
Learning to Rank with Partially-Labeled Data

Kevin K. Duh

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

2009

Program Authorized to Offer Degree: Electrical Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Kevin K. Duh

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Katrin Kirchoff

Reading Committee:

Katrin Kirchhoff

Mari Ostendorf

Jeffrey A. Bilmes

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at

the University of Washington, I agree that the Library shall make its copies freely available for

inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly

purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying

or reproduction of this dissertation may be referred to Proquest Information and Learning, 300

North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted

“the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies

of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Learning to Rank with Partially-Labeled Data

Kevin K. Duh

Chair of the Supervisory Committee:

Professor Katrin Kirchoff

Electrical Engineering

Ranking is a key problem in many applications. In web search, for instance, webpages are

ranked such that the most relevant ones are presented to the user first. In machine translation,

a set of hypothesized translations are ranked so that the correct one is chosen. Abstractly, the

problem of ranking is to predict an ordering over a set of objects. Given the importance of ranking

in many applications, “Learning to Rank” has risen as an active research area, crossing disciplines

such as machine learning and information retrieval. The approach is to adapt machine learning

techniques developed for classification and regression problems to problems with rank structure.

However, so far the majority of research has focused on the supervised learning setting. Supervised

learning assumes that the ranking algorithm is provided with labeled data indicating the rankings or

permutations of objects. Such labels may be expensive to obtain in practice.

The goal of this dissertation is to investigate the problem of ranking in the framework of semi-

supervised learning. Semi-supervised learning assumes that data is only partially labeled, i.e. for

some sets of objects, labels are not available. This kind of framework seeks to exploit the potentially

vast amount of cheap unlabeled data in order to improve upon supervised learning. While both

supervised learning for ranking and semi-supervised learning for classification have become active

research themes, the combination, semi-supervised learning for ranking, has been less examined.

This thesis aims to fill the gap.

The contribution of this thesis is an examination of several ways to exploit unlabeled data in

ranking. In particular, four assumptions commonly used in classification (Change of Represen-

tation, Covariate Shift, Low Density Separation, Manifold) are extended to the ranking setting.

Their implementations are tested on six real-world datasets from Information Retrieval, Machine

Translation, and Computational Biology. The algorithmic contributions of this work include (a) a

Local/Transductive meta-algorithm, which allows one to plug in different unlabel data assumptions

with relative ease, and (b) a kernel defined on lists, which allow one to extend methods which work

with samples (i.e. classification, regression) to methods which work with lists of samples (i.e. rank-

ing). We demonstrate that several assumptions about how unlabeled data helps in classification can

be successfully applied to the ranking problem, showing improvements over the supervised baseline

under different dataset-method combinations.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . vi

Glossary . ix

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Problem Formulation . 2

1.3 Example Applications . 3

1.4 Contributions . 5

1.5 Outline of Thesis . 6

Chapter 2: Related Work . 8

2.1 Supervised Learning for Ranking . 8

2.2 Semi-supervised Learning for Classification . 11

2.3 Semi-supervised learning for Ranking . 16

2.4 Relations to Domain Adaptation . 19

2.5 Related Work in Statistics and Economics . 20

Chapter 3: Applications and Datasets . 24

3.1 Ranking in Information Retrieval . 24

3.2 Ranking in Machine Translation . 29

3.3 Ranking in Computational Biology (Protein Structure Prediction) 33

Chapter 4: A Local/Transductive Framework for Ranking 38

4.1 Description of Local/Transductive Framework . 38

4.2 RankBoost: a supervised ranking algorithm . 42

4.3 Modifications to RankBoost for continuous-level judgments 43

i

Chapter 5: Investigating the Change of Representation Assumption 47

5.1 Feature Generation Approach . 47

5.2 RankLDA: Supervised feature transformation for Ranking 52

5.3 Information Retrieval Experiments . 56

5.4 Machine Translation Experiments . 65

5.5 Protein Structure Prediction Experiments . 68

Chapter 6: Investigating the Covariate Shift Assumption 73

6.1 Importance Weighting Approach . 73

6.2 Combining Feature Generation and Importance Weighting 77

6.3 Information Retrieval Experiments . 78

6.4 Machine Translation Experiments . 84

6.5 Protein Structure Prediction Experiments . 85

Chapter 7: Investigating the Low Density Separation Assumption 90

7.1 Pseudo Margin Approach . 90

7.2 Information Retrieval Experiments . 93

7.3 Machine Translation Experiments . 96

7.4 Protein Structure Prediction Experiments . 96

Chapter 8: Kernels on Lists . 101

8.1 Motivation . 101

8.2 Related Work on Kernels . 102

8.3 Formulation of a List Kernel . 104

8.4 Importance Weighting with List Kernels . 109

8.5 Graph-based Methods with List Kernels . 115

Chapter 9: Overall Comparisons and Conclusions . 121

9.1 Cross-Method Comparisons . 121

9.2 Summary of Contributions . 125

9.3 Future Work . 127

Bibliography . 132

Appendix A: Ranker Propagation Objective Function 144

ii

LIST OF FIGURES

Figure Number Page

2.1 Two partially-labeled data problems in ranking. We focus here on semi-supervised

rank learning, where labels are entirely lacking for some queries. A different prob-

lem is that of “missing labels”, where not all documents retrieved by a query are

labeled. Note that these two problems are not mutually-exclusive. 18

3.1 Example TREC query and webpages . 27

3.2 Example OHSUMED query and document . 28

3.3 Illustration of Top-k BLEU oracle score. Top-1 oracle=.53, Top-2 oracle=.53, Top-3

oracle=.54, Top-4 oracle=1.0, Top-5 oracle=1.0. 33

4.1 Supervised learning, inductive semi-supervised learning, and transductive learning:

here we focus on the transductive setting, where test query is observed during training. 39

4.2 Pair extraction example. The quantization approach may discretize all labels with

BLEU>0.45 to 1 and all labels with BLEU < 0.45 to 0, leading to the pairs (1,4),

(1,5), (2,4), (2,5), (3,4). On the other hand, pair extraction with threshold (t=0.3)

will extract entirely different pairs: (1,2),(1,3),(1,4),(1,5),(2,5). 45

5.1 Plots of documents for 2 different queries in TREC’04 (y-axis = BM25, x-axis =

HITS score). Relevant documents are dots, irrelevant ones are crosses. Note that (a)

varies on the y-axis whereas (b) varies on the x-axis, implying that query-specific

rankers would be beneficial. 49

5.2 An example where LDA fails at ranking. Projecting on the y-axis will optimize Eq.

5.1 but doing so will reverse ranks 2 and 3. The x-axis is a better projection that

respects the properties of linear ordering among ranks. 54

5.3 Pie chart showing the distribution of feature-type combinations for the 25 best

rankers in the TREC’04 dataset. The number in the parenthesis indicates the count.

For example, 3 of 25 rankers use a combination original and linear kernel features.

The chart shows a diversity of feature combinations. 61

5.4 Query-level changes in MAP: We show the number of queries (in Feature Generation)

that improved/degraded compared to baseline. In TREC’03 (a), the majority of

queries improved, but in TREC’04 (b) and OHSUMED (c) a significant proportion

degraded. See text for more explanation. 62

5.5 Scatterplot of TREC’03 MAP results for Feature Generation (x-axis) vs.

baseline (y-axis). 64

iii

5.6 Sentence-level BLEU analysis for Feature Generation vs. RankBoost Baseline.

While the corpus-level BLEU result for RankBoost is 1 point better, there does

not appear to be significant differences on the sentence level. 66

5.7 The percentage of total weight in RankBoost belonging to Kernel PCA features, in

histogram (Arabic-English Translation Task) . 68

5.8 Scatterplot of GDT-TS values: Feature Generation (.569 average GDT-TS) vs. Base-

line (.581 average GDT-TS). The majority of lists are not affected by Feature Gen-

eration; 19% of the lists are improved by 0.01, 26% of the lists are degraded. Cor-

relation coefficient = .9717 . 70

5.9 There is little correlation between the amount of Kernel PCA usage in Feature Gen-

eration vs. the GDT-TS score. (Protein Structure Prediction) 71

5.10 Percentage of total weight in RankBoost belonging to Kernel PCA features for Pro-

tein Prediction. Here, on average we have 17% of the weight represented by KPCA.

