
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Learning to prune deep neural networks via
layer‑wise optimal brain surgeon
Dong, Xin; Chen, Shangyu; Pan, Sinno Jialin
2017
Dong, X., Chen, S., & Pan, S. J. (2017). Learning to prune deep neural networks via
layer‑wise optimal brain surgeon. Proceedings of 31st Conference on Neural Information
Processing Systems (NIPS 2017).
https://hdl.handle.net/10356/137659

© 2017 Neural Information Processing Systems. All rights reserved. This paper was
published in Proceedings of 31st Conference on Neural Information Processing Systems
and is made available with permission of Neural Information Processing Systems.
Downloaded on 28 Aug 2022 10:47:42 SGT

Learning to Prune Deep Neural Networks via

Layer-wise Optimal Brain Surgeon

Xin Dong
Nanyang Technological University, Singapore

n1503521a@e.ntu.edu.sg

Shangyu Chen
Nanyang Technological University, Singapore

schen025@e.ntu.edu.sg

Sinno Jialin Pan
Nanyang Technological University, Singapore

sinnopan@ntu.edu.sg

Abstract

How to develop slim and accurate deep neural networks has become crucial for real-
world applications, especially for those employed in embedded systems. Though
previous work along this research line has shown some promising results, most
existing methods either fail to significantly compress a well-trained deep network
or require a heavy retraining process for the pruned deep network to re-boost its
prediction performance. In this paper, we propose a new layer-wise pruning method
for deep neural networks. In our proposed method, parameters of each individual
layer are pruned independently based on second order derivatives of a layer-wise
error function with respect to the corresponding parameters. We prove that the
final prediction performance drop after pruning is bounded by a linear combination
of the reconstructed errors caused at each layer. By controlling layer-wise errors
properly, one only needs to perform a light retraining process on the pruned network
to resume its original prediction performance. We conduct extensive experiments
on benchmark datasets to demonstrate the effectiveness of our pruning method
compared with several state-of-the-art baseline methods. Codes of our work are
released at: https://github.com/csyhhu/L-OBS.

1 Introduction

Intuitively, deep neural networks [1] can approximate predictive functions of arbitrary complexity
well when they are of a huge amount of parameters, i.e., a lot of layers and neurons. In practice, the
size of deep neural networks has been being tremendously increased, from LeNet-5 with less than
1M parameters [2] to VGG-16 with 133M parameters [3]. Such a large number of parameters not
only make deep models memory intensive and computationally expensive, but also urge researchers
to dig into redundancy of deep neural networks. On one hand, in neuroscience, recent studies point
out that there are significant redundant neurons in human brain, and memory may have relation with
vanishment of specific synapses [4]. On the other hand, in machine learning, both theoretical analysis
and empirical experiments have shown the evidence of redundancy in several deep models [5, 6].
Therefore, it is possible to compress deep neural networks without or with little loss in prediction by
pruning parameters with carefully designed criteria.

However, finding an optimal pruning solution is NP-hard because the search space for pruning
is exponential in terms of parameter size. Recent work mainly focuses on developing efficient
algorithms to obtain a near-optimal pruning solution [7, 8, 9, 10, 11]. A common idea behind most
exiting approaches is to select parameters for pruning based on certain criteria, such as increase in
training error, magnitude of the parameter values, etc. As most of the existing pruning criteria are

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

designed heuristically, there is no guarantee that prediction performance of a deep neural network
can be preserved after pruning. Therefore, a time-consuming retraining process is usually needed to
boost the performance of the trimmed neural network.

Instead of consuming efforts on a whole deep network, a layer-wise pruning method, Net-Trim, was
proposed to learn sparse parameters by minimizing reconstructed error for each individual layer [6].
A theoretical analysis is provided that the overall performance drop of the deep network is bounded by
the sum of reconstructed errors for each layer. In this way, the pruned deep network has a theoretical
guarantee on its error. However, as Net-Trim adopts ℓ1-norm to induce sparsity for pruning, it fails to
obtain high compression ratio compared with other methods [9, 11].

In this paper, we propose a new layer-wise pruning method for deep neural networks, aiming to
achieve the following three goals: 1) For each layer, parameters can be highly compressed after
pruning, while the reconstructed error is small. 2) There is a theoretical guarantee on the overall
prediction performance of the pruned deep neural network in terms of reconstructed errors for each
layer. 3) After the deep network is pruned, only a light retraining process is required to resume its
original prediction performance.

To achieve our first goal, we borrow an idea from some classic pruning approaches for shallow neural
networks, such as optimal brain damage (OBD) [12] and optimal brain surgeon (OBS) [13]. These
classic methods approximate a change in the error function via functional Taylor Series, and identify
unimportant weights based on second order derivatives. Though these approaches have proven to
be effective for shallow neural networks, it remains challenging to extend them for deep neural
networks because of the high computational cost on computing second order derivatives, i.e., the
inverse of the Hessian matrix over all the parameters. In this work, as we restrict the computation on
second order derivatives w.r.t. the parameters of each individual layer only, i.e., the Hessian matrix is
only over parameters for a specific layer, the computation becomes tractable. Moreover, we utilize
characteristics of back-propagation for fully-connected layers in well-trained deep networks to further
reduce computational complexity of the inverse operation of the Hessian matrix.

