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Abs t r ac t .  This article introduces a class of incremental learning procedures spe- 
cialized for prediction that is, for using past experience with an incompletely known 
system to predict its future behavior. Whereas conventional prediction-learning 
methods assign credit by means of the difference between predicted and actual out- 
comes, tile new methods assign credit by means of the difference between temporally 
successive predictions. Although such temporal-difference method~ have been used in 
Samuel's checker player, Holland's bucket brigade, and the author's Adaptive Heuris- 
tic Critic, they have remained poorly understood. Here we prove their convergence 
and optimality for special cases and relate them to supervised-learning methods. For 
most real-world prediction problems, telnporal-differenee methods require less mem- 
ory and less peak computation than conventional methods and they produce more 
accurate predictions. We argue that most problems to which supervised learning 
is currently applied are really prediction problems of the sort to which temporal- 
difference methods can be applied to advantage. 

1. Introduct ion  

This article concerns the woblem of learning to predict, that. is, of using past 

experience with an incompletely known system to predict its future behavior. 

For examt)le, through experience one might learn to predict for particular 

chess positions whether they will lend to a win. for particular cloud formations 

whether there will be rain. or fbr particular economic conditions how nmch 

the stock market  will rise or fall. Learning to predict is one of the most 

basic and prevalent kinds of learning. Most pat tern  recognition problems, for 

examt)le, can be treated as prediction problems in which the classifier nmst 

predict the correct classifications. Learning-to-predict problems also arise in 

heuristic search, e.g., in learning an evahmtion function that  predicts tile utility 

of searching particular parts  of tile search space, or in learning the underlying 

model of a problem domain. An important  advantage of prediction learning is 

that. its training examples can be taken directly from the temporal  sequence 

of ordinary sensory input: no special supervisor or teacher is required. 
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In this article, we introduce and provide tilt first formal results in the theory 

of temporal-difference {TD) methods, a class of incremental learning procedures 

specialized for prediction problems. Whereas conventional prediction-learning 

methods are driven by the error between predicted and actual outcomes. TD 

methods are similarly driven by the error or difference between temporally 

successive predictions; with them, learning occurs whenever there is a change 

in prediction over time. For example, suppose a weatherman attempts to 
predict on each day of the week whether it will rain on the following Saturday. 
The conventional approach is to compare each prediction to the actual outcome 

whether or not it does rain on Saturday. A TD approach, on the other hand, 

is to compare each day's prediction with that made on the following (lay. If 

a 50% chance of rain is predicted on Monday, and a 75% chance on ~wsday,  
then a TD method increases predictions for days similar to Monday, whereas 

a conventional method might either increase or decrease them depending on 

Saturday's actual outcome. 

We will show that TD methods have two kinds of advantages over con- 

ventional prediction-learning methods. First, they are more incremental and 
therefore easier to compute. For example, the TD method for predicting Sat- 

urday's weather can update each day's prediction on the following day, whereas 

the conventional method must wait until Saturday, and then make the changes 

for all days of the week. The conventional method would have to do more com- 
puting at one time than the TD method and would require more storage duriltg 

the week. The second advantage of TD methods is that they tend to make 

more efficient use of their experience: they converge faster and produce bet- 

ter predictions. We argue that the predictions of TD methods are both more 

accurate and easier to compute than those of conventional methods. 

The earliest and best-known use of a TD method was in Samuel's (1959) 
celebrated checker-playing program. For each pair of successiw, game positions, 

the program used the difference between the evaluations assigned to the two 

positions to modify the earlier one's evaluation. Similar methods have been 

used in Holland's (1986) bucket brigade, in the author's Adaptive Heuristic 
Critic (Sutton, 1984; Barto, Sutton & Anderson, 1983), and in learning systems 

studied by Witten (1977), Booker (1982), and Hampson (1983). TD methods 
have also been proposed as models of classical conditioning (Sutton & Barto, 

1981a, 1987: Gelperin, Hopfield & Tank, 1985; Moore et a l ,  1986; t(lopf~ 1987). 

Nevertheless, TD methods have remained poorly understood. Although they 

have performed well, there has been no theoretical understanding of how or 
why they worked. One reason is that they were never studied independently, 
but only as parts of larger and more complex systems. Within these systems. 
TD methods were used to improve evaluation fimctions by bet ter  predicting 

goal-related events such as rewards, penalties, or checker game outcomes. Here 
we advocate viewing TD methods in a simpler way as methods for efficiently 

learning to predict arbitrary events, not lust goal-related ones. This simplifica- 

tion allows us to evaluate them in isolation and has enabled us to obtain formal 

results. In this paper, we prove the convergence and optimality of TD meth- 
ods for important special cases, and we formally relate them to conventional 

supervised-learning procedures. 
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Another simplification we make in this paper is to focus on numerical predic- 
tion processes rather than on rule-based or symbolic prediction (e.g., Dietterich 

& Miehalski, 1986). The approach, taken here is much like that used in connec- 
tionism and in Sanmel's original work our predictions are base(t on numerical 

features combined using adjustable parameters or "weights." This and other 

ret)resentational assumptions are detailed in Se('tion 2. 

Given the current interest in learning procedures for multi-layer c o n n e c -  

tionist networks (e.g., Rumelhart,  Hinton, & Williams, 1985: Ackley, Hinton. 

& S@~owski, 1985; Barto, 1985; Anderson, 1986; Williams, 1986: ttalnpson 
& Volper. 1987), we note that here we are c(meerned with a different, set of 

issues. The work with multi-layer networks focuses on learning input-output 

mat)pings of more comt)lex flm('tional forms. Most of that work remains within 

the supervised-learning paradigm, whereas here we are interested in extending 
and going beyond it. We consider mostly mappings of very simple flmctional 

forms, because the differences between supervised learning methods and TD 

methods are clearest in these cases. Nevertheless. the TD methods presented 

here can [)e directly extende(t to multi-layer networks (see Seetiou 6.2). 

The next section introduces a specific ('lass of temporal-difference t)roeedures 

by contrasting them with convent ional, supervised-h,arning at)proaches, focus- 
ing on ('omputational issues. Section 3 deveh)ps an extended ~'xample that 

illustrates the i)otential I)erfl)rmance a.dvantage~ of TD methods. Section 4 
contains the convergeilee and optimality theorems and discusses TD methods 

as gradient descent. Section 5 discusses how to extend TD t)rocedures, and 
Se('th)n (i relates them to other research. 

2. Temporal-difference and supervised-learning 
approaches to prediction 

Historically. t.he most hnportant  learlfing para(tigm has t)een that of super- 
vi,~e,d tear,ring. In this fl'amework the h'arner is asked to associate pairs of 

items. When later presente<t with .iust the first item of a t)air, the learner is 

suI>l)osed ~o recall the second. This I)ara(tigm has t)een used in l)attern clas- 
sili('ation, ('oncet)t acquisition, learning from examt)les, system identification. 

and associative memory. For exanli)le, in pat tern ('lassifi(.aiion and concept 
a('(tuisitiol~, the first item i,~ an instance of some pat tern or concept, and tim 

second item is the mtme of that concet)t. In system identification, the learner 
lnust reproduce the input-out put t)ehavior of some tlnkliown system. Here. t h(, 

first item of each pair is an input and the second is the correst)onding output.  

Any prediction t)roblem can be cast in the supervised-learning paradigm by 

(aking 1he tirst item to be the data based on whi('h a t)rediction must be made, 

and the second item to t)e the actual outcome, what the I)redietion should have 

been. For example, to tu'e(tict Saturday's weather, one can form a pair from the 
measur(,meilts tak(,n on Monday and the a('tual (~bs(,rve(t weather on Saturday. 
another pair from the measurements taken on Tuesday and Satur(lay's weather, 
and so on. Although this pairwise at)proach ignores the ~equential structure 

of the l)robleln, it is easy to understand and analyze and it has been widely 
used. In this pat)er, we refer to tiffs as the ,sup~'rvi.~ed-h~arning approach t.o 
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prediction learning, and we refer to learning methods that  take this approach 
as supervised-learninff methods. We argue that  such methods are inadequate, 
and that  TD methods are far preferable. 

2.1 Single-step and multi-step prediction 

To clarify this claim, we distinguish two kinds of prediction-learning prob- 
lems. In single-step prediction problems, all information about the correctness 

of each prediction is revealed at once. In multi-step prediction problems, cor- 
rectness is not revealed until more than one step after the prediction is made, 

but partial information relevant to its correctness is revealed at each step. 
For example, the weather prediction problem mentioned above is a multi-step 

prediction problem because inconclusive evidence relevant to the correctness 
of Monday's prediction becomes available in the form of new observations on 

Tuesday, Wednesday, Thursday and Friday. On the other hand, if each day's 
weather were to be predicted on the basis of the previous day's observations 
that is, on Monday predict Tuesday's weather, on Tuesday predict Wednesday's 
weather, etc. one would have a single-step prediction problem, assuming no 

filrther observations were made between the time of each day's prediction and 
its confirmation or refiltation on the following day. 

In this paper, we will be concerned only with multi-step prediction problems. 
In single-step problems, data naturally comes in observation-outcome pairs; 
these problems are ideally suited to the pairwise supervised-learning approach. 
Temporal-difference methods cannot be distinguished from supervised-learning 

methods in this case; thus tile former improve over conventional methods only 
on multi-step problems. However. we argue that these predominate in real- 
world applications. For example, predictions about next year's economic per- 
formance are not confirmed or disconfirmed all at once, but rather bit by bit 

as the economic situation is observed through the year. The likely outcome 
of elections is updated with each new poll, and the likely outcome of a chess 
game is updated with each move. When a baseball batter predicts whether a 
pitch will be a strike, he updates his prediction continuously during the bali's 

flight. 

