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ABSTRACT 
One central problem of information retrieval (IR) is to determine 
which documents are relevant and which are not to the user 
information need. This problem is practically handled by a 
ranking function which defines an ordering among documents 
according to their degree of relevance to the user query. This 
paper discusses work on using machine learning to automatically 
generate an effective ranking function for IR. This task is referred 
to as “learning to rank for IR” in the field. In this paper, a learning 
method, RankGP, is presented to address this task. RankGP 
employs genetic programming to learn a ranking function by 
combining various types of evidences in IR, including content 
features, structure features, and query-independent features. The 
proposed method is evaluated using the LETOR benchmark 
datasets and found to be competitive with Ranking SVM and 
RankBoost. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Retrieval Models. 

General Terms 
Algorithms, Experimentation, Performance. 

Keywords 
Genetic programming, learning to rank for IR, ranking function 

1. INTRODUCTION 
Information retrieval (IR) deals with the representation, storage, 
organization of, and access to information items [1]. One central 
problem of IR is the issue of determining which documents are 
relevant and which are not to the user information need. In 
practice, this problem is usually regarded as a ranking problem, 
whose goal is to define, according to the degree of relevance (or 
similarity) between each document and the user query, an 
ordering among documents so as to rank relevant documents in 

higher positions of the retrieved list than irrelevant ones. 

Over the past years, IR models, such as Boolean models, vector 
models, probabilistic models, and language models, have 
represented a document as a set of representative keywords (i.e., 
index terms) and defined a ranking function (or retrieval function) 
to associate a relevance degree with a document and a query [1]. 
In general, these models are designed in an unsupervised manner 
and thus the parameters of the underlying ranking functions, if 
exist, are usually tuned empirically. 

In recent years, as more and more IR results coming along with 
relevance judgments become available, supervised learning-based 
methods (referred to as “learning to rank” methods in this paper) 
have been devoted to automatically learning an effective ranking 
function from training data. See [2], [3], [5], [9], [10]. 

 
Figure 1. A general paradigm of learning to rank for IR. 

Figure 1 shows a general paradigm that most learning-based 
methods follow to deal with the IR ranking problem. The learning 
process, formalized as follows, consists of two steps: training and 
test. Given a query collection, Q = {q1, …, q|Q|}, and a document 
collection, D = {d1, …, d|D|}, the training corpus is created as a set 
of query-document pairs, each (qi, dj) ∈ Q × D, upon which a 
relevance judgment indicating the relationship between qi and dj 
is assigned by a labeler. The relevance judgment can be: (1) a 
class label, e.g., relevant or non-relevant, (2) a rating, e.g., 
definitely relevant, possibly relevant, or non-relevant, (3) an order, 
e.g., k, meaning that dj is ranked in the k-th position of the 
ordering of all documents when qi is considered, or (4) a score, 
e.g., sim(qi, dj), specifying the degree of relevance between qi and 
dj. For each instance, (qi, dj), a feature extractor produces a vector 
of features that describe the match between qi and dj. Such 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGIR’07, July 23 – 27, 2007, Amsterdam, Netherlands. 
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00. 
 

Feature 
Extractor

Labeler 

Learning
Algorithm

Training
Corpus 

vectors 

Test 
Corpus

(q, d1) 
(q, d2) 

M  
(q, d|D|)

Ranking 
System 

f (q, d1) 
f (q, d2) 

M  
f (q, d|D|) 

instances 
with judgments 

ranking  func.: f 

(q1, d1) 
(q1, d2) 

M  
(q1, d|D|)

M  
(q|Q|, d1)
(q|Q|, d2)