Compare this to Machine Translation (Figure), which on average has 40% of weight

dedicated to KPCA. 71

6.1 Combining Feature Generation with Importance Weighting allows for soft selecting

of the projected training data. Combined results improves MAP for all three datasets

(a) OHSUMED, (b) TREC’03, and (c) TREC’04. Results are mixed for NDCG. . . 80

6.2 Comparison of importance weights extracted with all test pairs (current implemen-

tation) or oracle test pairs (cheating experiment). (a) OHSUMED shows a smaller

gap, while (b) TREC’03 implies more chance for improvement can be achieved. . . 82

6.3 Importance weight histogram from some OHSUMED queries. The x-axis is the

importance weight value; y-axis is the histogram count. The large variety in distri-

bution implies that the target test statistics differ drastically. 82

6.4 Data ablation results (MAP and NDCG@10) of (a) OHSUMED, (b) TREC’03, (c)

TREC’04 for 40%, 60%, and 80% subsets of training data. Importance Weight-

ing consistently improves over the Baseline. Feature Generation performs well for

larger data but poorly in the 40% and 60% cases. 88

6.5 Scatterplot of GDT-TS values: Importance Weights (.583 average GDT-TS) vs.

Baseline (.581 average GDT-TS). The majority of lists are not affected by Impor-

tance Weights; 12% of the lists are improved by 0.01, 20% of the lists are degraded.

Correlation coefficient = .9827 . 89

7.1 Example translation outputs for Baseline vs. Pseudo-Margin. 98

7.2 Scatterplot of GDT-TS values: Pseudo Margin (.574 average GDT-TS) vs. Baseline

(.581 average GDT-TS). In contrast to Importance Weighting, here the majority of

lists are affected by the Pseudo Margin Approach: 37% of the lists are improved by

0.01, 33% of the lists are degraded. Correlation coefficient = .9681 99

iv

8.1 Illustration of list kernel. The top data is characterized a [.9 .3] vector as its first

principal axes (large eigenvalue 5.2) and a [.3 -.9] vector as its second axes (small

eigenvalue 0.1). The second and third datasets are rotations of the the first by 25

and 90 degrees, respectively. In the second dataset, the first principal axis is a [1 0]

vector. In the third dataset, the first principal axis is a [.3 -.9] vector. The principal

angles kernel would therefore find that the first and third data are close. However, the

list kernel would successively discover via the maximum weighted bipartite match-

ing procedure that the second dataset (which has less rotation) is closer to the first: it

would match the axes that have both small cosine distance as well as large eigenvalues.107

8.2 Manifold Assumption and Ranker Propagation. 117

v

LIST OF TABLES

Table Number Page

1.1 Example applications and their relation to semi-supervised ranking 5

3.1 Examples of TREC features . 26

3.2 IR Data characteristics . 29

3.3 MT Data characteristics . 31

3.4 Protein Prediction Data characteristics . 35

3.5 Summary of all datasets used in this work. 37

4.1 Dev set BLEU of various pair extraction schemes 46

5.1 Main result for Feature Generation (FG). In general, FG provides improvements

over baseline. Statistically significant improvements are bold-fonted. 58

5.2 Feature Generation (transductive) outperforms KPCA on train (inductive); adapting

to test queries is a useful strategy. 59

5.3 Some examples of original features that correlate highly with Kernel PCA features

(coeff. of determination in parentheses). However, most features (not listed) have

low correlation due to their non-linear relationship. 60

5.4 Performance of single features. RankLDA and LDA are the rankings derived from

the first projection vector α . The Original column presents the minimum and maxi-

mum test performance among the 25 original features. 64

5.5 Arabic-English MT results . 65

5.6 Italian-English MT results . 66

5.7 Protein Prediction GDT-TS results . 69

5.8 Protein Prediction z-score results . 69

6.1 Comparison of Covariate Shift Assumption for Classification and Ranking 73

6.2 Importance Weighting Results on Information Retrieval. Importance Weighting

(IW) outperforms the Baseline in various metrics. The combined Feature Gener-

ation (FG) and IW method gave further improvements. 79

vi

6.3 Importance weight statistics. Median represent the average median value of im-

portance weights, across all test lists. Similarly, the 25Rh/75h quantile capture the

value of the 25th and 75th portion of the weight’s cumulative distribution function

(CDF). Standard deviation and entropy show how much the importance weight dis-

tribution differs from the uniform distribution. Uniform distribution would achieve

an entropy of 2.48 (entropy is calculated discretely by dividing the weight histogram

into 12 bins). 83

6.4 Arabic-English MT results . 85

6.5 Italian-English MT results . 85

6.6 Protein Prediction GDT-TS results . 86

6.7 Protein Prediction z-score results . 86

7.1 Pseudo Margin Results. The Pseudo Margin approach performed equal to or worse

than the Baseline due to violation of the low density separation assumption. Most

unlabeled document pairs are in practice tied in rank and should not be encouraged

to have large margins. Once these tied pairs are removed, the Oracle Pairs result

show dramatic improvements for all datasets. 94

7.2 Breakdown comparison of BLEU for Baseline (MERT) vs. Pseudo-Margin 97

7.3 Arabic-English MT results. The Pseudo Margin Approach outperforms the Base-

line in all metrics. Boldface represents statistically significant improvement via the

bootstrapping approach [167] . 97

7.4 Italian-English MT results. The Pseudo Margin Approach outperforms the Base-

line in all metrics. Boldface represents statistically significant improvement via the

bootstrapping approach [167] . 97

7.5 Protein Prediction GDT-TS results . 98

7.6 Protein Prediction z-score results . 99

8.1 A summary of properties of kernels on sets of vectors. List Kernel is proposed in

Section 8.3 . 104

8.2 Arabic-English MT results with Importance Weighting. Best results are underlined

(no results were statistically significantly better). 111

8.3 Italian-English MT results with Importance Weighting. Best results are underlined

(no results were statistically significantly better). 112

8.4 Protein Prediction GDT-TS results . 112

8.5 Protein Prediction z-score results . 113

8.6 Information Retrieval Results for List Kernel Importance Weighting. List Kernel

and Principal Angles Kernel give virtually the same result as Baseline, due to the

lack of deviation in the importance weights in practice. 114

8.7 Comparison of Manifold Assumption for Classification and Ranking 115

vii

8.8 Arabic-English MT results with Ranker Propagation. Statistically significant im-

provements are boldfaced; best but not statistically significant results are underlined. 118

8.9 Italian-English MT results with Ranker Propagation. Statistically significant im-

provements are boldfaced; best but not statistically significant results are underlined. 118

8.10 Protein Prediction GDT-TS results. Ranker Propagation gives statistically signif-

icant improvements over baseline supervised algorithm (Statistical significance is

judged by the Wilcoxon signed rank test). 119

8.11 Protein Prediction z-score results . 119

8.12 Ranker Propagation for Information Retrieval. Ranker Propagation with Feature

Selection outperforms both baseline and Ranker Prop with no feature selection. The

Oracle result shows the accuracy if using Rank SVMs trained directly on the test lists.120