In fact, many problems that  are classically cast as single-step prediction 

problems are more naturally viewed as nnflti-step problems. Perceptual learn- 
ing problems, such as vision or speech recognition, are classically treated as 

supervised learning, using a training set of isolated, correctly-classified input 
patterns. When humans hear or see things, on the other hand, they receive a 

stream of input over time and constantly update their hypotheses abo~t what 
they are seeing or hearing. People are faced not with a single-step problem of 
unrelated pattern class pairs, but rather with a series of related patterns, all 
providing information about the same classification. To disregard this struc- 
ture seems improvident. 

2.2 Computational issues 

In this subsection, we introduce a particular TD procedure by formally re- 
lating it to a classical supervised-learning procedure, the Widrow-Hoff rule. 



T E M P O R A L - D I F F E R E N C E  L E A R N I N G  13 

We show that  the two procedures produce exactly the same weight changes, 

but that  tile TD procedure can be implemented incrementally and therefore 

requires far less computational power. In the following subsection, this TD 
procedure will be used also as a conceptual bridge to a larger family of TD 

procedures that produce different weight changes than any supervised-learning 

method. First, we detail the representational assumptions that will be used 

throughout the paper. 

We consider multi-step prediction problems in which experience comes in 

observation-outcome sequences of the form x l, x2, x 3 , . . . ,  xm, z, where each xt 

is a vector of observations available at time t in the sequence, and z is the 

outcome of the sequence. Many such sequences will normally be experienced. 

The components of each xt are assumed to be real-valued measurcxnents or 

features, and z is assumed to be a real-valued scalar. For each observation- 
outcome sequence, the learner produces a corresponding sequence of predic- 

tions P1, P2, P3 . . . .  , Pro, each of which is an estimate of z. In general, each Pt 

can be a function of all preceding observation vectors up through time t, but, 

for simplicity, here we assume that it is a flmction only of zt. 1 The predictions 

are also based on a vector of modifiable parameters or weights, w. Pt's func- 

tional dependence on xt and w will sometimes be denoted explicitly by writing 

it as P(xt ,  w). 

All learifing procedures will be expressed as rules for updating w. For the 

moment we assume that  w is updated only once for each complete observation- 

outcome sequence and thus does not change during a sequence. For each 

observation, an.increment to w, denoted Awt ,  is determined. After a complete 

sequence has been processed, w is changed by (tile sum of) all the sequenee's 

i n ( ' r e n l e I l t  s: 

w + (1) 

t : l  

Later, we will consider more incremental cases in which w is updated after 
each observation, and also less incremental cases in which it is updated only 

after accumulating Awt 's  over a training set consisting of several sequences. 

The supervised-learning approach treats each sequence of observations and 

its outcome as a sequence of observation-outcome pairs; that is, as the pairs 

(xl, z), (x2, z) . . . . .  (x~, z). The increment due to time t depends on the error 

between Pt and z, and on how changing w will affect Pt. The prototypieal 
supervised-learning update procedure is 

= - ( 2 )  

where a is a positive parameter affecting tile rate of learning, and the gradient, 

V~Pt ,  is the vector of partial derivatives of Pt with respect to each component 
of w. 

For example, consider the special case in which Pt is a linear function of zt 

and w, that  is, in which Pt = wTxt = ~ i  w(i)xt( i) ,  where w(i) and xt(i) are 

1The o ther  eases can be reduced to  this  one by reorganiz ing  the  observa t ions  in such a 

way t h a t  each xt includes  some or all of the earl ier  observat ions .  Cases  in which pred ic t ions  

should depend on t can also be reduced to th is  one by inc luding  t as a componen t  of x~. 
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the i th components of w and ¢t, respectively. 2 In this case we have V,~Pt = xt, 

and (2) reduces to the well known Widrow-Hoff rule (Widrow & Hoff, 1960): 

A W  t ~- O~(Z - -  w T x t ) Z t  . 

This linear learning method is also known as the "delta rule," the ADALINE, 
and the LMS filter. It is widely used in connectionism, pattern recognition, 

signal processing, and adaptive control. The basic idea is that  the difference 
z - wTxt represents the scalar error between the prediction, wTxt,  and what 
it should have been, z. This is multiplied by the observation vector xt to 

determine the weight changes because xt indicates how changing each weight 
will affect the error. For example, if the error is positive and xt(i) is positive, 

then wi(t) will be increased, increasing wTxt and reducing the error. The 
Widrow-Hoff rule is simple, effective, and robust. Its theory is also better 

developed than that  of any other learning method (e.g., see Widrow & Stearns, 

1985). 

Another instance of the prototypical supervised-learning procedure is the 

"generalized delta rule," or backpropagation procedure, of Rumelhart et al. 

(1985). In this ease, Pt is computed by a multi-layer connectionist network 
and is a nonlinear flmction of xt and w. Nevertheless, the update rule used 
is still exactly (2), just as in the Widrow-Hoff rule, the only difference being 

that a more complicated process is used to compute the gradient V,,Pt. 

In any case, note that  all Awt in (2) depend critically on z, and thus cannot 

be determined until the end of the sequence when z becomes known. Thus, 

all observations and predictions made during a sequence must be remembered 

until its end, when all the Awt's are computed. In other words, (2) cannot be 

computed incrementally. 

There is, however, a TD procedure that  produces exactly the same result 
as {2), and yet which can be computed incrementally. The key is to represent 

the error z - Pt as a sum of changes in predictions, that  is, as 

z - Pt = E ( P k + I  Pk) where Pm+l def 

k = t  

Using this, equations (1) and (2) can be combined as 

?Y~ m 

t = l  k = t  

r n  k 

= w+ E E(a÷, - a)v P  
k = l  t = l  

r r t  t 

_ -  w+E ta÷, -P )Ev a. 
t = l  k = l  

~Tt 

t = l  

2wT iS the  t r anspose  of the  co lumn vector  w. Unless o therwise  noted,  all vectors  are 

column vectors.  
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In other words, converting back to a rule to be used with (1): 

t 

k = l  

Unlike (2), this equation can be computed incrementally, because each Awt 
depends only on a pair of successive predictions and on the sum of all past 

values for V~,Pt. This saves substantially on memory, because it is no longer 

necessary to individually remember all past values of VwPt. Equation (3) also 
makes nmch milder demands on the computational speed of the device that 

implements it; although it requires slightly more arithmetic operations overall 

(the additional ones are those needed to accumulate t ~ k = l  VwPk), they can 
be distributed over time more evenly. Whereas (3) computes one increment 

to w on each time step, (2) must wait until a sequence is completed and then 

compute all of the increments due to that sequence. If M is the maximum 

possible length of a sequence, then under many circumstances (3) will require 

only 1 /Mth  of the memory and speed required by (2). 3 

For reasons that  will be made clear shortly, we refer to the procedure given 
by (3) as the TD(1) procedure. In addition, we will refer to a procedure as 

linear if its predictions Pt are a linear function of the observation vectors zt 

and the vector of memory parameters w, that  is, if Pt = wTxt. We have just 

proven: 

Theorem 1 On multi-step prediction problems, the linear TD(1) procedure 
produces the same per-sequence weight changes as the Widrow-Hoff procedure. 

Next, we introduce a family of TD procedures that produce weight changes 

different from those of any supervised-learning procedure. 

2.3 The TD(A) family of learning procedures 

The hallmark of temporal-difference methods is their sensitivity to changes 

in successive predictions rather than to overall error between predictions and 
the final outcome. In response to an increase (decrease) in prediction fl'om Pt 
to Pt+l, an increment Awt is determined that increases (decreases) the pre- 

dictions for some or all of the preceding observation vectors Xl , . . .  ,zt.  The 
procedure given by (3) is the special case in which all of those predictions are 

altered to an equal extent. In this article we also consider a class of TD proce- 

dures that make greater alterations to more recent predictions. In particular, 
we consider an exponential weighting with recency, in which alterations to the 

predictions of observation vectors occurring k steps in the past are weighted 
according to A k for 0 < A < 1: 

t 

Awt = o~(Pt+, - Pt) E At-kVwPk" (4) 

k = l  

3Strictly speaking, there  are o ther  incremental  procedures  for implement ing  the  com- 
binat ion of (1) and (2), but  only tile TD rule (3) is appropr ia te  for upda t ing  w on a 
per-observat ion basis. 
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Note that  for ~ -- 1 tills is equivalent to (3), the TD implementation of the pro- 

totypical supervised-learning method. Accordingly, we call this new procedure 

TD(A) and we will refer to the procedure given by (3) as TD(1). 

Alterations of past predictions can be weighted in ways other than the ex- 
ponential form given above, and this may be appropriate for particular appli- 
cations. However, an important advantage to the exponential form is that it 
can be computed incrementally. Given that  et is the value of the sum in (4) 

for t, we can incrementally coml)ute et+l, using only current information, as 

t + l  

et+l = ~_~ ~t+l-kVwPk 

k~-I 
t 

= VwPt+l + E i t+l-kVwpk 

k= l  

= VwPt+l +Aet. 

For ~ < 1, TD(A) produces weight changes different fl'om those made by any 

supervised-learning method. The difference is greatest in the case of TD(0) 
(where A = 0), ill which the weight increment is determined only by its effect 

on the prediction associated with the most recent observation: 

A.,~ = a(Pt+l -/)t)V~P~. 

Note that  this procedure is formally very similar to the prototypical supervised- 

learning procedure (2). The two equations are identical except that the actual 
outcome z in (2) is replaced by the next prediction Pt+a in the equation above. 
Tile two methods use the same learning mechanism, but with different errors. 
Because of these relationships and TD(0)'s overall simplicity, it is an important 
focus here. 

3. Examples of faster learning with TD methods 

In this section we begin to address the claim that  TD methods make more 
efficient use of their experience than do supervised-learning methods, that they 

converge more rapidly and make more accurate predictions along the way. TD 
methods have this advantage whenever the data sequences have a certain sta- 
tistical structure that is ubiquitous in prediction problems. This structure 
naturally arises whenever the data sequences are generated by a dynamical 

system, that  is, by a system that has a state which evolves and is partially re- 

vealed over time. Almost any real system is a dynamical system, including the 
weather, national economies, and chess games. In this section, we develop two 
illustrative examples: a game-playing example to help develop intuitions, and 
a random-walk example as a simple demonstration with experimental results. 

