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Abstract

The objective of this work is to reconstruct the 3D surfaces of sculptures from one or more images using a view-dependent

representation. To this end, we train a network, SiDeNet, to predict the Silhouette and Depth of the surface given a variable

number of images; the silhouette is predicted at a different viewpoint from the inputs (e.g. from the side), while the depth is

predicted at the viewpoint of the input images. This has three benefits. First, the network learns a representation of shape beyond

that of a single viewpoint, as the silhouette forces it to respect the visual hull, and the depth image forces it to predict concavities

(which don’t appear on the visual hull). Second, as the network learns about 3D using the proxy tasks of predicting depth and

silhouette images, it is not limited by the resolution of the 3D representation. Finally, using a view-dependent representation

(e.g. additionally encoding the viewpoint with the input image) improves the network’s generalisability to unseen objects.

Additionally, the network is able to handle the input views in a flexible manner. First, it can ingest a different number of views

during training and testing, and it is shown that the reconstruction performance improves as additional views are added at

test-time. Second, the additional views do not need to be photometrically consistent. The network is trained and evaluated

on two synthetic datasets—a realistic sculpture dataset (SketchFab), and ShapeNet. The design of the network is validated

by comparing to state of the art methods for a set of tasks. It is shown that (i) passing the input viewpoint (i.e. using a

view-dependent representation) improves the network’s generalisability at test time. (ii) Predicting depth/silhouette images

allows for higher quality predictions in 2D, as the network is not limited by the chosen latent 3D representation. (iii) On both

datasets the method of combining views in a global manner performs better than a local method. Finally, we show that the

trained network generalizes to real images, and probe how the network has encoded the latent 3D shape.

Keywords Visual hull · Generative model · Silhouette prediction · Depth prediction · Convolutional neural networks ·

Sculpture dataset

1 Introduction

Learning to infer the 3D shape of complex objects given only

a few images is one of the grand challenges of computer

vision. Another of the many benefits of deep learning has

been a resurgence of interest in this task. Many recent works

have developed the idea of inferring 3D shape given a set

of classes (e.g. cars, chairs, rooms). This modern treatment

of class based reconstruction follows on from the pre-deep
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learning classic work of Blanz and Vetter (1999) for faces

and later for other classes such as semantic categories (Kar

et al. 2015; Cashman and Fitzgibbon 2013) or cuboidal room

structures (Fouhey 2015; Hedau et al. 2009).

This work extends this area in two directions: first, it con-

siders 3D shape inference from multiple images rather than a

single one (though this is considered as well); second, it con-

siders the quite generic class of piecewise smooth textured

sculptures and the associated challenges.

To achieve this, a deep learning architecture is introduced

which can take into account a variable number of views in

order to predict depth for the given views and the silhouette

at a new view (see Fig. 1 for an overview). This approach has

a number of benefits: first the network learns how to com-

bine the given views—it is an architectural solution—without

using multi view stereo. As a result, the views need not be
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Fig. 1 An overview of SiDeNet. First, images of an object are taken

at various viewpoints θ1 · · · θN by rotating the object about the vertical

axis. Given a set of these views (the number of which may vary at test

time), SiDeNet predicts the depth of the sculpture at the given views and

the silhouette at a new view θ ′. Here, renderings of the predicted depth

at two of the given views and silhouette predictions at new viewpoints

are visualised. The depth predictions are rendered using the depth value

for the colour (e.g. dark red is further away and yellow/white nearer)

(Color figure online)

photometrically consistent. This is useful if the views exhibit

changes in exposure/lighting/texture or are taken in different

contexts (so one may be damaged), etc. By enforcing that the

same network must be able to predict 3D from single and mul-

tiple views, the network must be able to infer 3D shape using

global information from one view and combine this informa-

tion given multiple views; this is a different approach from

building up depth locally using correspondences as would be

done in a traditional multi view stereo approach.

Second, using a view-dependent representation means that

the model makes few assumptions about the distribution of

input shapes or their orientation. This is especially bene-

ficial if there is no canonical frame or natural orientation

over the input objects (e.g. a chair facing front and upright

is at 0◦). This generalisation power is demonstrated by train-

ing/evaluating SiDeNet on a dataset of sculptures which have

a wide variety of shapes and textures. SiDeNet generalises

to new unseen shapes without requiring any changes.

Finally, as only image representations are used, the quality

of the 3D model is not limited by the 3D resolution of a voxel

grid or a finite set of points but by the image resolution.

Contributions This work brings the following contributions.

First, a fully convolutional architecture and loss function,

termed SiDeNet (Sects. 3, 4) is introduced for understand-

ing 3D shape. It can incorporate additional views at test

time, and the predictions improve as additional views are

incorporated when both using 2D convolutions to predict

depth/silhouettes as well as 3D convolutions to latently infer

the 3D shape. Further, this is true without assuming that the

objects have a canonical representation unlike many con-

temporary methods. Second, a dataset of complex sculptures

which are augmented in 3D (Sect. 5). This dataset demon-

strates that the learned 3D representation is sufficient for

silhouette prediction as well as new view synthesis for a

set of unseen objects with complex shapes and textures.

Third, a thorough evaluation that demonstrates how incor-

porating additional views improves results and the benefits

of the data augmentation scheme (Sect. 6) as well as that

SiDeNet can be used directly on real images. This evalua-

tion also demonstrates how SiDeNet can incorporate multiple

views without requiring photometric consistency and demon-

strates that SiDeNet is competitive or better than comparable

state-of-the-art methods for 3D prediction and at leverag-

ing multiple views on both the Sculptures and ShapeNet

datasets. Finally, the architecture is investigated to determine

how information is encoded and aggregated across views in

Sect. 8.1

This work is an extension of that described in Wiles and

Zisserman (2017). The original architecture is referred to

as SilNet, and the improved architecture (the subject of this

work) SiDeNet. SilNet learns about the visual hull of the

object and is trained on images of a small resolution size to

predict the silhouette of the object at again a small resolu-

tion size. This is improved in this work, SiDeNet. The loss

function is improved by adding an additional term for depth

that enforces that the network should learn to predict concav-

ities on the 3D shape (Sect. 3). The architecture is improved

by increasing the resolution of the input and predicted image

(Sect. 4). The dataset acquisition phase is improved by adding

data augmentation in 3D (Sect. 5). These changes are anal-

ysed in Sect. 6.

2 RelatedWork

Inferring 3D shape from one or more images has a long

history in computer vision. However, single vs multi-image

approaches have largely taken divergent routes. Multi-image

approaches typically enforce geometric constraints such that

the estimated model satisfies the silhouette and photometric

constraints imposed by the given views whereas single image

approaches typically impose priors in order to constrain the

1 Data and resources are available at http://www.robots.ox.ac.uk/~vgg/

data/SilNet/.
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problem. However, recent deep learning approaches have

started to tackle these problems within the same model. This

section is divided into three areas: multi-image approaches

and single image approaches without deep learning, and

newer deep learning approaches which attempt to combine

these two problems into one model.

2.1 Multi-image

Traditionally, given multiple images of an object, 3D can be

estimated by tracking feature points across multiple views;

these constraints are then used to infer the 3D at the fea-

ture points using structure-from-motion (SfM), as explained

in Hartley and Zisserman (2004). Additional photometric and

silhouette constraints can also be imposed on the estimated

shape of the object. Silhouette based approaches that attempt

to learn the visual hull (introduced by Laurentini 1994) using

a set of silhouettes with known camera positions can be done

in 3D using voxels (or another 3D representation) or in the

image domain by interpolating between views (e.g. the work

of Matusik et al. 2000). This is improved by other approaches

which attempt to construct the latent shape subject to the sil-

houette as well as photometric constraints; they differ in how

they represent the shape and how they enforce the geometric

and photometric constraints (Boyer and Franco 2003; Kolev

et al. 2009; Vogiatzis et al. 2003—see Seitz et al. 2006 for a

thorough review). The limitation of these approaches is that

they require multiple views of the object at test time in order

to impose constraints on the generated shape and they cannot

extrapolate to unseen portions of the object.

2.2 Single Image

When given a single image, then correspondences cannot be

used to derive the 3D shape of the model. As a result, single-

image approaches must impose priors in order to recover 3D

information. The prior may be based on the class by mod-

elling the deviation from a mean shape. This approach was

introduced in the seminal work of Blanz and Vetter (1999).

The class based reconstruction approach has continued to be

developed for semantic categories (Cashman and Fitzgibbon

2013; Prasad et al. 2010; Vicente et al. 2014; Xiang et al.

2014; Kar et al. 2015; Rock et al. 2015; Kong et al. 2017) or

cuboidal room structures (Fouhey 2015; Hedau et al. 2009).

Another direction is to use priors on shading, texture, or illu-

mination to infer aspects of 3D shape (Zhang et al. 1999;

Blake and Marinos 1990; Barron and Malik 2015; Witkin

1981).

