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Abstract

We investigate an experiential learning paradigm for acquiring an internal model of
intuitive physics. Our model is evaluated on a real-world robotic manipulation task
that requires displacing objects to target locations by poking. The robot gathered
over 400 hours of experience by executing more than 100K pokes on different
objects. We propose a novel approach based on deep neural networks for modeling
the dynamics of robot’s interactions directly from images, by jointly estimating
forward and inverse models of dynamics. The inverse model objective provides
supervision to construct informative visual features, which the forward model can
then predict and in turn regularize the feature space for the inverse model. The
interplay between these two objectives creates useful, accurate models that can
then be used for multi-step decision making. This formulation has the additional
benefit that it is possible to learn forward models in an abstract feature space and
thus alleviate the need of predicting pixels. Our experiments show that this joint
modeling approach outperforms alternative methods.

1 Introduction

Humans can effortlessly manipulate previously unseen objects in novel ways. For example, if a
hammer is not available, a human might use a piece of rock or back of a screwdriver to hit a nail.
What enables humans to easily perform such tasks that machines struggle with? One possibility is that
humans possess an internal model of physics (i.e. “intuitive physics” (Michotte, 1963; McCloskey,
1983)) that allows them to reason about physical properties of objects and forecast their dynamics
under the effect of applied forces. Such models can be used to transform a given task into a search
problem in a manner similar to how moves can be planned in a game of chess or tic-tac-toe by
searching through the game tree. Because the search algorithm is independent of task semantics,
solutions to different and possibly new tasks can be determined using the same mechanism.

In human development, it is well known that infants spend years worth of time playing with objects
in a seemingly random manner with no specific end goal (Smith & Gasser, 2005; Gopnik et al., 1999).
One hypothesis is that infants distill this experience into intuitive physics models that predict how
their actions effect the motion of objects. Once learnt, these models could be used for planning
actions for achieving novel goals later in life. Inspired by this hypothesis, in this work we investigate
whether a robot can use it’s own experience to learn an intuitive model of physics that is also effective
for planning actions. In our setup (see Figure 1), a Baxter robot interacts with objects kept on a table
in front of it by randomly poking them. The robot records the visual state of the world before and
after it executes a poke in order to learn a mapping between its actions and the accompanying change
in visual state caused by object motion. To date our robot has interacted with objects for more than
400 hours and in process collected more than 100K pokes on 16 distinct objects.
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Figure 1: Infants spend years worth of time playing with objects in a seemingly random manner.
They might use this experience to learn a model of physics relating their actions with the resulting
motion of objects. Inspired by this hypothesis, we let a robot interact with objects by randomly
poking them. The robot pokes objects and records the visual state before (left) and after (right) the
poke. The triplet of before image, after image and the applied poke is used to train a neural network
(center) for learning the mapping between actions and the accompanying change in visual state. We
show that this learn model can be used to push objects into a desired configuration.

What kind of a model should the robot learn from it’s experience? One possibility is to build a model
that predicts the next visual state from the current visual state and the applied force (i.e forward
dynamics model). This is challenging because predicting the value of every pixel in the next image is
non-trivial in real world scenarios. Moreover, in most cases it is not the precise pixel values that are of
interest, but the occurrence of a more abstract event. For example, predicting that a glass jar will break
when pushed from the table onto the ground is of greater interest (and easier) than predicting exactly
how every piece of shattered glass will look. The difficulty, however, is that supervision for such
abstract concepts or events is not readily available in unsupervised settings such as ours. In this work,
we propose one solution to this problem by jointly training forward and inverse dynamics models. A
forward model predicts the next state from the current state and action, and an inverse model predicts
the action given the initial and target state. In joint training, the inverse model objective provides
supervision for transforming image pixels into an abstract feature space, which the forward model
can then predict. The inverse model alleviates the need for the forward model to make predictions in
the pixel space and the forward model in turn regularizes the feature space for the inverse model.