M  
(q|Q|, d|D|)



features used in the field range from classical IR features (e.g., 
term frequency, inverse document frequency, and BM25 [24]) to 
recently-developed features (e.g., HostRank [27], Feature 
Propagation [23], [25], and Topical PageRank [21]). The inputs to 
the learning algorithm comprise training instances, their feature 
vectors, and the corresponding relevance judgments. The output is 
a ranking function, f, where f(qi, dj) is supposed to give the “true” 
relevance judgment (as mentioned previously) for qi and dj. 
During the training process, the learning algorithm attempts to 
learn a ranking function such that a performance measure (e.g., 
classification accuracy, error rate, Mean Average Precision [1], 
etc.) with respect to the output relevance judgments can be 
optimized. In the test phase, the learned ranking function is 
applied to determine the relevance between each document di in D 
and a new query q. Clearly, factors, such as the form of the 
training instances, the form of the desired output, and the 
performance measure, will lead to different design of learning to 
rank for IR algorithms. Please refer to Section 2 for a general 
categorization of methods. 

This paper discusses work on using machine learning to 
automatically produce an effective ranking function for IR. A 
learning method, RankGP, based on genetic programming (GP) is 
developed to learn a ranking function by combining different 
types of evidences in IR, including content features, structure 
features, and query-independent features. RankGP represents a 
potential solution (i.e., a ranking function) as an individual in a 
population of GP. The method evolves a population by applying 
genetic operations, such as crossover and mutation, over a series 
of generations. In each generation, a fitness function, modeled as 
an IR measure, MAP (Mean Average Precision) [1], is exploited 
to evaluate the performance of each individual in the population. 
The evolution is supposed to eventually generate an individual 
with the best fitness as the optimal solution. 

The rest of this paper is organized as follows. It starts with a brief 
review of related works in Section 2. Section 3 then introduces 
the proposed GP-based learning method, RankGP, for the task of 
learning to rank for IR. The experimental results and discussions 
are provided in Section 4. Finally, Sections 5 and 6 conclude this 
paper and give directions for further research. 

2. RELATED WORK 
The task of learning to rank has recently drawn a lot of interest in 
machine learning. As distinguished by [3] and [4], previous works 
fall into three categories: (1) the point-wise approach, (2) the pair-
wise approach, and (3) the list-wise approach. 

In the point-wise approaches, each training instance is associated 
with a rating. The learning is to find a model that can map 
instances into ratings that are close to their true ones. A typical 
example is PRank [5], which trains a Perceptron model to directly 
maintain a totally-ordered set via projections. The pair-wise 
approaches take pairs of objects and their relative preferences as 
training instances and attempt learning to classify each object pair 
into correctly-ranked or incorrectly-ranked. Indeed, most existing 
methods are the pair-wise approaches, including Ranking SVM 
[10], RankBoost [9], and RankNet [2]. Ranking SVM employs 
support vector machine (SVM) to classify object pairs in 
consideration of large margin rank boundaries. RankBoost 
conducts Boosting to find a combined ranking which minimizes 
the number of misordered pairs of objects. RankNet defines Cross 

Entropy as a probabilistic cost function on object pairs and uses a 
neural network model to optimize the cost function. Finally, the 
list-wise approaches use a list of ranked objects as training 
instances and learn to predict the list of objects. For example, 
ListNet [3] introduces a probabilistic-based list-wise loss function 
for learning. Neural network and gradient descent are employed 
to train a list prediction model. 

Researchers have investigated learning to rank algorithms in IR 
applications and obtained promising results. Examples are listed 
as follows: [20] treated IR as a binary classification of relevance 
and explored the applicability of discriminative classifiers (such 
as SVM) to solve the problem. [12] took pairs of documents and 
their relative preferences derived from click-through data (i.e., the 
log of links users clicked on in the presented ranking provided by 
a WWW search engine) as training instances and applied Ranking 
SVM for learning better retrieval functions. [4] modified the 
“Hinge Loss” function in Ranking SVM to take into account two 
essential factors for IR: (1) to have high accuracy on the top-
ranked documents, and (2) to avoid training a biased model 
towards queries with many relevant documents. [26] used SVM 
and Ranking SVM to address definition search where the 
retrieved definitional excerpts of a term are ranked according to 
their likelihood of being good definitions. [28] extended the well-
studied SVM selecting sampling technique in classification for 
learning to rank. [19] proposed a multiple nested ranker approach 
to re-rank the top scoring documents on the result list. RankNet 
was applied to learn a new ranking at each iteration.  