2.3 Deep Learning Approaches

Newer deep learning approaches have traditionally built on

the single image philosophy of learning a prior distribution

of shapes for a given object class. However, in these cases

the distribution is implicitly learned for a specific object class

from a single image using a neural network. These methods

rely on a large number of images of a given object class that

are usually synthetic. The distribution may be learned by

predicting the corresponding 3D shape from a given image

for a given object class using a voxel, point cloud, or surface

representation (Girdhar et al. 2016; Wu et al. 2016; Fan et al.

2016; Sinha et al. 2017; Yan et al. 2016; Tulsiani et al. 2017;

Rezende et al. 2016; Wu et al. 2017). These methods differ

in whether they are supervised or use a weak-supervision

(e.g. the silhouette or photometric consistency as in Yan et al.

2016; Tulsiani et al. 2017). A second set of methods learn

a latent representation by attempting to generate new views

conditioned on a given view. This approach was introduced in

the seminal work of Tatarchenko et al. (2016) and improved

on by Zhou et al. (2016), Park et al. (2017).

While demonstrating impressive results, these deep learn-

ing methods methods are trained/evaluated on a single or

small number of object classes and often do not consider

the additional benefits of multiple views. The following

approaches consider how to generalise to multiple views

and/or the real domain.

The approaches that consider the multi-view case are the

following. Choy et al. (2016) use a recurrent neural network

on the predicted voxels given a sequence of images to recon-

struct the model. Kar et al. (2017) use the known camera

position to impose geometric constraints on how the views

are combined in the voxel representation. Finally, Soltani

et al. (2017) pre-determine a fixed set of viewpoints of the

object and then train a network for silhouette/depth from

these known viewpoints. However, changing any of the input

viewpoints or output viewpoints would require training a new

network.

More recent approaches such as the works of Zhu et al.

(2017), Wu et al. (2017) have attempted to fine-tune the

model trained on synthetic data on real images using the

silhouette or another constraint, but they only extend to

semantic classes that have been seen in the synthetic data.

Novotny et al. (2017) directly learn on real data using 3D

reconstructions generated by a SfM pipeline. However, they

require many views of the same object and enough corre-

spondences at train time in order to make use of the SfM

pipeline.

This paper improves on previous work in three ways. First

an image based approach is used for predicting the silhou-

ette and depth, thereby enforcing that the latent model learns

about 3D shape without having to explicitly model the full

3D shape. Second our method of combining multiple views

using a latent embedding acts globally as opposed to locally

(e.g. Choy et al. 2016 combine information for subsets of vox-

els and Kar et al. 2017 combine information along projection

rays). Additionally, our method does not require photometric
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consistency or geometric modelling of the camera move-

ment and intrinsic parameters—it is an architectural solution.

In spirit, our method of combining multiple views is more

similar to multi-view classification/recognition architectures

such as the works of Su et al. (2015), Qi et al. (2016). Third

a new Sculptures dataset is curated from SketchFab (2018)

which exhibits a wide variety of shapes from many semantic

classes. Many contemporary methods train/test on ShapeNet

core which contains a set of semantic classes. Training on

class-specific datasets raises the question: to what extent have

these architectures actually learnt about shape and how well

will they generalise to unseen objects that vary widely from

the given class (e.g. as an extreme how accurately would these

models reconstruct a tree when trained on beds/bookcases).

We investigate this on the Sculptures dataset.

3 Silhouette and Depth: AMulti-task Loss

The loss function used enforces two principles: first that the

network learns about the visual hull, and second that it learns

to predict the surface (and thus also concavities) at the given

view. This is done by predicting, for a given image (or set

of images), the silhouette in a new view and the depth at the

given views. We expand on these two points in the following.

3.1 Silhouette

The first task considered is how to predict the silhouette at

a new view given a set of views of an object. The network

can do well at this task only if it has learned about the 3D

shape of the object. To predict the silhouette at a new angle

θ ′, the network must at least encode the visual hull (the visual

hull is the volume swept out by the intersection of the back-

projected silhouettes of an object as the viewpoint varies).

Using a silhouette image has desirable properties: first, it is

a 2D representation and so is limited by the 2D image size

(e.g. as opposed to the size of a 3D voxel grid). Second, pixel

intensities do not have to be modelled.

3.2 Depth

However, using the silhouette and thereby enforcing the

visual hull has the limitation that the network is not forced to

predict concavities on the object, as they never appear on the

visual hull. The proposed solution to this is to use a multi-

task approach. Instead of having the learned representation

describe only the silhouette in the new view, the representa-

tion must learn additionally to predict the depth of the object

in the given views. This enforces that the representation must

have a richer understanding of the object, as it must model

the concavities on the object as opposed to just the visual

hull (which using a silhouette loss imposes). Using a depth

image is also a 2D representation, so as with using an image

for the silhouette, it is limited by the 2D image size.

4 Implementation

In order to actually implement the proposed approach, the

problem is formulated as described in Sects. 4.1 and 4.2 and

a fully convolutional CNN architecture is used, as described

in Sect. 4.3.

4.1 Loss Function

The loss function is implemented as follows. Given a set

of images with their corresponding viewpoints (I1, θ1), . . . ,

(IN , θN ) a representation x is learned such that x can be used

to not only predict the depth in the given views d1, . . . , dN but

also predict the silhouette S at a new viewpoint θ ′. Moreover,

the number of input views (e.g. N ) should be changeable

at test time such that as N increases then the predictions

d1, . . . dN , S improve.

To do this, the images and their corresponding view-

points are first encoded using a convolutional encoder f

to give a latent representation f vi . The same encoder is

used for all viewpoints giving f (I1, θ1), . . . , f (IN , θN ) =

f v1, . . . , f vN . These are then combined to give the latent

view-dependent representation x . x is then decoded using a

convolutional decoder hsil conditioned on the new viewpoint

θ ′ to predict the silhouette S in the new view. Option-

ally, x is also decoded via another convolutional decoder

hdepth , which is conditioned on the given image and view-

points to predict the depth at the given viewpoints—di =

hdepth(x, Ii , θi ). Finally, the binary cross entropy loss is used

to compare S to the ground truth Sgt and the L1 loss to com-

pare di to the ground truth digt .

4.2 Improved Loss Functions

Implementing the loss functions naively as described in

Sect. 4.1 is problematic. First, the depth being predicted is

the absolute depth, which means the model must guess the

absolute position of the object in the scene. This is inher-

ently ambiguous. Second, the silhouette prediction decoder

struggles to model the finer detail on the silhouette, instead

focusing on the middle of the object which is usually filled.

As a result, both losses are modified. For the depth predic-

tion, the mean of both the ground truth and predicted depth

are moved to 0.

The silhouette loss is weighted at a given pixel wi, j based

on the Euclidean distance at that point to the silhouette

(denoted as disti, j ):
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Fig. 2 A diagrammatic explanation of the multi-task loss function used.

Given the input images, the images are combined to give a feature

vector x which is used by both decoders (denoted in green—depth—

and orange—silhouette) to generate the depth predictions for the given

views and the silhouette prediction in a new view (Color figure online)

wi, j =

{

disti, j , if disti, j ≤ T

c otherwise.
(1)

In practice T = 20, c = 5. The rationale for the fall-off

when disti, j > T is due to the fact that most of the objects

are centred and have few holes, so modelling the pixels far

from the silhouette is easy. Using the fall-off incentivises

SiDeNet to correctly model the pixels near the silhouette.

Weighting based on the distance to the silhouette models the

fact that it is ambiguous whether pixels on the silhouette are

part of the background or foreground.

In summary, the complete loss functions are

Lsil =
∑

i, j

wi, j

(

S
gt

i, j log(Si, j ) +

(

1 − S
gt

i, j

)

log(1 − Si, j )

)

;

(2)

Ldepth =

N
∑

i=1

|di − digt |1. (3)

The loss function is visualised in Fig. 2. Note that in this

example the network’s prediction exhibits a concavity in the

groove of the sculpture’s folded arms.

4.3 Architecture

This section describes the various components of SiDeNet,

which are visualised in Fig. 3 and described in detail in

Table 10. This architecture takes as input a set of images

of size 256 × 256 and corresponding viewpoints (encoded

as [sin θi , cos θi ] so that 0◦, 360◦ map to the same value)

and generates depth and silhouette images at a resolution of

size 256 × 256. SiDeNet takes the input image viewpoints

as additional inputs because there is no implicit coordinate

frame that is true for all objects. For example, a bust may

be oriented along the z-axis for one object and the x-axis

for another and there is no natural mapping from a bust to a

sword. Explicitly modelling the coordinate frame using the

input/output viewpoints removes these ambiguities.

SiDeNet is modified to produce a latent 3D representation

in SideNet3D, which is visualised in Fig. 4 and described in

Sect. 4.4. This architecture is useful for two reasons. First, it

demonstrates that the method of combining multiple views

is useful in this scenario as well. Second, it is used to eval-

uate whether the image representation does indeed allow for

more accurate predictions, as the 3D representation necessi-

tates using fewer convolutional transposes and so generates

a smaller 57 × 57 silhouette image.

Encoder The encoder f takes the given image Ii and theta θi

and encodes it to a latent representation f vi . In the case of

all architectures, this is implemented using a convolutional

encoder, which is illustrated in Fig. 3. The layer parameters

and design are based on the encoder portion of the pix2pix

architecture by Isola et al. (2017) which is based on the UNet

architecture of Ronneberger et al. (2015).