To achieve our second goal, based on the theoretical results in [6], we provide a proof on the bound
of performance drop before and after pruning in terms of the reconstructed errors for each layer.
With such a layer-wise pruning framework using second-order derivatives for trimming parameters
for each layer, we empirically show that after significantly pruning parameters, there is only a little
drop of prediction performance compared with that before pruning. Therefore, only a light retraining
process is needed to resume the performance, which achieves our third goal.

The contributions of this paper are summarized as follows. 1) We propose a new layer-wise pruning
method for deep neural networks, which is able to significantly trim networks and preserve the
prediction performance of networks after pruning with a theoretical guarantee. In addition, with the
proposed method, a time-consuming retraining process for re-boosting the performance of the pruned
network is waived. 2) We conduct extensive experiments to verify the effectiveness of our proposed
method compared with several state-of-the-art approaches.

2 Related Works and Preliminary

Pruning methods have been widely used for model compression in early neural networks [7] and
modern deep neural networks [6, 8, 9, 10, 11]. In the past, with relatively small size of training data,
pruning is crucial to avoid overfitting. Classical methods include OBD and OBS. These methods
aim to prune parameters with the least increase of error approximated by second order derivatives.
However, computation of the Hessian inverse over all the parameters is expensive. In OBD, the
Hessian matrix is restricted to be a diagonal matrix to make it computationally tractable. However,
this approach implicitly assumes parameters have no interactions, which may hurt the pruning
performance. Different from OBD, OBS makes use of the full Hessian matrix for pruning. It obtains
better performance while is much more computationally expensive even using Woodbury matrix
identity [14], which is an iterative method to compute the Hessian inverse. For example, using OBS
on VGG-16 naturally requires to compute inverse of the Hessian matrix with a size of 133M× 133M.

Regarding pruning for modern deep models, Han et al. [9] proposed to delete unimportant parameters
based on magnitude of their absolute values, and retrain the remaining ones to recover the original
prediction performance. This method achieves considerable compression ratio in practice. However,

2

as pointed out by pioneer research work [12, 13], parameters with low magnitude of their absolute
values can be necessary for low error. Therefore, magnitude-based approaches may eliminate
wrong parameters, resulting in a big prediction performance drop right after pruning, and poor
robustness before retraining [15]. Though some variants have tried to find better magnitude-based
criteria [16, 17], the significant drop of prediction performance after pruning still remains. To avoid
pruning wrong parameters, Guo et al. [11] introduced a mask matrix to indicate the state of network
connection for dynamically pruning after each gradient decent step. Jin et al. [18] proposed an
iterative hard thresholding approach to re-activate the pruned parameters after each pruning phase.

Besides Net-trim, which is a layer-wise pruning method discussed in the previous section, there
is some other work proposed to induce sparsity or low-rank approximation on certain layers for
pruning [19, 20]. However, as the ℓ0-norm or the ℓ1-norm sparsity-induced regularization term
increases difficulty in optimization, the pruned deep neural networks using these methods either
obtain much smaller compression ratio [6] compared with direct pruning methods or require retraining
of the whole network to prevent accumulation of errors [10].

Optimal Brain Surgeon As our proposed layer-wise pruning method is an extension of OBS on
deep neural networks, we briefly review the basic of OBS here. Consider a network in terms of
parameters w trained to a local minimum in error. The functional Taylor series of the error w.r.t. w is:

δE =
(

∂E
∂w

)⊤
δw + 1

2δw
⊤Hδw +O

(

‖δw‖3
)

, where δ denotes a perturbation of a corresponding

variable, H ≡ ∂2E/∂w2 ∈ R
m×m is the Hessian matrix, where m is the number of parameters, and

O(‖δΘl‖3) is the third and all higher order terms. For a network trained to a local minimum in error,
the first term vanishes, and the term O(‖δΘl‖3) can be ignored. In OBS, the goal is to set one of the
parameters to zero, denoted by wq (scalar), to minimize δE in each pruning iteration. The resultant
optimization problem is written as follows,

min
q

1

2
δw⊤Hδw, s.t. e⊤q δw +wq = 0, (1)

where eq is the unit selecting vector whose q-th element is 1 and otherwise 0. As shown in [21], the
optimization problem (1) can be solved by the Lagrange multipliers method. Note that a computation
bottleneck of OBS is to calculate and store the non-diagonal Hesssian matrix and its inverse, which
makes it impractical on pruning deep models which are usually of a huge number of parameters.