3.1 A game-playing example 

It seems counter-intuitive that TD methods might learn more efficiently than 
supervised-learning methods. In learning to predict an outcome, how can one 
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Figure 1. 

....... t~~0 ~@ 

A game-playing example showing the inefficiency of supervised-learning 

methods. Each circle represents a position or class of positions from a two- 

person board game. The "bad" position is known from long experience to 

lead 90% of the time to a loss and only 10% of the time to a win. The first 

game in which the "novel" position occurs evolves as shown by the dashed 

arrows. What evaluation should the novel position receive as a result of 

this experience? Whereas TD methods correctly conclude that it should 

be considered another bad state, supervised-learning methods associate it 

fully with winning, the only outcome that has followed it. 

do bet ter  than by knowing and using the actual outcome as a performance 

standard? How can using a biased and potentially inaccurate subsequent pre- 

diction possibly be a bet ter  use of the experience? The following example is 

meant  to provide an intuitive understanding of how this is possible. 

Suppose there is a game position that  you have learned is bad for you, that  

has resulted most of the time in a loss and only rarely in a win for your side. For 

example, this position might be a backgammon race in which you are behind, 

or a disadvantageous configuration of cards in blackjack. Figure 1 represents 

a simple case of such a position as a single "bad" state that  has led 90% of 

the time to a loss and only 10% of the time to a win. Now suppose you play 

a game that  reaches a novel position (one that  you have never seen before), 

that  then progresses to reach the bad state, and that  finally ends nevertheless 

in a victory for you. That  is, over several moves it follows the pa th  shown 

by dashed lines in Figure 1. As a result of this experience, your opinion of 

tile bad state would presumably improve, but what of the novel state? What  

value would you associate with it as a result of this experience? 

A supervised-learning method would form a pair from the novel state and 

the win that  followed it, and would conclude that. the novel s tate  is likely to 

lead to a win. A TD method,  on the other hand, would form a pair from 

the novel state and the bad state that  immediatehj followed it, and would 

conclude that  the novel state is also a bad one, that it is likely to lead to a 
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Figure 2. A generator of bounded random walks. This Markov process generated the 

data sequences in the example. All walks begin in state D. From states 
B, C, D, E, and F, the walk has a 50% chance of moving either to the 

right or to the left. If either edge state, A or G, is entered, then the walk 

terminates. 

loss. Assuming we have properly classified the "bad" state, the TD method's 
conclusion is the correct one; the novel state led to a position that  you know 

usually leads to defeat; what happened after that is irrelevant. Although both 

methods should converge to the same evaluations with infinite experience, the 

TD method learns a bet ter  evaluation from this limited experience. 

The TD method's  prediction would also be bet ter  had the game been lost 

after reaching the bad state, as is more likely. In this case, a supervised- 

learning method would tend to associate the novel position fully with losing, 

whereas a TD method would tend to associate it with the bad position's 90% 

chance of losing, again a presumably more accurate assessment. In either case, 

by adjusting its evaluation of the novel state towards the bad state's evaluation, 
rather than towards the actual outcome, the TD method makes better  use of 

the experience. The bad state's evaluation is a bet ter  performance standard 

because it is uncorrupted by random factors that  subsequently influence the 

final outcome. It is by eliminating this source of noise that TD methods can 

outperform supervised-learning procedures. 

In this example, we have ignored the possibility that  the bad state's previ- 

ously learned evaluation is in error. Such errors will inevitably exist and will 

affect the efficiency of TD methods in ways that  cannot easily be evaluated 

in an example of this sort. The example does not prove TD methods will be 

better  on balance, but it does demonstrate that  a subsequent prediction can 

easily be a bet ter  performance standard than the actual outcome. 

This game-playing example can also be used to show how TD methods can 

fail. Suppose the bad state is usually followed by defeats except when it is 
preceded by the novel state, in which case it always leads to a victory. In 

this odd case, TD methods could not perform bet ter  and might perform worse 

than supervised-learning methods. Although there are several techniques for 

eliminating or minimizing this sort of problem, it remains a greater difficulty 

for TD methods than it does for supervised-learning methods. TD methods 
try to take advantage of the information provided by the temporal sequence 

of states, whereas supervised-learning methods ignore it. It is possible for this 
information to be misleading, but more often it should be helpful. 
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Finally, note that  although this example involved learning an evaluation 

function, nothing about it was specific to evaluation functions. The methods 

can equally well be used to predict outcomes unrelated to the player's goals, 
such as the number of pieces left at the end of the game. If TD methods are 

more efficient than supervised-learning methods in learning evaluation func- 
tions, then they should also be more efficient in general prediction-learning 

problems. 

3.2 A random-walk example  

The game-playing example is too complex to analyze in great detail. Pre- 

vious experiments with TD methods have also used complex domains (e.g., 

Samuel, 1959; Sutton, 1984; Barto et al., 1983; Anderson, 1986, 1987). Which 

aspects of these domains can be simplified or eliminated, and which aspects 
are essential in order for TD methods to be effective? In this paper, we pro- 

pose that  the only required characteristic is that  the system predicted be a 

dynamical one, that  it have a state which can be observed evolving over time. 

If this is true, then TD methods should learn more efficiently than supervised- 
learning methods even on very simple prediction problems, and this is what we 

illustrate in this subsection. Our example is one of the simplest of dynamical 
systems, that  which generates bounded random walks. 

A bounded random walk is a state sequence generated by taking random 
steps to the right or to the left until a boundary is reached. Figure 2 shows a 

system that  generates such state sequences. Every walk begins in the center 
state D. At each step the walk moves to a neighboring state, either to the right 

or to the left with equal probability. If either edge state (A or G) is entered, 

tile walk ternfinates. A typical walk might be D C D E F G .  Suppose we wish 

to estimate the probabilities of a walk ending in the rightmost state, G, given 
that  it is in each of the other states. 

We applied linear supervised-learning and TD methods to this problem in 

a straightforward way. A w a i f s  outcome was defined to be z = 0 for a walk 
ending on the left at A and z = 1 for a walk ending on the right at G. 

The learning methods estimated the expected value of z; for this choice of 

z, its expected value is equal to the probability of a right-side termination. 

For each nonterminal state i, there was a corresponding observation vector 
xi; if the walk was in state i at time t then xt = xi. Thus; if the walk 

D C D E F G  occurred, then tile learning procedure would be given the sequence 

XD, x c ,  XD,XE, x r ,  1. The vectors {xi} were the unit basis vectors of length 
5, that is, four of their components were 0 and the fifth was 1 (e.g., XD = 

(0, 0, 1, 0, 0)T), with the one appearing at, a different component for each state. 

Thus, if the state the walk was in at time t has its 1 at the i th component 

of its observation vector, then the prediction Pt = 'wTxt was simply the value 

of the ith component of w. We use this particularly simple case to make this 
exainple as clear as possible. The theorems we prove later for a more general 
class of dynanfical systems require only that  the set of observation vectors {xi } 
be linearly independent. 

Two computational experiments were performed using observation-outcome 
sequences generated as described above. In order to obtain statistically reliable 
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Average error on the random-walk problem under repeated presentations. 

All data are from TD(A) with different values of A. The dependent measure 

used is the RMS error between the ideal predictions and those found by the 

learning procedure after being repeatedly presented with the training set 

until convergence of the weight vector. This measure was averaged over 

100 training sets to produce the data shown. The A = 1 data point is 

the performance level attained by the Widrow-Hoff procedure. For each 

data point, the standard error is approximately ~ = 0.01, so the differences 

between the Widrow-Hoff procedure and the other procedures are highly 

significant. 

results, 100 training sets, each consisting of 10 sequences, were constructed for 

use by all learning procedures. For all procedures, weight increments were 

computed according to TD(A), as given by (4). Seven different values were 

used for A. These were A = 1, resulting in the Widrow-Hoff supervised-learning 

procedure, A = 0, resulting in linear TD(0), and also A = 0.1, 0.3, 0.5, 0.7, and 

0.9, resulting in a range of intermediate TD procedures. 

In the first experiment,  the weight vector was not updated after each se- 

quence as indicated by (1). Instead, the Aw's  were accumulated over sequences 

and only used to update  the weight vector after the complete presentation of 

a training set. Each training set was presented repeatedly to each learning 
procedure until the procedure no longer produced any significant changes in 

tile weight vector. For small a, the weight vector always converged in this way, 

and always to the same final value, independent, of its initial value. We call 

this the repeated presentation8 training paradigm. 

The true probabilities of right-side termination the ideal predictions - for 

each of the nonterminal states can be computed as described in section 4.1. 
and 65. for states B, C, D, E and F,  respectively. As T h e s e a r e  ~, ~, 1, 3 
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Figure 4. Average error on random walk problem after experiencing 10 sequences. 

All data are from TD(~) with different values of a and A. The dependent 

measure is the RMS error between the ideal predictions and those found 

by the learning procedure after a single presentation of a training set. 

This measure was averaged over 10O training sets. The )~ = t data points 

represent performances of the Widrow-Hoff supervised-learning procedure. 

a measure of the performance of a learning procedure on a training set, we 

used the root mean squared (RMS) error between the procedure 's  asymptot ic  

predictions using that  training set and the ideal predictions. Averaging over 

training sets, we found that  performance improved rapidly as A was reduced 

below 1 (the supervised-learning method) and was best at ,~ = 0 (the extreme 

TD method),  as shown in Figure 3. 

