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Abstract

Most state-of-the-art object retrieval systems rely on ad-hoc similarities between his-
tograms of quantised local descriptors to find, in their databases, all the images relevant
to an image query. In this work, our goal is to replace those similarities with ones that
are specifically trained to maximize the retrieval accuracy. We propose to use a simple
and very general linear model whose weights directly represent the similarity values. We
devise a variant of rank-SVM to learn those weights automatically from training data
with fast convergence and we propose techniques to limit the number of parameters of
the model and prevent overfitting. Importantly, the flexibility of our model allows us to
seamlessly incorporate well-known image retrieval schemes such as burstiness, negative
evidence and idf weighting, and still exploit inverted files for efficiency in the large-scale
setting. In our experiments, we show that our approach consistently and significantly
outperforms the similarities used in several state-of-the-art systems on 4 standard bench-
mark datasets. In particular, on the Oxford105k dataset, our method outperforms the
closest competitor by 6%.

1 Introduction
Retrieving images of a particular query object in a large database of images is an impor-
tant problem for computer vision with applications in object discovery [10], 3D reconstruc-
tion [4], location recognition [25] and mobile visual search [12]. Most recent state-of-the-art
large-scale image retrieval systems rely on local features, in particular the SIFT descrip-
tor [17] and its variants. Typically, those local descriptors are aggregated into a histogram-
based representation of the image referred to as the Bag-of-Words model (BoW) [28]. BoW
models considerably reduce the computational burden and the memory footprint of the sys-
tems, because local descriptors are quantised into visual words.

For BoW histograms, it is common to use simple similarity functions such as the inner
product or cosine similarity [9, 21, 22, 24]. However, such functions are not optimal for
modelling the visual similarity between BoW features and thus lead to sub-optimal perfor-
mance for retrieval [13, 15, 37]. The potential problems are the following: a) The evidence
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coming from co-missing visual features is under-estimated [13]; b) The similarity between a
query image and a database image should not be symmetric [37]; c) Statistical properties of
visual words are not taken into account [8, 15, 35].

Even though different methods have been proposed to address each of these problems in-
dividually, none provides a satisfying solution to properly account for all of them. Moreover,
most authors propose ad-hoc solutions by means of functions controlled by very few param-
eters. These parameters are then hand-tuned or exhaustively searched on validation/test data
to adapt them to each dataset. In this work, we address the problem in a different way, by
learning the values of the similarity function directly. Because the number of parameters
becomes too large to be set by hand, we learn them using training data.

In the following, we make the following contributions. Firstly, we propose a simple
additive approximation of the methods discussed above that leads to our linear model for
similarity. We analyze how this model can integrate various statistical properties of the data
implicitly. Secondly, in order to learn the parameters of our model on training data, we show
how the learning problem can be seen as learning to rank from pairs of images. For this, we
optimize a loss function inspired by rank-SVM [16] so as to maximize an approximation of
the mean average precision (mAP) of the system. We also show how our model integrates
into an efficient inverse file structure and thus how to use it in large-scale retrieval scenarios.
In our experiments, we show that our method consistently and significantly outperforms
existing similarity measures on four standard image retrieval benchmarks.

This paper is organized as follows. In Sec. 2, we summarize related work. We describe
our model and contributions in Sec. 3. In Sec. 4 we present our experimental validation and
we draw conclusions in Sec. 5.

2 Related work
The Bag-of-Words (BoW) representation has become the de facto standard for large-scale
image and object retrieval [21]. In this model, the space RD of local features is clustered
using k-means into K bins, and an image x, viewed as an unordered set of local descriptors,
is represented by x = [xi]1...K ∈NK by counting how many local descriptors of x fall in bin i.