Combination function To combine the feature vectors of each

encoder, any function that satisfies the following property

could be considered: given a set of feature vectors f vi , the

combination function should combine them into a single

latent vector x such that for any number of feature vectors,

x always has the same number of elements. In particular,

an element-wise max pool over the feature vectors and an

element-wise average pool are considered. This vector x must

encode properties of 3D shape useful for both depth predic-

tion and silhouette prediction in a new view.

Decoder (depth) The depth branch predicts the depth of a

given image using skip connections (taken from the corre-

sponding input branch) to propagate the higher details. The

exact filter sizes are modelled on the pix2pix and UNet net-

works.

Decoder (silhouette) The silhouette branch predicts the sil-

houette of a given image at a new viewpoint θ ′. The layers

are the same as the decoder (depth) branch without the skip

connections (as there is no corresponding input view).

4.4 3D Decoder

For SiDeNet3D, the silhouette decoder is modified to gen-

erate a latent 3D representation encoded using a voxel

occupancy grid. Using a projection layer this grid is projected

to 2D, which allows the silhouette loss to be used to train the

network in an end-end manner. This is done as follows. First,

the decoder is encoded as a sequence of 3D convolutional

transposes which generate a voxel of size V = 57 × 57 × 57

(please refer to appendix A.1 for the precise details). This

box is then transformed to the desired output θ ′ to give V ′

using a nearest neighbour sampler as described by Jaderberg

et al. (2015). The box is projected to generate the silhouette
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Fig. 3 A diagrammatic overview of the architecture used in SiDeNet.

Weights are shared across encoders and decoders (e.g. portions of

the architecture having the same colour indicate shared weights). The

blue, orange, and purple arrows denote concatenation. The input angles

θ1 · · · θN are broadcast over the feature channels as illustrated by the

orange arrows. The feature vectors are combined to form x (indicated

by the yellow block and arrows). This value is then used to predict the

depth at the given views θ1 · · · θN and the silhouette at a new view θ ′.

The size of x is invariant to the number of input views N , so an extra

view θi can be added at test time without any increase in the number

of parameters. Please see Table 10 for the precise details (Color figure

online)

Fig. 4 A diagrammatic overview of the projection in SiDeNet3D. A set

of 3D convolutional transposes up-sample from the combined feature

vector x to generate the 57 × 57 × 57 voxel (V ). This is then projected

using a max-operation over each pixel location to generate the silhouette

in a new view. Please see Table 10 for a thorough description of the three

different architectures

in a new view using the max function. As the max function

is differentiable, the silhouette loss can be back propagated

through this layer and the entire network trained end-to-end.

The idea of using a differentiable projection layer was

also considered by Yan et al. (2016), Tulsiani et al. (2017),

Table 1 Overview of the datasets. Gives the number of sculptures in

the train/val/test set as well as the number of views per object

Dataset Train Val Test # of views

SketchFab 372 20 33 5

SynthSculptures 77 – – 5

ShapeNet 4744 678 1356 24

Gadelha et al. (2016), Rezende et al. (2016). (However, we

can incorporate additional views at test time.)

5 Dataset

Three datasets are used in this work: a large sculpture dataset

of scanned objects which is downloaded from SketchFab

(2018), a set of scanned sculptures, and a subset of the syn-

thetic ShapeNet objects (Chang et al. 2015). An overview of

the datasets are given in Table 1. Note that unlike our dataset,

ShapeNet consists of object categories for which one can

impose a canonical view (e.g. that 0◦ corresponds to a chair

facing the viewer). This allows for methods trained on this
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Fig. 5 Sample renderings of the three different datasets. Zoom in for

more details. Best viewed in colour. a SketchFab dataset. Two sample

renderings of seven objects. The first three fall into the train set, the rest

into the test set. b SynthSculpture dataset. Sample renderings of eight

objects. These samples demonstrate the variety of objects, e.g. toys,

animals, etc. c ShapeNet. Seven sample renderings of the chair subset

(Color figure online)

dataset to make use of rotations or transformations relative

to the canonical view. However, for the sculpture dataset,

this property does not exist, necessitating the need of a view-

dependent representation for SiDeNet.

Performing data augmentation in 3D is also investigated

and shown to increase performance in Sect. 6.2.

5.1 Sculpture Datasets

SketchFab: sculptures from SketchFab A set of realistic sculp-

tures are downloaded from SketchFab (the same sculptures as

used in Wiles and Zisserman 2017 but different renderings).

These are accurate reconstructions of the original sculptures

generated by users using photogrammetry and come with

realistic textures. Some examples are given in Fig. 5a.

SynthSculptures This dataset includes an additional set of 77

sculptures downloaded from TurboSquid2 using the query

sculpture. These objects have a variety of realism and come

from a range of object classes. For example the sculptures

range from low quality meshes that are clearly polygonized

to high quality, highly realistic meshes. The object classes

range from abstract sculptures to jewellery to animals. Some

examples are given in Fig. 5b.

Rendering The sculptures and their associated material (if

it exists) are rendered in Blender (Blender Online Commu-

nity 2017). The sculptures are first resized to be within a

uniform range (this is necessary for the depth prediction com-

ponent of the model). Then, for each sculpture, five images

2 https://www.turbosquid.com/3d-model/.
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Fig. 6 Seven sample augmentations of three models in the SynthSculp-

ture dataset using the 3D augmentation setup described in Sect. 5.1.

These samples demonstrate the variety of materials, sizes and view-

points for a given 3D model using the 3D data augmentation method

of the sculpture are rendered from uniformly randomly cho-

sen viewpoints between 0◦ and 120◦ as the object is rotated

about the vertical axis. Three light sources are added to

the scene and translated randomly with each render. Some

sample sculptures (and renders) for SketchFab and Synth-

Sculptures are given in Fig. 5.

3D augmentation 3D data augmentation is used to augment

the two sculpture datasets by modifying the dimensions and

material of a given 3D model. The x ,y,z dimensions of a

model are each randomly scaled from between [0.5, 1.4] of

the original dimension. Then a material is randomly chosen

from a set of standard blender materials.3 These materials

include varieties of wood, stone, and marble. Finally, the

resulting model is rendered from five viewpoints exactly as

described above. The whole process is repeated 20 times for

each model. Some example renderings using data augmen-

tation for a selection of models from SynthScultpures are

illustrated in Fig. 6.

Dataset split The sculptures from SketchFab are divided

at the sculpture level into train, val, test so that there are

372/20/33 sculptures respectively. All sculptures from Synth-

Sculptures are used for training. For a given iteration during

train/val/test, a sculpture is randomly chosen from which a

subset of the 5 rendered views is selected.

5.2 ShapeNet

ShapeNet (Chang et al. 2015) is a dataset of synthetic objects

divided into a set of semantic classes. To compare this work

to that of Yan et al. (2016), their subdivision, train/val/test

split and renderings of the ShapeNet chair subset are used.

Their rendered synthetic objects are rendered under simple

lighting conditions at fixed 15◦ intervals about the verti-

cal axis for each object to give a total of 24 views per

object. We additionally collect depth maps for each render

using the extrinsic/intrinsic parameters of Yan et al. (2016).

3 https://www.blendswap.com/blends/view/4867.

Some example renderings are given in Fig. 5c. Again at

train/val/test time, a sculpture is randomly chosen and a sub-

set of this sculpture’s 24 renders is chosen.

6 Experiments

This section first evaluates the design choices: the utility

of using the data augmentation scheme is demonstrated in

Sect. 6.2, the effect of the different architectures in Sect. 6.3,

the multi-task loss in Sect. 6.4, and the effect of the choice

of θ ′ in Sect. 6.8. Second it evaluates the method of com-

bining multiple views: Sect.s 6.5 and 6.6 demonstrate how

increasing the number of views at test time improves per-

formance on the Sculpture dataset irrespective of whether

the input/output views are photometrically consistent. Sec-

tion 6.7 demonstrates that the approach works on ShapeNet

and Sect. 6.9 evaluates the approach in 3D. SiDeNet’s abil-

ity to perform new view synthesis is exhibited in Sect. 7 as

well as its generalisation capability to real images. Finally,

the method by which SiDeNet can encode a joint embedding

of shape and viewpoint is investigated in Sect. 8.

6.1 Training Setup

The networks are written in pytorch (Paszke et al. 2017) and

trained with SGD with a learning rate of 0.001, momentum

of 0.9 and a batch size of 16. They are trained until the loss on

the validation set stops improving or for a maximum of 200

iterations, whichever happens first. The tradeoff between the

two losses – L = λdepthLdepth + λsilLsil—is set such that

λdepth = 1 and λsil = 1.

6.1.1 Evaluation Measure

The evaluation measure used is the intersection over union

(IoU) error for the silhouette, L1 error for the depth error,

and chamfer distance for the error when evaluating in 3D.