This result contradicts conventional wisdom. It  is well known that,  under 

repeated presentations, the Widrow-Hoff procedure minimizes the RMS error 

between its predictions and the actual outcomes in the training set, (Widrow & 

Stearns, 1985). How can it be that  this optimal method performed worse than 

all the TD methods for A < 1? The answer is that  the Widrow-Hoff procedure 

only minimizes error on the training set; it does not necessarily minimize error 

for future experience. In the following section, we prove that  in fact it is linear 

TD(0) that  converges to what can be considered the optimal estimates for 

matching future experience - those consistent with the maximum-likelihood 

est imate of the underlying Markov process. 

The second experiment concerns the question of learning rate when the 

training set is presented just  once rather  than repeatedly until convergence. 

Although it is difficult to prove a theorem concerning learning rate, it is easy to 

perform the relevant computat ional  experiment. We presented the same data  

to the learning procedures, again for several values of A. with the following 
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Figure 5. Average error at best ~ value on random-walk problem. Each data point 

represents the average over 100 training sets of the error in the estimates 

found by TD()~), for particular A and a values, after a single presentation 

of a training set. The ,~ value is given by the horizontal coordinate. The a 

value was selected from those shown in Figure 4 to yield the lowest error 

for that ), value. 

procedural changes. First, each training set was presented once to each pro- 

cedure. Second, weight updates were performed after each sequence, as in (1), 

rather  than after each complete training set. Third, each learning procedure 

was applied with a range of values for the learning-rate parameter  a.  Fourth, 

so that  there was no bias either toward right-side or left-side terminations, all 

components of the weight vector were initially set to 0.5. 

The results for several representative values of ~ are shown in Figure 4. 

Not surprisingly, the value of a had a significant effect on performance, with 

best  results obtained with intermediate values. For all values, however, the 

Widrow-Hoff procedure, TD(1), produced the worst estimates. All of the TD 

methods with A < 1 performed bet ter  both in absolute terms and over a wider 

range of a values than did the supervised-learning method. 

Figure 5 plots the best error level achieved for each .~ value, tha t  is, using 

the a value tha t  was best for tha t  I value. As in the repeated-presentat ion 

experiment,  all ~ values less than 1 were superior to the ,~ = 1 case. However, 

in this experiment the best ~ value was not 0, but somewhere near 0.3. 

One reason I = 0 is not optimal for this problem is that  TD(0) is relatively 

slow at propagat ing prediction levels back along a sequence. For example, 

suppose states D, E,  and F all s tar t  with the prediction value 0.5, and the 

sequence xD, XE, XF, 1 is experienced. TD(0) will change only F ' s  prediction, 
whereas the other procedures will also change E ' s  and D 's  to decreasing ex- 
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tents. If the sequence is repeatedly presented, this is no handicap, as the 

change works back an additional step with each presentation, but for a single 

presentation it means slower learning. 

This handicap could be avoided by working backwards through the se- 

quences. For example, for the sequence x u ,  x¢ ,  xr~ 1~ first F 's  prediction could 

be updated in light of the 1, then E 's  prediction could be updated toward F ' s  

new level, and so on. In this way the effect of the 1 could be propagated 

back to the beginning of the sequence with only a single presentation. The 

drawback to this technique is that it loses the implementation advantages of 

TD methods. Since it changes the last prediction in a sequence first, it has 

no incremental implementation. However, when this is not an issue, such as 

when learning is done offine from an existing database, working backward in 

this way should produce the best predictions. 

4 .  T h e o r y  o f  t e m p o r a l - d i f f e r e n c e  m e t h o d s  

In this section, we provide a theoretical foundation for temporal-difference 

methods. Such a foundation is particularly needed for these methods because 

most of their learning is done on the basis of previously learned quantities. 

"Bootstrapping" in this way may be what makes TD methods efficient, but  
it can also make them difficult to analyze and to have confidence in. In fact, 

hitherto no TD method has ever been proved stable or convergent to the 

correct predictions. 4 Tile theory developed here concerns the linear TD(0) 

procedure and a class of tasks typified by the random walk example discussed 

in the preceding section. Two major results are presented: (1) an asymptotic 

convergence theorem for linear TD(0) when presented with new data  sequences; 

and (2) a theorem that  linear TD(0) converges under repeated presentations 

to the optimal (maximum likelihood) estimates. Finally, we discuss how TD 

methods can be viewed as gradient-descent procedures. 

4.1 Convergence of linear TD(0) 

The theory presented here is for data sequences generated by absorbing 

Markov procea~e8 such as the random-walk process discussed in the preced- 

ing section. Such processes, in which each next state depends only on the 

current state, are among the formally simplest dynamical systems. They are 

defined by a set of terminal states T, a set of nonterminal states N, and a set 

of transition probabilities pij (i E N, j E N t_) T), where each P~3 is the proba- 

bility of a transition from state i to state j ,  given that the process is in state i. 

The "absorbing" property means that  indefinite cycles among the nontermi- 

nal states are not possible; all sequences (except for a set of zero probability) 

eventually terminate. 

Given an initial state ql, an absorbing Markov process provides a way of 

generating a state sequence ql, q2~.-., qm+l, where qm+l E T. We will assume 
the initial state is chosen probabilistically from among the nonterminal states, 

aWitten (1977) presented a sketch of a convergence proof for a TD procedure that pre- 
dicted discounted costs in a Markov decision problem, but many steps were left out, and it 
now appears that the theorem he proposed is not true. 
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each with probability lti. As in the random walk example, we do not give the 

learning algorithms direct knowledge of the state sequence, but only of a related 

observation-outcome sequence Xl, xu, . . .  ,Xm, z. Each numerical observation 
vector xt is chosen dependent only on the corresponding nonterminal state 

qt, and the scalar outcome z is chosen dependent only on the terminal state 

qm+l. In what follows, we assume that there is a specific observation vector xi 

corresponding to each nonterminal state i such that  if qt = i, then xt = xi. For 
each nonterminal state j ,  we assume outcomes z are selected from an arbitrary 

probability distribution with expected value 2j. 

The first step toward a formal understanding of any learning procedure is to 
prove that  it converges asymptotically to the correct behavior with experience. 

The desired behavior in this case is to map each nonterminal state's observation 

vector xi to the true expected value of the outcome z given that the state 
sequence is starting in i. That is, we want the predictions P(xi, w) to equal 

E {z l i}, Vi E N. Let us call these the ideal predictions. Given complete 
knowledge of the Markov process, they can be computed as follows: 

2@T j E N  kET j E N  kEN lET 

For any matrix M, let [M]o denote its i j  th component, and, for ally vector 

v, let [vii denote its i tl* component. Let Q denote the matrix with entries 

[Q],j = pij for i , j  E N, and let h denote the vector with components [h]i = 

~ j e T  P~J23 for i E N. Then we can write the above equation as 

E{z l i}= [~  Qkh] = [(I-Q)-lh],. 
k=O ~ i 

The second equality and the existence of the limit and the inverse are assured 

by Theorem A.1. 5 This theorem can be applied here because the elements of 
Qk are the probabilities of going from one nonterminal state to another in k 
steps; for an absorbing Markov process, these probabilities must all converge 

to 0 as k ~ c~. 

If the set of observation vectors { xi I i E N } is linearly independent, and if 

is chosen small enough, then it is known that the predictions of the Widrow- 

Hoff rule converge in expected value to the ideal predictions (e.g., see Widrow 

& Stearns, 1985). We now prove the same result for linear TD(0): 

T h e o r e m  2 For any absorbing Markov chain, for any distribution of starting 
probabilities pi, for any outcome distributions with finite expected values 2j, 
and for any linearly independent set of observation vectors { xi I i ~ N }, 
there exists an ~ > 0 such that, for all positive c~ < e and for any initial 
weight vector, the predictions of linear TD(O) (with weight updates after each 
sequence) converge in expected value to the ideal predictions (5). That is, if 

~To simplify presentation of the proofs, some of the more straightforward but  potentially 
distracting steps have been placed in the Appendix as separate theorems. These are referred 
to in the text as Theorems A.I, A.2, and A.3. 
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Wn denotes the weight vector after n sequences have been experienced, then 

lim~_~o¢ E { x T ~ n }  = E { z  I i}  = [(I - Q)lh]~,  vi e N. 

PROOF: Linear TD(0) updates w~ after each sequence as follows, where m 

denotes the number of observation vectors in the sequence: 

"Wn+l = Wn + E a ( P t + l  Pt)VwPt  where Pm+l clef 

t = l  

rn - -1  

t = l  

m - - l  

_ ~ T T 
- -  Wn ~ L -- w n  Xqt 

t = l  

where Xq~ is the observation vector corresponding to the state qt entered at time 

t within the sequence. This equation groups the weight increments according 

to their time of occurrence within the sequence. Each increment corresponds to 

a particular state transition, and so we can alternatively group them according 
to the source and destination states of the transitions: 

i c g  ICN iCN l E T  

where ~/ij denotes the number of times the transition i ~ 3 occurs in the 

sequence. (For j E T, all but one of the rh3 is 0.) 

Since the random processes generating state transitions and outcomes are 
independent of each other, we can take the expected value of each term above, 

yielding 

E l : + (Cxj - Cxd (6) 

iCN 36N 

i e N  j ~ T  

where d~ is the expected number of times the Markov chain is in state i in one 
sequence, so that d, pij is the expected value of rhj. For an absorbing Markov 

chain (e,g., see Kemeny & Snell, 1976, p. 46): 

ar : ~r (~_ Q)-~ (7) 

where [d]{ = d, and [#]{ = #{, i 6 N. Each di is strictly positive, because any 

state for which d{ = 0 has no probability of being visited and can be discarded. 

