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Abstract

Learning to rank is a relatively new field of study, aiming to learn a ranking func-
tion from a set of training data with relevancy labels. The ranking algorithms
are often evaluated using information retrieval measures, such as Normalized Dis-
counted Cumulative Gain (NDCG) [1] and Mean Average Precision (MAP) [2].
Until recently, most learning to rank algorithms were not using a loss function
related to the above mentioned evaluation measures. The main difficulty in direct
optimization of these measures is that they depend on the ranks of documents, not
the numerical values output by the ranking function. We propose a probabilistic
framework that addresses this challenge by optimizing the expectation of NDCG
over all the possible permutations of documents. A relaxation strategy is used to
approximate the average of NDCG over the space of permutation, and a bound
optimization approach is proposed to make the computation efficient. Extensive
experiments show that the proposed algorithm outperforms state-of-the-art rank-
ing algorithms on several benchmark data sets.

1 Introduction

Learning to rank has attracted the focus of many machine learning researchers in the last decade
because of its growing application in the areas like information retrieval (IR) and recommender
systems. In the simplest form, the so-called pointwise approaches, ranking can be treated as classifi-
cation or regression by learning the numeric rank value of documents as an absolute quantity [3, 4].
The second group of algorithms, the pairwise approaches, considers the pair of documents as in-
dependent variables and learns a classification (regression) model to correctly order the training
pairs [5, 6, 7, 8, 9, 10, 11]. The main problem with these approaches is that their loss functions are
related to individual documents while most evaluation metrics of information retrieval measure the
ranking quality for individual queries, not documents.
This mismatch has motivated the so called listwise approaches for information ranking, which treats
each ranking list of documents for a query as a training instance [2, 12, 13, 14, 15, 16, 17]. Unlike
the pointwise or pairwise approaches, the listwise approaches aim to optimize the evaluation metrics
such as NDCG and MAP. The main difficulty in optimizing these evaluation metrics is that they are
dependent on the rank position of documents induced by the ranking function, not the numerical
values output by the ranking function. In the past studies, this problem was addressed either by the
convex surrogate of the IR metrics or by heuristic optimization methods such as genetic algorithm.
In this work, we address this challenge by a probabilistic framework that optimizes the expectation
of NDCG over all the possible permutation of documents. To handle the computational difficulty, we
present a relaxation strategy that approximates the expectation of NDCG in the space of permutation,
and a bound optimization algorithm [18] for efficient optimization. Our experiment with several
benchmark data sets shows that our method performs better than several state-of-the-art ranking
techniques.
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The rest of this paper is organized as follows. The related work is presented in Section 2. The
proposed framework and optimization strategy is presented in Section 3. We report our experimental
study in Section 4 and conclude this work in Section 5.