9.1 Overall results for TREC. FG and IW approaches generally improved for all datasets.

RankerProp outperformed the RankSVM baseline of which it is based (see Table

8.12) but does not always outperform the RankBoost baseline. 122

9.2 Overall results for OHSUMED. 123

9.3 Overall Arabic-English MT results. 123

9.4 Overall Italian-English MT results. 124

9.5 Overall GDT-TS Results for Protein Prediction 124

9.6 Overall z-score Results for Protein Prediction . 125

9.7 Summary of Results. + indicates improvement over baseline, - indicates degrada-

tion. = indicates similar results. ++ indicates the best method for a given dataset. . 126

viii

GLOSSARY

BLEU: A popular machine translation evaluation metric, see Chapter 3

EM: Expectation-Maximization Algorithm

FG: Feature Generation approach for local/transductive ranking (Chapter 5)

FG+IW: Combined Feature Generation and Importance Weighting for local/transductive ranking

(Chapter 6)

GDT-TS: Evaluation metric for Protein Structure Prediction (see [164])

IW: Importance Weighting approach for local/transductive ranking (Chapter 5)

LETOR: Learning to Rank dataset, published by Microsoft Research Asia. Consists of TREC

and OHSUMED subsets.

MT: Machine translation

MAP: Mean average precision; A popular information retrieval evaluation metric, see Chapter 3

MERT: Minimum Error Rate Training algorithm. A standard algorithm for training Machine

Translation systems (see [119]).

NDCG: Normalized discount cumulative gain; A popular information retrieval evaluation metric,

see Chapter 3

OHSUMED: Information Retrieval dataset (medical search task)

ix

PM: Pseudo Margin approach for local/transductive ranking (Chapter 7)

IR: Information retrieval

RANKBOOST: A supervised ranking algorithm, see Section 5.1.2

SVM: Support vector machine

TREC: Information Retrieval dataset (webpage ranking task)

x

ACKNOWLEDGMENTS

I am enormously grateful to my advisor Katrin Kirchoff for teaching me how to do research.

More than anyone, she taught me how to frame a problem, how to devise my experiments, how to

think about the results, and finally, how to present it clearly to the research community. Furthermore,

I thank her for always being very supportive–I think I would not have endured graduate school while

having a family without her encouragement and understanding.

I would also like to thank all the professors at the University who have had an important impact

on me: Jeff Bilmes, for exciting my interest in new research directions (e.g. structured prediction,

graphical models, social choice theory). Mari Ostendorf, for giving me the opportunity to co-teach

with her, and for giving me encouragement when I need it the most. Marina Meila, whose clear

lectures gave me a grounding in optimization and math. Bill Noble, who was ever so helpful in

teaching me about computational biology. Efthi Eftimiadis, for his huge smile, which made me feel

at home when I was new to IR conferences. Les Atlas, for being my mentor and showing me the

inside workings of an academic career. Maya Gupta, for being willing to listen to my half-baked

ideas and to give me feedback at various occasions. Jeng-Nenq Hwang, who is always so nice as to

“adopt” our family during Thanksgiving and other times. Jeff, Mari, Marina, Bill, and Efthi are also

on my thesis committee–I thank them for their time and effort.

I was also very fortunate to work with many colleagues outside of UW. Whether it be interning

in industry or organizing a workshop, these experiences have given me new perspectives, new skills,

and new connections. Sumit Basu, Marine Carpuat, Hal Daume, John Dunagan, Simon Corston-

Oliver, Mo Corston-Oliver, Jianfeng Gao, Rebecca Hwa, Zhifei Li, Dekang Lin, Bob Moore, Patrick

Nguyen, John Platt, Chris Quirk, Eric Ringger, Mike Schultz, Hisami Suzuki, Qin Wang–I enjoyed

every minute working with you and hope we can continue keeping in touch. Sanjeev Khudanpur

gave me the best advice at the beginning of my grad school career; to paraphrase: “Go to many talks

and always ask questions. If you don’t understand the talk, you should definitely ask a question. If

xi

you understood the talk, you will naturally have questions.” I find this advice useful even now.

Many friends have accompanied me along the way. SSLI Lab is so diverse that wherever I turn,

I will find someone with the answer–whether it be a C++ tip, a linguistics question, a brain-storming

session at the white board, or a solicitation for food. Thanks especially go to: Andrei Alexandrescu,

Amittai Axelrod, Chris Bartels, Costas Boulis, Lee Damon, Karim Filali, Sangyun Hahn, Gang Ji,

Jeremy Kahn, Xiao Li, Jon Malkin, Alex Marin, Tim Ng, Taka Shinozaki, Amar Subramanya, Sheila

Reynolds, Mei Yang. I am also lucky to have many friends outside of SSLI lab, who continue to help

me whenever I call or email. To name a few: Justin Brickell, Pichin Chang, Nels Jewell-Larson,

Kristy Hollingshead, Hoifung Poon, Jared Tritz, Matt Walker, Fei Xia.

I would also like to acknowledge the National Science Foundation (NSF) Graduate Fellowship.

The fellowship not only gave me generous financial support, but also allowed me the freedom to

explore a variety of research topics, something I sincerely appreciated. I learned that research is not

just about solving problems, but also about defining problems.

Finally, my utmost thanks go to my family–my parents, my grandparents, my brother, my wife,

and my three children: I cannot say how much you all mean to me. You are the ones who make life

worth living.

xii

DEDICATION

To my family

xiii

1

Chapter 1

INTRODUCTION

1.1 Motivation

The problem of ranking, whose goal is to predict an ordering over a set of objects, is a key problem

in many applications. In web search, for instance, ranking algorithms are used to order webpages

in terms of relevance to the user. In speech recognition and machine translation, a set of candidate

hypotheses is ranked such that the best transcription or translation emerges near the top1. In these

applications as well as others (e.g. recommender systems, protein structure prediction, sentiment

analysis, online ad placement), the ranking algorithm is a critical component that has important

ramifications on final system output; a suboptimal ranking may render the entire system useless.

Due to its wide-spread applicability and importance, the problem of ranking has been gaining

much attention in research communities ranging from machine learning to information retrieval

and speech/language processing. However, most of the research so far has addressed ranking as a

supervised learning problem. This is a restriction since supervised learning requires that all samples

in the training set be labeled, which can be costly or prohibitive in real-world applications.

This thesis extends the study of ranking into semi-supervised learning, namely learning to rank

using a dataset containing both labeled and unlabeled samples. This has the potential to improve

the performance of ranking algorithms while keeping the manual labeling effort scalable. There has

been little prior work in this area. Our goal is to study the following questions:

1. What information in unlabeled samples can be exploited in the context of ranking problems?

In classification problems, ideas such as the manifold assumption and cluster assumption are

used to justify the utility of large amounts of unlabeled data. What assumptions exist for

ranking problems?

2. Is there an effective mechanism for adapting the wide range of methods developed for semi-

1This is referred to as “re-ranking” or “re-scoring” in the speech and language literature.

2

supervised classification into semi-supervised ranking? In particular, is there a general frame-

work (i.e. meta-algorithm) that makes it straightforward to apply ideas in classification to

ranking?

3. What can we learn by comparing the same semi-supervised ranking algorithm on different

kinds of real-world datasets? The No Free Lunch Theorem states that no algorithm can be

best on all datasets, but can we acquire rough intuition about what algorithms/assumptions

match what datasets best?

In the following sections, I first formally formulate the problem of semi-supervised ranking

(Section 1.2). Then, for concreteness of illustration, I briefly describe in Section 1.3 two of the

applications of ranking. The contributions of the thesis are summarized in Section 1.4 and an outline

of what follows is given in Section 1.5.