Let wn denote the expected value of wn. Then, since the dependence of 
E{w,~+l I wn} on w,~ is linear, we can write 

iCN j ~ N  i~N 2~T 
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an iterative update formula in @n that  depends only on initial conditions. 
Now we rearrange terms and convert to matrix and vector notation, letting D 
denote the diagonal matrix with diagonal entries [D]i~ = di and X denote the 
matrix with columns xi: 

~2n + 1 

i eN \ j e T  j e N  

= ~,~ + a X O  (h + QxT~:n - xT~,~) ; 

Z Pq)  
j ~ N ~ T  

x T  (On+ l = XT(vn + c~XTXD (h + QxT@n - XT@n) 

= a X T X D h  + (1 - c~XTXD(I - Q) )xT¢n  

= a X T X D h  + ([ - ozXTXD(I - Q))ozXTXDh 

+ (I - a X T X D ( I  -- Q))~XT@n_I 

n--1  

Z ( I - X D ( I  - Q) )k X D h  

k----0 

+ (I -- a X T X D ( I  - Q))nXTw O. 

Assuming for the inoment that limn-~o¢ (I - aXTXD(1  - Q))n = 0, then, by 

theorem A. 1, the sequence {X Tw~ } converges to 

lira x T ~  = ( I - ( I - c ~ X T X D ( I - Q ) ) ) - l a X T X D h  

: ( I  -- Q ) - I D - I ( x T x ) - l o ~ - I & X T X D h  

: ( I - Q ) - l h ;  

~im E{xTw~} = [ ( I - Q ) - l h ] i  V i c N ,  

which is the desired result. Note that  D -1 must exist because D is diagonal 
with all positive diagonal entries, and (XTX)  -1 must exist by Theorem A.2. 

It thus remains to show that  limn-~o~ ( I - a X T X D ( I -  Q))n = 0. We do this 

by first showing that  D ( I - Q )  is positive definite, and then that  X T X D  ( I -  Q) 
has a full set of eigenvalues all of whose real parts are positive. This will enable 
us to show that  a can be chosen such that  all eigenvalues of I - c ~ X T X D ( I - Q )  
are less than 1 in modulus, which assures us that its powers converge. 
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We show that D ( I  - Q) is positive definite 6 by applying the following lemma 

(see Varga, 1962, p. 23, for a proof): 

L e m m a  If  A is a real, symmetric,  and strictly diagonally dominant matrix 

with positive diagonal entries, then A is positive definite. 

We cannot apply this lemma directly to D(I  - Q) because it is not symmetric. 
However, by Theorem A.3, any matrix A is positive definite exactly when the 
symmetric matrix A + A T is positive definite, so we can prove that D ( I  - Q) 

is positive definite by applying the lemma to S = D ( I  - Q) + (D( I  - Q))T. S 

is clearly real and symmetric; it remains to show that it has positive diagonal 
entries and is strictly diagonally dominant. 

First, we note that 

[ D ( I -  Q)]# = E [ D ] i k [ l  - Q ] k j =  [D]ii[I - Q]ij = di[I - Q]ij. 

k 

We will use this fact several times in the following. 

S's diagonal entries are positive, because [ S ] i i =  [D(I - Q)]~i + [(D(I - 

Q))T]ii = 2 [ D ( I -  Q)]ii = 2 d i [ I -  Q]ii = 2 d i ( 1 -  pii) > 0, i E N. Furthermore, 
S's off-diagonal entries are nonpositive, because, for i ~ j ,  [S]ij = [ D ( I -  

Q)]o + [ ( D ( / -  Q))T]i j = d~[I - Q]ij + d j [ I  - Q]ji = -dipi3 - djpji <_ O. 

S is strictly diagonally dominant if and only if ][S]ii I _> Z j ¢ i  I[S]OI, for all 

i, with strict inequality holding for at least one i. However, since [S] i i> 0 and 
[S]O < 0, we need only show that [S]ii > - ~ j ¢ i [ S ] i j ,  in other words, that 

~ j [ S ] o  > 0, which can be directly shown: 

J 

= E ( [ D ( I -  Q ) ] i j +  [ ( D ( I -  Q))T]o ) 

3 

J 

= d~ ~-'~[I - Q ] i j +  [dT(I - Q)]i 

= d , ( 1  - + [ , r ( I  - _ 

J 

(1  - p j) + di 

ff 

> 0. 

by (7) 

Furthermore, strict inequality must hold for at least one i, because #~ must be 
strictly positive for at least one i. Therefore, S is strictly diagonally dominant 
and the lemma applies, proving that S and D ( I - Q )  are both positive definite. 

6A matrix A is positive definite if and only if yTAy > 0 for all real vectors y ¢ 0. 
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Next we show that X T X D ( I  - Q) has a full set of eigenvalues all of whose 

real parts  are positive. First  of all, the set of eigenvalues is clearly full, because 

the matr ix  is nonsingular, being the product  of three matrices, X r X ,  D,  and 

I - Q, that  we have already established as nonsingular. Let ,~ and y be any 

eigenvalue-eigenvector pair. Let y = a + bi and z = ( X T X ) - l y  ¢ 0 (i.e., 

y = X T X z ) .  Then 

y * D ( I  - Q ) y  = z * X T  X D ( I  - Q)y = z*)~y = A z * X T  X z  = ) ~ ( X z ) * X z ,  

where "*" denotes the conjugate-transpose. This implies that  

aT D ( I -  Q)a  + bT D ( I  - Q)b = ( X z ) * X z  Re A. 

Since the left side and ( X z ) * X z  must both  be strictly positive, so must the 

real part  of A. 

Furthermore, y must  also be an eigenvector of I - a X T X D ( [  - Q),  because 

( I  - c ~ X T X D ( I  - Q ) ) y  = y - c~Ay = (1 - ~ ) y .  Thus, all eigenvectors of 

I - o ~ X T X D ( I  -- Q) are of the form 1 - aA, where A has positive real part .  

For each A = a + bi, a > 0, if a is chosen 0 < a < a - - ~ ,  then 1 - aA will have 

modulus 7 less than one: 

= _ v / ( t  - + 

= V / 1 -  2 a a + r x 2 a  2 + a~b 2 

= x/1 - - 2 a a  2¢ a2(a2 + b2) - 

- 

< - 2(xa + a ~ - ~ ( a  ~ + b 2) = x/1 - 2o~a + 2~a = 1. 

2a will be different for different ~; choose e to be the The criterial value 

smallest such vMue. Then, for any positive a < e, all eigenvalues 1 - aA 

of I - c ~ X D ( I  - Q.)X T are less than one in modulus. And this immediately 

implies (e.g., see Varga, 1962, p. 13) that  lim~-~oo(I - o~XD( I  - Q ) x T )  n = O, 

completing the proof. • 

We have just shown that  the expected values of the predictions found by 

linear TD(0) converge to the ideal predictions for da ta  sequences generated 

by absorbing Markov processes. Of course, just as with the Widrow-Hoff 

procedure, the predictions themselves do not converge; they continue to vary 

around their expected values according to their most  recent experience. In the 

case of the Widrow-Hoff procedure, it is known that  the asymptotic  variance 

of the predictions is finite and can be made arbitrarily small by the choice 

of the learning-rate parameter  c~. Furthermore,  if a ]s reduced according to 
1 then the variance converges to zero as an appropriate  schedule, e.g., a = ~, 

7The modulus of a complex number a + bi is x / ~ .  
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well. We conjecture that these stronger forms of convergence hold for linear 

TD(0) as well, but  this remains an open question. Also open is the question of 

convergence of linear TD(A) for 0 < A < 1. We now know that both TD(0) and 

TD(1) the Widrow-Hoff rule - converge in the mean to the ideal predictions; 

we conjecture that the h~termediate TD(A) procedures do as well. 

4.2 Optimality and learning rate 

The result obtained in the previous subsection assures us that both TD 

methods and supervised learning methods converge asymptotically to the ideal 

estimates for data  sequences generated by absorbing Markov processes. How- 

ever, if both kinds of procedures converge to the same result, which gets there 
faster? In other words, which kind of procedure makes the bet ter  predictions 

from a finite rather than an infinite amount of experience? Despite the pre- 

viously noted empirical results showing faster learning with TD methods, this 

has not been proved for any general case. In this subsection we present a 

related formal result that helps explain the empirical result of faster learning 

with TD methods. We show that the predictions of linear TD(0) are optimal 

in an important  sense for repeatedly presented finite training sets. 

In the following, we first define what we mean by optimal predictions for 
finite training sets. Though optimal, these predictions are extremely expensive 

to compute, and neither TD nor supervised learning methods compute them 

directly. However, TD methods do have a special relationship with them. 

One common training process is to present a finite amount of data over and 

over again until the learning process converges (e.g., see Ackley, Hinton, & 

Sejnowski, 1985; t-~.umelhart, Hinton, & Williams, 1985). We prove that lin- 

ear TD(0) converges under this repeated preseutations training paradigm to 

the optimal predietions~ while supervised-learning procedures converge to sub- 

optimal predictions. This result also helps explain TD methods'  empirically 

faster learning rates. Since they are stepping toward a better final result, it 

makes sense that they would also be bet ter  after the first, step. 

The word optimal can be misleading because it suggests a universally agreed 

upon criterion for the best way of doing something. In fact, there are many 

kinds of optimality, and choosing anlong tlmm is often a critical decision. 

Suppose that one observes a training set. consisting of a finite number of 
observation-outcome sequences, and that one knows tile sequences t,o be gen- 

erated by, an absorbing Markov process as described in the previous section. 

What might one mean by the %est'" predictions given such a training set'? 

If the a priori distribution of possible Markov processes is known, then 

the predictions that are optimal in the mean square sense can be calculated 

through Bayes's rule. Unfl)rtunately, it is very difficult to justify any a priori 

assumptions about possible Markov processes. In order to avoid making any 

such assumptions, mathematicians have developed another kind of optimal 
estirnate, known as the maximum-likelihood estimate. This is the kind of 

optimality with which we will be concerned. For example, suppose one flips 
a coin ten times and gets seven heads. What is the best estimate of the 

probability of getting a head on tile next toss? In one sense, the best estimate 

depends entirely on a priori assmnptions about how likely one is to rm~ into fair 
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and biased coins, and thus cannot be uniquely determined. On the other hand, 

the best answer in the maximum-likelihood sense requires no such assumptions; 

it is simply ~ .  In general, the maximum-likelihood estimate of the process 
that produced a set of data is that process whose probability of producing the 
data is the largest. 

