticity backgammoris a randomgame
which forcesat leasta minimal amountof explorationof searchspace.

As TD-Gammonin its original form only searche@ne-plyaheadwe feel
this list should be appendedvith: shallow seach is good enoughagainst
humans Thereare two possiblereasondor this; either one doesnot gain
a lot by searchingdeeperin backgammonquestionablegyiven that recent
versionsof TD-Gammonsearchto three-plyandthis significantlyimproves
their performance)pr humansaresimply incapableof searchingleeplyand
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so TD-Gammonis only competingin a pool of shallaw searchersAlthough

weknow of no psychologicaktudiesnvestigatinghedepthto whichhumans
searchn backgammonit is plausiblethatthe combinationof high branching
factorandrandommove generatiormalesit quite difficult to searchmore
thanoneor two-ply aheadIn particular randommove generatioreffectively

preventsselectve searchor “forward pruning” becauset enforcesa lower

boundonthebranchingfactorateachmove.

In contrastfinding arepresentatiofor chesspthelloor Gowhichallowsa
smallneuralnetwork to ordermovesat one-plywith nearhumanperformance
is a far more difficult task. It seemsthat for thesegames reliable tactical
evaluationis difficult to achieve without deeplookaheadAs deeplookahead
invariably involves somekind of minimax searchwhich in turn requiresan
exponentialincreasen the numberof positionsevaluatedasthe searchdepth
increasesthe computationalkostof the evaluationfunction hasto be low,
ruling outthe useof expensve evaluationfunctionssuchasneuralnetworks.
Consequentlymost chessand othello programsuselinear evaluationfunc-
tions (the branchingfactorin Go makes minimax searchto ary significant
depthnearlyinfeasible).

Ourgoalis to developtechniquedor usingTD()\) in domainsdominated
by searchin this papermwe introduceTDLEAF(A), avariationonthe TD(\)
algorithm, that can be usedto learn an evaluationfunction for usein deep
minimaxsearchTDLEAF(A) differsfrom TD(A) in thatinsteadof operating
on positionsthat occurduring the game,it operateson the leaf nodesof the
principal variation of a minimax searchfrom eachposition (alsoknown as
theprincipal leave$.

To test the effectivenessof TDLEAF()\), we incorporatedit into our
own chessprogram— KnightCap KnightCaphasa particularlyrich board
representatioriacilitating computationof sophisticatechositionalfeatures,
althoughthis is achiered at some cost in speed(KnightCapis about 10
times slower than Crafty — the bestpublic-domainchessprogram— and
6,000times slower than DeepBlue). We trainedKnightCaps linear evalu-
ation function using TDLEAF()A) by playing it on the FreelnternetChess
Sener (FICS,fi cs. onenet . net ) andon the InternetChessClub (ICC,
chesscl ub. com). Internetplay was usedto avoid the prematureconver-
gencedifficultiesassociatedavith self-play Themainsuccesstorywe report
is that startingfrom an evaluationfunctionin which all coeficientswereset
to zeroexceptthe valuesof the pieces,KnightCapwent from a 1650-rated
playerto a 2150-ratecplayerin justthreedaysand308 gamesKnightCapis
anongoingprojectwith new featuresbeingaddedto its evaluationfunction
all thetime. We useTDLEAF()) andInternetplay to tunethe coeficientsof
thesefeatures.

Simultaneouslywith the work presentechere,Beal and Smith (Beal &
Smith,1997)reportedpositve resultsusingessentiallyTDLEAF()A) andself-
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4 J.BAXTER, A. TRIDGELL, AND L. WEAVER

play (with somerandommaove choice)whenlearningthe parameter®sf an
evaluationfunctionthat only computedmaterialbalancein chessHowever,
they werenot comparingperformanceagainston-line players,but werepri-
marily investigatingvhethertheweightswould convergeto “sensiblevalues
atleastasgoodasthe nawe (1, 3, 3, 5, 9) valuesfor (pawvn, knight, bishop,
rook, queen)they did, in about2000games).

Sutton and Barto (Sutton & Barto, 1998) have outlined, but not im-
plementeda schemefor combining TD-style backupswith deepminimax
searchTheirmethodwould calculateall theone-stemifferenceseenduring
the constructiorof the searchiree.

The remainderof this paperis organizedas follows. In section2 we
describethe TD()\) algorithmasit appliesto games.The TDLEAF()) al-
gorithm is describedin section 3. Experimentalresultsfor Internet-play
with KnightCapare given in section4, while section5 looks at applying
TDLEAF(A) to backgammorwhere TD(A) has had its greatestsuccess.
Section7 containssomediscussiorandconcludingremarks.

2. TheTD()) algorithm applied to games

In this sectionwe describehe TD () algorithmasit appliesto playingboard
gamesWe discusshe algorithmfrom the point of view of anagentplaying

thegame.
Let S denotethe setof all possibleboard positionsin the game.Play
proceedsn a seriesof movesat discretetime stepst = 1,2,.... At time

t the agentfinds itself in somepositionz; € S, andhasavailable a setof
moves, or actionsA;, (thelegal movesin positionz;). The agentchooses
anactiona € A,;, and makes a transitionto statex;,; with probability
p(x¢, Tr41,a). Herex,yq is the positionof the boardafter the agents move
andthe opponent responseWhenthe gameis over, the agentreceves a
scalareward, typically “1” for awin, “0” for adraw and“-1" for aloss.

For easeof notationwe will assumeall gameshave a fixed lengthof N
(this is not essential)Let r(z) denotethe reward receved at the end of
thegame.lf we assumehatthe agentchoosests actionsaccordingto some
functiona(z) of thecurrentstater (sothata(z) € A;), theexpectedreward
from eachstatexr € S is givenby

J*(ZE) = zN|zr(xN)7 (1)

where the expectation is with respectto the transition probabilities
p(zy, z441,a(x)) andpossiblyalsowith respecto the actionsa(z;) if the
agentchoosests actionsstochastically
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For very large statespacesS it is not possiblestorethevalueof J*(x) for
every z € S, soinsteadwe mighttry to approximate/* usinga parameter
izedfunctionclassJ: S x R¥ — R, for examplelinear functions,splines,
neuralnetworks, etc. J (-, w) is assumedo be a differentiablefunction of its
parametersy = (wy, ..., wy). Theaimis to find a parametewectorw € RF
that minimizes somemeasureof error betweenthe approximation.J (-, w)
andJ*(-). The TD(X) algorithm,which we describenow, is designedo do
exactly that.