Other studies using genetic programming (GP) are the closely 
related works to this paper. [8] presented a learning framework 
based on GP to help automate the design process of ranking 
functions. See also [7]. The effects of different fitness functions 
used in GP have been also examined in [6]. These works tried to 
combine evidences used in traditional term weighting strategies 
into a ranking function by GP. In contrast, the goal of this paper – 
to combine together different types of evidences such as classical 
IR content features, structure features, and even query-
independent features – makes this work quite different. 

3. THE PROPOSED GP-BASED 
LEARNING METHOD 
Genetic programming (GP), an evolutionary methodology, is an 
automated problem-solving system for producing a computer 
program that is able to perform a user-defined task [15]. In 
essence, GP evolves a population of individuals (i.e., computer 
programs) by applying genetic operations, such as crossover and 
mutation, over a series of generations. The evolution is supposed 
to eventually generate an individual with the best fitness as the 
optimal solution to a given task, where the fitness is modeled by a 
user-defined measure to score the ability of an individual. In 
recent years, GP has been profitably employed in many 
application, including circuit layout design [16], robot control 
[15], and classification [13][17]. Inspired by the success of GP, in 
this paper, a GP-based method, RankGP, is proposed to handle 
the task of learning to rank for IR. 

3.1 Data Normalization 
As shown in Figure 1, a training set, T, is a group of query-
document pairs, each with a relevance judgment and a vector of 



features describing the match between the corresponding query 
and document. For a query collection, Q = {q1, …, q|Q|}, a 
document collection, D = {d1, …, d|D|}, a feature set, F = {f1, …, 
f|F|}, and a relevance judgment set, Y = {relevant, non-relevant}, T 
is formulated as a set of triples by Eq. (1): 

)})),,(),...,,((),,{(( ||1 ijjiFjiji ydqfdqfdqT =  (1)

where (qi, dj) ∈ Q × D, yij ∈ Y, (f1(qi, dj), …, f|F|(qi, dj)) is a |F|-
dimensional feature vector in which fk(qi, dj) stands for the feature 
value for qi and dj in terms of fk. 

Before applying RankGP to the training set, a query-based 
normalization on features is performed in order to normalize all 
feature values into a range of [0, 1]. For a query qi, the normalized 
value of fk(qi, dj) is calculated by Eq. (2), where max{fk(qi, dl)} 
and min{fk(qi, dl)} are the maximum value and the minimum 
value of fk(qi, dl) respectively for all dl ∈ D. 
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3.2 The Learning Method: RankGP 
The proposed GP-based learning method, RankGP, is summarized 
in Figure 2. 

The proposed learning method: RankGP 

Input 1: a set of query-document pairs with their feature 
vectors and relevance judgments (i.e., the training set, T) 

Input 2: GP-related parameters: G (# of generations), PSize 
(size of a population), Rc (crossover rate), Rm (mutation rate) 

Output: a ranking function, f, which is supposed to associate a 
real number with a query and a document as their degree of 
relevance 

Learning Procedure:  

(1) Randomly initialize a set of individuals as the initial 
population, P, and create an empty output set, O 

(2) Score by a fitness function the performance of each 
individual in P on T  

(3) Put the most fit individual (i.e., the individual with the best 
fitness) in P into O and meanwhile create a new population 
by reproducing the most fit individual into it 

(4) Generate individuals to fulfill the new population to the size 
of PSize via crossover and mutation 

(5) Set P to the new population and repeat Steps (2)–(5) until 
the number of iterations reaches G 

(6) Evaluate the performance of each individual in O by a score 
function and output the best one 

Figure 2. Overview of RankGP. 
In RankGP, an individual is a potential ranking function to 
associate a real number with a query and a document as their 
degree of relevance. An individual, I, is defined as a functional 
expression using three components: Sv (variables), Sc (constants), 
and Sop (operators). Sv is a set of symbolic notations, referring to 
features of the training set T. Sc is a set of predefined real numbers, 

ranging from 0 to 1. Sop is a set of arithmetic operators. Eq. (3) 
shows the formulation of an individual, I. 