What is the maximum-likelihood estimate for our prediction problem? If the 
observation vectors xi for each nonterminal state i are distinct, then one can 

enumerate the nonterminal states appearing in the training set and effectively 

know which state the process is in at each time. Since terminal states do not 

produce observation vectors, but only outcomes, it is not possible to tell when 
two sequences end in the same terminal state; thus we will assume that all 
sequences terminate in different states, s 

Let T and N denote the sets of terminal and nonterminal states, respectively, 

as observed in the training set. Let [~)]~j = ~j (i,j E N) be the fraction of 

the times that state i was entered in which a transition occurred to state 

j.  Let z) be the outcome of the sequence in which termination occurred at 

state j e T, and let [~t], = ~ j e ~  15~jzj, i e N. (~ and ~t are the maximum- 

likelihood estimates of the true process parameters Q and h. Finally, estimate 

the expected value of the outcome z, given that the process is in state i E N, 

a s  

That is, choose the estimate that would be ideal if in fact the maximum- 

likelihood estimate of the underlying process were exactly correct. Let us 

call these estimates the optimal predictions. Note that even though ~) is an 

estimated quantity, it still corresponds to some absorbing Markov chain. Thus, 

lim,~_-~c¢ (~n = 0 and Theorem A.1 applies, assuring the existence of the limit 

and inverse in the above equation. 

Although the procedure outlined above serves well as a definition of optimal 

performance, note that it itself would be impractical to implement. First 

of all, it relies heavily on the observation vectors xi being distinct, and on 
the assumption that they map one-to-one onto states. Second, the procedure 

involves keeping statistics on each pair of states (e.g., the :Siy) rather than 
on each state or component of the observation vector. If n is the number of 
states, then this procedure requires O(n 2) memory whereas the other learning 
procedures require only O(n) memory. In addition, the right side of (8) must 
be re-computed each time additional data become available and new estimates 
are needed. This procedure may require as much as O(n a) computation per 
time step as compared to O(n) for the supervised-learning and TD methods. 

Consider the ease in which the observation vectors are linearly independent, 
the training set is repeatedly presented, and the weights are updated after 
each complete presentation of the training set. In this case, the Widrow-ttoff 

aAlternat ively ,  we may  a s s u m e  t ha t  the re  is only  one t e rmina l  s t a t e  and  t h a t  the  distri-  

bu t ion  of a sequence ' s  ou t come  depends  on i ts  p e n u l t i m a t e  s ta te .  Th i s  does not  change  any 
of t he  conclus ions  of the  analysis .  



TEMPORAL-DIFFERENCE LEARNING 31 

procedure converges so as to minimize the root mean squared error between 

its predictions and the actual outcomes in the training set (Widrow & Stearns, 

1985). As illustrated earlier in the random-walk example, linear TD(0) con- 
verges to a different set of predictions. We now show that those predictions 

are in fact the optimal predictions in the maximum-likelihood sense discussed 

above. That  is, we prove the following theorem: 

T h e o r e m  3 For any training set whose observation vectors { x~ [ i E 2V } 
are linearly independent, there exists an e > 0 such that, for all positive a < ( 
and for any initial weight vector, the predictions of linear TD(O) converge, 
under repeated presentations of the training set with weight updates after each 
complete presentation, to the optimal predictions (8). That is, if wn is the 
value of the weight vector after the training set has been presented n times, 

then l i m , ~  x~w~ = [ ( / -  (~)-1~],, V i e  5;. 

PROOF: The proof of Theorem 3 is almost the same as that of Theorem 2, 

so here we only highlight the differences. Linear TD(0) updates wn afl.er each 

presentation of tile training set: 

t = l  

where rn~ is tile number of observation vectors in the s TM sequence in the 

training set, Pt s is the t gh prediction in the .s th sequence, and P ~  +L is defined 

to be the outcome of tile S th  sequence. Let ~]ij be the number of times the 

transition i ~ j appears in the training set; then the sums can be regrouped 

as 

iE fic" j f f  N" iE fiJ jGT" 

iEiV jEfir iE29 2ET 

where d~ is the number of times state i E ~V appears in the training set. 
The rest of the proof for Theorem 2, starting at (6), carries through with 
estimates substituting for actual values tilroughout.. The only step in the 
proof that requires additional support is to show that (7) still holds, i.e., that 

dT = ~tT(i _ Q)-L,  where [/~]i is tile mmLber of sequences in the training set 

that  begin in state i E 2). Note that ~ e ~  r/~j = ~ _ ~  ddS~j is tile nmnber 

of times state j appears in tile training set as the destination of a t ransmon. 

Since all occurrences of state j must be either as the destination of a transition 

or as the beginning state of a sequence. (t3 = [/;]3 + ~ i  dd)zj. Converting this to 

matrix notation, we have d T = it T + d r Q ,  which yields the desired conclusion, 

dT = f~r ( I _ ~2 )-1 after algebraic manipulations. • 

We have just shown that  if linear TD(0) is repeatedly presented with a 
finite training set, then it converges to the optimal estimates. The Widrow- 

Hoff rule, on the other hand, converges to the estimates that minimize error on 
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the training set; as we saw in the random-walk example, these are in general 

different from the optimal estimates. That  TD(0) converges to a bet ter  set of 

estimates with repeated presentations helps explain how and why it could learn 

bet ter  estimates from a single presentation, but it does not prove that.  What  

is still needed is a characterization of the learning rate of TD methods that  can 

be compared with those already available for supervised-learning methods. 

4.3 Temporal-difference methods  as gradient descent 

Like many other statistical learning methods, TD methods can be viewed 

as gradient descent (hill climbing) in the space of the modifiable parameters 

(weights). That  is, their goal can be viewed as minimizing an overall error 

measure a(w) over the space of weights by repeatedly incrementing the weight 

vector in (an approximation to) the direction in which a(w) decreases most 
steeply. Denoting the approximation to this direction of steepest descent, or 

gradient, as ~7~oJ(w), such methods are typically written as 

/xw~ = - ~ g j ( w d ,  

where (~ is a positive constant determining step size. 

For a multi-step prediction problem in which Pt = P(zt, w) is meant to 

approximate E {z I st}, a natural  error measure is the expected value of the 

square of the difference between these two quantities: 

J(w)  = E x  t~ {z I x }  - P(x,~, ,)  , 

where Ex{ } denotes the expectation operator over observation vectors x. 

,l(w) measures the error for a weight vector averaged over all observation 

vectors, but at each time step one usually obtains additional information about 

only a single observation vector. The usual next step, therefore, is to define a 

per-observation error measure Q(w, x) with the property that  Ex{Q(w, x)} = 

J(w). For a multi-step prediction problem, 

f 

Each time step's weight increments are then determined using VwQ(w, st), 
relying on the fact that  Ex{V, , ,Q(w,x)} = VwJ(w), so that  the overall effect 

of the equation for Aw, given above can be approximated over many steps 
using small c~ by 

Awt = - o ~ ' w Q ( w ,  xt) 

= 2 (E I p(s , ,  w) 
X ] 

The quantity E {zlxt  } is not directly known and must be estimated. De- 
pending on how this is done, one gets either a supervised-learning method or 
a TD method. If E {z I xt} is approximated by z, the outcome that actually 
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occurs following xt, then we get the classical supervised-learning procedure 

(2). Alternatively, if E {z] xt} is approximated by P(xt+l, w), the immedi- 

ately following prediction, then we get the extreme TD method,  TD(0). Key 

to this analysis is tile recognition, in the definition of J(,w), that  our real goal 

is for each prediction to match the expected .value of the subsequent outcome, 

not the actual outconw occurring in the training set. TD methods can per- 

form bet ter  than supervised-learni:lg methods because the actual outcome of 

a sequence is often not the best estimate of its expected value. 

5. G e n e r a l i z a t i o n s  o f  T D ( A )  

In this article, we have chosen to analyze particularly simple cases of tem- 

poral-difference methods. This has clarified their operation and made it pos- 

sible to prove theorems. However. more realistic problems may require more 

complex TD methods. In this section, we briefly explore some ways in which 

the simple methods ('an be extended. Except where explicitly noted, the the- 

orems I/resented earlier do not strictly apply to these extensions. 

5.1 Predicting cumulative outcomes 

Temporal-difference methods are not limited to predicting only tile final out- 

come of a sequence; they can also be used to predict a quantity that  accumu- 

lates over a sequence. Tha t  is, each step of a sequence may incur a cost, where 

we wish to predict tile expected total cost over the sequence. A common way 

for this to arise is ibr tile costs to be elapsed time. For example, in a bounded 

random walk one might want to predict how many steps will be taken before 

termination. In a poh,-balancing problem one may want to predict time until 

a failure in balancing, and in a packet-switched telecomnnmications network 

one may want to pre(tict the total delay in sending a packet. In game playing, 

points may be lost or won throughout a game, and we may be interested in 

predicting the expected net gain or loss. In all of these examples, the quantity 

predi('ted is the cumulative sum of a number of parts,  where tile parts become 

known as the sequence evolves. For convenience, we will continue to refer to 

these parts  as costs, even though their minimization will not be a goal in all 

applications. 

hl such problems, it. is nat, ural to use the observation vector received at 

each step to predict the total cumulative cost after that step, rather  than the 

total cost for the sequence as a whole. Thus, we will want Pt to predict the 

remaining cumulative cost given the t th observation rather than the overall 

cost for the sequence. Since the cost for the preceding portion of the sequence 

is already known, the total sequence cost can always be estimated as the sum of 

the known cost-so-far and the estimated cost-remaining (of. the A* algorithm. 

dynamic programming).  