We empirically show that the joint model allows the robot to generalize and plan actions for achieving
tasks with significantly different visual statistics as compared to the data used in the learning phase.
Our model can be used for multi step decision making and displace objects with novel geometry
and texture into desired goal locations that are much farther apart as compared to position of objects
before and after a single poke. We probe the joint modeling approach further using simulation studies
and show that the forward model regularizes the inverse model.

2 Data

Figure 1 shows our experimental setup. The robot is equipped with a Kinect camera and a gripper for
poking objects kept on a table in front of it. At any given time there were 1-3 objects chosen from a
set of 16 distinct objects present on the table. The robot’s coordinate system was as following: X and
Y axis represented the horizontal and vertical axes, while the Z axis pointed away from the robot.
The robot poked objects by moving its finger along the XZ plane at a fixed height from the table.

Poke Representation: For collecting a sample of interaction data, the robot first selects a random
target point in its field of view to poke. One issue with random poking is that most pokes are executed
in free space which severely slows down collection of interesting interaction data. For speedy data
collection, a point cloud from the Kinect depth camera was used to only chose points that lie on any
object except the table. Point cloud information was only used during data collection and at test time
our system only requires RGB image data. After selecting a random point to poke (p) on the object,
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Figure 2: These images depict the robot in the process of displacing the bottle away from the indicated
dotted line. In the middle of the poke, the object flips and ends up moving in the wrong direction.
Such occurrences are common because the real world objects have complex geometric and material
properties. This makes learning manipulation strategies without prior knowledge very challenging.

the robot randomly samples a poke direction (θ) and length (l). Kinematically, the poke is defined

by points p1, p2 that are l
2

distance from p in the directions θo, (180 + θ)o respectively. The robot
executes the poke by moving its finger from p1 to p2.

Our robot can run autonomously 24x7 without any human intervention. Sometimes when objects are
poked they move as expected, but other times due to non-linear interaction between the robot’s finger
and the object they move in unexpected ways as shown in Figure 2. Any model of the poking data
must deal with such non-linear interactions (see project website for more examples). A small amount
of data in the early stages of the project was collected on a table with a green background, but most
of our data was collected in a wooden arena with walls for preventing objects from falling down. All
results in this paper are from data collected only from the wooden arena.

3 Method

The forward and inverse models can be formally described by equations 1 and 2, respectively. The
notation is as following: xt, ut are the world state and action applied time step t, x̂t+1, ût+1 are the
predicted state and actions, and Wfwd and Winv are parameters of the functions F and G that are
used to construct the forward and inverse models.

x̂t+1 = F (xt, ut;Wfwd) (1) ût = G(xt, xt+1;Winv) (2)

Given an initial and goal state, inverse models provide a direct mapping to actions required for
achieving the goal state in one step (if feasible). However, multiple possible actions can transform
the world from one visual state to another. For example, an object can appear in a certain part of the
visual field if the agent moves or if the agent uses its arms to move the object. This multi-modality
in the action space makes the learning hard. On the other hand, given xt and ut, there exists a next
state xt+1 that is unique up to dynamics noise. This suggests that forward models might be easier to
learn. However, learning forward models in image space is hard because predicting the value of each
pixel in the future frames is a non-trivial problem with no known good solution. However, in most
scenarios we are not interested in predicting every pixel, but predicting the occurrence of a more
abstract event such as object motion, change in object pose etc.

The ability to learn an abstract task relevant feature space should make it easier to learn a forward
dynamics model. One possible approach is to learn a dynamics model in the feature representation of
a higher layer of a deep neural network trained to perform image classification (say on ImageNet)
(Vondrick et al., 2016). However, this is not a general way of learning task relevant features and it is
unclear whether features adept at object recognition are also optimal for object manipulation. The
alternative of adapting higher layer features of a neural network while simultaneously optimizing
for the prediction loss leads to a degenerate solution of all the features reducing to zero, since the
prediction loss in this case is also zero. Our key observation is that this degenerate solution can be
avoided by imposing the constraint that it should be possible to infer the the executed action (ut)
from the feature representation of two images obtained before (xt) and after (xt+1) the action (ut) is
applied (i.e. optimizing the inverse model). This formulation provides a general mechanism for using
general purpose function approximators such as deep neural networks for simultaneously learning a
task relevant feature space and forecasting the future outcome of actions in this learned space.