Most recent works in retrieval have focused on improving this model in various ways.
The first direction is to improve the different components, such as the local feature represen-
tation [23, 27, 31, 36] or the visual codebook [11, 18]. Another is to add more information in
the BoW model, such as spatial layout [26, 34], attributes [30] or higher-order statistics [32].
Several works also propose to combine the BoW model with post-processing techniques to
further filter retrieval results and obtain state-of-the-art performance. For instance: spatial
verification using RANSAC [21], voting based on the Hough transform [14, 26, 34], query
expansion [7, 9] or reciprocal nearest neighbours [24, 33].

Our work focuses on an important component of the retrieval system, namely the similar-
ity function used to rank results. Below, we describe in detail the main similarity functions
proposed in the literature and used in state-of-the-art methods.

Weighted cosine similarity. The weighted cosine similarity scos is the most common mea-
sure for BoW in the literature [9, 21, 22, 24]. It is simply computed as a weighted, normalised
inner product between the query q and database images d:

scos(q,d) =
1

‖q‖‖d‖

K

∑
i=1

wiqidi, (1)
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where the weights wi account for the relative importance of visual words. A common ap-
proach is to use the squared Inverse Document Frequency (idf) of the database D:

√
wi = idf(i) = log |D|− log |{d ∈D : di > 0}|. (2)

Negative evidence. One problem of the cosine similarity is that only the co-occurrence
of visual words is counted as an evidence of similarity while the visual similarity coming
from co-missing ones is ignored [13]. Firstly, Eq. (1) accumulates the similarity only over
co-occurring visual words. Secondly, the normalization term is also unaltered by absent
features. To take this negative evidence into account, Jegou et al. proposed to transform the
original BoW vector by substracting the average vector d̄ of D: x′ = x− β d̄, where β is
a tuning parameter. With the transformed features q′ and d′ as input, Eq. (1) now gives a
positive contribution for co-missing words. β is tuned by brute force search.
Asymmetric dissimilarity. Another problem is that, in many real world retrieval applica-
tions, the (dis-)similarity measurement between a query image and a database image should
not be symmetric [37]. In several retrieval scenarios, the query image is restricted to only
contain the object of interest, with minimal background. On the other side, database images
are unrestricted. Therefore, the presence or absence of features should be weighted differ-
ently whether it is in q or d: −sasym(q,d) =∑

K
i=1(di−qi)

pI(di > qi)+λ ∑
K
i=1(qi−di)

pI(qi >
di), where p is a constant in {1,2}, λ > 0 and I(·) is the indicator function. In other words, a
difference between di and qi is penalized by 1 if di > qi and by λ otherwise. Zhu et al. [37]
proposed, for p = 1, to vary λ as a function of the query and a tuning parameter α , using

λ = α
∑

N
j=1 ∑

K
i=1 d j

i

∑
N
j=1 ∑

K
i=1 min(qi,d

j
i )
−1.

Burstiness weighting. The idf alone is not sufficient to model all the statistical properties
of visual words. A missing aspect is that visual words do not appear independently but
in bursts [15]. The above metrics typically over-estimate the similarity for visual words
with many occurrences. Instead, the penalty for visual word count difference should be
attenuated as the raw value grows. This effect is obtained with a sub-linear transformation
of the features [15]. Using simple algebra, we can show that the inter-image and intra-image
burstiness models are equivalent to using the following similarity:

sburst(q,d) = ∑
i

idf(i)2qi
4
√

di

/√√√√ N

∑
j=1

√
d j

i

 . (3)

In summary, all of these similarity measures can be written in a very general form as:

s(q,d) = τ(q)τ(d)
K

∑
i=1

si(qi,di), (4)

where the specific choice of τ and si help address a specific problem. This approach is
not entirely satisfying, as it is challenging to design τ and si to account for all of these
observations simultaneously and to adapt them to new phenomena to be discovered in the
future. Instead, we propose to learn their values directly from training data, as we show
below.

