
Learning to Rank for Information Retrieval
Using Genetic Programming

Jen-Yuan Yeh1, Jung-Yi Lin1, Hao-Ren Ke2, Wei-Pang Yang3
1Dept. of Computer Science,

National Chiao Tung University,
Hsinchu 300, TAIWAN

2Inst. of Information Management,
National Chiao Tung University,

Hsinchu 300, TAIWAN

3Dept. of Information Management,
National Dong Hwa University,

Hualien 974, TAIWAN

{jyyeh, jylin}@cis.nctu.edu.tw, claven@lib.nctu.edu.tw, wpyang@mail.ndhu.edu.tw

ABSTRACT
One central problem of information retrieval (IR) is to determine
which documents are relevant and which are not to the user
information need. This problem is practically handled by a
ranking function which defines an ordering among documents
according to their degree of relevance to the user query. This
paper discusses work on using machine learning to automatically
generate an effective ranking function for IR. This task is referred
to as “learning to rank for IR” in the field. In this paper, a learning
method, RankGP, is presented to address this task. RankGP
employs genetic programming to learn a ranking function by
combining various types of evidences in IR, including content
features, structure features, and query-independent features. The
proposed method is evaluated using the LETOR benchmark
datasets and found to be competitive with Ranking SVM and
RankBoost.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Retrieval Models.

General Terms
Algorithms, Experimentation, Performance.

Keywords
Genetic programming, learning to rank for IR, ranking function

1. INTRODUCTION
Information retrieval (IR) deals with the representation, storage,
organization of, and access to information items [1]. One central
problem of IR is the issue of determining which documents are
relevant and which are not to the user information need. In
practice, this problem is usually regarded as a ranking problem,
whose goal is to define, according to the degree of relevance (or
similarity) between each document and the user query, an
ordering among documents so as to rank relevant documents in

higher positions of the retrieved list than irrelevant ones.

Over the past years, IR models, such as Boolean models, vector
models, probabilistic models, and language models, have
represented a document as a set of representative keywords (i.e.,
index terms) and defined a ranking function (or retrieval function)
to associate a relevance degree with a document and a query [1].
In general, these models are designed in an unsupervised manner
and thus the parameters of the underlying ranking functions, if
exist, are usually tuned empirically.

In recent years, as more and more IR results coming along with
relevance judgments become available, supervised learning-based
methods (referred to as “learning to rank” methods in this paper)
have been devoted to automatically learning an effective ranking
function from training data. See [2], [3], [5], [9], [10].

Figure 1. A general paradigm of learning to rank for IR.

Figure 1 shows a general paradigm that most learning-based
methods follow to deal with the IR ranking problem. The learning
process, formalized as follows, consists of two steps: training and
test. Given a query collection, Q = {q1, …, q|Q|}, and a document
collection, D = {d1, …, d|D|}, the training corpus is created as a set
of query-document pairs, each (qi, dj) ∈ Q × D, upon which a
relevance judgment indicating the relationship between qi and dj
is assigned by a labeler. The relevance judgment can be: (1) a
class label, e.g., relevant or non-relevant, (2) a rating, e.g.,
definitely relevant, possibly relevant, or non-relevant, (3) an order,
e.g., k, meaning that dj is ranked in the k-th position of the
ordering of all documents when qi is considered, or (4) a score,
e.g., sim(qi, dj), specifying the degree of relevance between qi and
dj. For each instance, (qi, dj), a feature extractor produces a vector
of features that describe the match between qi and dj. Such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’07, July 23 – 27, 2007, Amsterdam, Netherlands.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

Feature
Extractor

Labeler

Learning
Algorithm

Training
Corpus

vectors

Test
Corpus

(q, d1)
(q, d2)

M
(q, d|D|)

Ranking
System

f (q, d1)
f (q, d2)

M
f (q, d|D|)

instances
with judgments

ranking func.: f

(q1, d1)
(q1, d2)

M
(q1, d|D|)

M
(q|Q|, d1)
(q|Q|, d2)

M
(q|Q|, d|D|)

features used in the field range from classical IR features (e.g.,
term frequency, inverse document frequency, and BM25 [24]) to
recently-developed features (e.g., HostRank [27], Feature
Propagation [23], [25], and Topical PageRank [21]). The inputs to
the learning algorithm comprise training instances, their feature
vectors, and the corresponding relevance judgments. The output is
a ranking function, f, where f(qi, dj) is supposed to give the “true”
relevance judgment (as mentioned previously) for qi and dj.
During the training process, the learning algorithm attempts to
learn a ranking function such that a performance measure (e.g.,
classification accuracy, error rate, Mean Average Precision [1],
etc.) with respect to the output relevance judgments can be
optimized. In the test phase, the learned ranking function is
applied to determine the relevance between each document di in D
and a new query q. Clearly, factors, such as the form of the
training instances, the form of the desired output, and the
performance measure, will lead to different design of learning to
rank for IR algorithms. Please refer to Section 2 for a general
categorization of methods.