The IoU for a given predicted silhouette S and ground truth

silhouette S̄ is evaluated as

∑

x,y(I (S)∩I (S̄))
∑

x,y(I (S)∪I (S̄))
where I is an

indicator function and equals 1 if the pixel is a foreground

pixel, else 0. This is then averaged over all images to give

the mean IoU.

The L1 loss is simply the average over all foreground pix-

els: L1 = 1
N

∑

px
|d

pred
px

− d
gt
px

|1 where px is a foreground

pixel and N the number of foreground pixels. Note that the

predicted and ground truth depth are first normalised by sub-

tracting off the mean depth. This is then averaged over the

batch. When there are multiple input views, the depth error

is only computed for the first view, so the comparison across

increasing numbers of views is valid.
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Table 2 Effect of data augmentation. This table demonstrates the utility

of using 3D data augmentation to effectively enlarge the number of

sculptures being trained with. SketchFab is always used and sometimes

augmented (denoted by Augment). SynthSculpture is sometimes used

(denoted by Used) and sometimes augmented. The models are evaluated

on the test set of SketchFab. Lower is better for L1 and higher is better

for IoU

SketchFab SynthSculpture L1 Depth error Silhouette IoU

Augment? Used? Augment?

✗ ✗ – 0.210 0.643

✓ ✗ – 0.202 0.719

✗ ✓ ✗ 0.209 0.678

✓ ✓ ✓ 0.201 0.724

The chamfer distance used is the symmetrized version.

Given the ground truth point cloud g and the predicted one

p, then the error is C D = 1
N

∑N
i=1 min j |gi − p j |

2 +
1
M

∑M
i=1 min j |g j − pi |

2.

6.1.2 Evaluation Setup

Unless otherwise stated, the results are for the max-pooling

version of SiDeNet, with input/output view size 256 × 256,

trained with 2 distinct views, data augmentation of both

datasets (Sect. 6.2), λdepth = 1 and λsil = 1, and the

improved losses described in Sect. 4.2.

6.2 The Effect of the Data Augmentation

First, the effect of the 3D data augmentation scheme is con-

sidered. The results for four methods trained with varying

amounts of data augmentation (described in section 5.1) are

reported in Table 2 and demonstrate the benefit of using the

3D data augmentation scheme. (These are trained with the

non-improved losses.) Using only 2D modifications was tried

but not found to improve performance.

6.3 Ablation Study of the Different Architectures

This section compares the performance of SiDeNet57×57,

SiDeNet3D, and SiDeNet on the silhouette/depth prediction

tasks, as well as using average vs max-pooling. SiDeNet/

SiDeNet3D are described in Sect. 4.3. SiDeNet57×57 modi-

fies SiDeNet to generate a 57 × 57 silhouette (for the details

for all architectures please refer to “Appendix A.1”). It addi-

tionally compares the simple version of the loss functions,

described in Sect. 4.1 to the improved version described in

Sect. 4.2. Finally the performance of predicting the mean

depth value is given as a baseline. See Table 3 for the results.

These results demonstrate that while the difference in

the pooling function in terms of results is minimal, our

improved loss functions improve performance. Weighting

more strongly the more difficult parts of the silhouette (e.g.

around the boundary) can encourage the model to learn a

better representation.

Finally, SiDeNet57×57 does worse than SiDeNet for both

the L1 loss and the silhouette IoU loss. While in this case the

difference is small, as more data is introduced and the predic-

tions become more and more accurate, the benefit of using a

larger image/representation is clear. This is demonstrated by

the chairs on ShapeNet in Sect. 6.7.

6.4 The effect of usingLdepth andLsil

Second, the effect of the individual components of the multi-

task loss is considered. The multi-task loss enforces that

the network learns a richer 3D representation; the network

must predict concavities in order to perform well at pre-

dicting depth and it must learn about the visual hull of the

object in order to predict silhouettes at new viewpoints. As

demonstrated in Table 4, using the multi-task loss does not

negatively affect the prediction accuracy as compared to pre-

dicting each component separately. This demonstrates that

the model is able to represent both aspects of shape at the

same time.

Table 3 Ablation study of the different architectures, which vary in

size and complexity. basic refers to using the standard L1 and binary

cross entropy loss without the improvements described in Sect. 4.2.

The models are evaluated on the test set of SketchFab. Lower is better

for L1 and higher is better for IoU. The sizes denote the size of the

corresponding images (e.g. 256 × 256 corresponds to an output image

of this resolution)

Model Input size Output size Pooling? Improved loss? Depth L1256×256
error Silhouette IoU256×256

SiDeNetbasic 256 × 256 256 × 256 Max ✗ 0.201 0.724

SiDeNet 256 × 256 256 × 256 Max � 0.181 0.739

SiDeNet 256 × 256 256 × 256 Avg � 0.189 0.734

SiDeNet57×57basic 256 × 256 57 × 57 Max ✗ – 0.723

SiDeNet57×57 256 × 256 57 × 57 Max � 0.195 0.734

SiDeNet3D 256 × 256 57 × 57 Max � 0.182 0.733

Baseline: z = c – – – – 0.223 –
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Table 4 Effect of the multi-task loss. This table demonstrates the effect

of the multi-task loss. As can be seen, using both losses does not neg-

atively affect the performance of either task. The models are evaluated

on the test set of SketchFab. Lower is better for L1 and higher is better

for IoU

Loss function λdepth λsil Depth L1 error Silhouette IoU

Silhouette and depth 1 1 0.181 0.739

Silhouette – – – 0.734

Depth – – 0.178 –

Table 5 Effect of incorporating additional views at test time. This

architecture was trained with one, two, or three views. These results

demonstrate how additional views can be dynamically incorporated at

test time and results on both depth and silhouette measures improve.

The models are evaluated on the test set of SketchFab. Lower is better

for L1 and higher is better for IoU

Pooling? # Views (train) # Views (test) L1 Depth

error

Silhouette

IoU

Max 1 1 0.206 0.702

Max 1 2 0.210 0.712

Max 1 3 0.209 0.716

Max 2 1 0.204 0.694

Max 2 2 0.181 0.739

Max 2 3 0.170 0.751

Avg 2 1 0.197 0.715

Avg 2 2 0.192 0.725

Avg 2 3 0.189 0.732

Max 3 1 0.198 0.706

Max 3 2 0.172 0.753

Max 3 3 0.162 0.766

Some visual results are given in Figs. 11 and 12. Example

(b) in Fig. 12 demonstrates how the model has learned to

predict concavities, as it is able to predict grooves in the

relief.

6.5 The effect of increasing the number of views

Next, the effect of increasing the number of input views is

investigated with interesting results.

For SiDeNet, as with SilNet, increasing the number of

views improves results over all error metrics in Table 5. Some

qualitative results are given in Fig. 7. It is interesting to note

that not only does the silhouette performance improve given

additional input views but so does the depth evaluation met-

ric. So incorporating additional views improves the depth

prediction for a given view using only the latent vector x .

A second interesting point is that training with more

views can predict better than training with fewer numbers

of views—e.g. training with three views and testing on one

or two views does better than training on two views and test-

ing on two or training on one view and testing on one view.

It seems that when training with additional views and testing

with a smaller number, the network can make use of infor-

mation learned from the additional views. This demonstrates

the generalisability of the SiDeNet architecture.

6.6 The Effect of Non-photometrically Consistent
Inputs

A major benefit of SiDeNet is it does not require photo-

metrically consistent views: provided the object is of the

same shape, then the views may vary in lighting or material.

While the sculpture renderings used already vary in lighting

conditions across different views (Sect. 5), this section con-

siders the extreme case: how does SiDeNet perform when

the texture is modified in the input views. To perform this

comparison, SiDeNet is tested on the sculpture dataset with

a randomly chosen texture for each view (see Fig. 6 for some

sample textures demonstrating the variety of the 20 textures).

It is then tested again on the same test set but with the tex-

ture fixed across all input views. The results are reported in

Table 6.

Surprisingly, with no additional training, SiDeNet per-

forms nearly as well when the input/output views have

randomly chosen textures. Moreover, performance improves

given additional views. The network appears to have learned

to combine input views with varying textures without being

explicitly trained for this. This demonstrates a real benefit

of SiDeNet over traditional approaches—the ability to com-

bine multiple views of an object for shape prediction without

requiring photometric consistency.

6.7 Comparison on ShapeNet

SiDeNet is compared to Perspective Transformer Nets by Yan

et al. (2016) by training and testing on the chair subset of

the ShapeNet dataset. The comparison demonstrates three

benefits of our approach: the ability to incorporate multi-

ple views, the benefit of our 3D data augmentation scheme,

and the benefits of staying in 2D. This is done by compar-

ing the accuracy of SiDeNet’s predicted silhouettes to those

of Yan et al. (2016). Their model is trained with the inten-

tion of using it for 3D shape prediction, but we focus on the

2D case here to demonstrate that using an image represen-

tation means that, with the same data, we can achieve better

prediction performance in the image domain, as we are not

limited by the latent voxel resolution. To compare the gen-

erated silhouettes, their implementation of the IoU metric is

used:

∑

x,y I (Sx,y)×S̄x,y
∑

x,y(I (Sx,y)+S̄x,y)>0.9
.