Supposery,...,xn_1, TN IS @ Sequencedf statesin one game.For a
given parameterectorw, definethe tempoal differenceassociateavith the
transitionz; — x¢4+1 by

dy := j(xH-la w) - j(xta w) (2)

Notethatd; measurethedifferencebetweertherewardpredictedoy J(-, w)
attimet¢+1, andtherewardpredictedby J (-, w) attimet. Thetrueevaluation
function.J* hasthe property

Egy i1z, [T (#t41) — T (2)] = 0,

soif J(-,w) is a good approximationto J*, E4, .1 |z.dr shouldbe closeto
zero.For easeof notationwe will assumehat.J(zy,w) = r(zy) aways,so
thatthefinal temporaldifferencesatisfies

dy_1 =J(zn,w) — J(zn_1,w) =r(zn) — J(ZN_1,W).

Thatis, dn_1 is thedifferencebetweerthetrue outcomeof thegameandthe
predictionat the penultimatemove.

At theendof thegamethe TD () algorithmupdateshe parametevector
w accordingo theformula

N-1 N-1
wi=w+« Z VJ(xs,w) Z N, 3)
=1 =t

whereV.J (-, w) is thevectorof partialderivativesof J with respecto its
parametersThe positve parametein controlsthe learningrate and would
typically be “annealed”towards zero during the courseof a long seriesof
games.The parametet\ € [0, 1] controlsthe extentto which temporaldif-
ferencegpropagatédackwardsin time. To seethis, compareequation(3) for
A=0
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6 J.BAXTER, A. TRIDGELL, AND L. WEAVER

N—-1
wi=w+«a Z VJ (x4, w)dy
t=1

N-1
=w + « Z VJ(z¢,w) I:j(./Et+1,'LU) - j(:ct,w)] 4)
t=1
and\ = 1:
N-1
wi=w+ « Z VJ(z, w) [r(a:N) - j(xt,w)] . (5)

t=1

Considereachtermcontrituting to thesumsin equationg4) and(5). For A =

0 the parametewectoris beingadjustedn suchaway asto move J (z;, w)—

the predictedreward at time t—closerto J(z:41, w)—the predictedreward
attime ¢ + 1. In contrast,TD(1) adjuststhe parametewvectorin suchaway
asto move the predictedreward at time stept closerto the final reward at
time step N. Valuesof A betweenzero and one interpolatebetweenthese
two behaiours. Note that (5) is equ'valenttozgradientdescen'on the error
function E(w) := V7! [T(xN) - j(xt,w)]

Successie parameteupdatesaccordingto the TD () algorithmshould,
overtime, leadto improved predictionsof the expectedreward J(-, w). Pro-
vided the actionsa(z;) areindependenbf the parametenector w, it can
be shavn thatfor linear j(-, w), the TD()\) algorithmconvergesto a near
optimalparametevector(Tsitsikilis & Roy, 1997).Unfortunatelythereis no
suchguaranteéf J(-,w) is non-linear(Tsitsikilis & Roy, 1997),or if a(z;)
depend®nw (Bertseka® Tsitsiklis, 1996).

3. Minimax search and TD(\)

For aguments sale, assumeary actiona takenin stater leadsto predeter
minedstatewhich we will denoteby z/,. Oncean approximationJ(-, w) to
J* hasbeenfound, we canuseit to chooseactionsin statex by picking the
actiona € A, whosesuccessostatez!, minimizesthe opponens expected
reward':

a*(z) := agmin,c 4 j(x;,w) (6)

L If successostatesareonly determinedstochasticallypy thechoiceof a, wewould choose

theactionminimizing the expectedreward over the choiceof successostates.
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Figure 1. Full breadth3-ply searchtreeillustratingthe minimaxrule for propagatingralues.
Eachof the leaf nodes(H-O) is given a scoreby the evaluation function, j(-, w). These
scoresare then propagatedack up the tree by assigningto eachopponens internal node
the minimum of its children’s values,andto eachof our internalnodesthe maximumof its
children’ values.The principle variationis thenthe sequencef bestmovesfor eitherside
startingfrom theroot node,andthis is illustratedby a dashedine in thefigure. Note thatthe
scoreat the root nodeA is the evaluationof the leaf node(L) of the principal variation.As
therearenotiesbetweerary siblings,thederivative of A’'sscorewith respecto theparameters
wisjust VJ (L, w).

This was the stratgy usedin TD-Gammon.Unfortunately for gameslike
othelloandchesst is very difficult to accuratelyevaluatea positionby look-
ing only one move or ply ahead.Most programsfor thesegamesemploy
someform of minimaxsearch.In minimax search,one builds a tree from
positionz by examiningall possiblemovesfor the computelin thatposition,
thenall possiblemovesfor the opponentandthenall possiblemovesfor the
computerand so on to somepredeterminediepthd. The leaf nodesof the
treearethenevaluatedusinga heuristicevaluationfunction (suchasj(-, w)),
andtheresultingscoresarepropagatedbackup the treeby choosingat each
stagethe move which leadsto the bestpositionfor the playeron the move.
SeeFigure 3 for an example gametree and its minimax evaluation. With
referenceto the figure, notethat the evaluationassignedo the root nodeis
the evaluationof the leaf node of the principal variation;, the sequenceof
movestaken from theroot to the leafif eachsidechooseghe bestavailable
move.

In practicemary engineeringricks areusedto improve the performance
of theminimaxalgorithm,a — 3 searchbeingthe mostfamous.

