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Abstract

This paper presents NeuroChess, a program which learns to play chess from the final
outcome of games. NeuroChess learns chess board evaluation functions, represented
by artificial neural networks. It integrates inductive neural network learning, temporal
differencing, and a variant of explanation-based learning. Performance results illustrate
some of the strengths and weaknesses of this approach.

1 Introduction

Throughout the last decades, the game of chess has been a major testbed for research on
artificial intelligence and computer science. Most of today’s chess programs rely on intensive
search to generate moves. To evaluate boards, fast evaluation functions are employed which
are usually carefully designed by hand, sometimes augmented by automatic parameter tuning
methods [1]. Building a chess machine that learns to play solely from the final outcome of
games (win/loss/draw) is a challenging open problem in AI.

In this paper, we are interested in learning to play chess from the final outcome of games.
One of the earliest approaches, which learned solely by playing itself, is Samuel’s famous
checker player program [10]. His approach employed temporal difference learning (in short:
TD) [14], which is a technique for recursively learning an evaluation function. Recently,
Tesauro reported the successful application of TD to the game of Backgammon, using
artificial neural network representations [16]. While his TD-Gammon approach plays grand-
master-level backgammon, recent attempts to reproduce these results in the context of Go
[12] and chess have been less successful. For example, Schäfer [11] reports a system just
like Tesauro’s TD-Gammon, applied to learning to play certain chess endgames. Gherrity [6]
presented a similar system which he applied to entire chess games. Both approaches learn
purely inductively from the final outcome of games. Tadepalli [15] applied a lazy version
of explanation-based learning [5, 7] to endgames in chess. His approach learns from the
final outcome, too, but unlike the inductive neural network approaches listed above it learns
analytically, by analyzing and generalizing experiences in terms of chess-specific knowledge.



The level of play reported for all these approaches is still below the level of GNU-Chess, a
publicly available chess tool which has frequently been used as a benchmark. This illustrates
the hardness of the problem of learning to play chess from the final outcome of games.

This paper presents NeuroChess, a program that learns to play chess from the final outcome
of games. The central learning mechanisms is the explanation-based neural network (EBNN)
algorithm [9, 8]. Like Tesauro’s TD-Gammon approach, NeuroChess constructs a neural
network evaluation function for chess boards using TD. In addition, a neural network version
of explanation-based learning is employed, which analyzes games in terms of a previously
learned neural network chess model. This paper describes the NeuroChess approach, dis-
cusses several training issues in the domain of chess, and presents results which elucidate
some of its strengths and weaknesses.

2 Temporal Difference Learning in the Domain of Chess

Temporal difference learning (TD) [14] comprises a family of approaches to prediction in
cases where the event to be predicted may be delayed by an unknown number of time steps.
In the context of game playing, TD methods have frequently been applied to learn functions
which predict the final outcome of games. Such functions are used as board evaluation
functions.

The goal of TD(0), a basic variant of TD which is currently employed in the NeuroChess
approach, is to find an evaluation function, V , which ranks chess boards according to their
goodness: If the board s is more likely to be a winning board than the board s0, then
V (s) > V (s0). To learn such a function, TD transforms entire chess games, denoted by
a sequence of chess boards s0; s1; s2; : : : ; stfinal , into training patterns for V . The TD(0)
learning rule works in the following way. Assume without loss of generality we are learning
white’s evaluation function. Then the target values for the final board is given by

V target(stfinal) =

(
1; if stfinal is a win for white
0; if stfinal is a draw
�1; if stfinal is a loss for white

(1)

and the targets for the intermediate chess boards s0; s1; s2; : : : ; stfinal�2 are given by

V target(st) = 
 � V (st+2) (2)

This update rule constructs V recursively. At the end of the game, V evaluates the final
outcome of the game (Eq. (1)). In between, when the assignment of V -values is less obvious,
V is trained based on the evaluation two half-moves later (Eq. (2)). The constant 
 (with
0 � 
 � 1) is a so-called discount factor. It decays V exponentially in time and hence
favors early over late success. Notice that in NeuroChess V is represented by an artificial
neural network, which is trained to fit the target values V target obtained via Eqs. (1) and (2)
(cf. [6, 11, 12, 16]).