A second challenge in using forward models is that inferring the optimal action inevitably leads to
finding a solution to non-convex problems that are subject to local optima. The inverse model does
not suffers from this drawback as it directly outputs the required action. These considerations suggest
that inverse and forward models have complementary strengths and therefore it is worthwhile to
investigate training a joint model of inverse and forward dynamics.
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Figure 3: (a) The collection of objects in the training set poked by the robot. (b) Example pairs
of before (It) and after images (It+1) after a single poke was made by the robot. (c) A Siamese
convolutional neural network was trained to predict the poke location (pt), angle (θt) and length (lt)
required to transform objects in the image at the tth time step (It) into their state in It+1. Images It
and It+1 are transformed into their latent feature representations (xt, xt+1) by passing them through
a series of convolutional layers. For building the inverse model, xt, xt+1 are concatenated and passed
through fully connected layers to predict the discretized poke. For building the forward model, the
action ut = {pt, θt, lt} and xt are passed through a series of fully connected layers to predict xt+1.

3.1 Model

A deep neural network is used to simultaneously learn a model of forward and inverse dynamics (see
Figure 3). A tuple of before image (It), after image (It+1) and the robot’s action (ut) constitute one
training sample. Input images at consequent time steps (It, It+1) are transformed into their latent
feature representations (xt, xt+1) by passing them through a series of five convolutional layers with
the same architecture as the first five layers of AlexNet (Krizhevsky et al., 2012). For building the
inverse model, xt, xt+1 are concatenated and passed through fully connected layers to conditionally
predict the poke location (pt), angle (θt) and length (lt) separately. For modeling multimodal poke
distributions, poke location, angle and length of poke are discretized into a 20× 20 grid, 36 bins and
11 bins respectively. The 11th bin of the poke length is used to denote no poke. For building the
forward model, the feature representation of the before image (xt) and the action (ut; real-valued
vector without discretization) are passed into a sequence of fully connected layer that predicts the
feature representation of the next image (xt+1). Training is performed to optimize the loss defined in
equation 3 below.

Ljoint = Linv(ut, ût,W ) + λLfwd(xt+1, x̂t+1,W ) (3)

Linv is a sum of three cross entropy losses between the actual and predicted poke location, angle
and length. Lfwd is a L1 loss between the predicted (x̂t+1) and the ground truth (xt+1) feature
representation of the after image (It+1). W are the parameters of the neural network. We used
λ = 0.1 in all our experiments. We call this the joint model and we compare its performance against
the inverse only model that was trained by setting λ = 0 in equation 3. More details about model
training are provided in the supplementary materials.

3.2 Evaluation Procedure

One way to test the learnt model is to provide the robot with an initial and goal image and task it to
apply pokes that would displace objects into the configuration shown in the goal image. If the robot
succeeds at achieving the goal configuration when the visual statistics of the pair of initial and goal
image is similar to before and after image in the training set, then this would not be a convincing
demonstration of generalization. However, if the robot is able to displace objects into goal positions
that are much farther apart as compared to position of objects before and after a single poke then it
might suggest that our model has not simply overfit but has learnt something about the underlying
physics of how objects move when poked. This suggestion would be further strengthened if the robot
is also able to push objects with novel geometry and texture in presence of multiple distractor objects.

If the objects in the initial and goal image are farther apart than the maximum distance that can be
pushed by a single poke, then the model would be required to output a sequence of pokes. We use a

4

http://ashvin.me/pokebot-website/


Action Predictor

Current Image (It) Goal Image (Ig)

Next Image (It+1)

(a) Greedy Planner (b) Blob Model

(c) Pose Error Evaluation

Angle (θ)

Figure 4: (a) Greedy planner is used to output a sequence of pokes to displace the objects from their
configuration in initial to the goal image. (b) The blob model first detects the location of objects in
the current and goal image. Based on object positions, location and angle of the poke is computed
and then executed by the robot. The obtained next and goal image are used to compute the next poke
and this process is repeated iteratively. (c) The error of the models in poking objects to their correct
pose is measured as the angle between the major axis of the objects in the final and goal images.

greedy planning method (see Figure 4(a)) to output a sequence of pokes. First, images depicting the
initial and goal state are passed through the learnt model to predict the poke which is then executed
by the robot. Then, the image depicting the current world state (i.e. the current image) and the goal
image are fed again into the model to output a poke. This process is repeated iteratively unless the
robot predicts a no-poke (see section 3.1) or a maximum number of 10 pokes is reached.