Let J4(z, w) denoteheevaluationobtainedor stater by applying.J (-, w)
to the leaf nodesof a depthd minimax searchfrom z. Our aimis to find a
parametewnector w suchthat Jy(-,w) is a good approximationto the ex-
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Figure 2. A searchtreewith anon-uniqueprincipalvariation(PV). In this casethe derivative
of the root node A with respectto the parameterf the leaf-nodeevaluation function is
multi-valued eitherV J(H,w) or V.J(L, w). Exceptfor transpositiongin which caseH and
L areidenticalandthe derivative is single-\aluedarnyway), such“collisions” arelikely to be
extremelyrare,soin TDLEAF(A) weignorethemby choosingaleaf nodearbitrarily from the
availablecandidates.

pectedreward J*. Oneway to achieve this is to apply the TD()) algorithm
to J4(z,w). Thatis, for eachsequencef positionszy, ...,z x in agamewe
definethetemporaldifferences

dp == Ja(Tpi1,w) — Ja(zg,w) (7)

asper equation(2), andthenthe TD(\) algorithm (3) for updatingthe
parameterectorw becomes

N-1 N-1

wi=wta Yy Vin,w) | D N . (8)

t=1 j=t

One problemwith equation(8) is thatfor d > 1, Jy(z,w) is not nec-
essarilya differentiablefunction of w for all valuesof w, evenif J(-,w) is
everywheredifferentiable This is becausdor somevaluesof w therewill be
“ties” in theminimaxsearchi.e.therewill bemorethanonebestmove avail-
ablein someof the positionsalongthe principal variation,which meanghat
theprincipalvariationwill notbeunique(seeFigure2). Thus,theevaluation
assignedo the root node,jd(a:,w), will be the evaluationof ary oneof a
numberof leafnodes.

Fortunately undersomemild technicalassumption®n the behaiour of
J(z,w), it canbe shavn thatfor eachstatez, the setof w € R¥ for which
Jy(z,w) is not differentiablehasLebesguaneasurezero. Thusfor all states
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z andfor “almostall” w € R*, Jy(z,w) is a differentiablefunction of w.
Notethat Jy(z, w) is alsoa continuousiunction of w wheneer J(z, w) is a
continuousfunctionof w. This impliesthateven for the “bad” pairs(z, w),
VJi(z,w) is only undefinedbecauset is multi-valued. Thus we can still
arbitrarily choosea particularvalue for de(:c, w) if w happendo landon
one of the bad points. One final point to note is that aswe searchdeeper
discontinuitiesn the gradientarelikely to becomemore denseandso most
stepan parametespacearelik ely to stepclearacrossseveraldiscontinuities.
However, this did not seemto hurt usin our experimentswith chessproba-
bly becausehe gradientdoesnot changeall thatradically betweenadjacent
regionsin parametespaceg(of constangradient).

Basedon theseobsenrations we modified the TD()\) algorithmto take
accountof minimaxsearchn analmosttrivial way: insteadof working with
therootpositionse, . .., zx, theTD(\) algorithmis appliedto theleafposi-
tionsfoundby minimaxsearchrom therootpositions We call thisalgorithm
TDLEAF(A). Full detailsaregivenin Figure3.

4, TDLEAF(A) and chess

In this sectionwe describethe outcomeof several experimentsn which the
TDLEAF(A) algorithmwasusedto train the weightsof a linear evaluation
functionin our chessprogram“KnightCap”. For detailsaboutthe program
itself, seeAppendixA.

4.1. EXPERIMENTS WITH KNIGHTCAP

In our main experimentwe took KnightCaps evaluationfunctionandsetall
but the materialparameterso zero.The materialparametersvereinitialized
to thestandardcomputer’values:1 for apawn, 4 for aknight,4 for abishop,
6 for arook and 12 for a queen.With theseparametersettingsknightCap
(underthe pseudogm “WimpKnight”) wasstartedontheFreelnternetChess
sener (FICS,fi cs. onenet . net ) againstboth humanandcomputerop-
ponentsWe playedKnightCapfor 25gameswvithoutmodifyingits evaluation
functionsoasto getareasonablédeaof its rating. After 25 gamest hada
blitz (fasttime control) rating of 1650 + 502, which put it at aboutB-grade
humanperformance(on a scalefrom E (1000)to A (1800)), althoughof
coursethe kind of gameKnightCapplayswith just materialparameterset
is very differentto humanplay of the samedevel (KnightCapmakesno short-
termtacticalerrorsbut is positionally completelyignorant).We thenturned

2 Thestandardieviation for all ratingsreportedn this sectionis about50.
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Let j(-,w) bea classof evaluationfunctionsparameterizethy w € R*. Let
z1,...,2y be N positionsthat occurredduring the courseof a game,with
r(z ) theoutcomeof thegame For notationalcorveniencesetJ (zy, w) =

r(zn).

1. For eachstatex;, computejd(xi,w) by performingminimax searchto
depthd from z; andusing J(-,w) to scorethe leaf nodes.Note that d
may vary from positionto position.

2. Let xﬁ denotethe leaf node of the principle variation startingat ;. If
thereis morethanone principal variation,choosea leaf nodefrom the
availablecandidatest random.Notethat

3.Fort=1,...,N — 1, computethetemporaldifferences:
dt = j(l‘é-l—law) - j(mé,w) (10)

4. Updatew accordingo the TDLEAF(A) formula:

N-1 N-1
wi=w+ Z VJ(z,w) Z U A (11)
t=1 j=t

Figure 3. The TDLEAF()) algorithm

onthe TDLEAF()) learningalgorithm,with A = 0.7 andthe learningrate
a = 1.0. Thevalueof A waschoserheuristically basedon thetypical delay
in movesbeforean errortakeseffect, while e wassethigh enoughto ensure
rapid modificationof the parametersA coupleof minor modificationsto the
algorithmweremade:

— Theraw (Iinear)Ieafnodeevaluationsf(xé, w) werecorvertedto ascore
between-1 and1 by computing

vl := tanh [ﬂj(mi,w)] .
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This ensuredsmall fluctuationsin the relative valuesof leaf nodesdid
notproducelargetemporaldifferences(thevalueSUZl- wereusedin place
of j(xé,w) in the TDLEAF(A) calculations)The outcomeof thegame
r(x ) wassetto 1 for awin, —1 for alossand0 for adraw. 8 wasset

to ensurethata value of tanh [ﬂj(:cé, w)] = 0.25 wasequialentto a
materialsuperiorityof 1 pawn (initially).

— Thetemporaldifferencesd; = v/, , — v}, weremodifiedin the follow-
ing way. Negative valuesof d; wereleft unchangedsary decreasén
the evaluationfrom onepositionto the next canbe viewed asmistale.
However, positive valuesof d; canoccursimply becausehe opponent
hasmadea blunder To avoid KnightCaptrying to learnto predictits
opponens blunders,we set all positve temporaldifferencesto zero
unlessknightCappredictecthe opponent move?.