1.2 Problem Formulation

The problem of ranking involves learning a ranking model from a training set such that it generates a

“good” ordering on the test set. Formally, let {x(l),y(l)}l=1..L be the labeled training set consisting of

L samples, and let {x(u)}u=1..U be the unlabeled training set consisting of U samples. In many semi-

supervised learning scenarios, unlabeled samples are significantly cheaper to acquire than labeled

samples, so it is often the case that U >> L. For simplicity of notation, I will use the variable

s to index the entire training set when the distinction between labeled and unlabeled data is not

important: s = 1..L,L + 1..L +U . In other words, I will use x(s) to refer to a sample in either the

labeled or unlabeled training set. The variable t will be used to index the test set {x(t),y(t)}.

A sample x(s) ∈ X consists of a set of Ns objects {x
(s)
n }n=1..Ns

to be ranked or ordered. Often, an

object is represented numerically as a feature vector with dimension d, so x(s) can be thought of as

a matrix of Ns by d dimensions. Ranking can be thought of as “shuffling” the rows of this matrix.

It is important to notice that Ns is dependent on s: some samples will naturally have more objects to

be ordered than others.

The label y(l) ∈ Y encodes the ranking of {x
(l)
n }. Depending on the problem type, the label

either represents a total ordering or a partial ordering. A general encoding for both would be to

3

represent a total/partial ordering as a set of preference relations, x
(l)
i ⊲ x

(l)
j for a set of (i, j) pairs,

where ⊲ represents x
(l)
i is strictly “preferred to” or “ranked higher than” x

(l)
j . A weak preference

x
(l)
i Dx

(l)
j means that x

(l)
i is either strictly preferred or equivalently preferred to x

(l)
j .2 More formally, a

preference relation D over a set X is considered a total ordering if it satisfies the following properties.

For a,b,c ∈ X ,

1. (Reflexivity) aD a

2. (Antisymmetry) If aD b and bD a, then a ∼ b (∼ denotes “equivalently preferred”)

3. (Transitivity) If aD b and bD c, then aD c

4. (Completeness) Either aD b or bD a is true.

If only the first three properties are satisfied, D is called a partial order. The set of preference

relations can be shown in graph format where each x
(l)
n is a node and each ⊲ links two nodes by a

directed edge. A partial ordering forms a directed acyclic graph whereas a total ordering forms a

linear chain. Clearly, a training set with total ordering contains more labeled information than one

with partial ordering.3

The goal is to learn a function h : X → Y that performs well (i.e. minimizes loss) on the test

set. While the performance measure is application-specific, there are two broad categories: In

the general case, the loss function ltotal : Y ×Y → R is based on differences between the true and

predicted total orderings. In the more specific case, the loss ltop is only a function of the top-ranked

object in the true and predicted rankings.

1.3 Example Applications

Information retrieval (IR) is a prominent example where ranking is central. Given a user-inputed

query, the IR system returns a sorted list of documents that satisfies the user’s information need. The

2The notations a ≻ b and a � b are also used to mean a is (strictly) preferred to b. I personally prefer ⊲ to avoid

confusing ≻ with another similar-looking binary relation, >.

3A ranking problem with only partial ordering labels may also be thought of as semi-supervised ranking, but we do

not use this definition in this thesis. Here, the term “semi-supervised” refers to the fact that some samples are labeled,

whether they be total or partial orderings.

4

sorting should ideally be in order of relevance to the query. When the total number of documents

scale up, such as in library search or web search, presenting a short list of relevant documents

become an essential task.

The labeled training data {x(l),y(l)}l=1..L for IR corresponds to the following: Each x(l) is a set

of vectors, each vector x
(l)
j representing a document. There are a total of L queries, thus L sets of

documents. Labels y(l) can be thought of as a vector of relevance judgments, which are determined

by a human annotator by seeing whether each document in the set is relevant to the given query. The

unlabeled data {x(u)}u=1..U refers to sets of documents in which there are queries but not associated

relevance judgments.

Machine translation (MT) is another example where ranking can be applied. There are consid-

erable differences with IR, however. In MT, the goal is to generate a translation for a given input

sentence. The space of translations is theoretically infinite (compared to IR, the set of documents

may be large but is finite). Therefore one can think of MT as a “generation” problem as opposed to

the “selection” problem of IR. In this case, ranking is useful as a second-stage procedure in MT. The

first stage generates a preliminary list of translation candidates; this usually involves algorithms not

directly related to ranking. The second stage, which is often called a re-ranker or re-scorer, involves

ranking the set of translations.

The labeled training data {x(l),y(l)}l=1..L for MT corresponds to the following: Each x(l) is a

set of vectors, each vector x
(l)
j representing a hypothesized translation. There are a total of L in-

put sentences, thus L sets of hypothesized translations. Labels y(l) can be thought of as a vector

of fluency/adequacy judgments, which are determined by a comparing the translation to a human-

generated translation. The unlabeled data {x(u)}u=1..U refers to sets of translations from input sen-

tences that have no correlating human-generated translations.

A third example is protein structure prediction in computational biology. The goal is to predict

3-D structure given an amino acid sequence. The ranking problem is to sort a set of candidate 3-D

structures (generated by different techniques) such that the ones most likely to be correct are at the

top of the list. The setup is in many ways similar to the machine translation problem. The labeled

training data {x(l),y(l)}l=1..L corresponds to the following: Each x(l) is a set of vectors, each vector

x
(l)
j representing a hypothesized 3-D structure. There are a total of L input amino acid sequences,

thus L sets of hypothesized structures. Labels y(l) can be thought of as a vector of similarity values,

5

Table 1.1: Example applications and their relation to semi-supervised ranking

Information Retrieval (IR) Machine Translation (MT)

Goal For a user query, return the most

relevant documents

For an input sentence, return the correct

translation

Where

Ranking

Applies

Ranking is the central operation used

to sort documents, which potentially

come from a large set

Ranking is used at an (optional)

second-stage to re-sort a set of

hypothesized translations

{x(l)}l=1..L sets of documents sets of candidate translations

{y(l)}l=1..L sets of relevance judgments for each

document as determined by a human

annotator

sets of fluency/adequacy ratings for each

translation, computed by matching with

human-generated translations

{x(u)}u=1..U sets of documents without relevance

judgments

sets of translations without the associated

human translation

which are determined by a comparing the hypothesized structures to a true reference structure. The

unlabeled data {x(u)}u=1..U refers to sets of structures that have no true 3-D reference.

A summary of the information retrieval and machine translation applications is summarized in

Table 1.3.

1.4 Contributions

Our answers to the questions posed at the beginning of this chapter (Section 1.1) are briefly summa-

rized below:

1. What information in unlabeled samples can be exploited in the context of ranking problems?

Answer: We demonstrate that some of the assumptions from semi-supervised classification

can apply to ranking. In particular: the manifold assumption, low density separation (clus-

ter) assumption, and change of representation assumption can be exploited in certain dataset

scenarios. We also introduce a new assumption based on domain adaptation for ranking.

6

2. Is there an effective mechanism for adapting the wide range of methods developed for semi-

supervised classification into semi-supervised ranking?

Answer: We propose a local/transductive meta-algorithm which trains a ranker for each test

point individually. This makes it straightforward to incorporate semi-supervised classification

assumptions, as one does not need to take into account dependencies among different sets of

objects to be ranked. Further, this has the added benefit of building test-dependent rankers,

which has the potential to improve over general-purpose rankers.

In addition, we develop a kernel defined on lists (as opposed to points), which allows one to

modify kernel-based or graph-based classification methods for ranking.

3. What can we learn by comparing the same semi-supervised ranking algorithm on different

kinds of real-world datasets?