The procedures presented earlier are easily generalized to include the case 

of predicting cumulative outconws. Let ct+l denote the actual cost incurred 

t)etween times t and t + 1, and let Cij denote the expected value of the cost 

incurred on transition from state i to state j .  We would like Pt to equal 
1/7. 

the expected value of zt = ~k=t Ck+l.. where m is the number of observation 
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vectors in the sequence. The prediction error can be represented in terms of 
temporal differences as zt Pt rn -- Pt rn 

- = Ek=~(ck+~ + Pk+~ - P~), E k = t  ek + l 
where we define Pm+l = 0. Then, following the same steps used to derive the 

TD(A) fmnily of procedures defined by (4), one can also derive the cumulative 
TD(A) family defined by 

t 

Awt = c~(ct+l + P~+I - Pt) ~ ~t-kV~Pk.  

k = l  

The three theorems presented earlier in this article carry over to the cumu- 

lative outcome case with the obvious modifications. For example, the ideal 
prediction for each state i E N is the expected value of the cumulative sum of 

the costs: 

jENUT jEN kENuT 

+ E pi3 E pjk E Pkl@kl+'"  
3EN kEN I~NUT 

If we let h be the vector with components [h]~ = ~ 3  P~J6iJ' i E N, then (5) 

holds for this case as well. Following steps similar to those in the proof of 

Theorem 2, one can show that,  using linear cumulative TD(0), the expected 
value of the weight vector after n sequences have been experienced is 

l ~ n +  1 -~ 

i~N 3GN 

iEN jET 

Wn + Oz E dixi 

i~N 

wn + a, E dixi 
iEN 

E pijcij + E -T -T pijWn Xj -- W n X i 
jCNUT jEN 

+ pijw n x j  

.~E N 

E Pi3) 
jENUT 

after which the rest of the proof of Theorem 2 follows unchanged. 

5.2 Intra-sequence weight updating 

So far we have concentrated on TD procedures in which the weight vector 
is updated after the presentation of a complete sequence or training set. Since 

each observation of a sequence generates an increment to the weight vector, in 
many respects it would be simpler to update the weight vector immediately af- 
ter each observation. In fact, all previously studied TD methods have operated 
in this more fully incremental way. 



T E M P O R A L - D I F F E R E N C E  L E A R N I N G  3 5  

Extending TD(A) to allow for intra-sequence uI)dating requires a bit of care. 

The obvious extension is 

t 

'lt't4-1 = 'll't -}- &(I)t-kl  -- I)t)  E A t -k~Tu" l )k '  

k = l  

where / )  d(,f I'(,rt.wt_l). 

However. if w is changed within a sequence, then tile temporal changes in 

prediction during the sequence, as defined by this procedure, will be due to 

changes in w as well as to changes in x. This is probably an undesirable 

feature; in extreme cases it may even lead to instability. The folh)wing uI)date 

rule ensures that only changes in prediction due to x are effective in causing 

weight alterations: 

t 

?lJt+l ~- 'll?t + o ~ ( P ( X t + l ,  Wt)  - P(xt, wt)) E At-kVwP(CCk" Wt) 
k=l  

This refinement is used in Samuel's (1959) checker player and in Sutton's 

(1984) Adaptive Heuristic Critic, but not in Holland's (1986) bucket brigade 

or in the system described by Barto et al. (1983). 

5.3 P r e d i c t i o n  by  a f ixed in t erva l  

Finally, consider tile problem of making a prediction for a particular fixed 

amount of time later. For example, suppose you are interested in predicting 

one week in advance whether or not it will rain - on each Monday, you predict 

whether it will rain on the following Monday, oi1 each Tuesday, you predict 

whether it will rain on the following Tuesday, and so on for each day of tile 

week. Although this problem involves a sequence of predictions, TD methods 

cannot be directly applied because each prediction is of a different event and 

thus there is no clear desired relationship between them. 

In order to apply TD methods, this problem nmst be embedded within a 

larger family of prediction problems. At each (lay t, we must form not only 

I )  7, our estimate of the probability of rain seven days later, but also Py, P~, 

. . . .  P~, where each P~ is an estimate of the probability of rain ~ days later. 

This will provide for overlapping sequences of inter-related predictions, e.g., 

P7, Pt6+l, Pts+2 . . . . .  Pt~6, all of the same event., in lifts case of whether it will 

rain on (lay t + 7. If the predictions are accurate, we will have P(  = Pt~-i l, 

Vt, 1 < (~ < 7, where Pt ° is defined as tile actual outcome at time t (e.g., 1 if it 

rains. 0 if it does not rain). The update rule h)r the weight vector 'w ° used to 

comt)ute Pt # would be 

t 

w k " 

k = l  

As illustrated here. there are three key steps ill constructing a TD method 

for a particular problem. First, embed the problen~ of interest in a larger 
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('lass of t)rohlems, if necessary, in order to produce an appropriate sequence 

of predictions. Second, write down recursive equations expressing the desired 

relationship t)etween predictions at different tilnes in the sequence. For the 

simplest cases, with which this article has been mostly concerned, these are 

just Pt --- Pt+l,  whereas in the cumulative outcome case these are Pt = Pt+l + 

ct+l. Third, construct an update rule that  uses the mismatch in the reeursive 

equations to drive weight changes towards a bet ter  match, These three steps 

arc very similar to those taken in formulating a dynamic programming problem 

(e.g., Denardo, 1982). 

6. Related research 

Although temporal-difference methods have never previously been identified 
or studied on their own, we can view some previous machine learning research 

as having used them. In this section we briefly review some of this previous 

work in light, of the ideas developed here. 

6.1 Samuel's checker-playing program 

The earliest known use of a TD method was in Samuel's (1959) celebrated 

checker-playing program. This was in his "learning by generalization" proce- 

dure, which modified the parameters of the function used to evaluate board 

positions. The evaluation of a position was thought of as an estimate or pre- 

diction of how tile game would eventually turn out starting from ttlat position. 

Thus, the sequence of positions from an actual game or an anticipated contin- 

uation naturally gave rise to a sequence of predictions, each about the game's 

fizlal outcome. 

In Samuel's learning procedure, the difference between the evaluations of 

each pair of successive positions occurring in a game was used as an error; that  

is, it was used to alter the prediction associated with the first position of the 

pair to be more like the prediction associated with the second. The predictions 

for the two positions were computed in different ways. In most versions of 

the program, the prediction for the first position was simply the result of 
applying the current evaluation flmction to that position. The prediction for 

tile second position was the "backed-up" or minimax score from a lookahead 

search started at that  position, using the current evaluation function. Samuel 

referred to the difference between these two predictions as delta. Although his 
updating procedure was nmch more complicated than TD(0), his intent was 

to use delta rrmch as P,+~. - Pt is used in (linear) TD(O). 

However, Samuel's learning procedure significantly differed from all the TD 

methods discussed here in its t reatment of the final step of a sequence. We have 
considered each sequence to end with a definite, externally-supplied outcome 
(e.g.. 1 for a victory and 0 for a defeat). The prediction for the last position 

in a sequence was altered so as to match this final outcome. In Samuel's 
proced~re, on the other hand, no position had a definite a priori evaluation, 
and the evaluation for the last position in a sequence was never explicitly 

altered. Thus, while both procedures constrained the evaluations (predictions) 
of nonterminal positions to match those that  follow them, Samuel's provided 
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no additional constraint on the evaluation of terminal positions. As he himself 

pointed out, many useless evaluation functions satisfy just tile first constraint 

(e.g., any flmction that  is constant for all positions). 

To discourage his learning procedure from finding useless evaluation flmc- 

tions, Samuel included in the evaluation flmction a non-modifiable term mea- 

suring how many more pieces Ills program had than its opponent. However. 

although this modification may have decreased the likelihood of finding use- 

less evaluation flmctions, it (lid not prohibit them. For example, a constant 

function could still have been attained by setting the modifiable terms so as 

to cancel the effect of tile non-modifiable one. 

If Samuel's learning procedure was not constrained to find useflfl evaluation 

functions, then it should have been possible fbr it to become worse with ex- 

perience. In fact, Samuel reported observing this dm'ing extensive sell-play 

trahfing sessions. He found that a good way to get tile program improving 

again was to set the weight with the largest ab.solute value back to zero. ttis in- 

terpretation was that this drastic intervention jarred tile program out of local 

optima, but another possibility is that it jarred the program out of evaluation 

flmctions that changed little, but that also had little to do with winning or 

losing the game. 

Nevertheless, SamueFs learning procedure was overall very successful; it 

played an imt)ortant role in significantly improving the play of his checker- 

playing program until it rivaled human checker masters. Christensen and Korf 

have investigated a simplification of Samuel's procedure that also does not 

constrain the evaluations of terminal positions, and imve obtained promis- 

ing prelinfinary results (Christensen, 1986: Christensen & Korf. 1986). Thus. 

although a terminal constraint may be critical to good tenlporal-(til[i~rence 

theory, apparently it is not strictly necessary to obtait~ goo(t performance. 

6.2 B a e k p r o p a g a t i o n  in e o n n e e t i o n i s t  n e t w o r k s  

Tim baekprotmgation technique of Rumelhart  et al. (1985) is one of the most 

exciting recent developments in incremental learning methods. This technique 

extends the Widrow-Hoff rule so that it can be apt)lied to the interior "'hidden" 

units of multi-layer cmmectionist networks. In a backpropagation network, the 

inlmt-output functions of all units at'(, deternfinistic and differentiable. As a 

res,flt, the t)artial derivatives of Ill(, error measure wilh respect to each connec- 

tion weight are well-defined, and one can at)ply a gradient-descent at)preach 
such as that used in the original Widrow-ttoff rule. The term "backt)ropa- 

gati(m" reDrs to th(' way the partial derivatives are efficiently computed in a 

backward propagating sweep lhrough the network. As presented by Rume/hart 

et al., t)ackI)ropagation is explicitly a sut)ervised-h~arning t)rocedure. 