— Thevalue of a pavn was kept fixed at its initial value so asto allow
easyinterpretationof weightvaluesasmultiplesof the pavn value (we
actuallyexperimentedvith notfixing the pavn valueandfoundit made
little differenceafter1764gameswith anadjustablgpawn its valuehad
fallenby lessthan7 percent).

Within 300 gamesKnightCaps rating hadrisento 2150, an increaseof
500 pointsin threedays,andto a level comparablevith humanmastersAt
this point KnightCaps performancebeganto plateau,primarily becauset
doesnot have an openingbook andsowill repeatedlyplay into weaklines.
We have sinceimplementednopeningbooklearningalgorithmandwith this
KnightCapnow playsataratingof 2400-250@peak2575)ontheothermajor
Internetchesssener: ICC, chesscl ub. cont. It often beatsInternational
Mastersatblitz. Also, becaus&nightCapautomaticallylearnsits parameters
we have beenableto add a large numberof new featuresto its evaluation
function: KnightCapcurrentlyoperatesvith 5872featureq1468featuresn
four stagesopeningmiddle,endingandmating). With this extra evaluation

% In alaterexperimentwe only setpositive temporaldifferencego zeroif KnightCapdid
not predictthe opponent move and the opponentwasratedlessthanKnightCap.After all,
predictinga strongeropponens blundersis a useful skill, althoughwhetherthis madeary

differenceis notclear
4 Thereappeargo be a systematidifferenceof around200-250pointsbetweerthe two

seners,soa peakrating of 25750n ICC roughly correspondso a peakof 23500n FICS.We

transferredknightCapto ICC becausegherearemorestrongplayersplayingthere.
5 In reality therearenot 1468independentconcepts’perstagein KnightCaps evaluation

functionasmary of thefeaturescomein groupsof 64, onefor eachsquareon the board(like

thevalueof placingarook on a particularsquarefor example).
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power KnightCapeasilybeatsversionsof Crafty restrictedto searchonly as
deepasitself. However, a big caveatto all this optimistic assessmens that
KnightCaproutinely getscrushecby fasterprogramssearchingnoredeeply
It is quiteunlikely this canbe easilyfixedsimply by modifyingtheevaluation
function,sincefor this to work onehasto be ableto predicttacticsstatically
somethingthat seemsvery difficult to do. If onecould find an effective al-
gorithmfor “learning to searchselectvely” therewould be potentialfor far
greateimprovement.

Note that we have twice repeatedthe original learningexperimentand
found a similar rate of improvementandfinal performancdevel. Therating
asafunctionof thenumberof gamedrom oneof theserepeatrunsis shavn
in Figure4 (we did notrecordthis informationin thefirst experiment).Note
thatin this caseKnightCaptook nearlytwice aslong to reachthe 2150mark,
but thiswaspartly becausé wasoperatingwith limited memory(8Mb) until
game500 at which point the memorywasincreasedo 40Mb (KnightCaps
searchalgorithm— MTD(f) (Plaat,Schaefier, Pijls, & deBruin, 1996)— is
amemoryintensve variantof a—3 andwhenlearningKnightCapmuststore
the whole positionin the hashtable so small memorysignificantly impacts
uponperformance)Anotherreasormay alsohave beenthatfor a portion of
therun we wereperformingparameteupdatesafter every four gamegather
thanevery game.

We alsorepeatedhe experimentusinganothewariantof TD (), in which
thetemporaldifferencescalculatedverethosebetweerthepositionsactually
occurringin the game,even thoughthesepositionshad beenselectedby a
deepminimax searchratherthan the usualone-ply searchassociatedvith
TD(A). We have dubbedthis variant“ TD-DIRECTED(A)”. With it we ob-
sened a 200 point rating rise over 300 games A significantimprovement,
but much slover than TDLEAF(A) and a lower peak.Its performanceon
backgammoris discussedn sectionb.

Plotsof variousparameterssa function of the numberof gamesplayed
areshavn in Figure5 (theseplotsarefrom the sameexperimentin Figure4).
Eachplot containghreegraphscorrespondingo the threedifferentstagef
the evaluationfunction: opening middleandending'.

Finally, we comparedthe performanceof KnightCap with its learnt
weightsto KnightCaps performancavith a setof hand-codedveights,again
by playing the two versionson ICC. The hand-codedveightswere closein
performanceo the learntweights(perhaps0-100rating pointsworse).We
alsotestedthe resultof allowing KnightCapto learnstartingfrom the hand-
codedweights,andin this caseit seemghatKnightCapperformsbetterthan

6 KnightCapactually hasa fourth andfinal stage“mating” which kicks in whenall the
pawnsareoff, but this stageonly usesafew of the coeficients(opponens king mobiliity and
proximity of ourking to theopponens king).
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Figure 4. KnightCaps rating asa function of gamesplayed(secondexperiment).Learning

wasturnedon atgame0.

when startingfrom just materialvalues(peakperformancevas 2632 com-
paredto 2575,but thesefiguresarevery noisy).We areconductingnoretests
to verify theseresults.However, it shouldnot betoo surprisingthatlearning
from agoodquality setof hand-craftegharameterss betterthanjustlearning
from materialparametersin particular someof the handcraftegparameters
have very high values(the value of an “unstoppablepavn”, for example)
which cantake a very long time to learn undernormal playing conditions,
particularlyif they arerarelyactive in the principalleaves.lt is not yet clear
whethergiven a sufficient numberof gamesthis dependencen the initial
conditionscanbe madeto vanish.

4.2. DISCUSSION

Thereappearto be a numberof reasondor the remarkablerate at which
KnightCapimproved.

1. Asall thenon-materialveightswereinitially zero,evensmallchangesn
theseweightscould causevery large changesn the relatve orderingof
materiallyequalpositions Henceevenafterafew gamenightCapwas
playinga substantiallybettergameof chess.
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Figure5. Evolution of two parametergbonusfor castlingandpenaltyfor adoubledpawn) as
afunctionof thenumberof gamesplayed.Notethateachparameteappearshreetimes:once
for eachof thethreestagesn the evaluationfunction.
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2. It seemdo beimportantthat KnightCapstartedout life with intelligent
material parametersThis put it closein parameterspaceto mary far
superiorparametesettings.