3 Learning to rank histograms by similarity
Following previous work [13, 15, 37], we start from Eq. (4) to define the similarity between
two BoW histograms. As explained before, authors often motivate their choices of τ and si by
aiming at the correction of potential shortcomings of previous choices. Instead, we propose
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to resort to learning and discover the patterns of a good similarity function for image search,
automatically from training data. We describe below our model in Sec. 3.1, how we learn its
parameters in Sec. 3.2, then devise in Sec. 3.3 simple techniques to improve the robustness
of the system by reducing the number of parameters to learn. Finally, we describe in Sec. 3.4
how to integrate our model into an inverted index to allow the use of large-scale databases.

3.1 A linear approximation of histogram similarity
Looking at Eq. (4), we aim at learning the values si(qi,di) directly. This is notably im-
practical, as each qi and di can be arbitrarily large. However, state-of-the-art methods use
very large visual codebooks (K ≈ 106) leading to sparse of BoW representations, with few
occurrences of any visual word in any given image.1 As a result, using a truncated his-
togram q̂i = min(qi,n) with n ∈ N+ will provide an excellent approximation of the original
histogram while limiting the number of possible values of si(q̂i, d̂i) to (n+1)2.

Additionally, because we learn the values of si(q̂i, d̂i) directly, these terms can be learned
to incorporate a contribution to the normalisation functions. This leads to a modified simi-
larity ŝi and our approximated model becomes additive and writes as:

s(q,d) = τ(q)τ(d)
K

∑
i=1

si(qi,di)≈
K

∑
i=1

ŝi(q̂i, d̂i), (5)

where ŝi( j, l) for j, l ∈ [0,n] are the K · (n+ 1)2 parameters to learn. Notably, this additive
approximation allows to rewrite Eq. (5) as a linear combination of indicator functions:

ŝi(q̂i, d̂i) = wiq̂id̂i
=

n

∑
j=0

n

∑
l=0

wi jlI(q̂i = j)I(d̂i = l), (6)

where wi jl = ŝi( j, l). In other words, if we define Ψ(q,d) as the binary vector indexed by
(i, j, l) such that Ψi jl(q,d) = I(q̂i = j)I(d̂i = l) and define w = [wi jl ]i, j,l , then:

s(q,d)≈ w>Ψ(q,d). (7)

Importantly, Eq. (7) highlights that Ψ acts as a feature encoding for the query-document
pair (q,d) in a linear prediction model. Despite its simplicity, this model is very general and
flexible, and is able to incorporate many of the properties discussed in Sec. 2, and potentially
others, without having to explicitly model them.

To illustrate this, let us first consider the simple case of n = 1. In such case, the truncated
histogram q̂ simply encodes the absence or presence of visual words (an encoding often
referred to as max-pooling or binary bag-of-words), and there are only 4 weights to learn per
visual word: co-absence ŝi(0,0), co-occurrence ŝi(1,1) and either case of mutual exclusion
ŝi(0,1) and ŝi(1,0). If we learn that ŝi(0,0) > ŝi(0,1), then not only have we implicitly
learned that co-absence of the visual word i contribute more to the similarity than mutual
exclusion (as argued by [13]) but also exactly by which amount. If we learn that ŝi(0,1) 6=
ŝi(1,0), then this implies that the ideal similarity is indeed asymmetric [37]. Finally, learning
all the weights together allows to identify which visual words are more important than others,
as indicated by the relative weight of ŝi(1,1) and ŝ j(1,1). Hence, it automatically models
re-weighting schemes such as idf. Finally, when n > 1, phenomena such as burstiness [15]
are also learnt.

1As an example, in the UKbench dataset, more than 81% of the visual words occur at most twice in any image
and more than 97% of them occur at most 5 times.
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Figure 1: Visual word log-frequency in
Oxford105k. Colors illustrate the pro-
posed clustering with 5 groups.
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Figure 2: Weight pattern learnt on the
UKbenchs data. This pattern was learnt for
Nv = 5, Nw = 8 and enforcing symmetry.