3 Explanation-Based Neural Network Learning

In a domain as complex as chess, pure inductive learning techniques, such as neural net-
work Back-Propagation, suffer from enormous training times. To illustrate why, consider
the situation of a knight fork, in which the opponent’s knight attacks our queen and king
simultaneously. Suppose in order to save our king we have to move it, and hence sacrifice
our queen. To learn the badness of a knight fork, NeuroChess has to discover that certain
board features (like the position of the queen relative to the knight) are important, whereas



Figure 1: Fitting values and slopes in EBNN: Let V be the target function for which three
examples hs1; V (s1)i, hs2; V (s2)i, and hs3; V (s3)i are known. Based on these points the
learner might generate the hypothesis V 0. If the slopes @V (s1)

@s1
, @V

( s2)@s2, and @V (s3)
@s3

are
also known, the learner can do much better: V 00.

others (like the number of weak pawns) are not. Purely inductive learning algorithms such
as Back-propagation figure out the relevance of individual features by observing statistical
correlations in the training data. Hence, quite a few versions of a knight fork have to be
experienced in order to generalize accurately. In a domain as complex as chess, such an
approach might require unreasonably large amounts of training data.

Explanation-based methods (EBL) [5, 7, 15] generalize more accurately from less training
data. They rely instead on the availability of domain knowledge,which they use for explaining
and generalizing training examples. For example, in the explanation of a knight fork, EBL
methods employ knowledge about the game of chess to figure out that the position of the
queen is relevant, whereas the number of weak pawns is not. Most current approaches to
EBL require that the domain knowledge be represented by a set of symbolic rules. Since
NeuroChess relies on neural network representations, it employs a neural network version
of EBL, called explanation-based neural network learning (EBNN) [9]. In the context of
chess, EBNN works in the following way: The domain-specific knowledge is represented
by a separate neural network, called the chess model M . M maps arbitrary chess boards st
to the corresponding expected board st+2 two half-moves later. It is trained prior to learning
V , using a large database of grand-master chess games. Once trained, M captures important
knowledge about temporal dependencies of chess board features in high-quality chess play.

EBNN exploits M to bias the board evaluation function V . It does this by extracting slope
constraints for the evaluation function V at all non-final boards, i.e., all boards for which V
is updated by Eq. (2). Let

@V target(st)

@st
with t 2 f0; 1; 2; : : :; tfinal � 2g (3)

denote the target slope of V at st, which, because V target(st) is set to 
V (st+2) according
Eq. (2), can be rewritten as

@V target(st)

@st
= 
 �

@V (st+2)

@st+2
�
@st+2

@st
(4)

using the chain rule of differentiation. The rightmost term in Eq. (4) measures how in-
finitesimal small changes of the chess board st influence the chess board st+2. It can be
approximated by the chess model M :

@V target(st)

@st
� 
 �

@V (st+2)

@st+2
�
@M (st)

@st
(5)

The right expression is only an approximation to the left side, because M is a trained neural
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Figure 2: Learning an evaluation function in NeuroChess. Boards are mapped into a
high-dimensional feature vector, which forms the input for both the evaluation network V
and the chess model M . The evaluation network is trained by Back-propagation and the
TD(0) procedure. Both networks are employed for analyzing training example in order to
derive target slopes for V .

network and thus its first derivative might be erroneous. Notice that both expressions on
the right hand side of Eq. (5) are derivatives of neural network functions, which are easy to
compute since neural networks are differentiable.

The result of Eq. (5) is an estimate of the slope of the target function V at st. This slope
adds important shape information to the target values constructed via Eq. (2). As depicted in
Fig. 1, functions can be fit more accurately if in addition to target values the slopes of these
values are known. Hence, instead of just fitting the target values V target(st), NeuroChess also
fits these target slopes. This is done using the Tangent-Prop algorithm [13].

The complete NeuroChess learning architecture is depicted in Fig. 2. The target slopes
provide a first-order approximation to the relevance of each chess board feature in the
goodness of a board position. They can be interpreted as biasing the network V based on
chess-specific domain knowledge, embodied in M . For the relation of EBNN and EBL and
the accommodation of inaccurate slopes in EBNN see [8].

4 Training Issues

In this section we will briefly discuss some training issues that are essential for learning good
evaluation functions in the domain of chess. This list of points has mainly been produced
through practical experience with the NeuroChess and related TD approaches. It illustrates
the importance of a careful design of the input representation, the sampling rule and the



parameter setting in a domain as complex as chess.

Sampling. The vast majority of chess boards are, loosely speaking, not interesting. If, for
example, the opponent leads by more than a queen and a rook, one is most likely to loose.
Without an appropriate sampling method there is the danger that the learner spends most
of its time learning from uninteresting examples. Therefore, NeuroChess interleaves self-
play and expert play for guiding the sampling process. More specifically, after presenting
a random number of expert moves generated from a large database of grand-master games,
NeuroChess completes the game by playing itself. This sampling mechanism has been found
to be of major importance to learn a good evaluation function in a reasonable amount of time.