3. Mostplayerson FICSpreferto play opponent®f similar strengthandso
KnightCaps opponentsmprovedasit did. This may have hadthe effect
of guidingKnightCapalonga pathin weightspacehatledto astrongset
of weights.

4. KnightCapwaslearningon-line, not by self-play The adwantageof on-
line play is that thereis a greatdeal of information provided by the
opponens moves.In particular againsta strongeropponentnightCap
wasbeingshavn positionsthat 1) could be forced (againstKnightCaps
weak play) and 2) were mis-evaluatedby its evaluation function. Of
course,in self-play KnightCap can also discover positionswhich are
misevaluated but it will not find the kinds of positionsthatarerelevant
to strongplay againstotheropponentsin this setting,onecanview the
information provided by the opponens moves as partially solving the
“exploration” partof the exploration/exploitation tradeof.

To further investigatethe importanceof some of thesereasons,we
conductedseveralmoreexperiments.

Goodinitial conditions
A secondexperimentwas run in which KnightCaps coeficients were all
initialisedto thevalueof a pavn. Thevalueof a pavn needgo be positive in
KnightCapbecausét is usedin mary otherplacesin the code:for example
we deemthe MTD searchio have convergedif a < 6+ 0.07«PAWN. Thus,
to setall parametergqualto the samevalue,thatvaluehadto bea pawvn.
Playing with the initial weight settingsKnightCaphad a blitz rating of
around 1250. After more than 1000 gameson FICS KnightCaps rating
has improved to about 1550, a 300 point gain. This is a much slower
improvement than the original experiment. We do not know whether
the coeficients would have eventually corverged to good values,but it is
clear from this experimentthat starting nearto a good set of weightsis
importantfor fastcornvergence An interestingavenuefor furtherexploration
hereis the effect of A on the learning rate. Becausethe initial evaluation
function is completelywrong, therewould be somejustificationin setting
A = 1 early on sothat KnightCaponly tries to predictthe outcomeof the

7 Weranthis experimenthreetimes,with theresultreportecbeingthebestachieved. Since
themain experimentsucceededn all threeoccasionst wasrun, it is unlikely thatthe slover

ratingsimprovementin this experimentis dueto vagariesn thetrainingenvironment
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gameandnottheevaluationsof latermoves(which areextremelyunreliable).

Self-play

Learningby self-play was extremely effective for TD-Gammon,but a sig-
nificant reasonfor this is the randomnes®f backgammorwhich ensures
that with high probability different gameshave substantiallydifferent se-
guence®f moves,andalsothe speedf play of TD-Gammonwhich ensured
that learning could take place over several hundred-thousandames.Un-
fortunately chessprogramsare slow, and chessis a deterministicgame,so
self-playby adeterministicalgorithmtendsto resultin alargenumberof sub-
stantiallysimilar gamesThis is nota problemif the gamesseenin self-play
are“representatie” of the gamesplayedin practice,however KnightCaps
self-playgameswith only non-zeromaterialweightsarevery differentto the
kind of gameshumansf the samdevel would play.

To demonstratéhatlearningby self-playfor KnightCapis notaseffective
aslearningagainsrealopponentsywe rananotherexperimentin whichall but
thematerialparameters/ereinitialisedto zeroagain but thistime KnightCap
learntby playing againstitself. After 600 games(twice as mary asin the
original FICS experiment) we playedthe resultingversionagainstthe good
versionthatlearnton FICS for a further 100 gameswith the weight values
fixed. Theself-playversionscoredonly 11%againsthe goodFICS version.

5. Experiment with backgammon

For our backgammonrexperimentwe were fortunateto have Mark Land
(ComputeiScienceDepartmentUniversityof California,SanDiego) provide
uswith the sourcecodefor his LGammonprogramwhich usesself-playand
TD(A) to train a backgammorplaying neuralnetwork. The codehassened
asboth a baseon which to implementTDLEAF())-basedtraining, andasa
benchmarkor measuringhe succes®f thistraining.

5.1. LGAMMON

Land’s LGammon program has been implementedalong the lines of
Tesaurcs TD-Gammon(€sauro,1992,1994). Like Tesauro,Land usesa
raw boardrepresentatiooupledwith somehand-codedeaturesanduses
self-play basedupon one-ply searchto generatdraining data.During each
gamethepositionsencounteredndtheirevaluationsarerecordedwith error
signalsandconsequenveightupdatedeingcalculatedandappliedafterthe
game.
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Along with the codefor LGammon,Land alsoprovided a setof weights
for the neuralnetwork. Theweightsarethosewhich LGammonhasusedfor
mostof thetimeit hasbeenplayingontheFirstinternetBackgammorsener
(FIBS, fibs.com).With theseweightsLGammonachieved a rating on FIBS
which rangedfrom 1600to 1680,significantlyabove the meanrating across
all playersof about1500.For conveniencewe referto theweightssimply as
theFIBSweights

5.2. EXPERIMENT WITH LGAMMON

The stochasticityinherentin backgammorcomplicatesghe implementation
of TD-DIRECTED(A) and TDLEAF()A). Using minimax searchto a depth
of one-plywith backgammoris simple, becausehe setof legal movesis

fully determinedby the boardpositionandthe dice roll. Searchingo two-

ply however, requiresconsideringfor eachpositionreachedn one-ply the

twenty-onedistinctdicerolls which couldfollow, andthe subsequentnoves
which the opponentmay choose.Consequentlywe have definedthe two-

ply evaluationof a positionin the obvious manner usingthe expectedvalue
acrossthe dice rolls, of the positionsreachablédrom eachone-plyposition.
Adapting the notation definedin section3 suchthat z! ,, refersto board
position z subjectto actiona, dice roll d, and actionb, we chooseaction

a in accordancevith

a*(z) := argminaeAm(Ez;d‘%argminbeAwldj(a:fldb, w)). (12)

wheretheexpectatioris with respecto thetransitionprobabilitiesp(z7,, 27, ;).

TD-DIRECTED()) thenstoresandtrainsusingthe one-plypositions gven
thoughthesearechoserby thetwo-ply searchjustdescribedSincethe aver-
agingacrosdicerolls for depthtwo meanshereis not anexplicit principal
variation, TDLEAF(A) approximatesheleaf nodewith the expectationterm
of equation(12) which corresponds$o the branchof the gametreeselected.