Answer: We experiment with six real-world datasets: three are in Information Retrieval, two

are in Machine Translation, and one in Computational Biology. As expected, most meth-

ods show mixed results, since each of the dataset has different characteristics. Some issues

that influence what method works include: (a) the amount of tied ranks, (b) the correlation

between the optimized loss function and the true application-specific loss. We also observe

that some methods tend to give slight improvements to all datasets, while other methods are

high-risk/high-reward. A concise summary of the results is in the Conclusion section, while

detailed analysis about why something worked (and did not work) are in the respective exper-

iments sections.

1.5 Outline of Thesis

• Chapter 2: reviews related work, such as semi-supervised classification and supervised rank-

ing.

• Chapter 3: describes the three tasks (and corresponding datasets) used in this work (Informa-

tion Retrieval, Machine Translation, Protein Prediction).

7

• Chapter 4: presents a general local/transductive framework for examining various assump-

tions in semi-supervised learning in ranking.

• Chapter 5: investigates how unlabeled data can be used to learn better features for ranking.

• Chapter 6: investigates how unlabeled data can be used to match the training distribution to

the test distribution in order to improve ranking.

• Chapter 7: investigates whether the low density separation assumption in semi-supervised

classification can be applied to ranking.

• Chapter 8: introduces a novel kernel based on lists and its application in semi-supervised

ranking.

• Chapter 9: compares all presented methods and summarizes the main contributions of this

work.

8

Chapter 2

RELATED WORK

2.1 Supervised Learning for Ranking

A variety of approaches have been explored for the ranking problem in the supervised learning

setting. The majority of algorithms can be seen as instantiations of the following abstraction, which

I call the score-and-sort approach:

1. Learn a function f that maps each individual object x
(s)
n to a real number, a score.

2. Rank a set of objects {x
(s)
n } by ordering the scores from maximum to minimum. An object

with the maximum score will be ranked first, followed by an object with the next largest score,

etc. In other words, the ranking model h : X →Y is equivalent to argsort f (x
(s)
n).

This can be contrasted with the structured learning approach which directly estimates h : X →Y ,

i.e. scores are given for entire permutations, rather than on individual objects. In this case, ranking

is similar to a structured prediction problem [100]:

1. Define h(x(s)) = arg maxy∈Y g(x(s),y)

2. Estimate g by minimizing a rank-based loss, e.g. ∑L
l=1 ltotal(y

(l),h(x(s)))

The score-and-sort approaches have been investigated to a greater extent because it is often

difficult to directly optimize the ranking loss function on the space of all permutation of orderings

(For Nl objects, the arg max in the above formulation needs to search over Nl! orderings). The

challenge, however, is to design an algorithm for learning f such that the argsort thereafter induces

an ordering with minimal loss. There are roughly three categories of methods for learning f : point-

wise methods (regression), pairwise methods, and list-wise methods.

9

2.1.1 Point-wise methods (Regression-based methods)

In regression-based methods [45], each object in the set has a target score value, and f is estimated

by regression techniques to directly predict this value. The loss is measured by, for example, the

residual between predicted and target scores. The advantage of regression-based methods is that the

large body of work on regression can be exploited for ranking. However, the disadvantage is that

predicting a target score for each object may be a harder problem than simply ordering the objects.

In addition, like the pairwise methods, there is no guarantee that optimizing for regression loss will

optimize for ltotal or ltop. Yet, recently [49] has shown promising asymptotic results that in the limit

of large samples, regression can optimize loss functions such as ltop.

Regression-based methods may be most suitable in cases where a meaningful scoring function

exists. For instance, in protein structure prediction [55, 124, 159], the target score quantifies the

quality of protein fold. To predict these scores, [124] proposed a modification of support vector

regression that gives smaller slack (ε-tube) for top-ranked objects than lower-ranked objects, which

ensures that the scores of the top-ranked objects are predicted with higher accuracy. The automatic

metrics used for speech recognition and machine translation may also serve as meaningful targets

for regression.

A related approach is ordinal regression [113], where one attempts to predict the ordinal num-

bers, which may directly represent the ranks of each object. [131] provides a framework for large

margin ordinal regression applied to ranking.

2.1.2 Pairwise preference methods

The idea of pairwise preference methods is to learn f such that f (x
(l)
i) > f (x

(l)
j) if x

(l)
i ⊲x

(l)
j . Even if

the labels {y(l)} are given as total orderings, pairwise preference methods would nevertheless extract

and learn from the corresponding set of pairwise orderings (for a total ordering of Nl objects, there

are (Nl)(Nl −1)/2 such pairwise preferences).

The advantages of this pairwise preference approach are (1) existing classification methods,

with some modifications, can be applied, and (2) it works on partial orderings and can be used on

applications where total ordering labels are difficult to obtain. The main disadvantage is that the

learning objective is more naturally cast as minimizing the number of incorrect pairwise orderings,

10

which may not correspond to the true loss function on total orderings. Other disadvantages include

the i.i.d. assumption of different pairs and the computational complexity arising from generating all

pairwise preferences, but these issues can be solved to some extent, by e.g. placing more emphasis

on some pairs over others (c.f. [31] [84]).

One of the first pairwise preference approaches is RankBoost [58]. RankBoost maintains weights

on each pair of objects and learns weak rankers that reduce the number of incorrect pairwise order-

ings. Following the boosting philosophy, a weak ranker is learned in each round and the final ranker

is a combination of weak rankers. Similar to RankBoost, RankSVM [67, 82] attempts to minimize

the number of incorrect pairwise orderings by formulating (f (x
(l)
i) > f (x

(l)
j) for all pairs x

(l)
i ⊲ x

(l)
j)

as constraints in a support vector machine objective. RankSVM minimizes the hinge loss over the

margin f (x
(l)
i)− f (x

(l)
j) of incorrectly ordered pairs. The idea of pairwise preferences is given a

probabilistic formulation in RankNet [27]. The probability that x
(l)
i ⊲ x

(l)
j is defined as: Pi j = e

oi j

1+e
oi j

where oi j = f (x
(l)
i)− f (x

(l)
j), and a neural network is trained to optimize the cross-entropy between

the desired Pi j and the predicted Pi j. Much recent work in this area has focused on improving the

above algorithms and attempting to optimize an objective that is closer to the true loss function (e.g.

[26, 147, 128, 52]).

Many applications that use the loss function ltop may also learn the scoring function from a

pairwise preference method [42]. Rather than generating all possible pairwise preferences from a

total ordering, these methods only ensure that pairwise preferences between the top-ranked object

and other objects are predicted correctly. In other words, we estimate f such that the score of the

top-ranked object is higher than any other object, but do not care about the ordering among non-

top-ranked objects, i.e. f (x
(l)
i′

) > f (x
(l)
j) for i′ indexing the top-ranked object and j 6= i′. This line of

work has an interesting connection with structured prediction [144, 148], since the argsort function

of h : X → Y essentially becomes an argmax. Most re-rankers in machine translation and other

natural language processing systems employ this argmax approach. Prominent examples include:

parsing [43, 92], machine translation [133], part-of-speech tagging [74], information extraction [78].

One thing to note about pairwise methods such as RankBoost is that although the training phase

uses pairs of objects, the testing phase operates on individual objects. That is, f (·) is learned by

comparing pairs of objects (i.e. f (x
(l)
i′

) > f (x
(l)
j)) but during prediction, we apply f (·) on individual

objects independently, then sort by the resulting values. As such, there are no issues of intransitivity

11

for score-and-sort pairwise methods. (Intransitivity occurs if we make independent pairwise deci-

sions during test time, i.e. A > B, B >C, and C > A, which leads to an inconsistent ordering.) A few

alternative methods (not in the score-and-sort approach) operate on pairs at test time and therefore

is required to solve the challenge of combining partial (pairwise) orderings into a total order. For

instance, [41] proposes a greedy method where one first builds a directed weighted graph, where

each vertex is an object and each edge indicates the strength in which the starting node ranks over

the ending node. Then they compute the potential for each node by the weighted sum of outgoing

edges minus weighted sum of incoming edges. The node with largest potential ranks first, is deleted

from the graph, and we recurse to obtain the second-ranked node. Another example is [3], which

advocates using the QuickSort algorithm to combine partial orderings during test time.