Quiescence. In the domain of chess certain boards are harder to evaluate than others. For
example, in the middle of an ongoing material exchange, evaluation functions often fail to
produce a good assessment. Thus, most chess programs search selectively. A common
criterion for determining the depth of search is called quiescence. This criterion basically
detects material threats and deepens the search correspondingly. NeuroChess’ search engine
does the same. Consequently, the evaluation function V is only trained using quiescent
boards.

Smoothness. Obviously, using the raw, canonical board description as input representation is
a poor choice. This is because small changes on the board can cause a huge difference in value,
contrasting the smooth nature of neural network representations. Therefore, NeuroChess
maps chess board descriptions into a set of board features. These features were carefully
designed by hand.

Discounting. The variable 
 in Eq. (2) discounts values in time. Discounting has frequently
been used to bound otherwise infinite sums of pay-off. One might be inclined to think that
in the game of chess no discounting is needed, as values are bounded by definition. Indeed,
without discounting the evaluation function predicts the probability for winning—in the ideal
case. In practice, however, random disturbations of the evaluation function can seriously hurt
learning, for reasons given in [4, 17]. Empirically we found that learning failed completely
when no discount factor was used. Currently, NeuroChess uses 
 = 0:98.

Learning rate. TD approaches minimize a Bellman equation [2]. In the NeuroChess
domain, a close-to-optimal approximation of the Bellman equation is the constant function
V (s) � 0. This function violates the Bellman equation only at the end of games (Eq. (1)),
which is rare if complete games are considered. To prevent this, we amplified the learning
rate for final values by a factor of 20, which was experimentally found to produce sufficiently
non-constant evaluation functions.

Software architecture. Training is performed completely asynchronously on up to 20
workstations simultaneously. One of the workstations acts as a weight server, keeping track
of the most recent weights and biases of the evaluation network. The other workstations
can dynamically establish links to the weight server and contribute to the process of weight
refinement. The main process also monitors the state of all other workstations and restarts
processes when necessary. Training examples are stored in local ring buffers (1000 items
per workstation).

5 Results

In this section we will present results obtained with the NeuroChess architecture. Prior to
learning an evaluation function, the model M (175 input, 165 hidden, and 175 output units)
is trained using a database of 120,000 expert games. NeuroChess then learns an evaluation



1. e2e3 b8c6 16. b2b4 a5a4 31. a3f8 f2e4 46. d1c2 b8h2 61. e4f5 h3g4 65. a8e8 e6d7
2. d1f3 c6e5 17. b5c6 a4c6 32. c3b2 h8f8 47. c2c3 f6b6 62. f5f6 h6h5 66. e8e7 d7d8
3. f3d5 d7d6 18. g1f3 d8d6 33. a4d7 f3f5 48. e7e4 g6h6 63. b7b8q g4f5 67. f4c7
4. f1b5 c7c6 19. d4a7 f5g4 34. d7b7 f5e5 49. d4f5 h6g5 64. b8f4 f5e6
5. b5a4 g8f6 20. c2c4 c8d7 35. b2c1 f8e8 50. e4e7 g5g4
6. d5d4 c8f5 21. b4b5 c6c7 36. b7d5 e5h2 51. f5h6 g7h6
7. f2f4 e5d7 22. d2d3 d6d3 37. a1a7 e8e6 52. e7d7 g4h5
8. e1e2 d8a5 23. b5b6 c7c6 38. d5d8 f6g6 53. d7d1 h5h4
9. a4b3 d7c5 24. e2d3 e4f2 39. b6b7 e6d6 54. d1d4 h4h3
10. b1a3 c5b3 25. d3c3 g4f3 40. d8a5 d6c6 55. d4b6 h2e5
11. a2b3 e7e5 26. g2f3 f2h1 41. a5b4 h2b8 56. b6d4 e5e6
12. f4e5 f6e4 27. c1b2 c6f3 42. a7a8 e4c3 57. c3d2 e6f5
13. e5d6 e8c8 28. a7a4 d7e7 43. c2d4 c6f6 58. e3e4 f5g5
14. b3b4 a5a6 29. a3c2 h1f2 44. b4e7 c3a2 59. d4e3 g5e3
15. b4b5 a6a5 30. b2a3 e7f6 45. c1d1 a2c3 60. d2e3 f7f5
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Figure 3: NeuroChess against GNU-Chess. NeuroChess plays white. Parameters: Both
players searched to depth 3, which could be extended by quiescence search to at most 11.
The evaluation network had no hidden units. Approximately 90% of the training boards
were sampled from expert play.

network V (175 input units, 0 to 80 hidden units, and one output units). To evaluate the level
of play, NeuroChess plays against GNU-Chess in regular time intervals. Both players employ
the same search mechanism which is adopted from GNU-Chess. Thus far, experiments lasted
for 2 days to 2 weeks on 1 to 20 SUN Sparc Stations.