3.2 Learning to rank query-document pairs
In this section, we delve into the details of learning the parameters of our similarity function.
Let D = {d1, . . . ,dND} be the database of ND images with their BoW representation di.
Similarly, let Q = {q1, . . . ,qNQ} be a set of NQ query images. For each query q ∈ Q, D is
partitionned in a relevant subset UD(q) and an irrelevant one VD(q). Ideally, the similarity
function s would satisfy the following constraints:

∀q ∈ Q, ∀(u,v) ∈UD(q)×VD(q), s(q,u)> 1+ s(q,v), (8)

which translate the idea that, for each query, any relevant document should yield a larger
similarity than any irrelevant one by a margin of 1. Considering that our model in (7) is
linear, we can simply resort to the following rank-SVM [16] formulation to learn the weights
that minimize the number of violated constraints (i.e., the mAP of the system):

argmin
w

λ

2
‖w‖2 + ∑

q∈Q
∑

u∈UD(q)
∑

v∈VD(q)
max

(
0,1−w> (Ψ(q,u)−Ψ(q,v))

)
, (9)

where λ controls the trade-off between the regularization of w and the data loss term.
We propose to use a variant of this model to prevent relevant documents that are very far

in the retrieval list to incur very large penalties, and normalise query-specific losses as in [6].
This consists in first rewriting Eq. (8) with:

∀q ∈Q, ∀u ∈UD(q), s(q,u)> 1+ max
v∈VD(q)

s(q,v), (10)

which leads to the corresponding optimisation problem:

argmin
w

λ

2
‖w‖2 + ∑

q∈Q

1
|UD(q)| ∑

u∈UD(q)
max

(
0,1−w>Ψ(q,u)+ max

v∈VD(q)
w>Ψ(q,v)

)
. (11)

Both problems are convex, hence can be optimized in the primal using sub-gradient
descent. As we will show in our experiments, our proposed formulation in Eq. (11) leads to
a faster optimization and learns more robust parameters compared to [16].

3.3 Robust parameter estimation
As it is described above, our model suffers from an important issue. On one side, retrieval
systems improve with larger visual vocabularies. On the other side, the number of parameters
to estimate grows with K and, the larger the K, the fewer training data we can obtain to
estimate the (n+ 1)2 weights for each visual word. Learning K(n+ 1)2 weights is simply
unreasonable. Below, we propose two solutions to reduce the number of parameters and thus
avoid overfitting. First, we group visual words together and learn a single set of weights for
each group (Sec. 3.3.1). Second, we reduce the number of weights in each set (Sec. 3.3.2).
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3.3.1 Grouping visual words by frequency
Using large vocabularies causes the number of parameters to grow too large. Hence, we
propose to identify groups of visual words and share weights among visual words within
each group. Similar to previous works that relate visual word frequency with visual word
importance (e.g., using idf), we also decide to associate similar frequencies with similar
weights. In practice, we resort to a simple unsupervised clustering where we sort the K visual
words according to their frequency in the databaseD and create Nv groups {g1, . . . ,gNv} such
that each group gk has the same number K/Nv of visual words.

This grouping can be easily incorporated in our optimization problem of Eq. (11) by
summing the components of Ψ corresponding to the visual words in each group gk, leading
to Ψ

′(q,d) = [Ψ′k jl(q,d)]k, j,l with Ψ
′
k jl(q,d) = ∑i∈gk

Ψi jl(q,d). Notably, this grouping is
performed only during training to learn the value of wk jl for all k, j, and l. At test time,
visual words are kept separate to retain they discriminative power and we use for wi jl the
value wk jl of the group gk containing i. Fig. 1 illustrates the distribution of visual words
frequencies in Oxford105k and its clustering.

3.3.2 Grouping weights with patterns
We also propose to share weights within the same visual word group. First, because small
variations in xi may not have enough impact to justify having different weights. But also
because as n grows, many specific combinations of visual word counts will become too rare
to learn their corresponding weight robustly.