This paper discusses work on using machine learning to
automatically produce an effective ranking function for IR. A
learning method, RankGP, based on genetic programming (GP) is
developed to learn a ranking function by combining different
types of evidences in IR, including content features, structure
features, and query-independent features. RankGP represents a
potential solution (i.e., a ranking function) as an individual in a
population of GP. The method evolves a population by applying
genetic operations, such as crossover and mutation, over a series
of generations. In each generation, a fitness function, modeled as
an IR measure, MAP (Mean Average Precision) [1], is exploited
to evaluate the performance of each individual in the population.
The evolution is supposed to eventually generate an individual
with the best fitness as the optimal solution.

The rest of this paper is organized as follows. It starts with a brief
review of related works in Section 2. Section 3 then introduces
the proposed GP-based learning method, RankGP, for the task of
learning to rank for IR. The experimental results and discussions
are provided in Section 4. Finally, Sections 5 and 6 conclude this
paper and give directions for further research.

2. RELATED WORK
The task of learning to rank has recently drawn a lot of interest in
machine learning. As distinguished by [3] and [4], previous works
fall into three categories: (1) the point-wise approach, (2) the pair-
wise approach, and (3) the list-wise approach.

In the point-wise approaches, each training instance is associated
with a rating. The learning is to find a model that can map
instances into ratings that are close to their true ones. A typical
example is PRank [5], which trains a Perceptron model to directly
maintain a totally-ordered set via projections. The pair-wise
approaches take pairs of objects and their relative preferences as
training instances and attempt learning to classify each object pair
into correctly-ranked or incorrectly-ranked. Indeed, most existing
methods are the pair-wise approaches, including Ranking SVM
[10], RankBoost [9], and RankNet [2]. Ranking SVM employs
support vector machine (SVM) to classify object pairs in
consideration of large margin rank boundaries. RankBoost
conducts Boosting to find a combined ranking which minimizes
the number of misordered pairs of objects. RankNet defines Cross

Entropy as a probabilistic cost function on object pairs and uses a
neural network model to optimize the cost function. Finally, the
list-wise approaches use a list of ranked objects as training
instances and learn to predict the list of objects. For example,
ListNet [3] introduces a probabilistic-based list-wise loss function
for learning. Neural network and gradient descent are employed
to train a list prediction model.

Researchers have investigated learning to rank algorithms in IR
applications and obtained promising results. Examples are listed
as follows: [20] treated IR as a binary classification of relevance
and explored the applicability of discriminative classifiers (such
as SVM) to solve the problem. [12] took pairs of documents and
their relative preferences derived from click-through data (i.e., the
log of links users clicked on in the presented ranking provided by
a WWW search engine) as training instances and applied Ranking
SVM for learning better retrieval functions. [4] modified the
“Hinge Loss” function in Ranking SVM to take into account two
essential factors for IR: (1) to have high accuracy on the top-
ranked documents, and (2) to avoid training a biased model
towards queries with many relevant documents. [26] used SVM
and Ranking SVM to address definition search where the
retrieved definitional excerpts of a term are ranked according to
their likelihood of being good definitions. [28] extended the well-
studied SVM selecting sampling technique in classification for
learning to rank. [19] proposed a multiple nested ranker approach
to re-rank the top scoring documents on the result list. RankNet
was applied to learn a new ranking at each iteration.

Other studies using genetic programming (GP) are the closely
related works to this paper. [8] presented a learning framework
based on GP to help automate the design process of ranking
functions. See also [7]. The effects of different fitness functions
used in GP have been also examined in [6]. These works tried to
combine evidences used in traditional term weighting strategies
into a ranking function by GP. In contrast, the goal of this paper –
to combine together different types of evidences such as classical
IR content features, structure features, and even query-
independent features – makes this work quite different.

3. THE PROPOSED GP-BASED
LEARNING METHOD
Genetic programming (GP), an evolutionary methodology, is an
automated problem-solving system for producing a computer
program that is able to perform a user-defined task [15]. In
essence, GP evolves a population of individuals (i.e., computer
programs) by applying genetic operations, such as crossover and
mutation, over a series of generations. The evolution is supposed
to eventually generate an individual with the best fitness as the
optimal solution to a given task, where the fitness is modeled by a
user-defined measure to score the ability of an individual. In
recent years, GP has been profitably employed in many
application, including circuit layout design [16], robot control
[15], and classification [13][17]. Inspired by the success of GP, in
this paper, a GP-based method, RankGP, is proposed to handle
the task of learning to rank for IR.