Multiple setups for SiDeNet are considered: fine-tuning

from the model trained on the sculptures with data augmen-
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(a)

(b)

(c)

Fig. 7 (a–c) Qualitative results for increasing the number of input views

on SiDeNet for three different sculptures. SiDeNet’s depth and silhou-

ette predictions are visualised as the number of input views is increased.

To the left are the input views, the centre gives the depth prediction for

the first input view, and the right gives the predicted silhouette for each

set of input views. The silhouette in the red box gives the ground truth

silhouette. The scale on the side gives the error in depth—blue means

the depth prediction is perfectly accurate and red that the prediction is

off by 1 unit. (The depth error is clamped between 0 and 1 for visualisa-

tion purposes.) As can be seen, performance improves with additional

views. This is most clearly seen for the ram in (c) (Color figure online)
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Table 6 The effect of using non-photometrically consistent inputs.

These results demonstrate that SiDeNet trained with views of an object

with the same texture generalises at runtime to incorporating views

of an object with differing textures. Additional views can be dynami-

cally incorporated at test time and results on both depth and silhouette

measures improve. The model is trained with 2 views. The models are

evaluated on the test set of SketchFab. Lower is better for L1 and higher

is better for IoU

Views have the same texture? # Views (test) L1 Depth

error

Silhouette

IoU

� 1 0.165 0.739

� 2 0.142 0.778

� 3 0.139 0.785

✗ 1 0.164 0.738

✗ 2 0.143 0.777

✗ 3 0.139 0.785

Table 7 Comparison to Perspective Transformer Nets (PTNs) (Yan

et al. 2016) on the silhouette prediction task on the chair subset of

ShapeNet. Their model is first trained on multiple ShapeNet categories

and fine-tuned on the chair subset. SiDeNet is optionally first trained on

the Sculpture dataset or trained directly on the chair subset. As can be

seen, SiDeNet outperforms PTN given one view and improves further

given additional views. These results also demonstrate the utility of

various components of SiDeNet: using a larger 256 × 256 image to

train the silhouette prediction task and using the improved, weighted

loss function. It is also interesting to note that pre-training with the

complex sculpture class gives a small boost in performance (e.g. it

generalises to this very different domain of chairs). The value reported

is the mean IoU metric for the silhouette; higher is better

Pre-training Number of views tested with

1 2 3 4 5

Yan et al. (2016) ShapeNet 0.797 – – – –

SiDeNet Sculptures 0.831 0.845 0.850 0.852 0.853

SiDeNet – 0.826 0.843 0.848 0.850 0.851

SiDeNet256×256basic – 0.814 0.831 0.835 0.837 0.837

SiDeNet57×57basic – 0.775 0.791 0.795 0.796 0.795

tation (e.g. both in Table 1), with/without the improved loss

function and for multiple output sizes. To demonstrate the

benefits of the SiDeNet architecture, SiDeNet is trained only

with the silhouette loss, so both models are trained with the

exact same information. The model from Yan et al. (2016)

is fine-tuned from a model trained for multiple ShapeNet

categories. The results are reported in Table 7.

These results demonstrate the benefits of various compo-

nents of SiDeNet, which outperforms Yan et al. (2016). First,

using a 2D resolution means a much larger image segmen-

tation can be used to train the network. As a result, much

better performance can be obtained (e.g. SiDeNet256×256basic

has much better performance than SiDeNet57×57basic). Sec-

ond, the improved, weighted loss function for the silhouette

(Sect. 4.2) improves performance further. Third, fine-tuning

Fig. 8 The effect of varying the range of θ ′ used at train time on the

IoU error at test time (Color figure online)

a model trained with the 3D sculpture augmentation scheme

gives an additional small boost in performance. Finally, using

additional views improves results for all versions of SiDeNet.

Some qualitative results are given in Fig. 10.

6.8 The Effect of Varying�′

In order to see how well SiDeNet can extrapolate to new

angles (and there by how much it has learned about the visual

hull), the following experiment is performed on ShapeNet.

SiDeNet is first trained with various ranges of θ ′, θi . For

example if the range is [15◦ · · · 120◦], then all randomly

selected input angles θi and θ ′ are constrained to be within

this range during training. At test time, a random chair is

chosen and the silhouette IoU error evaluated for each target

viewpoint θ ′ in the full range (e.g. [15◦ · · · 360◦]), but the

input angles θi are still constrained to be in the constrained

range (e.g. [15◦ · · · 120◦]). This evaluates how well the model

extrapolates to unseen viewpoints at test time and how well

it has learned about shape. If the model was perfect, then

there would be no performance degradation as θ ′ moved out

of the constrained range used to train the model. The results

are given in Fig. 8. As can be seen (and would be expected),

for various training ranges the performance degrades as a

function of how much θ ′ differs from the range used to train

the model. The model is able to extrapolate outside of the

training range, but the more the model must extrapolate, the

worse the prediction.

6.9 Comparison in 3D

We additionally evaluate SiDeNet’s 3D predictions and con-

sider the two cases: using the depth maps predicted by

SiDeNet and the voxels from SiDeNet3D.

SiDeNet The depth maps are compared to those predicted

using the depth map version of Kar et al. (2017) in Table 8.
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Table 8 CD (×100) on the

ShapeNet dataset. The models

evaluated on depth predict a

depth map which is

back-projected to generate a 3D

point cloud

Model Trained with: Evaluation is on: Number of views tested with

1 2 3 4 6

SiDeNet Silhouettes + depth Depth 1.47 0.72 0.62 0.59 0.58

Kar et al. (2017) Depth Depth 1.73 0.82 0.71 0.67 0.65

Fig. 9 Comparison of multi-view methods on ShapeNet. Renderings of

the given chair are given in the top row, followed by SiDeNet’s and Kar

et al. (2017)’s predictions. For each chair, for each row, the point clouds

from left to right show the ground truth followed by the predictions

for one, two, three, and four views respectively. The colour denotes the

z value. As can be seen SiDeNet’s predictions are higher quality than

those of Kar et al. (2017) for these examples

Table 9 CD (×100) on the Sculptures dataset. The models evaluated on depth predict a depth map which is back-projected to generate a 3D point

cloud. The models evaluated on 3D are compared using the explicitly or implicitly learned 3D

Model Trained with Evaluation is on: Number of views tested with

1 2 3

SiDeNet3D Silhouettes + depth 3D 0.87 0.82 0.81

Kar et al. (2017) Depth Depth 2.15 1.38 1.15

Tatarchenko et al. (2016) Depth Depth 1.97 – –

Yan et al. (2016) Silhouettes 3D 1.26 – –

Groueix et al. (2018) 3D 3D 1.23 – –

This comparison is only done on ShapeNet as for the Sculp-

ture dataset we found it was necessary to subtract off the

mean depth to predict high quality depth maps (Sect. 4.2).

However, for ShapeNet there is less variation between the

chairs so this is not necessary. As a result SiDeNet is trained

with 2 views, the improved silhouette loss but the depth pre-

dicted is the absolute depth. The comparison is performed

as follows for both methods. For each chair in the test set

an initial view is chosen and the depth back-projected using

the known extrinsic/intrinsic camera parameters. Then for

each additional view, the initial views are chosen by sam-

pling evenly around the z-axis (e.g. if the first view is at

15◦, then two views would be at 15◦, 195◦ and three views

at 15◦, 195◦, 255◦) and the depth again back-projected to

give a point cloud. 2500 points are randomly chosen from

the predicted point cloud and aligned using ICP (Besl and

McKay 1992) with the ground truth point cloud. This exper-

iment evaluates the method of pooling information in the two

methods and demonstrates that SiDeNet’s global method of

combining information performs better than that of Kar et al.

(2017) which combines information along projection rays.

Some qualitative results are given in Fig. 9.

SiDeNet3D SiDeNet3D is trained with 2 views and the

improved losses. The predicted voxels from the 3D projec-

tion layer are extracted and marching cubes used to fit a mesh

over the iso-surface. The threshold value is chosen on the val-

idation set. A point cloud is extracted by randomly sampling

from the resulting mesh.

SiDeNet3D is compared to a number of other methods

in Table 9 for the Sculpture dataset. For SiDeNet3D and all

baselines models, 2500 points are randomly chosen from the

predicted point cloud and aligned with the ground truth point

cloud using ICP. The resulting point cloud is compared to

the ground truth point cloud by reporting the chamfer dis-

tance (CD). As can be seen, the performance of our method

improves as the number of input views increases.

Additionally, SiDeNet3D performs better than other base-

line methods on the Sculpture dataset in Table 9 which

demonstrates the utility of explicitly encoding the input view-

point and thereby representing the coordinate frame of the
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object. We note again that there is no canonical coordinate

frame and the input viewpoint does not align with the output

shape, so just predicting the 3D without allowing the net-

work to learn the transformation from the input viewpoint to

the 3D (as done in all the baseline methods) leads to poor

performance.