3 Layer-wise Optimal Brain Surgeon

3.1 Problem Statement

Given a training set of n instances, {(xj , yj)}nj=1, and a well-trained deep neural network of L layers

(excluding the input layer)1. Denote the input and the output of the whole deep neural network by
X=[x1, ...,xn]∈R

d×n and Y∈R
n×1, respectively. For a layer l, we denote the input and output of

the layer by Yl−1=[yl−1
1 , ...,yl−1

n]∈R
ml−1×n and Yl=[yl

1, ...,y
l
n]∈R

ml×n, respectively, where

yl
i can be considered as a representation of xi in layer l, and Y0 = X, YL = Y, and m0 = d. Using

one forward-pass step, we have Yl=σ(Zl), where Zl=Wl
⊤Yl−1 with Wl∈R

ml−1×ml being the
matrix of parameters for layer l, and σ(·) is the activation function. For convenience in presentation
and proof, we define the activation function σ(·) as the rectified linear unit (ReLU) [22]. We further

denote by Θl∈R
ml−1ml×1 the vectorization of Wl. For a well-trained neural network, Yl, Zl and

Θ∗
l are all fixed matrixes and contain most information of the neural network. The goal of pruning is

to set the values of some elements in Θl to be zero.

3.2 Layer-Wise Error

During layer-wise pruning in layer l, the input Yl−1 is fixed as the same as the well-trained network.
Suppose we set the q-th element of Θl, denoted by Θl[q] , to be zero, and get a new parameter vector,

denoted by Θ̂l. With Yl−1, we obtain a new output for layer l, denoted by Ŷl. Consider the root of

1For simplicity in presentation, we suppose the neural network is a feed-forward (fully-connected) network.
In Section 3.4, we will show how to extend our method to filter layers in Convolutional Neural Networks.

3

mean square error between Ŷl and Yl over the whole training data as the layer-wise error:

εl =

√

√

√

√

1

n

n
∑

j=1

(

(ŷl
j − yl

j)
⊤(ŷl

j − yl
j)
)

=
1√
n
‖Ŷl −Yl‖F , (2)

where ‖ · ‖F is the Frobenius Norm. Note that for any single parameter pruning, one can compute its

error εlq, where 1 ≤ q ≤ ml−1ml, and use it as a pruning criterion. This idea has been adopted by
some existing methods [15]. However, in this way, for each parameter at each layer, one has to pass
the whole training data once to compute its error measure, which is very computationally expensive.
A more efficient approach is to make use of the second order derivatives of the error function to help
identify importance of each parameter.

We first define an error function E(·) as

El = E(Ẑl) =
1

n

∥

∥

∥
Ẑl − Zl

∥

∥

∥

2

F
, (3)

where Zl is outcome of the weighted sum operation right before performing the activation function

σ(·) at layer l of the well-trained neural network, and Ẑl is outcome of the weighted sum operation

after pruning at layer l . Note that Zl is considered as the desired output of layer l before activation.
The following lemma shows that the layer-wise error is bounded by the error defined in (3).

Lemma 3.1. With the error function (3) and Yl = σ(Zl), the following holds: εl ≤
√

E(Ẑl).

Therefore, to find parameters whose deletion (set to be zero) minimizes (2) can be translated to find
parameters those deletion minimizes the error function (3). Following [12, 13], the error function can
be approximated by functional Taylor series as follows,

E(Ẑl)− E(Zl) = δEl =

(

∂El

∂Θl

)⊤

δΘl +
1

2
δΘl

⊤HlδΘl +O
(

‖δΘl‖3
)

, (4)

where δ denotes a perturbation of a corresponding variable, Hl ≡ ∂2El/∂Θl
2 is the Hessian matrix

w.r.t. Θl, and O(‖δΘl‖3) is the third and all higher order terms. It can be proven that with the error

function defined in (3), the first (linear) term ∂El

∂Θl

∣

∣

∣Θl=Θ∗

l
and O(‖δΘl‖3) are equal to 0.

Suppose every time one aims to find a parameter Θl[q] to set to be zero such that the change δEl is
minimal. Similar to OBS, we can formulate it as the following optimization problem:

min
q

1

2
δΘl

⊤HlδΘl, s.t. e⊤q δΘl +Θl[q] = 0, (5)

where eq is the unit selecting vector whose q-th element is 1 and otherwise 0. By using the Lagrange
multipliers method as suggested in [21], we obtain the closed-form solutions of the optimal parameter
pruning and the resultant minimal change in the error function as follows,

δΘl = −
Θl[q]

[H−1
l]qq

H−1
l eq, and Lq = δEl =

1

2

(Θl[q])
2

[H−1
l]qq

. (6)

Here Lq is referred to as the sensitivity of parameter Θl[q] . Then we select parameters to prune based
on their sensitivity scores instead of their magnitudes. As mentioned in section 2, magnitude-based
criteria which merely consider the numerator in (6) is a poor estimation of sensitivity of parameters.
Moreover, in (6), as the inverse Hessian matrix over the training data is involved, it is able to capture
data distribution when measuring sensitivities of parameters.