2 Related Work

We focus on reviewing the listwise approaches that are closely related to the theme of this work.
The listwise approaches can be classified into two categories. The first group of approaches directly
optimizes the IR evaluation metrics. Most IR evaluation metrics, however, depend on the sorted
order of documents, and are non-convex in the target ranking function. To avoid the computational
difficulty, these approaches either approximate the metrics with some convex functions or deploy
methods (e.g., genetic algorithm [19]) for non-convex optimization. In [13], the authors introduced
LambdaRank that addresses the difficulty in optimizing IR metrics by defining a virtual gradient
on each document after the sorting. While [13] provided a simple test to determine if there exists
an implicit cost function for the virtual gradient, theoretical justification for the relation between
the implicit cost function and the IR evaluation metric is incomplete. This may partially explain
why LambdaRank performs very poor when compared to MCRank [3], a simple adjustment of
classification for ranking (a pointwise approach). The authors of MCRank paper even claimed that
a boosting model for regression produces better results than LambdaRank. Volkovs and Zemel [17]
proposed optimizing the expectation of IR measures to overcome the sorting problem, similar to
the approach taken in this paper. However they use monte carlo sampling to address the intractable
task of computing the expectation in the permutation space which could be a bad approximation
for the queries with large number of documents. AdaRank [20] uses boosting to optimize NDCG,
similar to our optimization strategy. However they deploy heuristics to embed the IR evaluation
metrics in computing the weights of queries and the importance of weak rankers; i.e. it uses NDCG
value of each query in the current iteration as the weight for that query in constructing the weak
ranker (the documents of each query have similar weight). This is unlike our approach that the
contribution of each single document to the final NDCG score is considered. Moreover, unlike our
method, the convergence of AdaRank is conditional and not guaranteed. Sun et al. [21] reduced
the ranking, as measured by NDCG, to pairwise classification and applied alternating optimization
strategy to address the sorting problem by fixing the rank position in getting the derivative. SVM-
MAP [2] relaxes the MAP metric by incorporating it into the constrains of SVM. Since SVM-MAP
is designed to optimize MAP, it only considers the binary relevancy and cannot be applied to the
data sets that have more than two levels of relevance judgements.
The second group of listwise algorithms defines a listwise loss function as an indirect way to op-
timize the IR evaluation metrics. RankCosine [12] uses cosine similarity between the ranking list
and the ground truth as a query level loss function. ListNet [14] adopts the KL divergence for loss
function by defining a probabilistic distribution in the space of permutation for learning to rank.
FRank [9] uses a new loss function called fidelity loss on the probability framework introduced in
ListNet. ListMLE [15] employs the likelihood loss as the surrogate for the IR evaluation metrics.
The main problem with this group of approaches is that the connection between the listwise loss
function and the targeted IR evaluation metric is unclear, and therefore optimizing the listwise loss
function may not necessarily result in the optimization of the IR metrics.

3 Optimizing NDCG Measure

3.1 Notation

Assume that we have a collection of n queries for training, denoted by Q = {q1, . . . , qn}. For each
query qk, we have a collection of mk documents Dk = {dk

i , i = 1, . . . , mk}, whose relevance to
qk is given by a vector rk = (rk

1 , . . . , rk
mk

) ∈ Zmk . We denote by F (d, q) the ranking function that
takes a document-query pair (d, q) and outputs a real number score, and by jk

i the rank of document
dk

i within the collection Dk for query qk. The NDCG value for ranking function F (d, q) is then
computed as following:

L(Q,F ) =
1
n

n∑

k=1

1
Zk

mk∑

i=1

2rk
i − 1

log(1 + jk
i )

(1)

where Zk is the normalization factor [1]. NDCG is usually truncated at a particular rank level (e.g.
the first 10 retrieved documents) to emphasize the importance of the first retrieved documents.
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3.2 A Probabilistic Framework

One of the main challenges faced by optimizing the NDCG metric defined in Equation (1) is that the
dependence of document ranks (i.e., jk

i ) on the ranking function F (d, q) is not explicitly expressed,
which makes it computationally challenging. To address this problem, we consider the expectation
of L(Q,F ) over all the possible rankings induced by the ranking function F (d, q), i.e.,

L̄(Q,F ) =
1
n

n∑

k=1

1
Zk

mk∑

i=1

〈
2rk

i − 1
log(1 + jk

i )

〉

F

=
1
n

n∑

k=1

1
Zk

mk∑

i=1

∑

πk∈Smk

Pr(πk|F, qk)
2rk

i − 1
log(1 + πk(i))

(2)

where Smk
stands for the group of permutations of mk documents, and πk is an instance of permuta-

tion (or ranking). Notation πk(i) stands for the rank position of the ith document by πk. To this end,
we first utilize the result in the following lemma to approximate the expectation of 1/ log(1+πk(i))
by the expectation of πk(i).
Lemma 1. For any distribution Pr(π|F, q), the inequality L̄(Q,F ) ≥ H̄(Q,F ) holds where

H̄(Q,F ) =
1
n

n∑

k=1

1
Zk

mk∑

i=1

2rk
i − 1

log(1 + 〈πk(i)〉F )
(3)

Proof. The proof follows from the fact that (a) 1/x is a convex function when x > 0 and therefore
〈1/ log(1+x)〉 ≥ 1/〈log(1+x)〉; (b) log(1+x) is a concave function, and therefore 〈log(1+x)〉 ≤
log(1 + 〈x〉). Combining these two factors together, we have the result stated in the lemma.