3.1 Data Normalization
As shown in Figure 1, a training set, T, is a group of query-
document pairs, each with a relevance judgment and a vector of

features describing the match between the corresponding query
and document. For a query collection, Q = {q1, …, q|Q|}, a
document collection, D = {d1, …, d|D|}, a feature set, F = {f1, …,
f|F|}, and a relevance judgment set, Y = {relevant, non-relevant}, T
is formulated as a set of triples by Eq. (1):

)})),,(),...,,((),,{((||1 ijjiFjiji ydqfdqfdqT = (1)

where (qi, dj) ∈ Q × D, yij ∈ Y, (f1(qi, dj), …, f|F|(qi, dj)) is a |F|-
dimensional feature vector in which fk(qi, dj) stands for the feature
value for qi and dj in terms of fk.

Before applying RankGP to the training set, a query-based
normalization on features is performed in order to normalize all
feature values into a range of [0, 1]. For a query qi, the normalized
value of fk(qi, dj) is calculated by Eq. (2), where max{fk(qi, dl)}
and min{fk(qi, dl)} are the maximum value and the minimum
value of fk(qi, dl) respectively for all dl ∈ D.

}},(min{)},(max{
)},(min{),(

),(
liklik

likjik
jik dqfdqf

dqfdqf
dqf

−

−
= (2)

3.2 The Learning Method: RankGP
The proposed GP-based learning method, RankGP, is summarized
in Figure 2.

The proposed learning method: RankGP

Input 1: a set of query-document pairs with their feature
vectors and relevance judgments (i.e., the training set, T)

Input 2: GP-related parameters: G (# of generations), PSize
(size of a population), Rc (crossover rate), Rm (mutation rate)

Output: a ranking function, f, which is supposed to associate a
real number with a query and a document as their degree of
relevance

Learning Procedure:

(1) Randomly initialize a set of individuals as the initial
population, P, and create an empty output set, O

(2) Score by a fitness function the performance of each
individual in P on T

(3) Put the most fit individual (i.e., the individual with the best
fitness) in P into O and meanwhile create a new population
by reproducing the most fit individual into it

(4) Generate individuals to fulfill the new population to the size
of PSize via crossover and mutation

(5) Set P to the new population and repeat Steps (2)–(5) until
the number of iterations reaches G

(6) Evaluate the performance of each individual in O by a score
function and output the best one

Figure 2. Overview of RankGP.
In RankGP, an individual is a potential ranking function to
associate a real number with a query and a document as their
degree of relevance. An individual, I, is defined as a functional
expression using three components: Sv (variables), Sc (constants),
and Sop (operators). Sv is a set of symbolic notations, referring to
features of the training set T. Sc is a set of predefined real numbers,

ranging from 0 to 1. Sop is a set of arithmetic operators. Eq. (3)
shows the formulation of an individual, I.

),,(opcv SSSI = (3)

where Sv, Sc, and Sop are given by:

Sv = {fi | fi ∈ F},
Sc = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
Sop = {+, –, ×, /}.

The reasons to adopt only simple arithmetic operators in Sop are:
(1) it has been shown that these operators are sufficient to achieve
good results in classification problems1 [13], and (2) using these
operators helps reduce the computational cost.

In the implementation, I is represented as a binary tree structure,
in which an internal node is a binary operator and a leaf node is
either a variable or a constant. The maximum number of available
nodes of an individual is determined by the depth of the tree,
which is defined before the learning process. A tree structure
example is provided in Figure 3 for the function, f: ((f1 + f2) +
(0.3×f3)).

With regard to the type of ranking functions that RankGP targets
at, one can choose a linear or a non-linear function. In this work,
only the linear version is used and thus the operator / in Sop is
discarded.

The fitness function is a function used to evaluate the fitness of an
individual (i.e., how good an individual is for the given task).
Since the problem on which this paper concentrates is the ranking
problem of IR, the fitness function is defined as a widely-used IR
measure, MAP2 (Mean Average Precision) [1] (as described in
Section 4.2). For an individual, MAP is computed over all queries,
based on the rankings of documents provided by the individual.

Figure 3. A tree structure example.