Baselines The baseline methods which do not produce point

clouds are converted as follows. To convert Yan et al. (2016)

to a point cloud, marching cubes is used to fit a mesh over

the predicted voxels. Points are then randomly chosen from

the extracted mesh. To convert Tatarchenko et al. (2016) to

a point cloud, the model is used to predict depth maps at

[0◦, 90◦, 180,◦ , 270◦]. The known intrinsic/extrinsic camera

parameters are used to back-project the depth maps. The four

point clouds are then combined to form a single point cloud.

7 Generating new views

Finally SiDeNet’s representation can be qualitatively evalu-

ated by performing two tasks that require new view genera-

tion: rotation and new view synthesis.

7.1 Rotation

As SiDeNet is trained with a subset of views for each dataset

(e.g. only 5 views of an object from a random set of view-

points in [0◦, 120◦] for the Sculpture dataset and 24 views

taken at 15◦ intervals for ShapeNet), the angle representation

can be probed by asking SiDeNet to predict the silhouette as

the angle is continuously varied within the given range of

viewpoints. Given a fixed input, if the angle is varied contin-

uously, then the output should similarly vary continuously.

This is demonstrated in Fig. 10 for both the Sculpture and

ShapeNet databases.

7.2 New view synthesis

Using the predicted depth, new viewpoints can be synthe-

sised, as demonstrated in Fig. 11. This is done by rendering

the depth map of the object using Open3D (Zhou et al. (2018))

as a point cloud at the given viewpoint and at a 45◦ rotation. At

both viewpoints the object is rendered in three ways: using a

textured point cloud, relighting the textured point cloud, and

rendering the point cloud using the predicted z value.

7.3 Real Images

Finally, the generalisability of what SiDeNet has learned is

tested on another dataset of real images of sculptures, curated

by Zollhöfer et al. (2015). The images of two sculptures

(augustus and relief) are taken. The images are segmented

and padded such that the resulting images have the same

properties as the Sculpture dataset (e.g. distance of sculp-

ture to the boundary and background colour). The image is

then input to the network with viewpoint 0◦. The resulting

prediction is rendered as in Sect. 7.2 at multiple viewpoints

and under multiple lighting conditions in Fig. 12. This figure

demonstrates that SiDeNet generalises to real images, even

though SiDeNet is trained only on synthetic images and for

a comparatively small (only ≈ 400) sculptures. Moreover

these real images have perspective effects, yet SiDeNet gen-

eralises to these images, producing realistic predictions.

8 Explainability

This section delves into SiDeNet, attempting to understand

how the network learns to incorporate multiple views. To

this end, the network is investigated using two methods. The

first considers how well the original input images can be

reconstructed given the angles and feature encoding x . The

second considers how well the original input viewpoints θi

can be predicted as a function of the embedding x and what

this implies about the encoding. This is done for both the

max and average pooling architectures.

8.1 Reconstruction

The first investigation demonstrates that the original input

images can be relatively well reconstructed given only the

feature encoding x and the input views. These reconstructions

in Fig. 13 demonstrate that x must hold some viewpoint and

image information.

To reconstruct the images, the approach of Mahendran

and Vedaldi (2015) is followed. Two images and their corre-

sponding viewpoints, are input to the network and a forward

pass computed. Then the combined feature vector x is

extracted (so it contains the information from the input views

and their viewpoints). The two images are reconstructed,

starting from noise, by minimizing a cost function consist-

ing of two losses: the first loss, the LM SE error, simply says

that the two reconstructed images when input to the network,

should give a feature vector x ′ that is the same as x . The sec-

ond loss, the total variation regulariser LT V (as in Mahendran

and Vedaldi 2015 and Upchurch et al. 2017), states that the

reconstructed images should be smooth.

LM SE =
∑

i

(xi − x ′
i )

2 (4)

LT V =
∑

i, j

(

(Ii, j+1 − Ii, j )
2 + (Ii+1, j − Ii, j )

2
)β/2

(5)

This gives the total loss L = LM SE + λT V ∗ LT V . Here,

β, λT V are chosen such that β = 2 and λT V = 0.001. The
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Fig. 10 Qualitative results for rotating an object using the angle embed-

ding of θ ′. As the angle θ ′ is rotated from [0◦, 360◦] while the input

images and viewpoints are kept fixed, it can be seen that the objects

rotate continuously for ShapeNet (a–d) and the Sculpture database (e).

Additionally, the results for ShapeNet improve given additional input

views. For example, in (d), the base of the chair is incorrectly predicted

as solid given one view but correctly predicted given additional views

cost function is optimized using SGD (with momentum 0.975

and learning rate 1, which is decreased by a factor of 0.1 at

each 1000 steps).

8.2 Analysis of feature embeddings

In the reconstructions above, it seems that some viewpoint

information is propagated through the network, despite the

aggregation function. Here, we want to understand precisely

how this is done. In order to do so, the following exper-

iment is conducted: how well can the various viewpoints

(e.g. θ1 · · · θN ) be predicted for a given architecture from

the embedding x . If the hypothesis—that the embedding x

encodes viewpoint—is correct, then these viewpoints should

be accurately predicted.

As a result, x is considered to determine how much of it

is viewpoint-independent and how much of it is viewpoint-

dependent. This is done by using each hidden unit in x to

predict the viewpoint θ1 using ordinary least squares regres-

sion (Friedman et al. 2001) (only θ1 is considered as x is

invariant to the input ordering). Training pairs are obtained

by taking two images with corresponding viewpoints θ1 and

θ2, passing them through the network and obtaining x .

The p value for each hidden unit is computed to determine

whether there is a significant relation between the hidden

unit and the viewpoint. If the p-value is insignificant (i.e. it is

large, > 0.05) then this implies that the hidden unit and view-

point are not related, so it contains viewpoint-independent

information (presumably shape information). The number

of hidden units with p value less than c, as c is varied, is
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Fig. 11 This figure demonstrates how new views of a sculpture can be

synthesised. For each sculpture the input views are shown to the left.

The sculpture is then rendered at two viewpoints. At each viewpoint,

three renderings are shown: (i) the rendered, textured point cloud, (ii)

the point cloud relit and (iii) the depth cloud rendered by using the

z-value for the colour (e.g. dark red is further away and yellow/white

nearer). Zoom in for details (Color figure online)

visualised in Fig. 14 for both architectures. As can be seen,

more than 80% of the hidden units for both architectures are

significantly related to the viewpoint.

Since so many of the hidden units have a significant rela-

tion to the viewpoint, they would be expected to vary as a

function of the input angle. To investigate this, the activations

of the hidden units are visualised as a function of the angle

θ1. For two objects, all input values are kept fixed (e.g. the

images and other viewpoint values) except for θ1 which is

varied between 0◦ and 360◦. A subset of the hidden units in

x are visualised as θ1 is varied in Fig. 15. As can be seen, the

activation either varies in a seemingly sinusoidal fashion—

it is maximised at some value for θ1 and decays as θ1 is

varied—or it is constant.

Moreover, the activations are not the same if the input

images are varied. This implies that the hidden units encode

not just viewpoint but also viewpoint-dependent information

(e.g. shape—such as the object is tall and thin at 90◦). This

information is aggregated over all views with either aggre-

gation method. The aggregation method controls whether

the most ‘confident’ view (e.g. if using max) is chosen or all

views are considered (e.g. avg). Finally, this analysis demon-

strates the utility of encoding the input viewpoints in the

architecture. When generating the silhouette and depth at a

new or given viewpoint, these properties can be easily mor-

phed into the new view (e.g. if the new viewpoint is at 90◦

then components nearer 90◦ can be easily considered with

more weight by the model).

8.3 Discussion

In this section, to understand what two versions of SiDeNet—

avg and max—have learned, two questions have been posed.

How well can the original input images be reconstructed
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Fig. 12 SiDeNet’s predictions for real images. This figure demonstrates

how SiDeNet generalises to real images. For each sculpture the input

view (before padding and segmentation) is shown to the left. The pre-

dicted point cloud is then rendered at two viewpoints. At each viewpoint,

three renderings are shown: (i) the rendered, textured point cloud, (ii)

the point cloud relit and (iii) the depth cloud rendered by using the

z-value for the colour (e.g. dark red is further away and yellow/white

nearer). Zoom in for details (Color figure online)

(a)

(b)

Fig. 13 Reconstruction of the original input images for max/avg

pooling architectures. The ability to propagate view and viewpoint infor-

mation through the network is demonstrated by the fact that the input

images can be reconstructed given the latent feature vector and input

angles using the approach of Mahendran and Vedaldi (2015)

Fig. 14 Visualises the relation between the individual hidden units and

the viewpoint. Each hidden unit is used in a separate regression to predict

the viewpoint. The p value for each hidden unit is computed and for a

given set of values c, the number of hidden units with a p value < c

is plotted. This demonstrates that the majority of hidden units in both

architectures are correlated with the viewpoint. For the max architecture,

98% of the hidden units have p < 0.05 and for the avg pool architecture

90%

from the angles and latent vector x? How is x encoded such

that views can be aggregated and that with more views, per-

formance improves? The subsequent analysis has not only

demonstrated that the original input views can be recon-

structed given the viewpoints and x but has also put forward

an explanation for how the views are aggregated: by using

the hidden units to encode shape and viewpoint together.