),,( opcv SSSI =  (3)

where Sv, Sc, and Sop are given by:  

Sv  = {fi | fi ∈ F},  
Sc  = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},  
Sop = {+, –, ×, /}.  

The reasons to adopt only simple arithmetic operators in Sop are: 
(1) it has been shown that these operators are sufficient to achieve 
good results in classification problems1 [13], and (2) using these 
operators helps reduce the computational cost. 

In the implementation, I is represented as a binary tree structure, 
in which an internal node is a binary operator and a leaf node is 
either a variable or a constant. The maximum number of available 
nodes of an individual is determined by the depth of the tree, 
which is defined before the learning process. A tree structure 
example is provided in Figure 3 for the function, f: ((f1 + f2) + 
(0.3×f3)).  

With regard to the type of ranking functions that RankGP targets 
at, one can choose a linear or a non-linear function. In this work, 
only the linear version is used and thus the operator / in Sop is 
discarded. 

The fitness function is a function used to evaluate the fitness of an 
individual (i.e., how good an individual is for the given task). 
Since the problem on which this paper concentrates is the ranking 
problem of IR, the fitness function is defined as a widely-used IR 
measure, MAP2 (Mean Average Precision) [1] (as described in 
Section 4.2). For an individual, MAP is computed over all queries, 
based on the rankings of documents provided by the individual. 

 
Figure 3. A tree structure example. 

The evolution process of RankGP is described as follows. A 
population is composed of a set of individuals. The initial 
population of individuals is produced by the ramped half-and-half 
method [15]. With this method, individuals are generated by a 
random process. However, it ensures that half of individuals must 
have and the others might not have all branches of the maximum 
tree depth. In the evolution process, three genetic operations, 
crossover, mutation, and reproduction, are applied to generate a 
new population. The choice of the operations depends on a 
predefined probability over these operations. For reproduction, a 
number of the best individuals in the current generation get 
through to the next generation unmodified. This is to imitate the 
                                                                 
1 It needs to be verified for learning to rank problems. 
2 Based on the relevance between a query and a document, which 

is given by a ranking function, an ordering among documents 
can be established and hence MAP can be calculated. 



nature selection principle of survival of the most fit (i.e., the elite). 
The remaining individuals are produced by either crossover or 
mutation. During the production, tournament selection [15] is 
used to bias the fitness. This method first randomly selects a few 
individuals from the previous generation and returns one 
individual (for mutation) or two individuals (for crossover) which 
have the best fitness values. For crossover, two new individuals 
are produced by exchanging sub-trees of the selected individuals. 
For mutation, a mutant is created by randomly choosing an 
internal node of the selected individual and then replacing its 
whole sub-tree with a randomly generated tree. 

When the evolution process ends, the output set, O, contains the 
best individuals obtained from all generations as candidate 
solutions. To select a good solution as the final output, this paper 
adopts the following principle: given a validation set, a good 
individual should have not only a good fitness on the training set 
but also a good MAP value on the validation set. Hence, a score 
function, as defined in Eq. (4), is exploited to select the final 
solution. 

),()()( VIMAPIFIscore jjj +=  (4)

In the equation, Ij denotes an individual, F(Ij) is the fitness of Ij, 
and MAP(Ij, V) stands for the MAP of Ij on the validation set, V. 