Similarly for the derivative of a two-ply terminal position under
TDLEAF()), we calculatethe expectedvalue of the deriative with respect
to thesetransitionprobabilities.

Limit of learning
Our experiment sought to determine whether TDLEAF(A) or TD-
DIRECTED(A) couldfind betterweightsthanstandardr D()). To testthis,we
took two copiesof the FIBS weights,the endproductof a standardTD()\)
trainingrun, andtrainedonewith eachof our variantsandself-play

The networks were trained for 50000 games,and check-pointedevery
5000 games.To testthe effectivenessof the training, the check-pointnet-
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18 J.BAXTER, A. TRIDGELL, AND L. WEAVER

works were played againstthe unmodifiedFIBS weightsfor 1600 games,
with bothsidessearchingo two-ply andthe matchscorebeingrecorded.

The resultsfluctuatedaroundparity with the FIBS weights (the result
of training with standardTD()\) for the durationof the training, with no
consistentor statistically significantchangein relatve performancebeing
obsenred.

If theoptimal networksfor two-ply andone-plyplay arenotthe samewe
would expectour variantsto achieze someimprovementover the courseof
50000gamesof training. Thatthis didn’t happensuggestshat the solution
foundby standardr D(), whichonly searche#o one-plyin training,is either
ator nearthe optimalfor two-ply play.

6. Futurework

TDLEAF()) isageneramethodfor combiningsearcrandTD(\). As such,it

shouldbe applicableto domainswheresearchs beneficialandanevaluation
functionneeddo belearnt.Thisincludesgamessuchasothello,shogi,check-
ers,andGo. However, therearealsomary non-gamedomainsrequiringdeep
searchwhich may benefitfrom on-line learningof an evaluationfunction.
Theseinclude agentplanning,automatedheoremproving, andinstruction
schedulingn optimisingcompilers.

We alsoneednote of the backgammorresultof section5, which shavs
thatdeepersearchingTlDLEAF(A\) and TD-DIRECTED(A) don't alwaysim-
prove on the solutionof one-stedook-aheadl D(A). This begsthe question
of whetherour variantswill, in general,corverge to solutionsof the same
quality as TD()). Obviously domain specificcharacteristicxan influence
this®, so empiricallyit is impossibleto prove, but a theoreticalresultwould
beuseful.

For domainswhere both normal TD(A\) and TDLEAF(A) are feasible,
the importantquestionof which corvemes fasterremainsopen.Backgam-
mon may be an unusualcase becausehe branchingfactor inducedby the
stochasticityat eachturn, is quite large and makes searchingan additional
ply expensve. Thusit is possiblethat TD(A) corvergesfasterin termsof
CPUtime, thoughwe suspecthat TDLEAF(A) maycornvergefasterin terms
of gameslayed.

8 A chessprogramusingonly one-stegook-aheadvould losemostgamesagainstreason-
ablequality opponentandwould thuslearnto valueall positionsaslost. This contrastswith
KnightCapwhosedeepsearctmakescompetingwith betterplayerspossible.
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7. Conclusion

We have introducedTDLEAF(A), a variantof TD(A) suitablefor training
an evaluationfunction usedin minimax search.The only extra requirement
of the algorithmis that the leaf-nodesof the principal variationsbe stored
throughouthegame.

We presentedsome experimentsin which a chessevaluation function
wastrainedfrom B-gradeto masterevel using TDLEAF(A) by on-line play
againsta mixture of humanandcomputeropponentsThe experimentsshov
both the importanceof “on-line” sampling(as opposedto self-play) for a
deterministicgamesuchaschessandthe needto startheara goodsolution
for fastcorvergence althoughjusthow nearis still notclear

We alsodemonstratedhat in the domainof backgammonTDLEAF()\)
andTD-DIRECTED(A) wereunableto improve uponagoodnetwork trained
by TD(A). This suggestghat the optimal network to usein 1-ply searchis
closeto the optimalnetwork for 2-ply search.

KnightCap is freely available on the web from
http://wwsyseng. anu. edu. au/ | sg/ kni ght cap. htm .
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Appendix

A. KNIGHTCAP

KnightCapis a reasonablysophisticateccomputerchessprogramfor Unix
systemslt hasall the standardalgorithmicfeaturesthat modernchesspro-
gramstend to have as well as a numberof featuresthat are much less
common.This sectionis meantto give the readeran overview of the type of
algorithmsthathave beenchoserfor KnightCap.Spacdimitations preventa
full explanationof all of thedescribedeaturesaninterestedeadeishouldbe
ablefind explanationsn the widely available computerchesditerature(see
for example(Marsland& Schaefier, 1990))or by examiningthe sourcecode:
http://wwsyseng. anu. edu. au/ | sg.
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A.1l. BOARD REPRESENTATION

This is whereKnightCapdiffers mostfrom otherchessprograms.The prin-
cipal boardrepresentationsedin KnightCapis thetopiecesarray Thisis an
arrayof 32 bit wordswith oneword for eachsquareontheboard.Eachbit in
awordrepresentsneof the 32 piecesn the startingchesgosition(8 pieces
+ 8 pawnsfor eachside).Bit s on squarej is setif piecei is attackingsquare
7.

The topiecesarray hasproved to be a very powerful representatiomnd
allows theeasydescriptionof mary evaluationfeaturesvhich aremorediffi-
cultortoocostlywith otherrepresentation.hearrayis updateddynamically
aftereachmovein suchawaythatfor thevastmajority of movesonly asmall
proportionof thetopiecesarrayneedbedirectly examinedandupdated.

A simpleexampleof how thetopiecesarrayis usedin KnightCapis deter
mining whethertheking is in check.Whereasanin_check()functionis often
quite expensve in chessprogramsjn KnightCapit involvesjust onelogical
AND operationn thetopiecesarray In asimilarfashionthe evaluationfunc-
tion canfind commonfeaturessuchasconnectedooksusingjust oneor two
instructions.

Thetopiecesarrayis alsousedto drive the move generatomandobviates
theneedfor a standardnove generatiorfunction.