Given H̄(Q,F ) provides a lower bound for L̄(Q,F ), in order to maximize L̄(Q,F ), we could
alternatively maximize H̄(Q,F ), which is substantially simpler than L̄(Q,F ). In the next step of
simplification, we rewrite πk(i) as

πk(i) = 1 +
mk∑

j=1

I(πk(i) > πk(j)) (4)

where I(x) outputs 1 when x is true and zero otherwise. Hence, 〈πk(i)〉 is written as

〈πk(i)〉 = 1 +
mk∑

j=1

〈I(πk(i) > πk(j))〉 = 1 +
mk∑

j=1

Pr(πk(i) > πk(j)) (5)

As a result, to optimize H̄(Q,F ), we only need to define Pr(πk(i) > πk(j)), i.e., the marginal
distribution for document dk

j to be ranked before document dk
i . In the next section, we will dis-

cuss how to define a probability model for Pr(πk|F, qk), and derive pairwise ranking probability
Pr(πk(i) > πk(j)) from distribution Pr(πk|F, qk).

3.3 Objective Function

We model Pr(πk|F, qk) as follows

Pr(πk|F, qk) =
1

Z(F, qk)
exp




mk∑

i=1

∑

j:πk(j)>πk(i)

(F (dk
i , qk)− F (dk

j , qk))




=
1

Z(F, qk)
exp

(
mk∑

i=1

(mk − 2πk(i) + 1)F (dk
i , qk)

)
(6)

where Z(F, qk) is the partition function that ensures the sum of probability is one. Equation (6)
models each pair (dk

i , dk
j ) of the ranking list πk by the factor exp(F (dk

i , qk) − F (dk
j , qk)) if dk

i

is ranked before dk
j (i.e., πk(dk

i ) < πk(dk
j )) and vice versa. This modeling choice is consistent

with the idea of ranking the documents with largest scores first; intuitively, the more documents in
a permutation are in the decreasing order of score, the bigger the probability of the permutation is.
Using Equation (6) for Pr(πk|F, qk), we have H̄(Q,F ) expressed in terms of ranking function F .
By maximizing H̄(Q,F ) over F , we could find the optimal solution for ranking function F .
As indicated by Equation (5), we only need to compute the marginal distribution Pr(πk(i) > πk(j)).
To approximate Pr(πk(i) > πk(j)), we divide the group of permutation Smk

into two sets:

3



Gk
a(i, j) = {πk|πk(i) > πk(j)} and Gk

b (i, j) = {πk|πk(i) < πk(j)}. Notice that there is a
one-to-one mapping between these two sets; namely for any ranking πk ∈ Gk

a(i, j), we could create
a corresponding ranking πk ∈ Gk

b (i, j) by switching the rankings of document dk
i and dk

j and vice
versa. The following lemma allows us to bound the marginal distribution Pr(πk(i) > πk(j)).
Lemma 2. If F (dk

i , qk) > F (dk
j , qk), we have

Pr(πk(i) > πk(j)) ≤ 1
1 + exp

[
2(F (dk

i , qk)− F (dk
j , qk))

] (7)

Proof.
1 =

∑

πk∈Gk
a(i,j)

Pr(πk|F, qk) +
∑

πk∈Gk
b (i,j)

Pr(πk|F, qk)

=
∑

πk∈Gk
a(i,j)

Pr(πk|F, qk)
(
1 + exp

[
2(πk(i)− πk(j))(F (dk

i , qk)− F (dk
j , qk))

] )

≥
∑

πk∈Gk
a(i,j)

(
Pr(πk|F, qk)

(
1 + exp

[
2(F (dk

i , qk)− F (dk
j , qk))

]) )

=
(
1 + exp

[
2(F (dk

i , qk)− F (dk
j , qk))

])
Pr

(
πk(i) > πk(j)

)

We used the definition of Pr(πk|F, qk) in Equation (6) to find Gk
b (i, j) as the dual of Gk

a(i, j) in the
first step of the proof. The inequality in the proof is because πk(i)− πk(j) ≥ 1 and the last step is
because Pr(πk|F, qk) is the only term dependent on π.