Jointly over all the visual word groups, we propose to cluster the (n+ 1)2 weights into
Nw bins {b1, . . . ,bNw}. We resort to the following iterative procedure. We start with (n+1)2

bins, i.e. each weight index ( j, l) being associated with its own bin bm. At each subsequent
iteration, we merge the 2 adjacent bins2 whose merging yields the best mAP on training
data. We iterate until there are only Nw bins left. We refer to the resulting binnings as weight
patterns, and we illustrate them in Fig. 2. If needed, we can enforce symmetry of the weights.

Importantly, although the visual word groups share the same weight patterns, they still
have their own specific values for the weights themselves. That is, the number of parameters
of the model is Nv×Nw. The weight patterns are incorporated in the training algorithm in
the same way as the visual word grouping, as described in Sec. 3.3.1.

As a short remark, weight patterns can be viewed as a generalization of truncated his-
tograms, as the latter already correspond to weight sharing for histogram values beyond n
(c.f . Sec. 3.1). In a way, we are here searching for an optimal projection of N2 to [1,Nw] such
that the corresponding similarity values maximize the retrieval performance of the system.

3.4 Integrating in an inverted index
An important aspect of object retrieval system is its ability to scale gracefully with the num-
ber of images in the database and the size of the visual codebook. Using Eq. (7) to this end is
not practical. For a given query, it involves building the joint feature encoding Ψ with each
document in the database and then applying a potentially large vector-matrix multiplication.
It turns out that, using simple algebra, we can rewrite s(q,d) = ∑i wiqidi the following way:

s(q,d) = ∑
i

wi0di + ∑
i s.t.
qi>0

(
wiqi0−wi00

)
+ ∑

i s.t.
qi>0
di>0

(
wiqidi −wiqi0−wi0di +wi00

)
= s(0,d)+ s(q,0)+ ∑

i s.t.
qi>0
di>0

wiqidi , (12)

2Two bins bs and bt are adjacent if they contain indices ( j, l) ∈ bs and ( j′, l′) ∈ bt such that | j− j′|+ |l− l′| ≤ 1.
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where s(0,d)=∑i wi0di represents the similarity with the empty query and can be pre-computed
offline for the database images, s(q,0) = ∑ i s.t.

qi>0

(
wiqi0−wi00

)
depends only on the query (thus

can be ignored for ranking the database images) and finally wi jl = wi jl −wi j0−wi0l +wi00 are
the only terms that need to be explicitly computed for a query. Since they sum only over
visual words that are present in both the query and the document, Eq. (12) has exactly the
form needed to benefit from using an inverted file structure [29].

At query time, the pre-computed vector with elements Sd = s(0,d) is loaded, then for
each visual word i occurring in q, the inverted file structure is used to add wiqidi to Sd for
documents that also contain i. Finally, the documents are sorted by Sd = s(q,d).3

4 Experiments
In this section, we present our experiments on four standard benchmark data sets for retrieval.
We first present them below in Sec. 4.1. We study the different parameters of our approach
in Sec. 4.2 and then compare it to the state of the art in Sec. 4.3.

4.1 Dataset, features, evaluation protocol, and implementation details

We evaluated our method on the standard Oxford5k [3, 21], Oxford105k [21], University of
Kentucky (UKbench) [2, 19] and the INRIA Holidays [1, 14] benchmark datasets.
Oxford5k consists of 5,062 images from Flickr with Oxford landmarks. It comes with
ground-truth for 55 query images with 5 query images corresponding to a same landmark.
Oxford105k contains Oxford5k and 100,000 distractor images. The distractor images are
downloaded from Flickr with the same resolution as the original Oxford5k images.
UKbench consists of 10,200 images of 2,550 objects, i.e. there are 4 images per object.
Holidays contains 500 image groups and 1,491 images in total. Each group represents a
distinct scene or object. The first image of each group is the query image and the correct
retrieval results are the other images of the group.