9 Summary

This work has introduced a new architecture SiDeNet for

learning about 3D shape, which is tested on a challenging

dataset of 3D sculptures with a high variety of shapes and tex-

tures. To do this a multi-task loss is used; the network learns

to predict the depth for the given views and the silhouette at

a new view. This loss has multiple benefits. First, it enforces

that the network learns a complex representation of shape,

as predicting the silhouette enforces that the network learns

about the visual hull of the object and predicting the depth that

the network learns about concavities on the object’s surface.

Second, using an image-based representation is beneficial, as

it does not limit the resolution of the generated model; this

benefit is demonstrated on the ShapeNet dataset. The trained

network can then be used for various applications, such as

new view synthesis and can even be used directly on real

images.

The second benefit of the SiDeNet architecture is the view-

dependent representation and the ability to generalise over

additional views at test-time. Using a view-dependent rep-

resentation means that no implicit assumptions need to be

made about the nature of the 3D objects (e.g. that there exists

a canonical orientation). Additionally, SiDeNet can leverage
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Fig. 15 Visualisation of the activation of hidden units as a function of

θi for the two architectures. θi is varied between 0◦, 360◦ and all other

values kept constant. Each hidden unit is normalised to between 0 and

1 over this sequence of θi and visualised. This figure demonstrates two

things: that the activation is a continuous, smooth function of θi or con-

stant (visualised as white in the figure). Second, it demonstrates that

the hidden units activated are based on the input views, as they vary

from view to view. This implies that the hidden units encode viewpoint

dependent information (e.g. object properties and the associated view-

point). a The activation for a subset of hidden units for the avg-pooling

architecture for two different sets of input images (left and right). b The

activation for a subset of hidden units for the max-pooling architecture

for two different sets of input images (left and right)

additional views at test time and results (both silhouette and

depth) improve with each additional view, even when the

views are not photometrically consistent.

While the architecture is able to capture a wide variety of

shapes and styles as demonstrated in our results, it is most

likely that SiDeNet would improve given more data. How-

ever, despite the sculpture dataset being small compared to

standard deep learning datasets, it is interesting that SiDeNet

can be used to boost performance on a very different synthetic

dataset of chairs and predict depth, out-of-the-box, on real

sculpture images.
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A Additional Architectural Details

A.1 2D Architecture

Table 10 gives additional information about the 2D archi-

tectures used. There are two variations. The first takes a

256 × 256 architecture and generates silhouette and depth

images of size 256 × 256. The second stays in 2D and modi-

fies the silhouette decoder to generate a smaller silhouette of

size 57 × 57.
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Table 10 Overview of the different architectures. The colours corre-

spond to Fig. 3. The part in orange corresponds to the angle encoding

and the part in blue the image encoding. These are then concatenated

at layer 6 by broadcasting the angle encoding across the spatial dimen-

sions of the image tensor to which it is supposed to be concatenated.

Layer type Conv denotes convolution followed by an Leaky ReLU (0.2)

layer. Layer type Upsamp denotes a sequence of layers: ReLU, Bilin-

ear 2x2 Upsampler, Conv, BatchNorm. Layer type ConvTB denotes the

sequence: Conv Transpose, ReLU, and BatchNorm. Finally, layer type

ConvT denotes the sequence: Conv Transpose and ReLU

Layer Type Stride / Kernel Size / Padding Prev. Layer Img. Size (pre layer) Img. Size (post layer)

Encoder

1 Conv 2/4/1 Ii 3×256×256 64×128×128

2 Conv 2/4/1 1 64×128×128 128×64×64

3 Conv 2/4/1 2 128×64×64 256×32×32

4 Conv 2/4/1 3 256×32×32 512×16×16

5 Conv 2/4/1 4 512×16×16 512×8×8

A Conv 1/1 θi 2×1×1 32×1×1

B Conv 1/1 A 32×1×1 32×1×1

6 Concat – 5/B – 544×8×8

7 Conv 2/4/1 6 544×8×8 512×4×4

8 Conv 2/4/1 7 512×4×4 512×2×2

9 Conv 2/4/1 8 512×2×2 512×1×1

Decoder (depth)

10 UpSamp 1/3/1 x 512×1×1 512×2×2

11 UpSamp 1/3/1 10/8 1024×2×2 512×4×4

12 UpSamp 1/3/1 11/7 1024×4×4 512×8×8

13 UpSamp 1/3/1 12/5 1024×8×8 512×16×16

14 UpSamp 1/3/1 13/4 1024×16×16 256×32×32

15 UpSamp 1/3/1 14/3 512×32×32 128×64×64

16 UpSamp 1/3/1 15/2 256×64×64 64×128×128

17 UpSamp 1/3/1 16/1 128×128×128 3×256×256

18 Tanh (×5) – 17 3×256×256 3×256×256

Decoder (silhouette) 256 × 256

C Conv 1/1 θi 2×1×1 32×1×1

D Conv 1/1 A 32×1×1 32×1×1

19 Concat – D/x – 544×1×1

20 ConvTB 2/4/1 19 544×1×1 256×4×4

21 ConvTB 2/4/1 20 256×4×4 128×8×8

22 ConvTB 2/4/1 21 128×8×8 128×16×16

23 ConvTB 2/4/1 22 128×16×16 64×32×32

24 ConvTB 2/4/1 23 64×32×32 64×64×64

25 ConvTB 2/4/1 24 64×64×64 32×128×128

26 ConvTB 2/4/1 25 32×128×128 1×256×256

27 Sigmoid – 26 1×256×256 1×256×256

Decoder (silhouette) 57 × 57

C Conv 1/1 θi 2×1×1 32×1×1

D Conv 1/1 A 32×1×1 32×1×1

19 Concat – D/x – 544×1×1

20 ConvT 2/4/1 19 544×1×1 512×4×4

21 ConvT 2/4/1 20 512×4×4 256×8×8

22 ConvT 2/5/1 21 256×8×8 128×16×16

23 ConvT 2/5/1 22 128×16×16 64×32×32

24 ConvT 2/6/1 23 64×32×32 1×57×57

25 Sigmoid – 24 1×57×57 1×57×57
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A.2 3D Decoder

The third architecture modifies the silhouette decoder to

generate a latent 3D representation which projects to a sil-

houette of size 57 × 57 (the encoder is the same as for the

2D architectures). The 3D decoder is composed of the fol-

lowing set of 3D convolutional transposes and ReLU units.

ConvT3D(256,3,2) → ReLU → ConvT3D(128,3,2) →

ReLU → ConvT3D(64,3,2) → ReLU → ConvT3D(1,4,2).

ConvT3D(c,k,s) denotes a 3D convolutional transpose layer

with c output channels, a kernel size k and stride s. The result-

ing 57 × 57 × 57 voxel is finally transformed as described in

section 4.4.

References

Barron, J., & Malik, J. (2015). Shape, illumination, and reflectance

from shading. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 37, 1670–1687.

Besl, P., & McKay, N. D. (1992). A method for registration of 3-d

shapes. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 14, 239–256.

Blake, A., & Marinos, C. (1990). Shape from texture: Estimation,

isotropy and moments. Artificial Intelligence, 45, 323–380.

Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of

3D faces. In Proceedings of the ACM SIGGRAPH conference on

computer graphics (pp. 187–194).

Blender Online Community. (2017). Blender—A 3D modelling and

rendering package. Amsterdam: Blender Foundation, Blender

Institute.

Boyer, E., & Franco, J. (2003). A hybrid approach for computing visual

hulls of complex objects. In Proceedings of the IEEE conference

on computer vision and pattern recognition.

Cashman, T. J., & Fitzgibbon, A. W. (2013). What shape are dolphins?

Building 3D morphable models from 2D images. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 35, 232–244.

Chang, A., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q.,

Li, Z., Savarese, S., Savva, M., Song, S., & Su, H., et al.

(2015). Shapenet: An information-rich 3D model repository. arXiv

preprint arXiv:1512.03012.

Choy, C., Xu, D., Gwak, J., Chen, K., & Savarese, S. (2016). 3D-R2N2:

A unified approach for single and multi-view 3D object recon-

struction. InProceedings of the European conference on computer

vision.

Fan, H., Su, H., & Guibas, L. (2016). A point set generation network for

3D object reconstruction from a single image. In Proceedings of

the IEEE conference on computer vision and pattern recognition.

Fouhey, D. F., Hussain, W., Gupta, A., & Hebert, M. (2015). Single

image 3D without a single 3D image. In Proceedings of the inter-

national conference on computer vision.

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of sta-

tistical learning (Vol. 1)., Springer series in statistics New York:

Springer.

Gadelha, M., Maji, S., & Wang, R. (2016). 3D shape induction from

2D views of multiple objects. arXiv preprint arXiv:1612.05872.

Girdhar, R., Fouhey, D., Rodriguez, M., & Gupta, A. (2016). Learning

a predictable and generative vector representation for objects. In

Proceedings of the European conference on computer vision (pp.

484–499).

Groueix, T., Fisher, M., Kim, V. G., Russell, B., & Aubry, M. (2018).