3.3 Implementation 
RankGP has been implemented within an open source GP toolkit, 
LAGEP 3  [17]. LAGEP implements a recently-developed layer 
architecture of multi-population genetic programming and an 
adaptive mutation rate tuning method, called AMRT. The layer 
architecture of LAGEP works as follows: in one layer, a set of 
functions are learned based on the given training set. A new 
training set is constructed using the learned functions. The 
successive layer then takes the new training set to discover new 
functions. As for AMRT, it dynamically changes the mutation 
rate during the learning process. In each generation, AMRT is 
triggered to increase the mutation rate for the next generation if 
all individuals in the current generation have similar fitness values. 
Otherwise, the mutation rate is set unchanged as the initial one. 
Moreover, AMRT ensures that the mutation rate achieves a 
maximum of 0.5 in the last generation. 

In the current work, RankGP does not adopt either the layer 
architecture or the design of multi-population GP of LAGEP. 
Instead, only the single-population GP is used. The AMRT 
strategy is also employed in RankGP since it has been shown 
effective in classification problems (see [17]). 

4. EXPERIMENT 
This section first describes the test datasets and evaluation 
measures, and then reports the preliminary experimental results. 

4.1 The LETOR Benchmark Datasets 
The LETOR benchmark datasets 4  [18], released by Microsoft 
Research Asia for research on learning to rank for IR, are used to 
conduct experiments in this work. LETOR contains two data sets: 

                                                                 
3 http://www.cis.nctu.edu.tw/~gis91815/lagep/lagep.html. 
4 http://research.microsoft.com/users/tyliu/LETOR/.  

OHSUMED and TREC (TD2003 and TD2004), evaluation tools, 
and two baseline evaluation results. The data sets were created as 
query-document pairs, each consisting of a vector of features and 
the corresponding relevance judgment. There are in total 16,140 
instances in OHSUMED, 49,171 instances in TD2003 and 74,170 
instances in TD2004. The extracted features cover most of the 
standard IR features, such as classical features (e.g., term 
frequency, inverse document frequency, and BM25 [24]), and the 
features proposed in recent SIGIR papers (e.g., HostRank [27], 
Feature Propagation [23][25], and Topical PageRank [21]). While 
25 features were extracted in OHSUMED, 44 features were 
extracted in both TD2003 and TD2004. The relevance judgments 
are on three levels in OHSUMED: definitely, possibly and not 
relevant, and on two levels in TD2003 and TD2004: relevant and 
not relevant. 

In this paper, the proposed RankGP was only tested on the TREC 
datasets (i.e., TD2003 and TD2004). Experiments on OHSUMED 
are left in the future due to the time limitation.  

The TREC datasets contain a total of 1,053,110 web pages, 
together with 11,164,829 hyperlinks. There are 50 queries and 75 
queries in TD2003 and TD2004 respectively. The query sets here 
are exactly the same with those used in topic distillation tasks of 
the Web track in TREC 2003 and TREC 2004. The TREC 
committee made judgments to identify whether a page is 
appropriate to a given query. Three types of features were 
extracted for learning, including content features, hyperlink 
features, and hybrid features. Table 1 lists all the features. For an 
overview of these features and the feature extraction principles, 
please refer to LETOR. 

Table 1. Features extracted in TD2003 and TD2004 

Feature type Feature name Number of features
Content dl [1] 4
 tf [1] 4
 idf [1] 4
 tfidf [1] 4
 BM25 [24] 4
 LMIR [29] 9
Hyperlink HostRank [27] 1
 PageRank [22] 1
 Topical PageRank [21] 1
 HITS [14] 2
 Topical HITS [21] 2
Hybrid Sitemap-based relevance 

propagation [23] 
2

 Hyperlink-based 
relevance propagation 
[25] 

6

  Total: 44

4.2 Evaluation Measures 
The evaluation tool, provided by LETOR [18], is utilized to 
evaluate the effectiveness of the proposed RankGP. The tool 
supports three common IR evaluation measures, all are briefed as 
follows. 