This lemma indicates that we could approximate Pr(πk(i) > πk(j)) by a simple logistic model. The
idea of using logistic model for Pr(πk(i) > πk(j)) is not new in learning to rank [7, 9]; however
it has been taken for granted and no justification has been provided in using it for learning to rank.
Using the logistic model approximation introduced in Lemma 2, we now have 〈πk(i)〉 written as

〈πk(i)〉 ≈ 1 +
mk∑

j=1

1
1 + exp

[
2(F (dk

i , qk)− F (dk
j , qk))

] (8)

To simplify our notation, we define F k
i = 2F (dk

i , qk), and rewrite the above expression as

〈πk(i)〉 = 1 +
mk∑

j=1

Pr(πk(i) > πk(j)) ≈ 1 +
mk∑

j=1

1
1 + exp(F k

i − F k
j )

Using the above approximation for 〈πk(i)〉, we have H̄ in Equation (3) written as

H̄(Q,F ) ≈ 1
n

n∑

k=1

1
Zk

mk∑

i=1

2rk
i − 1

log(2 + Ak
i )

(9)

where

Ak
i =

mk∑

j=1

I(j 6= i)
1 + exp(F k

i − F k
j )

(10)

We define the following proposition to further simplify the objective function:
Proposition 1.

1
log(2 + Ak

i )
≥ 1

log(2)
− Ak

i

2 [log(2)]2

The proof is due to the Taylor expansion of convex function 1/log(2 + x), x > −1 around x = 0
noting that Ak

i > 0 (the proof of convexity of 1/log(1 + x) is given in Lemma 1). By plugging the
result of this proposition to the objective function in Equation (9), the new objective is to minimize
the following quantity:

M̄(Q,F ) ≈ 1
n

n∑

k=1

1
Zk

mk∑

i=1

(2rk
i − 1)Ak

i (11)

The objective function in Equation (11) is explicitly related to F via term Ak
i . In the next section, we

aim to derive an algorithm that learns an effective ranking function by efficiently minimizing M̄. It is
also important to note that although M̄ is no longer a rigorous lower bound for the original objective
function L̄, our empirical study shows that this approximation is very effective in identifying the
appropriate ranking function from the training data.
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3.4 Algorithm

To minimize M̄(Q,F ) in Equation (11), we employ the bound optimization strategy [18] that it-
eratively updates the solution for F . Let F k

i denote the value obtained so far for document dk
i . To

improve NDCG, following the idea of Adaboost, we restrict the new ranking value for document dk
i ,

denoted by F̃ k
i , is updated as to the following form:

F̃ k
i = F k

i + αfk
i (12)

where α > 0 is the combination weight and fk
i = f(dk

i , qk) ∈ {0, 1} is a binary value. Note that in
the above, we assume the ranking function F (d, q) is updated iteratively with an addition of binary
classification function f(d, q), which leads to efficient computation as well as effective exploitation
of the existing algorithms for data classification. . To construct a lower bound for M̄(Q,F ), we
first handle the expression [1 + exp(F k

i − F k
j )]−1, summarized by the following proposition.