The evolution process of RankGP is described as follows. A
population is composed of a set of individuals. The initial
population of individuals is produced by the ramped half-and-half
method [15]. With this method, individuals are generated by a
random process. However, it ensures that half of individuals must
have and the others might not have all branches of the maximum
tree depth. In the evolution process, three genetic operations,
crossover, mutation, and reproduction, are applied to generate a
new population. The choice of the operations depends on a
predefined probability over these operations. For reproduction, a
number of the best individuals in the current generation get
through to the next generation unmodified. This is to imitate the

1 It needs to be verified for learning to rank problems.
2 Based on the relevance between a query and a document, which

is given by a ranking function, an ordering among documents
can be established and hence MAP can be calculated.

nature selection principle of survival of the most fit (i.e., the elite).
The remaining individuals are produced by either crossover or
mutation. During the production, tournament selection [15] is
used to bias the fitness. This method first randomly selects a few
individuals from the previous generation and returns one
individual (for mutation) or two individuals (for crossover) which
have the best fitness values. For crossover, two new individuals
are produced by exchanging sub-trees of the selected individuals.
For mutation, a mutant is created by randomly choosing an
internal node of the selected individual and then replacing its
whole sub-tree with a randomly generated tree.

When the evolution process ends, the output set, O, contains the
best individuals obtained from all generations as candidate
solutions. To select a good solution as the final output, this paper
adopts the following principle: given a validation set, a good
individual should have not only a good fitness on the training set
but also a good MAP value on the validation set. Hence, a score
function, as defined in Eq. (4), is exploited to select the final
solution.

),()()(VIMAPIFIscore jjj += (4)

In the equation, Ij denotes an individual, F(Ij) is the fitness of Ij,
and MAP(Ij, V) stands for the MAP of Ij on the validation set, V.

3.3 Implementation
RankGP has been implemented within an open source GP toolkit,
LAGEP 3 [17]. LAGEP implements a recently-developed layer
architecture of multi-population genetic programming and an
adaptive mutation rate tuning method, called AMRT. The layer
architecture of LAGEP works as follows: in one layer, a set of
functions are learned based on the given training set. A new
training set is constructed using the learned functions. The
successive layer then takes the new training set to discover new
functions. As for AMRT, it dynamically changes the mutation
rate during the learning process. In each generation, AMRT is
triggered to increase the mutation rate for the next generation if
all individuals in the current generation have similar fitness values.
Otherwise, the mutation rate is set unchanged as the initial one.
Moreover, AMRT ensures that the mutation rate achieves a
maximum of 0.5 in the last generation.

In the current work, RankGP does not adopt either the layer
architecture or the design of multi-population GP of LAGEP.
Instead, only the single-population GP is used. The AMRT
strategy is also employed in RankGP since it has been shown
effective in classification problems (see [17]).

4. EXPERIMENT
This section first describes the test datasets and evaluation
measures, and then reports the preliminary experimental results.

4.1 The LETOR Benchmark Datasets
The LETOR benchmark datasets 4 [18], released by Microsoft
Research Asia for research on learning to rank for IR, are used to
conduct experiments in this work. LETOR contains two data sets:

3 http://www.cis.nctu.edu.tw/~gis91815/lagep/lagep.html.
4 http://research.microsoft.com/users/tyliu/LETOR/.

OHSUMED and TREC (TD2003 and TD2004), evaluation tools,
and two baseline evaluation results. The data sets were created as
query-document pairs, each consisting of a vector of features and
the corresponding relevance judgment. There are in total 16,140
instances in OHSUMED, 49,171 instances in TD2003 and 74,170
instances in TD2004. The extracted features cover most of the
standard IR features, such as classical features (e.g., term
frequency, inverse document frequency, and BM25 [24]), and the
features proposed in recent SIGIR papers (e.g., HostRank [27],
Feature Propagation [23][25], and Topical PageRank [21]). While
25 features were extracted in OHSUMED, 44 features were
extracted in both TD2003 and TD2004. The relevance judgments
are on three levels in OHSUMED: definitely, possibly and not
relevant, and on two levels in TD2003 and TD2004: relevant and
not relevant.

In this paper, the proposed RankGP was only tested on the TREC
datasets (i.e., TD2003 and TD2004). Experiments on OHSUMED
are left in the future due to the time limitation.

The TREC datasets contain a total of 1,053,110 web pages,
together with 11,164,829 hyperlinks. There are 50 queries and 75
queries in TD2003 and TD2004 respectively. The query sets here
are exactly the same with those used in topic distillation tasks of
the Web track in TREC 2003 and TREC 2004. The TREC
committee made judgments to identify whether a page is
appropriate to a given query. Three types of features were
extracted for learning, including content features, hyperlink
features, and hybrid features. Table 1 lists all the features. For an
overview of these features and the feature extraction principles,
please refer to LETOR.