 P@n (Precision at Position n) [1] 

For a given query, its precision of the top n results of the ranking 
list is defined as Eq. (5): 



n
nnP results  in top docsrelevant  of #@ =  (5)

 MAP (Mean Average Precision) [1] 

Given a query, its average precision is computed by Eq. (6) where 
N is the number of retrieved documents and rel(n) is either 1 or 0, 
indicating the n-th document is relevant or not to the query. MAP 
is obtained as the mean of average precisions over a set of queries. 

query for this docsrelevant  of #
)(@

1∑ =
×

=
N

n
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AP  
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 NDCG (Normalized Discount Cumulative Gain)  [11] 

For a query, the NDCG of its ranking list at position m is 
calculated as Eq. (7):  

∑ = +
−

=
m

j
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ZmNDCG
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In the equation, r(j) is the rating of the j-th document in the list, 
and the normalization constant Zm is set so that the perfect list gets 
a NDCG of 1. r(j) is set to 1 when the j-th document is relevant to 
the query and is set to 0 when the document is irrelevant. 

For comparisons, this paper reports NDCG@1, …, NDCG@10, 
P@1, …, P@10, as well as MAP.  

4.3 Experimental Settings and Baselines 
In LETOR [18], both TD2003 and TD2004 are already 
partitioned for users to conduct 5-fold cross validation. For each 
fold, three subsets are used for training, one subset for validation, 
and the other one for testing. The score reported in this paper is 
the average of those in the five folds. 

One non-learning baseline method, BM25 [24], and two learning-
based baseline methods, Ranking SVM [10] (denoted as 
RankSVM in the next section) and RankBoost [9], were also 
evaluated on the datasets as comparisons to the proposed RankGP. 
The evaluation results of the baselines reported in this paper are 
excerpted from LETOR. For the learning-based baselines, the 
query-based normalization on features (see Section 3.1) was 
similarly conducted before applying these state-of-the-art learning 
algorithms. The linear version was used in Ranking SVM and 
each single feature was defined as a weak learner in RankBoost. 
Please refer to LETOR for the settings and the optimization 
methods of parameters for these baselines.  

Table 2 lists the parameter settings of RankGP, all were set 
empirically in the experiments. The type of the ranking function 
that RankGP targets at is assumed linear. The number of 
generations, crossover rate, mutation rate, and reproduction are 
set according to [17]. The tree depth is set in order to at least 
cover the case that leaf nodes contain 44 features and 44 constants. 
Note that a full binary tree with a depth of 8 has 128 leaf nodes, 
which is enough to include 44+44=88 nodes. We acknowledge 
that non-linear functions, different settings of RankGP, and the 
effect of the use of AMRT [17] for mutation rate tuning should be 
also explored but leave them to future work. 

In the experiments, RankGP was performed 10 times. In each run, 
5-fold cross validation was conducted and an average score was 

obtained. The reported score of RankGP is the average of those in 
the 10 runs. This is to reduce the effect of the phenomenon: the 
initialization of the first population by a random process might 
accordingly affect the final results [8]. 

Table 2. Parameter settings of RankGP 

Parameter Value 
Function type Linear function 
# of generations (G) 100 
Population size (PSize) 600 
Tree depth 8 (a total of 255 nodes in a full tree) 
Tournament size 5 
Crossover rate (Rc) 0.95 
Mutation rate (Rm) Start with 0.05 and is dynamically 

changed by AMRT [17] during the 
evolution to a maximum of 0.5 in the 
last generation.  

Reproduction Only the most fit individual in the 
current generation gets through to the 
next generation unmodified 

4.4 Results 
In this section, two evaluation results of the proposed RankGP are 
given: RankGP (Avg.), as mentioned in Section 4.3, is the 
average score of those in 10 runs of 5-fold cross validation, while 
RankGP (Best) is the average score of the best score of each fold 
in 10 runs. 
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Figure 4. NDCG@N on TD2003. 
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Figure 5. P@N on TD2003. 