The purt)ose of bolh backprot)agation and TD methods is accurate credit 
assignment. Backprot)agalion de('ldes which part(s) of a network 1o change 

so as to influence the network's output and thus to reduce its overall err()r. 

whereas TD methods decide how each ou/tmt of a temI)oral sequence of outputs 

should be changed. Backpropagation addresses a ,slr~u:tural ('re(iil-assignment 
issue whereas TD metho(ts ad(lr(,ss a temporal cr(,dit-asslgnuient issue. 
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Although it currently seems that  backpropagation and TD methods address 
different parts of the credit-assignment problem, it is important  to note that 

they are perfectly compatible and easily combined. In this article, we have em- 

phasized the linear case. but the TD methods presented are equally applicable 

to predictions formed by nonlinear functions, such as backpropagation-stylc 

networks. The key requirement is that the gradient V.~Pt be computable. 

In a linear system, this is just xt. In a network of differentiable nonlinear 

elements, it can be computed by a backpropagation process. For example, An- 

derson (1986, 1987) has implemented such a combination of backpropagation 

and a temporal-difference method (the Adaptive Heuristic Critie~ see below), 

successfully applying it to both a nonlinear broomstick-balancing task and the 

Towers of Hanoi problem. 

6.3 Holland's bucket brigade 

Holland's (1986) bucket brigade is a technique for learning sequences of 

rule invocations in a kind of adaptive production system called a classifier 
.system. The production rules in a classifier system compete to become active 

and have their right-hand sides (called messages) posted to a working-memory 

data structure (called the message list). Conflict resolution is carried out by 
a competitiw~ auction. Each rule that matches the current contents of the 

message list makes a bid that depends on the product of its specificity and 
its ,strength, a modifiable numerical parameter.  The highest bidders become 

active and post their messages to a new message list for the next round of the 

auction. 

The bucket brigade is the process that  adjusts the strengths of the rules and 

thereby determines which rules will become active at which times. When a 

rule becomes active, it loses strength by the amount of its bid, but also gains 
strength if the message it posts triggers other rules to become active in the 

next round of tile auction. The strength gained is exactly the bids of the other 
rules. If several rules post the same message, then the bids of all responders are 

pooled and divided equally among the posting rules. In principle, hmg chains 
of rule invocations can be learned in this way, with strength being passed back 

from rule to rule, thus tile name %ueket brigade." For a chain to be stable, 

its final rule must affect the environment, achieve a goal, and thereby receive 

new strength in the form of a payoff from the external environment. 

Temporal-difference methods and the bucket brigade both borrow the same 

key idea from Sanmel's work that  the steps in a sequence should be evalu- 

ated and adjusted according to their immediate or near-immediate successors, 
rather than according to tile final outcome. The similarity between TD meth- 
ods and the bucket brigade can be seen at a more detailed level by considering 

tile latter 's effect on a linear chain of rule invocations. Each rule's st.rength can 
be viewed as a prediction of the payoff that  will ultimately be obtained fl'om 
the environment. Assuming equal specificities, the strength of each rule expe- 

riences a net change dependent on the difference between that strength and the 
strength of the succeeding rule. Thus, like TD(0), the bucket brigade updates 
each strength (prediction) in a sequence of strengths (predictions) according 
to the immediately following temporal difference in strength (prediction). 
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There are also mlmerous differences between the bucket brigade and the 

TD methods presented here. The most important  of these is that  the bucket 

brigade assigns credit based on the rules that  cau,sed other rules to become 
active, whereas TD methods assign credit based solely on temporal  succession. 

The bucket brigade thus performs both temporal  artd structural credit assign- 

ment in a single tnechanism. This contrasts with the TD/backpropaga t ion  

combination discussed in the preceding subsection, which uses separate mech- 

anisms for each kind of credit assignment. The relative advantages of these 

two approaches are still to be deternfined. 

6.4 Infinite discounted predictions and the Adaptive Heuristic Critic 

All the prediction problems we have considered so far have had definite 

outcomes Tha t  is, after some point in time tile actual outcome corresponding 

to each prediction became known. Supervised-learning methods require this 

property, because they make no learning changes until the actual outcome is 

discovered, but in some problems it never becomes completely known. For 

example, suppose one wishes to predict the total return from investing in the 

stock of various companies: unless a company goes out of business, total return 

is never flflly determined. 

Actually, there is a t)roblem of definition here: if a company never goes out 

of business and earns income every year, the total return can be infinite. For 

reasons of this sort, infinite-horizon prediction problems usually include some 

form of discounting. For example, if some process generates costs ct+l at each 

transition from t to t + 1, we may want Pt to predict the discounted sum: 

Z t ~ ~ ~[kCt+k+l, 

k 0 

where the di,scount-rate parameter y, 0 _< "7 < 1, determines the extent to 

which we are concerned with short-range or long-range prediction. 

If Pt should equal the above zt, then what are the reeursivc equations defin- 

ing the desired relationship between temporally successive predictions? If the 

predictions are accurate, we can write 

oo 

k 
Pt = E " 7  ct+k+l 

k = 0  

oo 

ct+l + "7 E "T k t't+k+2 

k = 0  

= Ct+l + "TPt+l. 

The mismatch or TD error is the difference between the two sides of this 

equation, (ct+i + q'Pt+l) - Pt,. 9 Sut, ton's (1984) Adaptive Heuristic Critic uses 

9 ' 
W l t t e n  (1977) first p r o p o s e d  u p d a t i n g  p r e d i c t i o n s  of  a d i s c o u n t e d  s u m  b ased  on a dis- 

c r e p a n c y  of  th is  sor t .  
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this error in a learning rule otherwise identical to TD()0's: 

t 

Awt = °~(Ct-l-1 q- "[rt+l - Pt) ~ -'~t-kvtoPk~ 
k = l  

where Pt is the linear form wTxt, SO that V w P t  = mr. Thus, the Adaptive 

Heuristic Critic is probably best understood as using the linear TD method 
for predicting discounted cumulative outcomes. 

7. Conc lus ion  

These analyses and experiments suggest that TD methods may be the learn- 
ing methods of choice for many real-world learning problems. We have argued 

that many of these problems involve temporal sequences of observations and 
predictions. Whereas conventional, supervised-learning approaches disregard 
this temporal structure, TD methods are specially tailored to it. As a re- 
sult, they can be computed more incrementally and require significantly less 

memory and peak computation. One TD method makes exactly the same 
predictions and learning changes as a supervised-learning method, while re- 
taining these computational advantages. Another TD method makes different 
learning changes, but has been proved to converge asymptotically to the same 

correct  predictions. Empirically, TD methods appear to learn faster than 
supervised-learning methods, and one TD method has been proved to make 

optimal predictions for finite training sets that are presented repeatedly. Over- 
all, TD methods appear to be computationally cheaper and to learn faster than 
conventional approaches to prediction learning. 

The progress made in this paper has been due primarily to treating TD 

methods as general methods for learning to predict rather than as special- 
ized methods fi)r learning evaluation flmctions, as they were in all previous 
work. This simplification makes their theory much easier and also greatly 
broadens their range of applicability. It is now clear that TD methods can be 
used for any pattern recognition problem in which data are gathered over thne 

for example, speech recognition, process monitoring, target, identification, 

and market-trend prediction. Potentially, all of these can benefit, from the 
advantages of TD methods vis-a-vis supervised-learning methods. In speech 
recognition, for example, current learning methods cannot be applied until the 
correct classification of the word is known. This means that all critical infor- 

mation about the waveform and how it was processed must be stored for later 
credit assignment. If learning proceeded simultaneously with processing, as in 
TD methods, this storage would be avoided, making it practical to consider 
far more features aim combinations of features. 

As general prediction-learning methods, temporal-difference methods can 
also be applied to t.tte classic probteln of learning an internal model of the world. 
Much of what we mean by having such a model is the ability to predict the 
flm~re based on current actions and observations. This prediction problem is 
a multi-step one, aim the external world is well modeled as a causal dynamical 
system; hence TD methods should be applicable and advantageous. Sutton 
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and Pinette (1985) and Sutton and Barto (1981b) have begun to pursue one 
approach along these lines, using TD methods and recurrent connectionist 
networks. 

Animals must also face the problem of learning internal models of the world. 
The learning process that seems to perform this function in animals is called 
Pavlovian or classical conditioning. For example, if a (:tog is repeatedly pre- 
sented with the sound of a bell and then fed. it will learn to predict the meal 
given just the bell, as evidenced by salivation to the bell alone. Some of the 
detailed features of this learning process suggest that animals may be using a 
TD method (Kehoe, S('hreurs. & (h'aham, 1987: Sutton & Barto, 1987). 
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Appendix: Accessory Theorems 

Theorem A.1 I f l i m n - ~  A n = 0, then I - A  has an inverse, and ( I - A )  -1 = 

E ~ O  Ai • 

PROOF: See Kemeny and Snell (1976, p. 22). 

Theorem A.2 For any matrix A with linearly independent columna, ATA ia 
nonsingular. 

PROOF: If ATA were singular, then there would exist a vector y ¢ 0 such 

that  
0 = ATAy; 

0 = yTATAy = (Ay)TAy, 

which would imply that  Ay = 0, contradicting the assumptions that y ¢ 0 and 

that A has linearly independent cohmms. 

Theorem A.3 
is positive definite. 

P ROOF : 

A square matrix A is positive definite if and only if A + A T 

yT Ay 1 A ~ A T - - ~ A T ) y  = YT(~ A + 2 -b 

= ~ y T ( A + A + A  T - A T ) y  

But tile second term is 0, because yT ( A-- AT)y = (yT ( g -  AT)y) T = yT (AT-- 

A)y = --yT(A - AT)y, and the only mmlber that equals its own inverse is 0. 

Therefore, 

1 T( A + AT)y ' yT Ay = ~Y 

implying that yTAy and yT(A + AT)y always have the same sign, and tMs 

either A and A + A T are both positive definite, or neither is positive definite. 