After pruning the parameter, Θl[q] , with the smallest sensitivity, the parameter vector is updated via

Θ̂l=Θl+δΘl. With Lemma 3.1 and (6), we have that the layer-wise error for layer l is bounded by

εlq ≤
√

E(Ẑl) =

√

E(Ẑl)− E(Zl) =
√
δEl =

|Θl[q] |
√

2[H−1
l]qq

. (7)

Note that first equality is obtained because of the fact that E(Zl) = 0. It is worth to mention
that though we merely focus on layer l, the Hessian matrix is still a square matrix with size of

ml−1ml ×ml−1ml. However, we will show how to significantly reduce the computation of H−1
l for

each layer in Section 3.4.

4

3.3 Layer-Wise Error Propagation and Accumulation

So far, we have shown how to prune parameters for each layer, and estimate their introduced errors
independently. However, our aim is to control the consistence of the network’s final output YL before
and after pruning. To do this, in the following, we show how the layer-wise errors propagate to final
output layer, and the accumulated error over multiple layers will not explode.

Theorem 3.2. Given a pruned deep network via layer-wise pruning introduced in Section 3.2, each
layer has its own layer-wise error εl for 1 ≤ l ≤ L, then the accumulated error of ultimate network

output ε̃L = 1√
n
‖ỸL −YL‖F obeys:

ε̃L ≤
L−1
∑

k=1

(

L
∏

l=k+1

‖Θ̂l‖F
√
δEk

)

+
√
δEL, (8)

where Ỹl = σ(Ŵ⊤
l Ỹ

l−1), for 2 ≤ l ≤ L denotes ‘accumulated pruned output’ of layer l, and

Ỹ1=σ(Ŵ⊤
1 X).

Theorem 3.2 shows that: 1) Layer-wise error for a layer l will be scaled by continued multiplication
of parameters’ Frobenius Norm over the following layers when it propagates to final output, i.e.,
the L−l layers after the l-th layer; 2) The final error of ultimate network output is bounded by the
weighted sum of layer-wise errors. The proof of Theorem 3.2 can be found in Appendix.

Consider a general case with (6) and (8): parameter Θl[q] who has the smallest sensitivity in layer l

is pruned by the i-th pruning operation, and this finally adds
∏L

k=l+1 ‖Θ̂k‖F
√
δEl to the ultimate

network output error. It is worth to mention that although it seems that the layer-wise error is scaled

by a quite large product factor, Sl =
∏L

k=l+1 ‖Θ̂k‖F when it propagates to the final layer, this scaling
is still tractable in practice because ultimate network output is also scaled by the same product factor
compared with the output of layer l. For example, we can easily estimate the norm of ultimate network
output via, ‖YL‖F ≈ S1‖Y1‖F . If one pruning operation in the 1st layer causes the layer-wise error√
δE1, then the relative ultimate output error is

ξLr =
‖ỸL −YL‖F

‖YL‖F
≈

√
δE1

‖ 1
n
Y1‖F

.

Thus, we can see that even S1 may be quite large, the relative ultimate output error would still be about√
δE1/‖ 1

n
Y1‖F which is controllable in practice especially when most of modern deep networks

adopt maxout layer [23] as ultimate output. Actually, S0 is called as network gain representing the
ratio of the magnitude of the network output to the magnitude of the network input.

3.4 The Proposed Algorithm

3.4.1 Pruning on Fully-Connected Layers

To selectively prune parameters, our approach needs to compute the inverse Hessian matrix at each
layer to measure the sensitivities of each parameter of the layer, which is still computationally
expensive though tractable. In this section, we present an efficient algorithm that can reduce the size
of the Hessian matrix and thus speed up computation on its inverse.

For each layer l, according to the definition of the error function used in Lemma 3.1, the first

derivative of the error function with respect to Θ̂l is ∂El

∂Θl
= − 1

n

∑n
j=1

∂zl
j

∂Θl
(ẑlj − zlj), where ẑlj and

zlj are the j-th columns of the matrices Ẑl and Zl, respectively, and the Hessian matrix is defined as:

Hl ≡ ∂2El

∂(Θl)
2 =

1
n

∑n
j=1

(

∂zl
j

∂Θl

(

∂zl
j

∂Θl

)⊤
− ∂2zl

j

∂(Θl)
2 (ẑlj−zlj)

⊤

)

. Note that for most cases ẑlj is quite

close to zlj , we simply ignore the term containing ẑlj−zlj . Even in the late-stage of pruning when this
difference is not small, we can still ignore the corresponding term [13]. For layer l that has ml output
units, zlj=[zl1j , . . . , z

l
mlj

], the Hessian matrix can be calculated via

Hl =
1

n

n
∑

j=1

H
j
l =

1

n

n
∑

j=1

ml
∑

i=1

∂zlij
∂Θl

(

∂zlij
∂Θl

)⊤

, (9)