Proposition 2.
1

1 + exp(F̃ k
i − F̃ k

j )
≤ 1

1 + exp(F k
i − F k

j )
+ γk

i,j

[
exp(α(fk

j − fk
i ))− 1

]
(13)

where

γk
i,j =

exp(F k
i − F k

j )
(
1 + exp(F k

i − F k
j )

)2 (14)

The proof of this proposition can be found in Appendix A. This proposition separates the term
related to F k

i from that related to αfk
i in Equation (11), and shows how the new weak ranker (i.e.,

the binary classification function f(d, q)) will affect the current ranking function F (d, q). Using
the above proposition, we can derive the upper bound for M (Theorem 1) as well as a closed form
solution for α given the solution for F (Theorem 2).
Theorem 1. Given the solution for binary classifier fd

i , the optimal α that minimizes the objective
function in Equation (11) is

α =
1
2

log




∑n
k=1

∑mk

i,j=1
2rk

i −1
Zk

θk
i,jI(fk

j < fk
i )

∑n
k=1

∑mk

i,j=1
2rk

i −1
Zk

θk
i,jI(fk

j > fk
i )


 (15)

where θk
i,j = γk

i,jI(j 6= i).
Theorem 2.

M̄(Q, F̃ ) ≤ M̄(Q,F ) + γ(α) +
exp(3α)− 1

3

n∑

k=1

mk∑

i=1

fk
i




mk∑

j=1

2rk
i − 2rk

j

Zk
θk

i,j




where γ(α) is only a function of α with γ(0) = 0.

The proofs of these theorems are provided in Appendix B and Appendix C respectively. Note that the
bound provided by Theorem 2 is tight because by setting α = 0, the inequality reduces to equality
resulting M̄(Q, F̃ ) = M̄(Q,F ). The importance of this theorem is that the optimal solution for fk

i
can be found without knowing the solution for α.
Algorithm 1 1 summarizes the procedure in minimizing the objective function in Equation (11).
First, it computes θk

ij for every pair of documents of query k. Then, it computes wk
i , a weight for

each document which can be positive or negative. A positive weight wk
i indicates that the ranking

position of dk
i induced by the current ranking function F is less than its true rank position, while a

negative weight wk
i shows that ranking position of dk

i induced by the current F is greater than its
true rank position. Therefore, the sign of weight wk

i provides a clear guidance for how to construct
the next weak ranker, the binary classifier in our case; that is, the documents with a positive wk

i

should be labeled as +1 by the binary classifier and those with negative wk
i should be labeled as−1.

The magnitude of wk
i shows how much the corresponding document is misplaced in the ranking.

In other words, it shows the importance of correcting the ranking position of document dk
i in terms

of improving the value of NDCG. This leads to maximizing η given in Equation (17) which can be
considered as some sort of classification accuracy. We use sampling strategy in order to maximize η
because most binary classifiers do not support the weighted training set; that is, we first sample the
documents according to |wk

i | and then construct a binary classifier with the sampled documents. It
can be shown that the proposed algorithm reduces the objective function M exponentially (the proof
is removed due to the lack of space).

1Notice that we use F (dk
i ) instead of F (dk

i , qk) to simplify the notation in the algorithm.

5



Algorithm 1 NDCG Boost: A Boosting Algorithm for Maximizing NDCG
1: Initialize F (dk

i ) = 0 for all documents
2: repeat
3: Compute θk

i,j = γk
i,jI(j 6= i) for all document pairs of each query. γk

i,j is given in Eq. (14).
3: Compute the weight for each document as

wk
i =

mk∑

j=1

2rk
i − 2rk

j

Zk
θk

i,j (16)

3: Assign each document the following class label yk
i = sign(wk

i ).
4: Train a classifier f(x) : Rd → {0, 1} that maximizes the following quantity

η =
n∑

k=1

mk∑

i=1

|wk
i |f(dk

i )yk
i (17)

5: Predict fi for all documents in {Dk, i = 1, . . . , n}
6: Compute the combination weight α as provided in Equation (15).
7: Update the ranking function as F k

i ← F k
i + αfk

i .
8: until reach the maximum number of iterations

4 Experiments

To study the performance of NDCG Boost we use the latest version (version 3.0) of LETOR package
provided by Microsoft Research Asia [22]. LETOR Package includes several benchmark data data,
baselines and evaluation tools for research on learning to rank.