A.2. SEARCH ALGORITHM

The basisof the searchalgorithm usedin KnightCapis MTD(f) (Plaat
etal., 1996). MTD(f) is a logical extensionof the minimal-windaw alpha-
betasearchthat formalizesthe placemenbf the minimal searchwindow to
producewhatis in effectabisectionsearchover the evaluationspace.

The variation of MTD(f) that KnightCap usesincludes some conver-
genceacceleratiorheuristicsthatpreventthe very slow corvergencethatcan
sometimegplagueMTD(f) implementationsTheseheuristicsare similar in
concepto the momentuntermscommonlyusedin neuralnetwork training.

The MTD(f) searchalgorithmis appliedwithin a standardterative deep-
ening framewvork. The searchbegins with the depth obtainedfrom the
transpositiortable for the initial searchpositionand continuesuntil a time
limit is reachedn the search Searchorderingat the root nodeensureghat
partial ply searchresultsobtainedwhenthe timer expires canbe usedquite
safely
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A.3. NULL MOVES

KnightCapusesa recursve null move forward pruningtechniqgue Whereas
mostnull move using chessprogramsusea fixed R value (the numberof
additionalply to prunewhentrying a null move) KnightCapinsteadusesa
variable R valuein anasymmetrictashion.Theinitial R valueis 3 andthe
algorithmthenteststhe resultof the null move searchlf it is the computers
sideof the searchandthe null move indicatesthatthe positionis “good” for
thecomputerthenthe R valueis decreasetb 2 andthenull move is retried.

The effect of this null move systemis thatmostof thespeedof aR = 3
systemis obtainedwhile makingno morenull move defensie errorsthanan
R = 2 systemlt is essentiallya pessimisticsystem.

A.4. SEARCH EXTENSIONS

KnightCapusesa large numberof searchextensionsto ensurethat critical
lines are searchedo sufficient depth. Extensionsare indicatedthrough a
combinationof factorsincluding check,null-move matethreats pavn moves
to the lasttwo ranksandrecaptureextensionsin additionKnightCapusesa
singleply razoringsystemwith a 0.9 pavn razoringthreshold.

A.5. ASYMMETRIES

There are quite a number of asymmetricsearchand evaluation termsin
KnightCap,with aleaningtowardspessimistiq(i.e. careful)play. Apartfrom
the asymmetricnull move and searchextensionssystemsamentionedabove,
KnightCapalsousesanasymmetricsystento decidewhatmovesto try in the
guiescencaearchandseveralasymmetricevaluationtermsin the evaluation
function (suchasking safetyandtrappedpiecefactors).

When combinedwith the TDLEAF(A) algorithm KnightCapis able to
learnappropriatevaluesfor theasymmetricevaluationterms.

A.6. TRANSPOSITION TABLES

KnightCap usesa standardtwo-deeptranspositiontable with a 128 bit
transpositiontable entry Each entry holds separatedepth and evaluation
informationfor thelower andupperbound.

The ETTC (enhancedranspositiontable cutof) techniqueis usedboth
for move orderingandto reducethetreesize.Thetranspositiortableis also
usedto feedthe booklearningsystemandto initialize the depthfor iteratve
deepening.
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A.7. MOVE ORDERING

Themove orderingsystenin KnightCapusesacombinatiorof thecommonly
usedhistory(Schaefier, 1989) killer, refutationandtranspositiotableorder
ing techniquesWith a relatively expensve evaluationfunction KnightCap
canafford to spenda considerableamountof CPU time on move ordering
heuristican orderto reducethetreesize.

A.8. PARALLEL SEARCH

KnightCaphasbeenwrittento take advantageof paralleldistributedmemory
multi-computersusinga parallelismstratgy thatis derived naturally from
the MTD(f) searchalgorithm. Somedetailson the methodologyusedand
parallelismresultsobtainedareavailablein (Tridgell, 1997).Theresultsgiven
in this papermwereobtainedusinga singleCPUmachine.

A.9. EVALUATION FUNCTION

The heartof ary chessprogramis its evaluationfunction. KnightCapuses
quite a slow evaluationfunction that evaluatesa numberof computation-
ally expensve featuresThe evaluationfunctionalsohasfour distinctstages:
Opening,Middle, Ending and Mating, eachwith its own setof parameters
(but the samefeatures) We have listedthe name=of all KnightCaps features
in tableA.9. Notethatsomeof thefeatureshave morethanoneparameteas-
sociatedwvith them,for examplethereare64 parameterassociateavith rook
position,onefor eachsquare Thesefeaturesall begin with “I”. To summa-
rize just a few of the more obscurefeaturesIOPENING.KING _ADVANCE
is a bonusfor the rank of the king in the opening,it has 8 parameters,
onefor eachrank. IMID _KING _ADVANCE is the samebut appliesin the
middle game(the fact that we have separatdeaturesfor the openingand
middle gamesis a hangaer from KnightCaps early dayswhen it didn't
have separat@arameterfor eachstage)lKING _PROXIMITY isthenumber
of moves betweenour king and the opponentsking. It is very useful for
forcing matesin the ending.Again thereis one parameterfor eachof the
8 possiblevalues.IPOSBASE is the basescorefor controlling eachof the
squaresiPOSKINGSIDE andIPOS QUEENSIDEaremodificationsadded
to IPOSBASE accordingasKnightCapis castledontheking or queersides
respectrely. The MOBILITY scoresarethe numberof movesavailableto a
piece,thresholdingat 10. Thereis a separatescorefor eachrank the piece
is on, hencethe total numberof parameteref 80. The SMOBILITY scores
arethe same,but now the squarethe pieceis moving to hasto be safe(i.e
controlledby KnightCap). THREAT and OPPONENTSTHREAT arecom-
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putedby doing a minimax searchon the positionin which only capturesare
consideredand eachpiececanmaove only once.lts not clearthis helpsthe
evaluationmuch, but it certainlyimproves move ordering(the bestcapture
is given a high weight in the ordering).IOVERLOADED_PENALTY is a
penaltythatis appliedto eachpiecefor the numberof otherwisehungpieces
it is defending.Thereis a separatgenaltyfor eachnumbey thresholding
at 15 (this could be donebetter:we shouldhave a basescoretimes by the
numberof pieces,andhave KnightCaplearnthe basescoreanda perturba-
tion on the basescorefor eachnumber).IQ_KING _ATTACK_OPPONENT
and INOQ_KING _ATTACK_OPPONENT are bonusesfor the number of
piecesKnightCap has attackingthe squaresaroundthe enemyking, both
with andwithoutqueen®ntheboard.|Q_KING _ATTACK_COMPUTERand
INOQ_KING _ATTACK_COMPUTER are the samething for the opponent
attackingknightCaps king. Note thatthis asymmetryallows KnightCapthe
freedomto learnto be cautiousby assigninggreaterweight to opponent
piecesattackingits own king that it doesto its own piecesattackingthe
opponens king. It can of coursealso usethis to be aggressie. For more
informationon the featuresseeeval.cin KnightCaps sourcecode.