5

H11

H22

H33

W11

W21

W31

W41

y1

y2

y3

y4

z1

z2

z3

H ∈ R
12×12

H11,H22,H33 ∈ R
4×4

Figure 1: Illustration of shape of Hessian. For feed-forward neural networks, unit z1 gets its
activation via forward propagation: z = W⊤y, where W ∈ R

4×3, y = [y1, y2, y3, y4]
⊤ ∈ R

4×1,

and z = [z1, z2, z3]
⊤ ∈ R

3×1. Then the Hessian matrix of z1 w.r.t. all parameters is denoted by

H[z1]. As illustrated in the figure, H[z1]’s elements are zero except for those corresponding to W∗1
(the 1st column of W), which is denoted by H11. H[z2] and H[z3] are similar. More importantly,

H−1 = diag(H−1
11 ,H

−1
22 ,H

−1
33), and H11 = H22 = H33. As a result, one only needs to compute

H−1
11 to obtain H−1 which significantly reduces computational complexity.

where the Hessian matrix for a single instance j at layer l, Hj
l , is a block diagonal square matrix

of the size ml−1×ml. Specifically, the gradient of the first output unit zl1j w.s.t. Θl is
∂zl

1j

∂Θl
=

[

∂zl
1j

∂w1
, . . . ,

∂zl
1j

∂wml

]

, where wi is the i-th column of Wl. As zl1j is the layer output before activation

function, its gradient is simply to calculate, and more importantly all output units’s gradients are

equal to the layer input:
∂zl

ij

∂wk
=yl−1

j if k = i, otherwise
∂zl

ij

∂wk
=0. An illustrated example is shown in

Figure 1, where we ignore the scripts j and l for simplicity in presentation.

It can be shown that the block diagonal square matrix H
j
l ’s diagonal blocks H

j
lii

∈ R
ml−1×ml−1 ,

where 1 ≤ i ≤ ml, are all equal to ψ
j
l =yl−1

j (yl−1
j)

⊤
, and the inverse Hessian matrix H−1

l is also a

block diagonal square matrix with its diagonal blocks being (1
n

∑n
j=1ψ

j
l)

−1. In addition, normally

Ψl = 1
n

∑n
j=1ψ

j
l is degenerate and its pseudo-inverse can be calculated recursively via Woodbury

matrix identity [13]:

(Ψl
j+1)

−1
= (Ψl

j)
−1 −

(Ψl
j)

−1
yl−1
j

(

yl−1
j

)⊤
(Ψl

j)
−1

n+
(

yl−1
j+1

)⊤
(Ψl

j)
−1

yl−1
j+1

,

where Ψl
t=

1
t

∑t
j=1ψ

j
l with (Ψl

0)
−1

=αI, α ∈ [104, 108], and (Ψl)
−1

=(Ψl
n)

−1
. The size of Ψl

is then reduced to ml−1, and the computational complexity of calculating H−1
l is O

(

nm2
l−1

)

.

To make the estimated minimal change of the error function optimal in (6), the layer-wise Hessian
matrices need to be exact. Since the layer-wise Hessian matrices only depend on the corresponding
layer inputs, they are always able to be exact even after several pruning operations. The only parameter
we need to control is the layer-wise error εl. Note that there may be a “pruning inflection point” after
which layer-wise error would drop dramatically. In practice, user can incrementally increase the size
of pruned parameters based on the sensitivity Lq , and make a trade-off between the pruning ratio and
the performance drop to set a proper tolerable error threshold or pruning ratio.

The procedure of our pruning algorithm for a fully-connected layer l is summarized as follows.

Step 1: Get layer input yl−1 from a well-trained deep network.

Step 2: Calculate the Hessian matrix Hlii , for i = 1, ...,ml, and its pseudo-inverse over the dataset,
and get the whole pseudo-inverse of the Hessian matrix.

Step 3: Compute optimal parameter change δΘl and the sensitivity Lq for each parameter at layer l.
Set tolerable error threshold ǫ.

6

Step 4: Pick up parameters Θl[q] ’s with the smallest sensitivity scores.

Step 5: If
√

Lq ≤ ǫ, prune the parameter Θl[q] ’s and get new parameter values via Θ̂l = Θl + δΘl,
then repeat Step 4; otherwise stop pruning.