Error Metrics: In all our experiments, the initial and goal images differ in the position of only a
single object. The location and pose of the object in the final image after the robot stops and the goal
image are compared for quantitative evaluation. The location error is the Euclidean distance between
the object locations. In order to account for different object distances in the initial and goal state, we
use relative instead of absolute location error. Pose error is defined as the angle (in degrees) between
the major axis of the objects in the final and goal images (see Figure 4(c)). Please see supplementary
materials for further details.

3.3 Blob Model

We compared the performance of the learnt model against a baseline blob model. This model first
estimates object locations in current and goal image using template based object detector. It then uses
the vector difference between these to compute the location, angle and length of poke executed by
the robot (see supplementary materials for details). In a manner similar to greedy planning with the
learnt model, this process is repeated iteratively until the object gets closer to the desired location in
the goal image by a pre-defined threshold or a maximum number of pokes is reached.

4 Results

The robot was tasked to displace objects in an initial image into their configuration depicted in a
goal image (see Figure 5). The three rows in the figure show the performance when the robot is
asked to displace an object (Nutella bottle) present in the training set, an object (red cup) whose
geometry is different from objects in the training set and when the task is to move an object around
an obstacle. These examples are representative of the robot’s performance and more examples can be
found on the project website. It can be seen that the robot is able to successfully poke objects present
in the training set and objects with novel geometry and texture into desired goal locations that are
significantly farther than pair of before and after images used in the training set.

Row 2 in Figure 5 also shows that the robot’s performance in unaffected by the presence of distractor
objects that occupy the same location in the current and goal images. These results indicate that the
learnt model allows the robot to perform tasks that show generalization beyond the training set (i.e.
poking object by small distances). Row 3 in Figure 5 depicts an example where the robots fails to
push the object around an obstacle (yellow object). The robot acts greedily and ends up pushing the
obstacle along with the object. One more side-effect of greedy planning is zig-zag instead of straight
trajectories taken by the object between its initial and goal locations. Investigating alternatives to
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Figure 5: The robot is able to successfully displace objects in the training set (row 1; Nutella bottle)
and objects with previously unseen geometry (row 2; red cup) into goal locations that are significantly
farther than pair of before and after images used in the training set. The robot is unable to push
objects around obstacles (row 3; limitation of greedy planning).

greedy planning, such as using the learnt forward model for planning pokes is a very interesting
direction for future research.

What representation could the robot have learnt that allows it to generalize? One possibility is that
the robot ignores the geometry of the object and only infers the location of the object in the initial and
goal image and uses the difference vector between object locations to deduce what poke to execute.
This strategy is invariant to absolute distance between the object locations and is therefore capable
of explaining the observed generalization to large distances. While we cannot prove that the model
has learnt to detect object location, nearest neighbor visualizations of the learnt feature space clearly
suggest sensitivity to object location (see supplementary materials). This is interesting because the
robot received no direct supervision to locate objects.

Because different objects have different geometries, they need to be poked at different places to move
them in the same manner. For example, a Nutella bottle can be reliably moved forward without
rotating the bottle by poking it on the side along the direction toward its center of mass, whereas a
hammer is reliably moved by poking it where the hammer head meets the handle. Pushing an object to
a desired pose is harder and requires a more detailed understanding of object geometry in comparison
to pushing the object to a desired location. In order to test whether the learnt model represents any
information about object geometry, we compared its performance against the baseline blob model
(see section 3.3 and figure 4(b)) that ignores object geometry. For this comparison, the robot was
tasked to push objects to a nearby goal by making only a single poke (see supplementary materials
for more details). Results in Figure 6(a) show that both the inverse and joint model outperform the
blob model. This indicates that in addition to representing information about object location, the
learn models also represent some information about object geometry.