2.1.3 Listwise methods

The third class of ranking methods is called list-wise approaches, due to the emphasis on treating

the list as the basic object of optimization. This avoids the problems in regression and pairwise

approaches, which artificially forces independence assumptions among objects in the same list.

Listwise approaches can use information about rank positions and information at the query level. It

can potentially optimize a loss function that more closely approximates the true loss function, but

the cost is usually more intensive (sometimes intractable) computation.

Listwise approaches can generally be divided into two categories. The first directly optimizes

the loss function one cares about, or some smoothed version thereof. Loss functions for ranking are

usually non-smooth and non-differentiable, which is a considerable challenge to the optimization.

Examples include [115, 158, 163]. The other approach defines a loss function on the list, but the

loss function may not necessarily be inspired by the loss function used for evaluation. For example,

[156, 32] define probabilistic permutation models based on the Luce-Plackett model and training

involves optimizing the model likelihood (or minimizing KL-divergence).

2.2 Semi-supervised Learning for Classification

A wide variety of techniques have been proposed for semi-supervised learning in the classification

literature. See [170] for a concise and updated survey. Here we group the various techniques based

12

on the assumptions used. Each technique makes different assumptions on how unlabeled data can

help learning. The four broad assumptions are:

Bootstrapping: Assume that the predicted labels of unlabeled data can be used for learning.

Methods such as self-training [162, 1], co-training [21], and mixture models with EM [118, 34] fall

into this class.

Low Density Separation: Assume that the classification boundary exists in low density regions,

and that unlabeled data can help identify those regions. For example, transductive support vector

machines [15, 81, 61] (also known as semi-supervised SVMs) achieve this by forcing a large dis-

tance between unlabeled samples and the decision boundary. The assumption used by these methods

is sometimes also called the “cluster assumption.”

Manifold/Graph-based Methods: Assume that samples similar to each other have the same

label, and samples indirectly linked by a chain of close samples also have the same label. A graph

defined over both labeled and unlabeled data captures this global and local closeness information.

The assumption used in graph-based method can also be called a “manifold assumption” since they

all assume that data lie in some manifold defined by the graph, and that the decision function varies

slowly over this manifold.

Change of Representation: Assume that a better feature representation (e.g. more parsimo-

nious or expressive) for learning exists and that unlabeled data can help discover this representation.

One important note is that there is no clear-cut way of categorizing the various algorithms by

their assumptions, since many of the assumptions are related and many algorithms employ more

than one assumption. For example, one may also think of graph-based methods as falling under the

Low Density Separation assumption or the Change of Representation assumption.

Since these assumptions are very relevant to this work, we describe their related work in much

more detail as follows.

2.2.1 Bootstrapping Assumption

The Bootstrapping Assumption assumes that the predicted labels of unlabeled data can be used for

supervised learning. Techniques that assume this include: self-training [162, 1], co-training [21],

and generative models with EM [118, 34].

13

In self-training, first an initial classifier trained on small amounts of labeled data predicts the

labels of unlabeled data. Then, confident predictions are added into the training set, and the classifier

is re-trained. Self-training assumes that the additional labels are accurately predicted; its accuracy

degrades when noisy labels are added to the training set.

In co-training [21], two classifiers are trained on different feature splits of the labeled data. Then

the classifiers teach each other about their respective high-confidence predictions on unlabeled data

(i.e. confident predictions by classifier A are added to the training set of classifier B, and vice

versa). Theoretical and experimental results show that co-training performs well when feature splits

are sufficiently good and are conditionally independent of each other given the class [21, 117].

In general, co-training can be seen a method that enforces multiple classifiers to agree on both the

labeled and unlabeled data. It works because the version space is reduced when classifiers are forced

to agree on the large unlabeled data.

Generative models with the EM algorithm [53] can be seen as a soft version of self-training.

They model the joint distribution p(x,y) = p(y)p(x|y) where p(x|y) is a mixture component that

can be identified by large amounts of unlabeled data. [118] uses multinomial mixture components

for semi-supervised text classification. Castelli and Cover [33, 34] proved that if the model form

is correct, unlabeled data is guaranteed to improve accuracy. In practice, unlabeled data are often

downweighted [30, 46] in generative models to prevent excessive bias. Fujino et. al. [60] derives a

hybrid algorithm that attempts to correct the bias. Generative models with EM are also subject to

the difficulty of getting stuck in local optima.

2.2.2 Low Density Separation Assumption

The Low Density Separation Assumption assumes that the classification boundary exists in low

density regions of the feature space, and that unlabeled samples can help identify such regions. Such

an assumption is reasonable if one assumes that positive and negative samples form two separable

clusters (i.e. the so-called cluster assumption).

Transductive SVMs (TSVMs), also known as semi-supervised SVMs (S3VMs), [15, 81, 61]

achieve low density separation by maximizing the margin of both labeled and unlabeled data. Zhang

and Oles [166] questions the notion of margin for unlabeled samples, and suggests that TSVMs may

14

“maximize the wrong margin.” Nevertheless, much research has focused on TSVM’s difficult dis-

crete optimization problem by methods such as gradient descent on an approximate continuous

objective [37], deterministic annealing [135], and the concave-convex procedure (CCCP) [44]. Im-

portantly, [35] applied a Branch-and-Bound optimization procedure to obtain exact global optima

on small datasets. Their excellent results, which outperformed other TSVM implementations and

some graph-based algorithms, validated the importance of a good optimization procedure for the

TSVM objective. [160] proposed an alternative SVM formulation based on semi-definite program-

ming (SDP); their formulation allows for both binary and multi-class problems in semi-supervised

and unsupervised learning.

Other techniques that employ the Low Density Separation assumption include Gaussian Pro-

cesses with null category noise model [99], information regularization [142, 47, 48], entropy mini-

mization [64, 80, 102], and maximum entropy discrimination [76].

2.2.3 Manifold Assumption

In graph-based methods, one first constructs a graph over both labeled and unlabeled data; then a

function that is both smooth over the graph and incurs small loss on the labeled samples is estimated.

The graph can be seen as a data-dependent regularizer.

This can also be considered as similar to a Change of Representation Assumption because the

distances in the original Euclidean feature space are discarded in favor for the geodesic distance

induced by the graph. This geodesic distance is assumed to be more accurate since the large amount

of unlabeled data can help induce the true underlying subspace or manifold of the data. To make

this clearer, imagine we have 10 labeled points in a feature space of dimension 1000. This is a high

dimensional space, and it is likely that we would suffer from overfitting. Now suppose we have

many more unlabeled points, which we use to generate a data graph–the edge weights of a node,

for example, can be computed from the Euclidean distances of its closest neighbors. Therefore, the

distance between two faraway points is no longer the Euclidean distance computed directly on its

feature vectors, but instead the summed distance of traveling through the paths of nearest neighbors

in the graph. If it turns out that the real data lies in the manifold and not the original feature space,

then the geodesic distances would be a more accurate distance measure and the graph-based method

15

may achieve improvements.