Table 1. Features extracted in TD2003 and TD2004

Feature type Feature name Number of features
Content dl [1] 4
 tf [1] 4
 idf [1] 4
 tfidf [1] 4
 BM25 [24] 4
 LMIR [29] 9
Hyperlink HostRank [27] 1
 PageRank [22] 1
 Topical PageRank [21] 1
 HITS [14] 2
 Topical HITS [21] 2
Hybrid Sitemap-based relevance

propagation [23]
2

 Hyperlink-based
relevance propagation
[25]

6

 Total: 44

4.2 Evaluation Measures
The evaluation tool, provided by LETOR [18], is utilized to
evaluate the effectiveness of the proposed RankGP. The tool
supports three common IR evaluation measures, all are briefed as
follows.

 P@n (Precision at Position n) [1]

For a given query, its precision of the top n results of the ranking
list is defined as Eq. (5):

n
nnP results in top docsrelevant of #@ = (5)

 MAP (Mean Average Precision) [1]

Given a query, its average precision is computed by Eq. (6) where
N is the number of retrieved documents and rel(n) is either 1 or 0,
indicating the n-th document is relevant or not to the query. MAP
is obtained as the mean of average precisions over a set of queries.

query for this docsrelevant of #
)(@

1∑ =
×

=
N

n
nrelnP

AP
(6)

 NDCG (Normalized Discount Cumulative Gain) [11]

For a query, the NDCG of its ranking list at position m is
calculated as Eq. (7):

∑ = +
−

=
m

j

jr

m j
ZmNDCG

1

)(

)1log(
12@ (7)

In the equation, r(j) is the rating of the j-th document in the list,
and the normalization constant Zm is set so that the perfect list gets
a NDCG of 1. r(j) is set to 1 when the j-th document is relevant to
the query and is set to 0 when the document is irrelevant.

For comparisons, this paper reports NDCG@1, …, NDCG@10,
P@1, …, P@10, as well as MAP.

4.3 Experimental Settings and Baselines
In LETOR [18], both TD2003 and TD2004 are already
partitioned for users to conduct 5-fold cross validation. For each
fold, three subsets are used for training, one subset for validation,
and the other one for testing. The score reported in this paper is
the average of those in the five folds.

One non-learning baseline method, BM25 [24], and two learning-
based baseline methods, Ranking SVM [10] (denoted as
RankSVM in the next section) and RankBoost [9], were also
evaluated on the datasets as comparisons to the proposed RankGP.
The evaluation results of the baselines reported in this paper are
excerpted from LETOR. For the learning-based baselines, the
query-based normalization on features (see Section 3.1) was
similarly conducted before applying these state-of-the-art learning
algorithms. The linear version was used in Ranking SVM and
each single feature was defined as a weak learner in RankBoost.
Please refer to LETOR for the settings and the optimization
methods of parameters for these baselines.

Table 2 lists the parameter settings of RankGP, all were set
empirically in the experiments. The type of the ranking function
that RankGP targets at is assumed linear. The number of
generations, crossover rate, mutation rate, and reproduction are
set according to [17]. The tree depth is set in order to at least
cover the case that leaf nodes contain 44 features and 44 constants.
Note that a full binary tree with a depth of 8 has 128 leaf nodes,
which is enough to include 44+44=88 nodes. We acknowledge
that non-linear functions, different settings of RankGP, and the
effect of the use of AMRT [17] for mutation rate tuning should be
also explored but leave them to future work.

In the experiments, RankGP was performed 10 times. In each run,
5-fold cross validation was conducted and an average score was

obtained. The reported score of RankGP is the average of those in
the 10 runs. This is to reduce the effect of the phenomenon: the
initialization of the first population by a random process might
accordingly affect the final results [8].

Table 2. Parameter settings of RankGP

Parameter Value
Function type Linear function
of generations (G) 100
Population size (PSize) 600
Tree depth 8 (a total of 255 nodes in a full tree)
Tournament size 5
Crossover rate (Rc) 0.95
Mutation rate (Rm) Start with 0.05 and is dynamically

changed by AMRT [17] during the
evolution to a maximum of 0.5 in the
last generation.