4.1 Letor Data Sets

There are seven data sets provided in the LETOR package: OHSUMED, Top Distillation 2003
(TD2003), Top Distillation 2004 (TD2004), Homepage Finding 2003 (HP2003), Homepage Finding
2003 (HP2003), Named Page Finding 2003 (NP2003) and Named Page Finding 2004 (NP2004) 2.
There are 106 queries in the OSHUMED data sets with a number of documents for each query.
The relevancy of each document in OHSUMED data set is scored 0 (irrelevant), 1 (possibly) or
2 (definitely). The total number of query-document relevancy judgments provided in OHSUMED
data set is 16140 and there are 45 features for each query-document pair. For TD2003, TD2004,
HP2003, HP2004 and NP2003, there are 50, 75, 75, 75 and 150 queries, respectively, with about
1000 retrieved documents for each query. This amounts to a total number of 49171, 74170, 74409,
73834 and 147606 query-document pairs for TD2003, TD2004, HP2003, HP2004 and NP2003
respectively. For these data sets, there are 63 features extracted for each query-document pair and a
binary relevancy judgment for each pair is provided.
For every data sets in LETOR, five partitions are provided to conduct the five-fold cross validation,
each includes training, test and validation sets. The results of a number of state-of-the-art learning
to rank algorithms are also provided in the LETOR package. Since these baselines include some
of the most well-known learning to rank algorithms from each category (pointwise, pairwise and
listwise), we use them to study the performance of NDCG Boost. Here is the list of these baselines
(the details can be found in the LETOR web page):
Regression: This is a simple linear regression which is a basic pointwise approach and can be

considered as a reference point.
RankSVM: RankSVM is a pairwise approach using Support Vector Machine [5].
FRank: FRank is a pairwise approach. It uses similar probability model to RankNet [7] for the

relative rank position of two documents, with a novel loss function called Fidelity loss
function [9]. TSai et al [9] showed that FRank performs much better than RankNet.

ListNet: ListNet is a listwise learning to rank algorithm [14]. It uses cross-entropy loss as its
listwise loss function.

AdaRank NDCG: This is a listwise boosting algorithm that incorporates NDCG in computing the
samples and combination weights [20].

2The experiment result for the last data set is not reported due to the lack of space.
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Figure 1: The experimental results in terms of NDCG for Letor 3.0 data sets

SVM MAP: SVM MAP is a support vector machine with MAP measure used in the constraints. It
is a listwise approach [2].

While the validation set is used in finding the best set of parameters in the baselines in LETOR,
it is not being used for NDCG Boost in our experiments. For NDCG Boost, we set the maximum
number of iteration to 100 and use decision stump as the weak ranker.
Figure 1 provides the the average results of five folds for different learning to rank algorithms in
terms of NDCG @ each of the first 10 truncation level on the LETOR data sets 3. Notice that the
performance of algorithms in comparison varies from one data set to another; however NDCG Boost
performs almost always the best. We would like to point out a few statistics; On OHSUMED
data set, NDCG Boost performs 0.50 at NDCG@3, a 4% increase in performance, compared to
FRANK, the second best algorithm. On TD2003 data set, this value for NDCG Boost is 0.375
that shows a 10% increase, compared with RankSVM (0.34), the second best method. On HP2004
data set, NDCG Boost performs 0.80 at NDCG@3, compared to 0.75 of SVM MAP, the second
best method, which indicates a 6% increase. Moreover, among all the methods in comparison,
NDCG Boost appears to be the most stable method across all the data sets. For example, FRank,
which performs well in OHSUMED and TD2004 data sets, yields a poor performance on TD2003,
HP2003 and HP 2004. Similarly, AdaRank NDCG achieves a decent performance on OHSUMED
data set, but fails to deliver accurate ranking results on TD2003, HP2003 and NP2003. In fact, both
AdaRank NDCG and FRank perform even worse than the simple Regression approach on TD2003,
which further indicates their instability. As another example, ListNet and RankSVM, which perform
well on TD2003 are not competitive to NDCG boost on OHSUMED and TD2004 data sets.