The variety of graph-based semi-supervised algorithms differ primarily in the particular form of

loss function and regularizer. Prominent examples include: Mincut [19, 20], Spectral Graph Trans-

ducer [83], Discrete Markov Random Fields (MRF) [171], and its continuous relaxation: Gaussian

Random Fields and Harmonic Functions [172], Manifold Regularization [12, 13], and Graph Ker-

nels [138, 91, 95, 5]. An open area here is the question of optimal graph construction, since empirical

evidence suggests that accuracy may depend more on the graph than the particular learning algo-

rithm. Some works have begun to address this, e.g. modifying graph spectrum [173, 85], convex

combination of graphs [8], and classifier-derived distances [4].

2.2.4 Change of Representation Assumption

The Change of Representation Assumption assumes that a better representation (e.g. more parsi-

monious or expressive) for learning exists, and that unlabeled data can help discover this hidden

representation.

The idea of feature/kernel learning is to use vast amounts of unlabeled data to learn a better

feature or kernel representation of the data. The new feature or kernel is assumed to be a better

distance measure, just as the geodesic distance is assumed to be better when the data lies on a man-

ifold. Feature/kernel learning methods differ from graph-based methods in terms of the emphasis:

whereas graph-based methods focus on ways to exploit unlabeled data once a graph is constructed,

feature/kernel learning methods focus on learning a better distance metric, which could be used to

construct graphs [4]. However, the strongest advantage of feature/kernel learning is that one is not

restricted to graphs but is free to choose from the toolkit of any supervised and inductive classifica-

tion algorithm once the new feature/kernel is learned. It is essentially a two-step procedure:

1. Learn a better feature/kernel representation using both labeled and unlabeled data

2. Apply supervised learning to the new feature/kernel representation of labeled data

How does one learn better features from unlabeled data? One approach is to cluster the samples

and use the cluster identities as new features [105]. Alternatively, one may learn dependencies

between the original features and collapse them into more parsimonious latent variables. Works by

16

Ando and Blitzer [6, 7, 18] use multiple-task learning to find the dependent features; [121] learns

the latent variables via principal components analysis or independent components analysis. An

alternative to learning better features is to learn distances or kernels between points directly (since

many learning algorithms work by comparing distances, even if the initial representative is based on

features). Methods for learning better kernels include Fisher kernels [75, 70, 63] and cluster kernels

[36]. There are also many distance metric learning algorithms (e.g. [96, 69]); the application of

them to this problem is still relatively unexplored. An open research area is the question of how to

use the labels as well as the unlabeled data to learn better features; the above techniques essentially

ignore the labels and learn features/kernels in an unsupervised fashion.

Finally, we note that theory for semi-supervised classification is still an open problem, and has

been identified as one of the ongoing challenges in machine learning [93]. One of the first works in

this area was [34], which established that if we view classification as a mixture of class conditional

distributions and that the mixtures are identifiable (cluster assumption), then error can converge ex-

ponentially fast in the number of labeled examples. For co-training, [103] presents a generalization

error bound which shows that forcing agreement among multiple learners lead to tighter bounds.

Importantly, [11] formulates a PAC model for unlabeled data, which is the first unified theory for

semi-supervised learning (as opposed to algorithm-specific analyses). More recently, [94] analyzed

the Manifold Assumption and indicate that some methods based on graph Laplacians actually do

not achieve faster convergence rates. Singh et. al. [137] provide an interesting analysis of when

unlabeled data helps under the cluster assumption. Theory for semi-supervised classification is still

an unsolved problem; we will not address these issues in this work.

2.3 Semi-supervised learning for Ranking

There are generally two interpretations of “learning to rank with partially-labeled data.” For con-

creteness, in this section we will describe these interpretations as information retrieval problems,

where the objects to be ranked are documents d.

In the scenario we consider here, the document lists in our dataset are either fully labeled or not

labeled at all. The second scenario arises when a document list d is only partially-labeled, i.e. some

documents in d have relevance judgments, while other documents in the same list d do not. This

17

second problem can arise when, e.g. (a) the document list retrieved by one query is too long and

the annotator can only label a few documents, (b) one uses a implicit feedback mechanism [82] to

generate labels and some documents simply cannot acquire labels with high confidence. Currently

there is no precise terminology to differentiate the two problems. Here we will call Problem One

“Semi-supervised Rank Learning” and Problem Two “Learning to Rank with Missing Labels”. See

Figure 2.1 for a pictorial comparison.

Several methods have been proposed for the Missing Labels problem, e.g. [168, 153, 66, 151]:

the main idea is to build a manifold/graph over documents and propagate the rank labels to unlabeled

documents. One can use the propagated labels as the final values for ranking [168] (transductive), or

one can train a ranking function using these values as true labels [66, 151] (inductive). One impor-

tant point about these label propagation methods is that they do not explicitly model the relationship

that document d(j) is ranked above, say, d(k). Instead it simply assumes that the label value for d(j)

is higher than that of d(k), and that this information will be preserved during propagation.

An alternative approach that explicitly includes pairwise ranking accuracy in the objective is

proposed in [2]. It also builds a graph over the unlabeled objects, which acts as a regularizer to en-

sure that the predicted values are similar for closely-connected objects. Specifically, for a combined

training and testing set of n objects, one can learn a score vector f ∈ Rn that represents the score

value for each object. One minimizes the following objective function with respect to f:

min
f∈Rn

fT Lf+C ∑
(i, j)∈E

τ (xi,x j)ξi j (2.1)

subject to fi − f j ≥ ξi j, ξi j ≥ 0 ∀(xi,x j) ∈ E

where (i, j) ∈ E is the set of labeled pairwise preferences, L is the Laplacian of the data graph

consisting of all objects as nodes, τ is the loss for misordering xi and x j, ξ are slack variables, and

C is an adjustable parameter that trades off between loss and regularization.

[40] also proposes a graph-based regularization term, but in contrast to Equation 2.1, it defines

the graph nodes not as objects, but as object pairs. Just as the pairwise formulation allows one to ex-

tend Boosting to RankBoost, this formulation allows one to adopt any graph-based semi-supervised

classification technique to ranking. However, generating all possible pairs of objects in a large

unlabeled dataset quickly leads to intractable graphs.

18

Figure 2.1: Two partially-labeled data problems in ranking. We focus here on semi-supervised rank

learning, where labels are entirely lacking for some queries. A different problem is that of “missing

labels”, where not all documents retrieved by a query are labeled. Note that these two problems are

not mutually-exclusive.

Most prior work consist of graph-based approaches for the Missing Labels problem. However,

they may be extended to address the Semi-supervised Rank Learning problem if one defines the

graph across both dl and du. For instance, [151] investigates label propagation across queries, but

concluded that it is computationally prohibitive. Beyond the computational issue, however, how to

construct a graph across different queries (whose features may be at different scales and not directly

comparable) is an open research question.

To the best of our knowledge, [145] is the only work that tractably addresses the Semi-supervised

Rank Learning problem. First, it uses a supervised ranker to label the documents in an unlabeled

document list; next, it takes the most confident labels as seeds for label propagation. A new su-

pervised ranker is then trained to maximize accuracy on the labeled set while minimizing ranking

difference to label propagation results. Thus this is a bootstrapping approach that relies on the initial

ranker producing relatively accurate seeds. Our previous work [54] proposed another method using

the Change of Representation assumption.