Reproduction Only the most fit individual in the
current generation gets through to the
next generation unmodified

4.4 Results
In this section, two evaluation results of the proposed RankGP are
given: RankGP (Avg.), as mentioned in Section 4.3, is the
average score of those in 10 runs of 5-fold cross validation, while
RankGP (Best) is the average score of the best score of each fold
in 10 runs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

N

N
D

C
G

BM25 RankBoost RankSVM RankGP (Avg.) RankGP (Best)

Figure 4. NDCG@N on TD2003.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

N

P

BM25 RankBoost RankSVM RankGP (Avg.) RankGP (Best)

Figure 5. P@N on TD2003.

Figures 4-6 give the results on TD2003. It is obvious that RankGP
(Avg.) outperforms BM25, RankBoost and RankSVM in terms of
all measures. In Figure 4, RankGP (Avg.) obtains improvements

over the best baseline, RankSVM, for NDCG@1-10, especially
NDCG@1 and NDCG@2. The relative improvements are about
22.86% and 19.73% respectively. Similar phenomenon can be
observed in Figure 5 with respect to P@1 and P@2. However, the
P@N values when N is greater than 3 tend towards those of
RankSVM and are almost the same after N=8. Figure 6 shows that
RankGP (Avg.) has an MAP of 0.283778, which is better than
that of BM25, that of RankSVM, and that of RankBoost in about
126.11%, 10.67%, and 33.55% respectively. Based on the results,
a conclusion is made that the proposed RankGP is good at ranking
relevant documents at the very top positions (such as the first and
the second places) to get a high MAP. Finally, Table 3 lists the
paired t-test results on TD2003 in terms of MAP. This table
indicates that the improvements of RankGP (Avg.) over BM25
and RankBoost are statistically significant at α=0.05 (p=0.0002
and p=0.0475 respectively). Although the improvement of
RankGP (Avg.) over RankSVM is not significant enough
(p=0.1648), the improvement becomes significant at α=0.10
(p=0.0768) when RankGP (Best) is considered.

0.125506

0.212490

0.256418

0.283778
0.307788

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

BM25 RankBoost RankSVM RankGP (Avg.) RankGP (Best)

M
A

P

Figure 6. MAP on TD2003.

Table 3. Paired t-test results on TD2003 in terms of MAP

p-value BM25 RankSVM RankBoost
RankGP (Avg.) 0.0002 0.1648 0.0475
RankGP (Best) 0.0003 0.0768 0.0405

Figures 7-9 show the results on TD2004. It can be seen that
RankGP (Avg.) is superior to BM25 and RankSVM, but is
inferior to RankBoost. However, RankGP (Best) outperforms
BM25, RankBoost and RankSVM in terms of all measures. In
Figures 7-8, RankGP (Avg.) obtains close values to those of
RankBoost in terms of NDCG@4 and NDCG@5, as well as
P@4-10. RankGP (Best) obtains improvements over the best
baseline, RankBoost, for NDCG@1-5 and P@1-5, but tends
towards RankBoost for both NDCG and P scores after N=6. As
for MAP, Figure 9 shows that RankGP (Avg.) outperforms BM25
and RankSVM in about 28.84% and 3.57% respectively, but is
beaten by RankBoost in about 5.66%. RankGP (Best) performs
better than BM25, RankSVM, and RankBoost in about 42.98%,
14.93%, and 5.03% respectively. Finally, Table 4 gives the paired
t-test results on TD2004 in terms of MAP. While the
improvement of RankGP (Avg.) over BM25 is statistically
significant at α=0.05 (p=0.0086), the improvement over
RankSVM is not significant (p=0.2274). In consideration of
RankGP (Best), the improvements over BM25 and RankSVM are
statistically significant at α=0.05 (p=0.0004 and p=0.0199

respectively). However, the improvement of RankGP (Best) over
RankBoost is not significant (p=0.1711).

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10
N

N
D

C
G

BM25 RankBoost RankSVM RankGP (Avg.) RankGP (Best)

Figure 7. NDCG@N on TD2004.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10
N

P

BM25 RankBoost RankSVM RankGP (Avg.) RankGP (Best)

Figure 8. P@N on TD2004.

0.281719

0.383514
0.350459 0.362965

0.402794

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

BM25 RankBoost RankSVM RankGP (Avg.) RankGP (Best)

M
A

P

Figure 9. MAP on TD2004.