4.1 Forward model regularizes the inverse model

We tested the hypothesis whether the forward model regularizes the feature space learnt by the
inverse model in a 2-D simulation environment where the agent interacted with a red rectangular
object by poking it by small forces. The rectangle was allowed to freely translate and rotate (Figure
6(c)). Model training was performed using an architecture similar to the one described in section 3.1.
Additional details about the experimental setup, network architecture and training procedure for the
simulation experiments are provided in the supplementary materials. Figure 6(c) shows that when
less training data (10K, 20K examples) is available the joint model outperforms the inverse model
and reaches closer to the goal state in fewer steps (i.e. fewer actions). This shows that indeed the
forward model regularizes the inverse model and helps generalize better. However, when the number
of training examples is increased to 100K both models are at par. This is not surprising because
training with more data often results in better generalization and thus the inverse model is no longer
reliant on the forward model for the regularization.

Evaluation on the real robot supports the findings from the simulation experiments. Figure 6(b) shows
that in a test of generalization, when an object is required to be displaced by a long distance, the
joint model outperforms the inverse model. Similar performance of joint and blob model at this task
is not surprising because even if the pokes are somewhat inaccurate but generally in the direction
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Figure 6: (a) Inverse and Joint model are more accurate than the blob model at pushing objects
towards the desired pose. (b) The joint model outperforms the inverse-only model when the robot
is tasked to push objects by distances that are significantly larger than object distance in before and
after images used in the training set (i.e. a test of generalization). (c) Simulation studies reveal that
when less number of training examples (10K, 20K) are available the joint model outperforms the
inverse model and the performance is comparable with larger amount of data (100K). This result
indicates that the forward model regularizes the inverse model.

from object’s current to goal location, the object might traverse a zig-zag path but it would eventually
reach the goal. The joint model is however more accurate at displacing objects into their correct pose
as compared to the blob model (Figure 6(a)).

5 Related Work

Learning visual control policies using reinforcement learning for tasks such as playing Atari
games (Mnih et al., 2015), controlling robots in simulation (Lillicrap et al., 2016) and in the real
world (Levine et al., 2016a) is of growing interest. However, these methods are model free and learn
goal specific policies, which makes it difficult to repurpose the learned policies for new tasks. In
contrast, the aim of this work is to learn intuitive physical models of object interaction which we show
allow the agent to generalize. Other works in visual control have relied on model free methods that
operate on a a low-dimensional state representation of images obtained using autoencoders (Lange
et al., 2012; Finn et al., 2016; Kietzmann & Riedmiller, 2009). It is unclear that features obtained by
optimizing pixelwise reconstruction are necessarily well suited for model based control.

Learning to grasp objects by trial and error from large amounts of interaction data has recently
been explored (Pinto & Gupta, 2016; Levine et al., 2016b). These methods aim to acquire a policy
for solving a single concrete task, while our work is concerned with learning a general predictive
model that could be used to achieve a variety of goals at test time. When an object is grasped, it is
possible to fully control the state of the grasped object. However, in non-prehensile manipulation
(i.e. manipulation without grasping (LaValle, 2006)) such as poking, the object state is not directly
controllable which makes manipulation by poking harder than grasping (Dogar & Srinivasa, 2012).
Learning a model of poking was considered by (Pinto et al., 2016), but their goal was to learn visual
representations and they did not consider using the learnt models to displace objects to goal locations.