Atlasnet: A papier-mâché approach to learning 3d surface gener-

ation. In: Proceedings of the IEEE conference on computer vision

and pattern recognition.

Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in com-

puter vision (2nd ed.). Cambridge: Cambridge University Press.

ISBN: 0521540518.

Hedau, V., Hoiem, D., & Forsyth, D. (2009). Recovering the spatial

layout of cluttered rooms. In Proceedings of the international con-

ference on computer vision.

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image

translation with conditional adversarial networks. In Proceedings

of the IEEE conference on computer vision and pattern recogni-

tion.

Jaderberg, M., Simonyan, K., Zisserman, A., & Kavukcuoglu, K.

(2015). Spatial transformer networks. In Advances in neural infor-

mation processing systems (pp 2017–2025).

Kar, A., Häne, C., & Malik, J. (2017). Learning a multi-view stereo

machine. In Advances in neural information processing systems

(pp. 364–375).

Kar, A., Tulsiani, S., Carreira, J., & Malik, J. (2015). Category-specific

object reconstruction from a single image. In Proceedings of the

IEEE conference on computer vision and pattern recognition.

Kolev, K., Klodt, M., Brox, T., & Cremers, D. (2009). Continuous global

optimization in multiview 3D reconstruction. International Jour-

nal of Computer Vision, 84, 80–96.

Kong, C., Lin, C. H., Lucey, S. (2017). Using locally corresponding

cad models for dense 3D reconstructions from a single image.

In: Proceedings of the IEEE conference on computer vision and

pattern recognition.

Laurentini, A. (1994). The visual hull concept for silhouette-based

image understanding. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 16(2), 150–162.

Mahendran, A., & Vedaldi, A. (2015). Understanding deep image

representations by inverting them. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition.

Matusik, W., Buehler, C., Raskar, R., Gortler, S., & McMillan, L. (2000).

Image-based visual hulls. In Proceedings of the ACM SIGGRAPH

conference on computer graphics.

Novotny, D., Larlus, D., & Vedaldi, A. (2017). Learning 3D object cate-

gories by looking around them. In Proceedings of the international

conference on computer vision.

Park, E., Yang, J., Yumer, E., Ceylan, D., & Berg, A. (2017).

Transformation-grounded image generation network for novel 3D

view synthesis. In Proceedings of the ieee conference on computer

vision and pattern recognition.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,

Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic

differentiation in pytorch. In Proceedings of NIPS 2017 workshop

on Autodiff.

Prasad, M., Fitzgibbon, A. W., Zisserman, A., & Van Gool, L. (2010).

Finding nemo: Deformable object class modelling using curve

matching. In Proceedings of the IEEE conference on computer

vision and pattern recognition.

Qi, C. R., Su, H., Niessner, M., Dai, A., Yan, M., & Guibas, L. J. (2016).

Volumetric and multi-view CNNS for object classification on 3D

data. In Proceedings of the IEEE conference on computer vision

and pattern recognition.

Rezende, D., Eslami, S. M. A., Mohamed, S., Battaglia, P., Jaderberg,

M., & Heess, N. (2016). Unsupervised learning of 3D structure

from images. In Advances in neural information processing sys-

tems (pp. 4997–5005).

Rock, J., Gupta, T., Thorsen, J., Gwak, J., Shin, D., & Hoiem, D. (2015).

Completing 3D object shape from one depth image. In Proceedings

of the IEEE conference on computer vision and pattern recognition

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional

networks for biomedical image segmentation. In Proceedings of

123

http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1612.05872


1800 International Journal of Computer Vision (2019) 127:1780–1800

the international conference on medical image computing and

computer assisted intervention.

Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006).

A comparison and evaluation of multi-view stereo reconstruction

algorithms. Proceedings of the ieee conference on computer vision

and pattern recognition (Vol. 1, pp. 519–528).

Sinha, A., Unmesh, A., Huang, Q., & Ramani, K. (2017). Surfnet:

Generating 3D shape surfaces using deep residual networks. In

Proceedings of the IEEE conference on computer vision and pat-

tern recognition.

Sketchfab. (2018). Sketchfab. Available at: https://sketchfab.com/.

Accessed 14 Oct 2018.

Soltani, A. A., Huang, H., Wu, J., Kulkarni, T. D., & Tenenbaum,

J. B. (2017). Synthesizing 3D shapes via modeling multi-view

depth maps and silhouettes with deep generative networks. In Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition.

Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-

view convolutional neural networks for 3d shape recognition. In

Proceedings of the international conference on computer vision.

Tatarchenko, M., Dosovitskiy, A., & Brox, T. (2016). Multi-view 3D

models from single images with a convolutional network. In Pro-

ceedings of the European Conference on computer vision.

Tulsiani, S., Zhou, T., Efros, A., & Malik, J. (2017). Multi-view

supervision for single-view reconstruction via differentiable ray

consistency. In Proceedings of the IEEE conference on computer

vision and pattern recognition.

Upchurch, P., Gardner, J., Pleiss, G., Pless, R., Snavely, N., Bala, K., &

Weinberger, K. (2017). Deep feature interpolation for image con-

tent changes. In Proceedings of the IEEE conference on computer

vision and pattern recognition.

Vicente, S., Carreira, J., Agapito, L., & Batista, J. (2014). Recon-

structing Pascal voc. In:Proceedings of the IEEE conference on

computer vision and pattern recognition.

Vogiatzis, G., Torr, P. H. S., Cipolla, R. (2003). Bayesian stochastic

mesh optimization for 3D reconstruction. In Proceedings of the

14th British machine vision conference, Norwich (pp. 711–718).

Wiles, O., & Zisserman, A. (2017). Silnet : Single- and multi-view

reconstruction by learning from silhouettes. In Proceedings of the

British machine vision conference.

Witkin, A. P. (1981). Recovering surface shape and orientation from

texture. Artificial Intelligence, 17, 17–45.

Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, B., & Tenenbaum, J.

(2017). Marrnet: 3D shape reconstruction via 2.5D sketches. In

Advances in neural information processing systems.

Wu, J., Zhang, C., Xue, T., Freeman, B., & Tenenbaum, J. (2016).

Learning a probabilistic latent space of object shapes via 3D

generative-adversarial modeling. In Advances in neural informa-

tion processing systems (pp. 82–90).

Xiang, Y., Mottaghi, R.,& Savarese, S. (2014). Beyond Pascal: A bench-

mark for 3d object detection in the wild. In Proceedings of the IEEE

workshop on applications of computer vision.

Yan, X., Yang, J., Yumer, E., Guo, Y., & Lee, H. (2016). Perspective

transformer nets: Learning single-view 3D object reconstruction

without 3D supervision. In Advances in neural information pro-

cessing systems.

Zhang, R., Tsai, P. S., Cryer, J. E., & Shah, M. (1999). Shape-from-

shading: A survey. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 21(8), 690–706.

Zhou, Q. Y., Park, J., & Koltun, V. (2018). Open3D: A modern library

for 3D data processing. arXiv:1801.09847.

Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A. (2016). View synthe-

sis by appearance flow. In Proceedings of the European conference

on computer vision

Zhu, R., Galoogahi, H. K., Wang, C., Lucey, S. (2017). Rethinking

reprojection: Closing the loop for pose-aware shape reconstruction

from a single image. In Proceedings of the international conference

on computer vision (pp. 57–65).

Zollhöfer, M., Dai, A., Innmann, M., Wu, C., Stamminger, M., Theobalt,

C., et al. (2015). Shading-based refinement on volumetric signed

distance functions. ACM Transactions on Graphics (TOG), 34, 96.

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

https://sketchfab.com/
http://arxiv.org/abs/1801.09847

	Learning to Predict 3D Surfaces of Sculptures from Single and Multiple Views
	Abstract
	1 Introduction
	2 Related Work
	2.1 Multi-image
	2.2 Single Image
	2.3 Deep Learning Approaches

	3 Silhouette and Depth: A Multi-task Loss
	3.1 Silhouette
	3.2 Depth

	4 Implementation
	4.1 Loss Function
	4.2 Improved Loss Functions
	4.3 Architecture
	4.4 3D Decoder

	5 Dataset
	5.1 Sculpture Datasets
	5.2 ShapeNet

	6 Experiments
	6.1 Training Setup
	6.1.1 Evaluation Measure
	6.1.2 Evaluation Setup

	6.2 The Effect of the Data Augmentation
	6.3 Ablation Study of the Different Architectures
	6.4 The effect of using mathcalLdepth and mathcalLsil
	6.5 The effect of increasing the number of views
	6.6 The Effect of Non-photometrically Consistent Inputs
	6.7 Comparison on ShapeNet
	6.8 The Effect of Varying θ'
	6.9 Comparison in 3D

	7 Generating new views
	7.1 Rotation
	7.2 New view synthesis
	7.3 Real Images

	8 Explainability
	8.1 Reconstruction
	8.2 Analysis of feature embeddings
	8.3 Discussion

	9 Summary
	Acknowledgements
	A Additional Architectural Details
	A.1 2D Architecture
	A.2 3D Decoder

	References