3.4.2 Pruning on Convolutional Layers

It is straightforward to generalize our method to a convolutional layer and its variants if we vectorize
filters of each channel and consider them as special fully-connected layers that have multiple inputs
(patches) from a single instance. Consider a vectorized filter wi of channel i, 1 ≤ i ≤ ml, it
acts similarly to parameters which are connected to the same output unit in a fully-connected layer.
However, the difference is that for a single input instance j, every filter step of a sliding window across
of it will extract a patch Cjn from the input volume. Similarly, each pixel zlijn in the 2-dimensional
activation map that gives the response to each patch corresponds to one output unit in a fully-connected

layer. Hence, for convolutional layers, (9) is generalized as Hl =
1
n

∑n
j=1

∑ml

i=1

∑

jn

∂zl
ijn

∂[w1,...,wml
] ,

where Hl is a block diagonal square matrix whose diagonal blocks are all the same. Then, we can
slightly revise the computation of the Hessian matrix, and extend the algorithm for fully-connected
layers to convolutional layers.

Note that the accumulated error of ultimate network output can be linearly bounded by layer-wise
error as long as the model is feed-forward. Thus, L-OBS is a general pruning method and friendly
with most of feed-forward neural networks whose layer-wise Hessian can be computed expediently
with slight modifications. However, if models have sizable layers like ResNet-101, L-OBS may not
be economical because of computational cost of Hessian, which will be studied in our future work.

4 Experiments

In this section, we verify the effectiveness of our proposed Layer-wise OBS (L-OBS) using various
architectures of deep neural networks in terms of compression ratio (CR), error rate before retraining,
and the number of iterations required for retraining to resume satisfactory performance. CR is defined
as the ratio of the number of preserved parameters to that of original parameters, lower is better.
We conduct comparison results of L-OBS with the following pruning approaches: 1) Randomly
pruning, 2) OBD [12], 3) LWC [9], 4) DNS [11], and 5) Net-Trim [6]. The deep architectures used for
experiments include: LeNet-300-100 [2] and LeNet-5 [2] on the MNIST dataset, CIFAR-Net2 [24]
on the CIFAR-10 dataset, AlexNet [25] and VGG-16 [3] on the ImageNet ILSVRC-2012 dataset. For
experiments, we first well-train the networks, and apply various pruning approaches on networks to
evaluate their performance. The retraining batch size, crop method and other hyper-parameters are
under the same setting as used in LWC. Note that to make comparisons fair, we do not adopt any
other pruning related methods like Dropout or sparse regularizers on MNIST. In practice, L-OBS can
work well along with these techniques as shown on CIFAR-10 and ImageNet.

4.1 Overall Comparison Results

The overall comparison results are shown in Table 1. In the first set of experiments, we prune each
layer of the well-trained LeNet-300-100 with compression ratios: 6.7%, 20% and 65%, achieving
slightly better overall compression ratio (7%) than LWC (8%). Under comparable compression
ratio, L-OBS has quite less drop of performance (before retraining) and lighter retraining compared
with LWC whose performance is almost ruined by pruning. Classic pruning approach OBD is
also compared though we observe that Hessian matrices of most modern deep models are strongly
non-diagonal in practice. Besides relative heavy cost to obtain the second derivatives via the chain
rule, OBD suffers from drastic drop of performance when it is directly applied to modern deep
models.

To properly prune each layer of LeNet-5, we increase tolerable error threshold ǫ from relative small
initial value to incrementally prune more parameters, monitor model performance, stop pruning and
set ǫ until encounter the “pruning inflection point” mentioned in Section 3.4. In practice, we prune
each layer of LeNet-5 with compression ratio: 54%, 43%, 6% and 25% and retrain pruned model with

2A revised AlexNet for CIFAR-10 containing three convolutional layers and two fully connected layers.

7

Table 1: Overall comparison results. (For iterative L-OBS, err. after pruning regards the last pruning stage.)

Method Networks Original error CR Err. after pruning Re-Error #Re-Iters.

Random LeNet-300-100 1.76% 8% 85.72% 2.25% 3.50 × 105

OBD LeNet-300-100 1.76% 8% 86.72% 1.96% 8.10 × 104

LWC LeNet-300-100 1.76% 8% 81.32% 1.95% 1.40 × 105

DNS LeNet-300-100 1.76% 1.8% - 1.99% 3.40 × 104

L-OBS LeNet-300-100 1.76% 7% 3.10% 1.82% 510

L-OBS (iterative) LeNet-300-100 1.76% 1.5% 2.43% 1.96% 643

OBD LeNet-5 1.27% 8% 86.72% 2.65% 2.90 × 105

LWC LeNet-5 1.27% 8% 89.55% 1.36% 9.60 × 104

DNS LeNet-5 1.27% 0.9% - 1.36% 4.70 × 104

L-OBS LeNet-5 1.27% 7% 3.21% 1.27% 740

L-OBS (iterative) LeNet-5 1.27% 0.9% 2.04% 1.66% 841

LWC CIFAR-Net 18.57% 9% 87.65% 19.36% 1.62 × 105

L-OBS CIFAR-Net 18.57% 9% 21.32% 18.76% 1020

DNS AlexNet (Top-1 / Top-5 err.) 43.30 / 20.08% 5.7% - 43.91 / 20.72% 7.30 × 105

LWC AlexNet (Top-1 / Top-5 err.) 43.30 / 20.08% 11% 76.14 / 57.68% 44.06 / 20.64% 5.04 × 106