Figures 4-6 give the results on TD2003. It is obvious that RankGP 
(Avg.) outperforms BM25, RankBoost and RankSVM in terms of 
all measures. In Figure 4, RankGP (Avg.) obtains improvements 



over the best baseline, RankSVM, for NDCG@1-10, especially 
NDCG@1 and NDCG@2. The relative improvements are about 
22.86% and 19.73% respectively. Similar phenomenon can be 
observed in Figure 5 with respect to P@1 and P@2. However, the 
P@N values when N is greater than 3 tend towards those of 
RankSVM and are almost the same after N=8. Figure 6 shows that 
RankGP (Avg.) has an MAP of 0.283778, which is better than 
that of BM25, that of RankSVM, and that of RankBoost in about 
126.11%, 10.67%, and 33.55% respectively. Based on the results, 
a conclusion is made that the proposed RankGP is good at ranking 
relevant documents at the very top positions (such as the first and 
the second places) to get a high MAP. Finally, Table 3 lists the 
paired t-test results on TD2003 in terms of MAP. This table 
indicates that the improvements of RankGP (Avg.) over BM25 
and RankBoost are statistically significant at α=0.05 (p=0.0002 
and p=0.0475 respectively). Although the improvement of 
RankGP (Avg.) over RankSVM is not significant enough 
(p=0.1648), the improvement becomes significant at α=0.10 
(p=0.0768) when RankGP (Best) is considered. 
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Figure 6. MAP on TD2003. 

Table 3. Paired t-test results on TD2003 in terms of MAP 

p-value BM25 RankSVM RankBoost 
RankGP (Avg.) 0.0002 0.1648 0.0475 
RankGP (Best) 0.0003 0.0768 0.0405 

Figures 7-9 show the results on TD2004. It can be seen that 
RankGP (Avg.) is superior to BM25 and RankSVM, but is 
inferior to RankBoost. However, RankGP (Best) outperforms 
BM25, RankBoost and RankSVM in terms of all measures. In 
Figures 7-8, RankGP (Avg.) obtains close values to those of 
RankBoost in terms of NDCG@4 and NDCG@5, as well as 
P@4-10. RankGP (Best) obtains improvements over the best 
baseline, RankBoost, for NDCG@1-5 and P@1-5, but tends 
towards RankBoost for both NDCG and P scores after N=6. As 
for MAP, Figure 9 shows that RankGP (Avg.) outperforms BM25 
and RankSVM in about 28.84% and 3.57% respectively, but is 
beaten by RankBoost in about 5.66%. RankGP (Best) performs 
better than BM25, RankSVM, and RankBoost in about 42.98%, 
14.93%, and 5.03% respectively. Finally, Table 4 gives the paired 
t-test results on TD2004 in terms of MAP. While the 
improvement of RankGP (Avg.) over BM25 is statistically 
significant at α=0.05 (p=0.0086), the improvement over 
RankSVM is not significant (p=0.2274). In consideration of 
RankGP (Best), the improvements over BM25 and RankSVM are 
statistically significant at α=0.05 (p=0.0004 and p=0.0199 

respectively). However, the improvement of RankGP (Best) over 
RankBoost is not significant (p=0.1711). 
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Figure 7. NDCG@N on TD2004. 
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Figure 8. P@N on TD2004. 
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Figure 9. MAP on TD2004. 