A typical game is depicted in Fig. 3. This game has been chosen because it illustrates both
the strengths and the shortcomings of the NeuroChess approach. The opening of NeuroChess
is rather weak. In the first three moves NeuroChess moves its queen to the center of the
board.1 NeuroChess then escapes an attack on its queen in move 4, gets an early pawn
advantage in move 12, attacks black’s queen pertinaciously through moves 15 to 23, and
successfully exchanges a rook. In move 33, it captures a strategically important pawn, which,
after chasing black’s king for a while and sacrificing a knight for no apparent reason, finally
leads to a new queen (move 63). Four moves later black is mate. This game is prototypical.
As can be seen from this and various other games, NeuroChess has learned successfully to
protect its material, to trade material, and to protect its king. It has not learned, however, to
open a game in a coordinated way, and it also frequently fails to play short endgames even
if it has a material advantage (this is due to the short planning horizon). Most importantly, it
still plays incredibly poor openings, which are often responsible for a draw or a loss. Poor
openings do not surprise, however, as TD propagates values from the end of a game to the
beginning.

Table 1 shows a performance comparison of NeuroChess versus GNU-Chess, with and
without the explanation-based learning strategy. This table illustrates that NeuroChess wins
approximately 13% of all games against GNU-Chess, if both use the same search engine. It

1This is because in the current version NeuroChess still heavily uses expert games for sampling.
Whenever a grand-master moves its queen to the center of the board, the queen is usually safe, and there
is indeed a positive correlation between having the queen in the center and winning in the database.
NeuroChess falsely deduces that having the queen in the center is good. This effect disappears when
the level of self-play is increased, but this comes at the expense of drastically increased training time,
since self-play requires search.



GNU depth 2, NeuroChess depth 2 GNU depth 4, NeuroChess depth 2
# of games Back-propagation EBNN Back-propagation EBNN

100 1 0 0 0
200 6 2 0 0
500 35 13 1 0
1000 73 85 2 1
1500 130 135 3 3
2000 190 215 3 8
2400 239 316 3 11

Table 1: Performance of NeuroChess vs. GNU-Chess during training. The numbers show the
total number of games won against GNU-Chess using the same number of games for testing
as for training. This table also shows the importance of the explanation-based learning
strategy in EBNN. Parameters: both learners used the original GNU-Chess features, the
evaluation network had 80 hidden units and search was cut at depth 2, or 4, respectively (no
quiescence extensions).

also illustrates the utility of explanation-based learning in chess.

6 Discussion

This paper presents NeuroChess, an approach for learning to play chess from the final
outcomes of games. NeuroChess integrates TD, inductive neural network learning and
a neural network version of explanation-based learning. The latter component analyzes
games using knowledge that was previously learned from expert play. Particular care has
been taken in the design of an appropriate feature representation, sampling methods, and
parameter settings. Thus far, NeuroChess has successfully managed to beat GNU-Chess in
several hundreds of games. However, the level of play still compares poorly to GNU-Chess
and human chess players.

Despite the initial success, NeuroChess faces two fundamental problems which both might
well be in the way of excellent chess play. Firstly, training time is limited, and it is to
be expected that excellent chess skills develop only with excessive training time. This is
particularly the case if only the final outcomes are considered. Secondly, with each step of
TD-learning NeuroChess loses information. This is partially because the features used for
describing chess boards are incomplete, i.e., knowledge about the feature values alone does
not suffice to determine the actual board exactly. But, more importantly, neural networks have
not the discriminative power to assign arbitrary values to all possible feature combinations.
It is therefore unclear that a TD-like approach will ever, for example, develop good chess
openings.

Another problem of the present implementation is related to the trade-off between knowledge
and search. It has been well recognized that the ultimate cost in chess is determined by the time
it takes to generate a move. Chess programs can generally invest their time in search, or in the
evaluation of chess boards (search-knowledge trade-off) [3]. Currently, NeuroChess does a
poor job, because it spends most of its time computing board evaluations. Computing a large
neural network function takes two orders of magnitude longer than evaluating an optimized
linear evaluation function (like that of GNU-Chess). VLSI neural network technology offers
a promising perspective to overcome this critical shortcoming of sequential neural network
simulations.
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