L-OBS AlexNet (Top-1 / Top-5 err.) 43.30 / 20.08% 11% 50.04 / 26.87% 43.11 / 20.01% 1.81 × 10
4

DNS VGG-16 (Top-1 / Top-5 err.) 31.66 / 10.12% 7.5% - 63.38% / 38.69% 1.07 × 106

LWC VGG-16 (Top-1 / Top-5 err.) 31.66 / 10.12% 7.5% 73.61 / 52.64% 32.43 / 11.12% 2.35 × 107

L-OBS (iterative) VGG-16 (Top-1 / Top-5 err.) 31.66 / 10.12% 7.5% 37.32 / 14.82% 32.02 / 10.97% 8.63 × 10
4

much fewer iterations compared with other methods (around 1:1000). As DNS retrains the pruned
network after every pruning operation, we are not able to report its error rate of the pruned network
before retraining. However, as can be seen, similar to LWC, the total number of iterations used by
DNS for rebooting the network is very large compared with L-OBS. Results of retraining iterations
of DNS are reported from [11] and the other experiments are implemented based on TensorFlow [26].
In addition, in the scenario of requiring high pruning ratio, L-OBS can be quite flexibly adopted to an
iterative version, which performs pruning and light retraining alternatively to obtain higher pruning
ratio with relative higher cost of pruning. With two iterations of pruning and retraining, L-OBS is
able to achieve as the same pruning ratio as DNS with much lighter total retraining: 643 iterations on
LeNet-300-100 and 841 iterations on LeNet-5.

Regarding comparison experiments on CIFAR-Net, we first well-train it to achieve a testing error of
18.57% with Dropout and Batch-Normalization. We then prune the well-trained network with LWC
and L-OBS, and get the similar results as those on other network architectures. We also observe that
LWC and other retraining-required methods always require much smaller learning rate in retraining.
This is because representation capability of the pruned networks which have much fewer parameters
is damaged during pruning based on a principle that number of parameters is an important factor for
representation capability. However, L-OBS can still adopt original learning rate to retrain the pruned
networks. Under this consideration, L-OBS not only ensures a warm-start for retraining, but also
finds important connections (parameters) and preserve capability of representation for the pruned
network instead of ruining model with pruning.

Regarding AlexNet, L-OBS achieves an overall compression ratio of 11% without loss of accuracy
with 2.9 hours on 48 Intel Xeon(R) CPU E5-1650 to compute Hessians and 3.1 hours on NVIDIA
Tian X GPU to retrain pruned model (i.e. 18.1K iterations). The computation cost of the Hessian
inverse in L-OBS is negligible compared with that on heavy retraining in other methods. This
claim can also be supported by the analysis of time complexity. As mentioned in Section 3.4, the

time complexity of calculating H−1
l is O

(

nm2
l−1

)

. Assume that neural networks are retrained via

SGD, then the approximate time complexity of retraining is O (IdM), where d is the size of the
mini-batch, M and I are the total numbers of parameters and iterations, respectively. By considering

that M ≈ ∑l=L
l=1

(

m2
l−1

)

, and retraining in other methods always requires millions of iterations
(Id ≫ n) as shown in experiments, complexity of calculating the Hessian (inverse) in L-OBS is quite
economic. More interestingly, there is a trade-off between compression ratio and pruning (including
retraining) cost. Compared with other methods, L-OBS is able to provide fast-compression: prune
AlexNet to 16% of its original size without substantively impacting accuracy (pruned top-5 error
20.98%) even without any retraining. We further apply L-OBS to VGG-16 that has 138M parameters.
To achieve more promising compression ratio, we perform pruning and retraining alteratively twice.
As can be seen from the table, L-OBS achieves an overall compression ratio of 7.5% without loss

8

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Compression Rate

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy
(T

o
p
-5

)

(a) Top-5 test accuracy of L-OBS on ResNet-50
under different compression ratios.

100 101 102

Number of data sample

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
em

o
ry

u
se

d
(B

y
te

)

×108

Net-Trim

Our Method

(b) Memory Comparion between L-OBS and Net-
Trim on MNIST.

Table 2: Comparison of Net-Trim and Layer-wise OBS on the second layer of LeNet-300-100.

Method ξ2r Pruned Error CR Method ξ2r Pruned Error CR

Net-Trim 0.13 13.24% 19% Net-Trim 0.62 28.45% 7.4%

L-OBS 0.70 11.34% 3.4% L-OBS 0.37 4.56% 7.4%

L-OBS 0.71 10.83% 3.8% Net-Trim 0.71 47.69% 4.2%

of accuracy taking 10.2 hours in total on 48 Intel Xeon(R) CPU E5-1650 to compute the Hessian
inverses and 86.3K iterations to retrain the pruned model.