On those datasets, we computed RootSIFT [5] descriptors on improved Hessian Affine
interest points [20]. Using approximate k-means [21], we trained a visual vocabulary of
500,000 visual words for each of Oxford5k, UKbench and Holidays.

As our method requires data to learn its parameters, we generate training and test splits
of the datasets by randomly dividing them into two halves. During the process, we ensure
that relevant queries and documents remain in the same split. Hence, we guarantee that
the system will not see at test time any image of any object used to learn its parameters.
To prevent results from depending on the actual random choice of split, we generate 10
splits for each dataset and report the average performance. We refer to this protocol as
Oxford5ks, Oxford105ks, Holidayss and UKbenchs, resp. To measure performance, we use
mean average precision (mAP), except for UKbench where we use the top-4 score [19].

For our approach, three parameters have to be set. The histogram truncation n is set by
ensuring that less than 10% of the visual words occur more than n times in any image. This
results in n = 2 for Oxford and n = 4 for Holidays and UKbench. For Nv and Nw, we resort
to cross-validation. For all choices of Nv between 1 and 10, we consider all possible numbers
of weight patterns. Those are limited since the truncation leaves only few weights. We then
select the combination of Nv and Nw that maximizes cross-validation accuracy.

3Actually, [s(0,d)]d∈D can also be sorted offline and an adaptive sort used to just update the ranking.
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4.2 Qualitative analysis of our approach

In this section, we study the following four components of our approach: the choice of
optimization problem (Sec. 3.2), the grouping of visual words and patterns (Sec. 3.3) and the
size of the training set. For this analysis, we use the UKbench dataset.

Problem formulation. We start by comparing the influence of problem formulation on the
performance of the system. Fig. 3 shows the top-4 score on the test set as a function of
the training iterations for the standard rank-SVM cost [16], Eq. (9), and our modified cost,
Eq. (11). As one can see, the performance of our proposed formulation converges faster (in
about 200 iterations) and yields better accuracy.

Learnt weights. Fig. 4 shows the weights learnt for each of the Nv = 5 visual word group,
using the pattern shown in Fig. 2, and normalized such that w00 = 0. We make three main ob-
servations. First, in each group, the weights on the diagonal (i.e., w11 to w44) are larger than
w00 while most of the weights corresponding to mutual exclusion are smaller. This shows
that co-missing evidence is indeed learnt. Second, those diagonal weights also show a dimin-
ishing return as the word frequency increases. This is consistent with burstiness modelling.
Third, when comparing the different visual word groups, the corresponding weights tend to
decrease as we move to more frequent visual words. This is a property of idf weighting.

Number of training samples. Fig. 5 shows the top-4 score with weights learnt from varying
numbers of training samples. As we see, the performance of our model increases with more
training data, and does not reach a plateau. This highlights the flexibility of our model and
the interest of creating larger training datasets in the future to further improve performance.

Weight patterns. Finally, Figures 6, 7 and 8 show the weight patterns that we learnt for
Oxford, Holidays and UKBench datasets, respectively. Notably, the weights for Oxford are
not enforced to be symmetric, as we observe w01 =−0.0412 and w10 =−0.0493.
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Oxford5k Oxford105k Holidays UKbench
Cosine Similarity [9] 0.769 0.679 0.848 3.42
Burstiness Weighting [15] 0.777 0.703 0.847 3.46
Negative Evidence [13] 0.771 0.629 0.836 3.35
Adaptive Asymmetric Similarity [37] 0.793 0.719 0.783 3.30
Comparable literature 0.795[27] 0.723[20] 0.793[15] 3.50[24]

Table 1: Comparison of ad-hoc similarities on the original versions of the datasets (mAP or
top-4 score depending on the dataset). In bold we show the best results: they are comparable
with state-of-the-art results available in the literature for comparable approaches.