Table 4. Paired t-test results on TD2004 in terms of MAP

p-value BM25 RankSVM RankBoost
RankGP (Avg.) 0.0086 0.2274 0.0838*
RankGP (Best) 0.0004 0.0199 0.1711

*: RankBoost is better than RankGP (Avg.)
To sum up, RankGP behaves differently on different datasets.
Similar phenomenon happens to RankBoost as well. However, the
results show that the average performance of RankGP, i.e.,
RankGP (Avg.), outperforms RankSVM and is competitive to
RankBoost. Regarding TD2003, RankGP (Avg.), RankSVM, and
RankBoost are ranked the best, the second, and the worst

respectively. When considering TD2004, the ranking becomes the
second, the worst, and the best, respectively. Although RankGP
(Avg.) is roughly comparable to RankBoost on TD2004, RankGP
(Best) is superior to RankBoost. We conjecture that RankGP
(Avg.) on TD2004 might be improved if more learning
generations and a bigger size of the population are given. This
issue is left to future work.

4.5 Discussion
The reasons why GP is employed in this work include: (1) the use
of functional expressions to represent an individual is successful
in GP (see [13] and [17]). No doubt, it is natural to represent a
ranking function for IR in a functional expression. (2) To find a
near or the exact global optimal solution by GP is possible [15].
In comparison with other methods (e.g., Ranking SVM [10] and
RankBoost [9]) which decouple the problem into individual pair-
wise evaluations, the main advantage of RankGP is that any
goodness criteria (e.g., MAP in this paper) can be directly
optimized, since the evolution process is discrete. However, the
computational cost of RankGP is much huge and is not relative to
other approaches. Running the current implementation of RankGP
with the parameter settings listed in Table 2, it costs us
approximately 35 hours to conduct one run of 5-fold cross
validation on TD2003 with a PC, which is equipped with an
1.8GHz Intel Core 2 CPU and 2GB memory. Thus, it is the user’s
choice to determine whether RankGP or other approaches will be
adopted. In general, it is suggested to apply RankGP when the
main concern is to find a potential optimal solution, provided that
computing resources and time are not limited.

In this work, RankGP aims to find the optimal linear ranking
function, which could be also directly optimized using greedy
search algorithms (e.g., conjugate gradient descent). However, it
is easy to extend RankGP with more complex operators in Sop so
as to generate a wider class of non-linear ranking functions. This
makes the benefits of RankGP more clear since a non-linear
function can not be directly optimized using greedy search.

5. CONCLUSION
In this paper, a learning method, RankGP, is proposed to address
the task of learning to rank for IR. RankGP employs genetic
programming to learn an effective ranking function by combining
various types of evidences in IR, including content features,
structure features, and query-independent features. Experiments
were conducted to evaluate the performance of RankGP using
TD2003 and TD2004 of the LETOR benchmark datasets. One
non-learning method, BM25, and two state-of-the-art learning
methods, Ranking SVM and RankBoost, were compared with
RankGP. The results show that RankGP outperforms BM25 and
Ranking SVM, and is competitive to RankBoost.

The main contributions of this work are threefold. First, this paper
offers a GP-based learning method for learning ranking functions.
The second contribution is the direct use of IR measure, Mean
Average Precision, as the internal performance measure of the
learning method, in comparison with the major approaches
proposed in the field, which transform the ranking problem into a
classification problem of determining the preference of two
objects and use loss functions to train a ranking model. Finally,
the proposed method is verified in a case study with the LETOR
benchmark datasets.

6. FUTURE WORK
In this work, the selection of features is not conducted before
applying RankGP. It should be important to study the
relationships between distinct features in order to develop a
feature selection method for the ranking problem.

Future works will also continue to compare the use of linear and
non-linear functions in RankGP, as well as to investigate the
performance of different settings of the algorithm. The effect of
the AMRT strategy for mutation rate tuning needs to be further
studied on the ranking problem as well. Another interesting issue
is to know whether more complex operators, such as log, in Sop
will help discover a better ranking function.

ACKNOWLEDGEMENTS
This work was supported by the National Science Council (grant
number: NSC-95-2221-E-259-044). Any opinions, findings, and
conclusions or recommendations expressed in this paper are those
of the authors only and do not necessarily reflect the viewpoints
of the National Science Council.

REFERENCES
[1] Baeza-Yates, R., and Ribeiro-Neto, B. Modern Information

Retrieval. Addison Wesley, 1999.
[2] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M.,

Hamilton, N., and Hullender, G. Learning to rank using
gradient descent. In Proceedings of the 22nd International
Conference on Machine Learning (Bonn, Germany. 2005).

[3] Cao, Z., Qin, T., Liu, T. Y., Tsai, M. F., and Li, H. Learning
to rank: From pairwise approach to listwise approach. In
Proceedings of the 24th International Conference on
Machine Learning (Corvallis, OR. 2007).

[4] Cao, Y. B., Xu, J., Liu, T. Y., Li, H., Huang, Y. L., and Hon,
H. W. Adaptive ranking SVM to document retrieval. In
Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (Seattle, WA. 2006).