A good review of model based control can be found in (Mayne, 2014) and (Jordan & Rumelhart,
1992; Wolpert et al., 1995) provide interesting perspectives. A model based deep learning method for
cutting vegetables was considered by (Lenz et al., 2015). However, as their system operated on the
robotic state space instead of vision and is thus limited in its generality. Model based control from
visual inputs was considered by (Fragkiadaki et al., 2016; Wahlström et al., 2015; Watter et al., 2015;
Oh et al., 2015) in synthetic domains of manipulating two degree of freedom robotic arm, inverted
pendulum, billiards and Atari games. In contrast, we tackle manipulation of complex, compressible
real world objects. Instead of learning a model of physics, some recents works (Wu et al., 2015;
Mottaghi et al., 2016; Lerer et al., 2016) have proposed to use Newtonian physics in combination
with neural networks to forecast object dynamics.
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In robotic manipulation, a number of prior methods have been proposed that use hand-designed visual
features and known object poses or key locations to plan and execute pushes and other non-prehensile
manipulations (Kopicki et al., 2011; Lau et al., 2011; Meriçli et al., 2015). Unlike these methods,
the goal in our work is to learn an intuitive physics model for pushing only from raw images, thus
allowing the robot to learn by exploring the environment on its own without human intervention.

6 Discussion and Future Work

In this work we propose to learn “intuitive" model of physics using interaction data. An alternative is
to represent the world in terms of a fixed set of physical parameters such as mass, friction coefficient,
normal forces etc and use a physics simulator for computing object dynamics from this representation
(Kolev & Todorov, 2015; Mottaghi et al., 2016; Wu et al., 2015; Hamrick et al., 2011). This approach
is general because physics simulators inevitably use Newton’s laws that apply to a wide range of
physical phenomenon ranging from orbital motion of planets to a swinging pendulum. Estimating
parameters such as as mass, friction coefficient etc. from sensory data is subject to errors, and it is
possible that one parameterization is easier to estimate or more robust to sensory noise than another.
For example, the conclusion that objects with feather like appearance fall slower than objects with
stone like appearance can be reached by either correlating visual texture to the speed of falling objects,
or by computing the drag force after estimating the cross section area of the object. Depending on
whether estimation of visual texture or cross section area is more robust, one parameterization will
result in more accurate predictions than the other. Pre-defining a set of parameters for predicting
object dynamics, which is required by “simulator-based" approach might therefore lead to suboptimal
solutions that are less robust.

For many practical object manipulation tasks of interest, such as re-arranging objects, cutting
vegetables, folding clothes, and so forth, small errors in execution are acceptable. The key challenge
is robust performance in the face of varying environmental conditions. This suggests that a more
robust but a somewhat imprecise model may in fact be desirable over a less robust and a more
precise model. While the arguments presented above suggest that intuitive physics models are likely
to be more robust than simulator based models, quantifying the robustness of these models is an
interesting direction for future work. Furthermore, it is non-trivial to use simulator based models
for manipulating deformable objects such as clothes and ropes because simulation of deformable
objects is hard and also also requires representing objects by heavily handcrafted features that are
unlikely to generalize across objects. The intuitive physics approach does not make any object
specific assumptions and can be easily extended to work with deformable objects. This approach is
in the spirit of recent successful deep learning techniques in computer vision and speech processing
that learn features directly from data, whereas the simulator based physics approach is more similar
to using hand-designed features. Current methods for learning intuitive physics models, such as ours
are data inefficient and it is possible that combining intuitive and simulator based approaches leads to
better models than either approach by itself.

In poking based interaction, the robot does not have full control of the object state which makes it
harder to predict and plan for the outcome of an action. The models proposed in this work generalize
and are able to push objects into their desired location. However, performance on setting objects
in the desired pose is not satisfactory, possibly because of the robot only executing pokes in large,
discrete time steps. An interesting area of future investigation is to use continuous time control with
smaller pokes that are likely to be more predictable than the large pokes used in this work. Further,
although our approach is evaluated on a specific robotic manipulation task, there are no task specific
assumptions, and the techniques are applicable to other tasks. In future, it would be interesting to
see how the proposed approach scales with more complex environments, diverse object collections,
different manipulation skills and to other non-manipulation based tasks, such as navigation. Other
directions for future investigation include the use of forward model for planning and developing
better strategies for data collection than random interaction.

Supplementary Materials: and videos can be found at http://ashvin.me/pokebot-website/.
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