4.3 Comparison to the state of the art

In this section we compare our approach with ad-hoc similarities used in state-of-the-art
methods and then report performance on the datasets with train-test splits.

Similarities in the state of the art. For this experiment, we have implemented several sim-
ilarities used in state-of-the-art approaches (c.f . Sec. 2): a) Cosine similarity [9]; b) Bursti-
ness weighting [15]; c) Negative evidence [13]; and d) Adaptive asymmetric similarity [37].
Tab. 1 shows their performances on the original datasets using the same system (as described
in Sec. 4.1) for fair comparison. We observe in Tab. 1 that the best similarity to use depends
on the dataset. The asymmetric assumption fits Oxford well, whereas Cosine and Burstiness
are better similarities for Holidays and UKbench. Importantly, these numbers are compa-
rable with similar state-of-the-art systems in the literature (e.g., single-assignment BoW on
Hessian Affine points, without post-processing), so we can confidently use them on our
train-test splits as strong competitors.

Evaluation on train-test splits. We can now compare the same state-of-the-art similarities
to our approach on the train-test splits of the benchmark datasets. Tab. 2 summarizes the
performances over 10 such splits as described in Sec. 4.1. As each split is smaller than the
original database – thus making each search task slightly easier –, the reported performances
are slightly increased. Still, the relative ranking of the ad-hoc similarities [9, 13, 15, 37] is
consistent with Tab. 1 on the original datasets.

From Tab. 2, we make the following observations. Clearly, our method consistently and
significantly improves over all other similarities on all datasets. Over the 40 total runs (10
splits, 4 datasets), our method does not achieve the best performance for only 1 run. This
is true even when the number of training samples is small: with only about 30 queries per
split for Oxford5k and Oxford105k, we still obtain +3% and +6% improvement, resp., over
the best competitor [37]. We also show improvements on Holidays (+1%) and UKbenchs

(+0.16, i.e. +4%, relatively). This shows that our model is very general and very flexible,
and can adapt to the specificities of each dataset, and that our contributions in Sec. 3.3 indeed
allow to learn robust weights and prevent overfitting.

These results are also very promising considering that our approach has the potential to
exploit more training data (c.f . Fig. 5) and that the procedures for identifying visual word
groups and weight patterns have room for improvement. Despite these limitations, we report
state-of-the-art results for 4 different datasets without the burden of hand-crafting similarity
functions to adapt to the specificities of the data. Moreover, our system can seamlessly
benefit from improvements in interest point detection, local descriptors, visual vocabulary
learning and post-processing techniques such as geometrical verification. Such techniques
typically bring improvements in the order of +10% [27].
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Oxford5ks Oxford105ks Holidayss UKbenchs

Cosine Similarity [9] 0.819 (0) 0.725 (0) 0.862 (0) 3.51 (0)
Burstiness Weighting [15] 0.826 (0) 0.748 (0) 0.858 (0) 3.54 (0)
Negative Evidence [13] 0.830 (0) 0.684 (0) 0.848 (0) 3.44 (0)
Adaptive Asymmetric Similarity [37] 0.839 (1) 0.758 (0) 0.795 (0) 3.38 (0)
Learnt Histogram Similarity (this paper) 0.870 (9) 0.816 (10) 0.871 (10) 3.70 (10)

Table 2: Comparison to alternative similarities. We report the average performance over the
10 splits of the data (mAP or top-4 score depending on the dataset) and in parenthesis the
number of runs where the method is the best. In bold is the best result for each dataset.

5 Conclusion
In this paper, we have presented a novel framework to directly learn the visual similarity that
maximizes the accuracy of an object retrieval system. Our model is very flexible and allows
us to seamlessly integrate statistical properties of BoW histograms without modelling them
explicitly. In our experiments, we have shown the superiority of our similarities compared
to those used in state-of-the-art approaches.
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