Themostcomputationallyexpensve partof the evaluationfunctionis the
“boardcontrol”. This functionevaluatesa controlfunctionfor eachsquareon
the boardto try to determinewho controlsthe square Control of a squareis
essentiallydefinedby determiningwhethera playercanusethe squareasa
flight squardor apiece,or if aplayercontrolsthe squarewith a pavn.

Despitethe fact that the board control function is evaluatedincremen-
tally, with the control of squaresonly being updatedwhena move affects
the squarethe functiontypically takesaround30% of the total CPUtime of
the program.This high costis consideredvorthwhile becaus@f the flow-on
effectsthatthis calculationhason otheraspect®of the evaluationandsearch.
Theseflow-on effectsincludetheability of KnightCapto evaluatereasonably
accuratelythe presencef hung,trappedandimmobile pieceswhich is nor
mally a severeweaknessn computemplay. We have alsonotedthatthemore
accuratesvaluationfunctiontendsto reducethe searchreesizethusmaking
up for thedecreasedodecount.

A.10. MODIFICATION FOR TDLEAF(A)

Themaodificationsmadeto KnightCapfor TDLEAF(X) affecteda numberof
the programs subsystemsT he largestmodificationsnvolved the parameter
ization of the evaluationfunction so that all evaluationparameterdoecame
partof a singlelong weightvector All tunableevaluationknowledgecould
thenbe describedn termsof the valuesin this vector

The next major modificationwas the addition of the full boardposition
in all datastructuredrom which anevaluationvaluecould be obtained.This
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Tablel. KnightCaps featuresandthe numberof parametergorrespondingo each.
Mostof thefeaturesareself-explanatory seethetext for adescriptionof themoreob-
scureones NotethatKnightCaps largenumberof parameteris obtainedby summing

all thenumberdn this tableandthenmultiplying by the numberof stagegfour).

Feature ‘ # ‘ Feature ‘ # ‘
BISHOPPAIR 1 CASTLE_.BONUS 1
KNIGHT_OUTPOST 1 BISHOP.OUTPOST 1
SUPPORED_KNIGHT_OUTPOST 1 SUPPORED_BISHOP.OUTPOST 1
CONNECTEDRROOKS 1 SEVENTHRANK_ROOKS 1
OPPOSITEBISHOPS 1 EARLY_QUEEN_.MOVEMENT 1
IOPENING.KING _ADVANCE 8 IMID _KING _ADVANCE 8
IKING _.PROXIMITY 8 ITRAPPED.STEP 8
BLOCKED_KNIGHT 1 USELESSPIECE 1
DRAW_VALUE 1 NEAR_DRAW_VALUE 1
NO_MATERIAL 1 MATING_POSITION 1
IBISHOP_XRAY 5 IENDING_KPOS 8
IROOK_POS 64 | IKNIGHT_POS 64
IPOSBASE 64 | IPOSKINGSIDE 64
IPOSQUEENSIDE 64 | IKNIGHT _MOBILITY 80
IBISHOP-.MOBILITY 80 | IROOK_MOBILITY 80
IQUEEN_MOBILITY 80 | IKING_MOBILITY 80
IKNIGHT _SMOBILITY 80 | IBISHOP.SMOBILITY 80
IROOK_SMOBILITY 80 | IQUEEN_SMOBILITY 80
IKING _SMOBILITY 80 | IPIECE.VALUES 6
THREAT 1 OPPONENTSTHREAT 1
IOVERLOADED_PENALTY 15 | IQ_KING_ATTACK_COMPUTER 8
IQ_KING _ATTACK_OPPONENT 8 INOQ_KING_ATTACK_.COMPUTER | 8
INOQKING_ATTACK_.OPPONENT | 8 | QUEEN.FILE_SAFETY 1
NOQUEEN_FILE_SAFETY 1 IPIECE-TRADE_BONUS 32
IATTACK_VALUE 16 | IPAWN_TRADE_BONUS 32
UNSUPPORED_PAWN 1 | ADJACENT_PAWN 1
IPASSEDPAWN_CONTROL 21 | UNSTOPRABLE_PAWN 1
DOUBLED_PAWN 1 | WEAK_PAWN 1
ODD_BISHOPSPAWN_POS 1 BLOCKED_PASSED PAWN 1
KING _PASSED.PAWN_SUPPOR 1 PASSED PAWN_ROOK_ATTACK 1
PASSED PAWN_ROOK_SUPPOR 1 BLOCKED_DPAWN 1
BLOCKED_EFAWN 1 IPAWN_ADVANCE 7
IPAWN_ADVANCE1 7 IPAWN_ADVANCE2 7
KING _PASSED.PAWN_DEFENCE 1 IPAWN_POS 64
IPAWN_DEFENCE 12 | ISOLATED_PAWN 1
MEGA_WEAK_PAWN 1 IWEAK _PAWN_ATTACK_VALUE 8
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involved the substitutionof a structurefor the usualscalarevaluationtype,
with the evaluationfunctionfilling in the evaluatedpositionandotherboard
stateinformation during eachevaluationcall. Similar additionswere made
to the transpositiortable entriesso that the resultof a searchwould always
have availableto it the positionassociateavith theleaf nodein the principal
variation. This significantly enlagesthe transpositiontable and meansthat
to operateeffectively with the MTD(f) searchalgorithm (itself a memory-
hungry a-g variant), KnightCapreally needsat least30Mb of hashtable
whenlearning.

Theonly othersignificantmodificationthatwasrequiredwasanincrease
in the bit resolutionof the evaluationtype sothata numericalpartial deriva-
tive of theevaluationfunctionwith respecto theevaluationcoeficient vector
couldbe obtainedwith reasonablaccurag.
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