5 Conclusion

Listwise approach is a relatively new approach to learning to rank. It aims to use a query-level
loss function to optimize a given IR measure. The difficulty in optimizing IR measure lies in the
inherited sort function in the measure. We address this challenge by a probabilistic framework that
optimizes the expectation of NDCG over all the possible permutations of documents. We present a
relaxation strategy to effectively approximate the expectation of NDCG, and a bound optimization
strategy for efficient optimization. Our experiments on benchmark data sets shows that our method
is superior to the state-of-the-art learning to rank algorithms in terms of performance and stability.

3NDCG is commonly measured at the first few retrieved documents to emphasize their importance.
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A Proof of Proposition 2
1

1 + exp(F̃ k
i − F̃ k

j )
=

1
1 + exp(F k

i − F k
j + α(fk

i − fk
j ))

=
1

1 + exp(F k
i − F k

j )

( 1
1 + exp(F k

i − F k
j )

+
exp(F k

i − F k
j )

1 + exp(F k
i − F k

j )
exp(α(fk

i − fk
j )

)−1

≤ 1
1 + exp(F k

i − F k
j )

(
1− exp(F k

i − F k
j )

1 + exp(F k
i − F k

j )
+

exp(F k
i − F k

j )
1 + exp(F k

i − F k
j )

exp(α(fk
j − fk

i )
)

=
1

1 + exp(F k
i − F k

j )
+ γk

i,j

[
exp(α(fk

j − fk
i )− 1

]

The first step is a simple manipulations of the terms and the second step is due to the convexity of
inverse function on R+.

B Proof of Theorem 1

In order to obtain the result of the Theorem 1, we first plug Equation (13) in Equation (11). This

leads to minimizing
∑n

k=1

∑mk

i,j=1
2rk

i −1
Zk

θk
i,j

[
exp(α(fk

j − fk
i ))

]
, the term related to α . Since fk

i

takes binary values 0 and 1, we have the following:
n∑

k=1

mk∑

i,j=1

2rk
i − 1
Zk

θk
i,j exp(α(fk

j − fk
i )) =

n∑

k=1

mk∑

i,j=1

2rk
i − 1
Zk

θk
i,j

(
exp(α)I(fk

j > fk
i ) + exp(−α)I(fk

j < fk
i )

)

Getting the partial derivative of this term respect to α and having it equal to zero results the theorem.

C Proof of Theorem 2

First, we provide the following proposition to handle exp(α(fk
j − fk

i )).
Proposition 3. If x, y ∈ [0, 1], we have

exp(α(x− y)) ≤ exp(3α)− 1
3

(x− y) +
exp(3α) + exp(−3α) + 1

3
(18)

Proof. Due to the convexity of exp function, we have:

exp(α(x− y)) = exp(3α
x− y + 1

3
+ 0× 1− x + y

3
+

1
3
×−3α)

≤ x− y + 1
3

exp(3α) +
1− x + y

3
+

1
3

exp(−3α)

Using the result in the above proposition, we can bound the last term in Equation (13) as follows:

θk
i,j

[
exp(α(fk

j − fk
i )− 1

] ≤ θk
i,j

(exp(3α)− 1
3

(fk
j − fk

i ) +
exp(3α) + exp(−3α)− 2

3

)
(19)

Using the result in Equation (19) and (13), we have M̄(Q, F̃ ) in Equation (11) bounded as

M̄(Q, F̃ ) ≤ M̄(Q,F ) + γ(α) +
exp(3α)− 1

3

n∑

k=1

mk∑

i=1

2rk
i − 1
Zk

mk∑

j=1

θk
i,j(f

k
i − fk

j )

= M̄(Q,F ) + γ(α) +
exp(3α)− 1

3

n∑

k=1

mk∑

i=1

fk
i




mk∑

j=1

2rk
i − 2rk

j

Zk
θk

i,j




4The first author has been supported as a part-time intern in Yahoo!
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