We also apply L-OBS on ResNet-50 [27]. From our best knowledge, this is the first work to perform
pruning on ResNet. We perform pruning on all the layers: All layers share a same compression ratio,
and we change this compression ratio in each experiments. The results are shown in Figure 2(a). As
we can see, L-OBS is able to maintain ResNet’s accuracy (above 85%) when the compression ratio is
larger than or equal to 45%.

4.2 Comparison between L-OBS and Net-Trim

As our proposed L-OBS is inspired by Net-Trim, which adopts ℓ1-norm to induce sparsity, we
conduct comparison experiments between these two methods. In Net-Trim, networks are pruned by
formulating layer-wise pruning as a optimization: minWl

‖Wl‖1 s.t. ‖σ(W⊤
l Y

l−1)−Yl‖F ≤ ξl,
where ξl corresponds to ξlr‖Yl‖F in L-OBS. Due to memory limitation of Net-Trim, we only prune
the middle layer of LeNet-300-100 with L-OBS and Net-Trim under the same setting. As shown in
Table 2, under the same pruned error rate, CR of L-OBS outnumbers that of the Net-Trim by about
six times. In addition, Net-Trim encounters explosion of memory and time on large-scale datasets
and large-size parameters. Specifically, space complexity of the positive semidefinite matrix Q in
quadratic constraints used in Net-Trim for optimization is O

(

2nm2
lml−1

)

. For example, Q requires
about 65.7Gb for 1,000 samples on MNIST as illustrated in Figure 2(b). Moreover, Net-Trim is
designed for multi-layer perceptrons and not clear how to deploy it on convolutional layers.

5 Conclusion

We have proposed a novel L-OBS pruning framework to prune parameters based on second order
derivatives information of the layer-wise error function and provided a theoretical guarantee on the
overall error in terms of the reconstructed errors for each layer. Our proposed L-OBS can prune
considerable number of parameters with tiny drop of performance and reduce or even omit retraining.
More importantly, it identifies and preserves the real important part of networks when pruning
compared with previous methods, which may help to dive into nature of neural networks.

Acknowledgements

This work is supported by NTU Singapore Nanyang Assistant Professorship (NAP) grant
M4081532.020, Singapore MOE AcRF Tier-2 grant MOE2016-T2-2-060, and Singapore MOE
AcRF Tier-1 grant 2016-T1-001-159.

9

References

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[2] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[3] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[4] Luisa de Vivo, Michele Bellesi, William Marshall, Eric A Bushong, Mark H Ellisman, Giulio
Tononi, and Chiara Cirelli. Ultrastructural evidence for synaptic scaling across the wake/sleep
cycle. Science, 355(6324):507–510, 2017.

[5] Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting parameters in
deep learning. In Advances in Neural Information Processing Systems, pages 2148–2156, 2013.

[6] Nguyen N. Aghasi, A. and J. Romberg. Net-trim: A layer-wise convex pruning of deep neural
networks. Journal of Machine Learning Research, 2016.

[7] Russell Reed. Pruning algorithms-a survey. IEEE transactions on Neural Networks, 4(5):740–
747, 1993.

[8] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

[9] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in Neural Information Processing Systems, pages
1135–1143, 2015.

[10] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Sparsifying neural network connections for
face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4856–4864, 2016.

[11] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In
Advances In Neural Information Processing Systems, pages 1379–1387, 2016.

[12] Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D Jackel. Optimal
brain damage. In NIPs, volume 2, pages 598–605, 1989.

[13] Babak Hassibi, David G Stork, et al. Second order derivatives for network pruning: Optimal
brain surgeon. Advances in neural information processing systems, pages 164–164, 1993.

[14] Thomas Kailath. Linear systems, volume 156. Prentice-Hall Englewood Cliffs, NJ, 1980.

[15] Nikolas Wolfe, Aditya Sharma, Lukas Drude, and Bhiksha Raj. The incredible shrinking neural
network: New perspectives on learning representations through the lens of pruning. arXiv
preprint arXiv:1701.04465, 2017.

[16] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250,
2016.

[17] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[18] Xiaojie Jin, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Training skinny deep neural
networks with iterative hard thresholding methods. arXiv preprint arXiv:1607.05423, 2016.

[19] Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks with
low-rank regularization. arXiv preprint arXiv:1511.06067, 2015.

[20] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse
convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 806–814, 2015.

10

[21] R Tyrrell Rockafellar. Convex analysis. princeton landmarks in mathematics, 1997.

[22] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Aistats, volume 15, page 275, 2011.

[23] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C Courville, and Yoshua Bengio.
Maxout networks. ICML (3), 28:1319–1327, 2013.

[24] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
2009.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[26] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

11