[5] Crammer, K., and Singer, Y. PRanking with ranking.
Advances in Neural Information Processing Systems, 14:
641-647. 2002.

[6] Fan, W., Fox, E. A., Pathak, P., and Wu, H. The effects of
fitness functions on genetic programming-based ranking
discovery for web search. Journal of Management
Information Systems, 21(4): 37-56. 2005.

[7] Fan, W., Gordon, M. D., and Pathak, P. A generic ranking
function discovery framework by genetic programming for
information retrieval. Information Processing and
Management, 40(4): 587-602. 2004.

[8] Fan, W., Gordon, M. D., and Pathak, P. Discovery of
context-specific ranking functions for effective information
retrieval using genetic programming. IEEE Transactions on
Knowledge and Data Engineering, 16(4): 523-527. 2004.

[9] Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4: 933-969. 2003.

[10] Herbrich, R., Graepel, T., and Obermayer, K. Large margin
rank boundaries for ordinal regression. Advances in Large
Margin Classifiers, 115-132. 2000.

[11] Jarvelin, K., and Kekalainen, J. Cumulated gain-based
evaluation of IR techniques. ACM Transactions on
Information Systems, 20(4): 422-446. 2002.

[12] Joachims, T. Optimizing search engines using clickthrough
data. In Proceedings of the 8th ACM Conference on
Knowledge Discovery and Data Mining (Edmonton, Alberta,
Canada. 2002).

[13] Kishore, J. K., Patnaik, L. M., Mani, V., and Agrawal, V. K.
Application of genetic programming for multicategory
pattern classification. IEEE Transactions on Evolutionary
Computation, 4(3): 242-258. 2000.

[14] Kleinberg, J. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5): 604-622. 1999.

[15] Koza, J. R. Genetic Programming: On the programming of
computers by means of nature selection. MIT Press,
Cambridge, MA, 1992.

[16] Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W.,
Yu, J. and Lanza, G. Genetic programming IV: Routine
Human-competitive Machine Intelligence. Kluwer Academic
Publishers. 2003.

[17] Lin, J. Y., Ke, H. R., Chien, B. C., and Yang, W. P.
Designing a classifier by a layered multi-population genetic
programming approach. Pattern Recognition, 40(8): 2211-
2225. 2007.

[18] Liu, T. Y., Xu, J., Qin, T., Xiong, W., and Li, H. LETOR:
Benchmarking learning to rank for information retrieval. In
Proceedings of SIGIR 2007 Workshop on Learning to Rank
for Information Retrieval (Amsterdam, Netherlands, 2007).

[19] Matveeva, I., Burges, C., Burkard, T., Laucius, A., and
Wong, L. High accuracy retrieval with multiple nested
ranker. In Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (Seattle, WA. 2006).

[20] Nallapati, R. Discriminative models for information retrieval.
In Proceedings of the 27th Annual International ACM SIGIR

Conference on Research and Development in Information
Retrieval (Sheffield, South Yorkshire, UK. 2004).

[21] Nie, L., Davison, B. D., and Qi, X. Topical link analysis for
web search. In Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (Seattle, WA. 2006).

[22] Page, L., Brin, S., Motwani, R., and Winograd, T. The
PageRank citation ranking: Bring order to the Web.
Technical Report, Stanford University, 1998.

[23] Qin, T., Liu, T. Y., Zhang, X. D., Chen, Z., and Ma, W. Y. A
study of relevance propagation for web search. In
Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (Salvador, Brazil. 2005).

[24] Robertson, S. E. Overview of the Okapi projects. Journal of
Documentation, 53(1): 3-7. 1997.

[25] Shakery, A., Zhai, C. X. Relevance propagation for topic
distillation UIUC TREC 2003 Web Track experiments. In
Proceedings of TREC 2003.

[26] Xu, J., Cao, Y. B., Li, H., and Zhao, M. Ranking definitions
with supervised learning methods. In Proceedings of the 14th
International World Wide Web Conference (Chiba, Japan.
2005).

[27] Xue, G. R., Yang, Q., Zeng, H. J., Yu, Y., and Chen, Z.
Exploring the hierarchical structure for link analysis. In
Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (Salvador, Brazil. 2005).

[28] Yu, H. SVM selective sampling for ranking with application
to data retrieval. In Proceedings of the 11st ACM Conference
on Knowledge Discovery and Data Mining (Chicago, IL.
2005).

[29] Zhai, C., and Lafferty, J. A study of smoothing methods for
language models applied to Ad Hoc in formation retrieval. In
Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (New Orleans, LA. 2001).