Table 4. Paired t-test results on TD2004 in terms of MAP 

p-value BM25 RankSVM RankBoost 
RankGP (Avg.) 0.0086 0.2274 0.0838* 
RankGP (Best) 0.0004 0.0199 0.1711 

*: RankBoost is better than RankGP (Avg.) 
To sum up, RankGP behaves differently on different datasets. 
Similar phenomenon happens to RankBoost as well. However, the 
results show that the average performance of RankGP, i.e., 
RankGP (Avg.), outperforms RankSVM and is competitive to 
RankBoost. Regarding TD2003, RankGP (Avg.), RankSVM, and 
RankBoost are ranked the best, the second, and the worst 



respectively. When considering TD2004, the ranking becomes the 
second, the worst, and the best, respectively. Although RankGP 
(Avg.) is roughly comparable to RankBoost on TD2004, RankGP 
(Best) is superior to RankBoost. We conjecture that RankGP 
(Avg.) on TD2004 might be improved if more learning 
generations and a bigger size of the population are given. This 
issue is left to future work. 

4.5 Discussion 
The reasons why GP is employed in this work include: (1) the use 
of functional expressions to represent an individual is successful 
in GP (see [13] and [17]). No doubt, it is natural to represent a 
ranking function for IR in a functional expression. (2) To find a 
near or the exact global optimal solution by GP is possible [15]. 
In comparison with other methods (e.g., Ranking SVM [10] and 
RankBoost [9]) which decouple the problem into individual pair-
wise evaluations, the main advantage of RankGP is that any 
goodness criteria (e.g., MAP in this paper) can be directly 
optimized, since the evolution process is discrete. However, the 
computational cost of RankGP is much huge and is not relative to 
other approaches. Running the current implementation of RankGP 
with the parameter settings listed in Table 2, it costs us 
approximately 35 hours to conduct one run of 5-fold cross 
validation on TD2003 with a PC, which is equipped with an 
1.8GHz Intel Core 2 CPU and 2GB memory. Thus, it is the user’s 
choice to determine whether RankGP or other approaches will be 
adopted. In general, it is suggested to apply RankGP when the 
main concern is to find a potential optimal solution, provided that 
computing resources and time are not limited. 

In this work, RankGP aims to find the optimal linear ranking 
function, which could be also directly optimized using greedy 
search algorithms (e.g., conjugate gradient descent). However, it 
is easy to extend RankGP with more complex operators in Sop so 
as to generate a wider class of non-linear ranking functions. This 
makes the benefits of RankGP more clear since a non-linear 
function can not be directly optimized using greedy search. 

5. CONCLUSION 
In this paper, a learning method, RankGP, is proposed to address 
the task of learning to rank for IR. RankGP employs genetic 
programming to learn an effective ranking function by combining 
various types of evidences in IR, including content features, 
structure features, and query-independent features. Experiments 
were conducted to evaluate the performance of RankGP using 
TD2003 and TD2004 of the LETOR benchmark datasets. One 
non-learning method, BM25, and two state-of-the-art learning 
methods, Ranking SVM and RankBoost, were compared with 
RankGP. The results show that RankGP outperforms BM25 and 
Ranking SVM, and is competitive to RankBoost. 

The main contributions of this work are threefold. First, this paper 
offers a GP-based learning method for learning ranking functions. 
The second contribution is the direct use of IR measure, Mean 
Average Precision, as the internal performance measure of the 
learning method, in comparison with the major approaches 
proposed in the field, which transform the ranking problem into a 
classification problem of determining the preference of two 
objects and use loss functions to train a ranking model. Finally, 
the proposed method is verified in a case study with the LETOR 
benchmark datasets. 

6. FUTURE WORK 
In this work, the selection of features is not conducted before 
applying RankGP. It should be important to study the 
relationships between distinct features in order to develop a 
feature selection method for the ranking problem. 

Future works will also continue to compare the use of linear and 
non-linear functions in RankGP, as well as to investigate the 
performance of different settings of the algorithm. The effect of 
the AMRT strategy for mutation rate tuning needs to be further 
studied on the ranking problem as well. Another interesting issue 
is to know whether more complex operators, such as log, in Sop 
will help discover a better ranking function.  
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