The Semi-supervised Rank Learning problem is important in practice because it may be difficult

to obtain any labels for some queries/lists. For example, in information retrieval, this problem

manifests itself in the long tail of search queries. A quote by Udi Manber (Google Vice President of

19

Engineering) demonstrates how many types of queries are received at Google: “Twenty to twenty-

five percent of the queries we will see today [at Google], we have never seen before.” 1 It is

therefore impractical to obtain labels for many of the queries in practice. For machine translation

and protein structure prediction, the Semi-supervised Rank Learning problem is actually the only

scenario that occurs. In these applications, a one-time sunk cost is associated with obtaining a

reference translation or 3-D structure. Once this reference is obtained, labels for each hypothesis

translation or candidate structure is computed via automatic procedures. Therefore, the additional

cost

2.4 Relations to Domain Adaptation

Domain adaptation (c.f. [79] for a survey) is a field of machine learning that focuses on the prob-

lem of training and testing under different distributions. Our interest in domain adaptation stems

from the fact that transductive learning can be considered an extreme form of domain adaptation,

i.e. where one adapts to the given test set. Recent work such as [14, 125] applied the Change of

Representation idea from semi-supervised learning to domain adaptation. Our work in Chapter 6

goes in the opposite direction, applying domain adaptation techniques to semi-supervised learning.

In particular, our Importance Weighting approach treats each test list as a new domain and adapts

the training procedure towards it.

Generally speaking, domain adaptation can be divided into supervised and unsupervised domain

adaptation: for supervised adaptation, small amounts of labeled data are available for the test domain

and the goal is to leverage the additional large amount of different but labeled data. In unsupervised

adaptation, no labels are available for the test domain. We will discuss only unsupervised adaptation

since the use of unlabeled data relates more closely to the semi-supervised/transductive scenario.

One of the popular approaches in domain adaptation is importance weighting [134], which in-

volves re-weighting the training samples such that samples more representative of the test domain

are emphasized during training. This approach is based on the assumption of “covariate shift”, i.e.

the sample distribution differs between train and test, but the functional relationships between input

1He made this statement at Google Searchology conference, May 2007. A video of the event is available online

at http://www.youtube.com/watch?v=SD0cyYUEE1Y ; his talk is roughly 35 minutes into the 53 minute

video.

20

and output remain unchanged. To illustrate, consider a classification problem with labeled training

set {(xl ,zl)}l=1..L and unlabeled test set {(xu)}u=1..U . Let ptrain(x) and ptest(x) be the true training

and test distributions, which are assumed to be significantly different.

It has been shown [134] that training on a dataset where each training sample {(xl)}l=1..L is

weighted by the ratio w(xl) = ptest (xl)
ptrain(xl)

corrects for covariance shift. In practice, computing the den-

sity estimates p̂test(x) (from {(xl)}l=1..L) and p̂test(x) (from {(xu)}u=1..U , is undesirable in high di-

mensions, so much recent work has focused on directly computing the importance weights w(xl)

(without computing p̂test(·) and p̂test(·)) [17, 73, 141]. A supervised algorithm applied to this

weighted dataset would therefore focus on correctly classifying training samples close to the test

distribution (i.e. high w(xl)), while ignore samples far from it (low w(xl)).

We are aware of only a few recent works addressing the domain adaptation problem in ranking

[155, 38]. However, their methods are under the supervised adaptation framework, and therefore

are not directly applicable to the transductive problem we are interested in here.

2.5 Related Work in Statistics and Economics

There is a large body of literature in statistics on modeling rank data, as well as in economics on

modeling choice decisions. These are related to the ranking problem, and insights from these fields

could potentially benefit our machine learning techniques. We do not directly apply any of the

statistics or economic work here, but for completeness we will briefly describe some background in

these areas. These may be useful in identifying possible avenues of interdisciplinary work.

One of the main goals of statistics is to analyze, model, and interpret data. Ranking data is

a kind of data that often results from surveys, for example. Surveys could be given to a large

population, and insights on what the population prefers could be inferred and hypotheses about

population preferences could be tested. For instance, suppose a survey asks a group of students to

give their preference for a set of drinks: (Coke, Pepsi, Sprite)2. There are 6 possible rank vectors:

(3,2,1), (3,1,2), (2,3,1), (2,1,3), (1,3,2), (1,2,3). Based on the population survey (size N), we obtain

a histogram over these 6 possible rank vectors. The questions that statistics seek to answer are, e.g.:

1. Is there an average (mean/median) rank vector that describes the average preference? If so,

2Example taken from [111]

21

how to compute it?

2. What is the spread of rank vectors to the average (i.e. variance)?

3. Are there clusters of sub-populations that show different kinds of preferences?

4. How to model the population, and how to fit the model to data?

The average rank vector ȳ could be obtained by minimizing, e.g. the following objective:

arg min
ȳ

N

∑
i=1

d(y(i), ȳ) (2.2)

where d is a distance between two rank vectors. Possible distances include:

• Spearman, Footrule, and Hamming: d(y, ȳ) = ∑d |y
p
d − ȳ

p
d | where p→ 0 (Hamming), p=1

(Spearman) or p=2 (Footrule)

• Kendall: d = miniminum number of consecutive swaps required to make y become ȳ.

• Cayley: d = miniminum number of arbitrary swaps required to make y become ȳ.

There are many ways to model the data with a probabilistic model. To give a flavor, here are

some examples:

• Mallows φ model: P(y|ȳ,σ) = 1
Z(σ) exp(−σd(y, ȳ)). This is similar to a Gaussian model,

where we have a “mean” vector ȳ and a constant σ indicating the spread around the mean.

The farther a rank vector y is from the mean (in the d() sense), the lower the probability.

• Babington Smith models: Define pi j to be the probability that object i is ranked above object

j, independent of other potential choices.3. The probability model is then obtained by ranking

a set of objects constrained to the orderings where all pi j’s are consistent.

3The Bradley-Terry model, which is an instance of this, assumes pi j = νi

νi+ν j
, where ν > 0.

22

• Multi-stage models (e.g. Plackett-Luce model): Define µi to be the probability that object i

is the first choice out of all candidates. Then we can imagine a multi-stage process where a

ranking is obtained by drawing the first choice, then deleting the first choice and drawing the

second choice, etc. We may wish the values µi to satisfy some conditions such as the Luce

Axioms.4

For a broad review of ranking models, refer to [57, 111]. One important note about these ranking

models is that they often work with a fixed set of objects. As such, analysis of ranked data is

often termed “analysis of permutations.” For example, in our survey, each participant produces a

preference over the same set of objects (different participants give a different permutation over the

same set). In contrast, in the ranking problems we are interested, different “participants” may be

producing preferences for different sets of objects. For example, in Information Retrieval, each list

of documents represent different documents retrieved via different queries. While this might imply

that prior work on permutations may not always be directly applicable, we already begin to see

recent innovations in machine learning which utilize these ideas (c.f. [28, 101, 72]).

Related work in economics include social choice theory, utility theory, and game theory. All

these fields are concerned with “making choices” out of a set of candidates, and one way this deci-

sion manifests itself is via a preference relation. Social choice theory [9] studies how preferences

can be aggregated to make a collective decision. Utility theory (c.f. [109]) is a branch of decision

theory and game theory which models choice and preference. Each object has an utility, and the

preference relation is induced from the ordering of these utility values. This is very similar to the

score-and-sort approach of ranking. In fact, we may consider many of the methods for ranking as

procedures for estimating the utility of each object.

Chapter Summary

We reviewed various work related to semi-supervised ranking, in particular semi-supervised classi-

fication and supervised ranking. While there are much work in these related fields, semi-supervised

ranking is still a relatively unexplored area. Here we briefly identify some potential challenges and

4Essentially, these axioms formalize intuitions such as: if the probability that Coke is the first choice out of all 3 drinks

is 0.9, then the probability that Coke is the first choice out of (Coke,Pepsi) should be no less than 0.9.

23

open problems in semi-supervised ranking:

• What kinds of unlabeled data assumptions in classification can be converted to ranking? Clas-

sification algorithms can be converted to ranking algorithms via, e.g. pairwise formulation,

but would the unlabeled assumptions be convertible as well?

• What new algorithmic and computational challenges are introduced by the ranking structure?

How can operations (e.g. loss function, kernels) on samples be extended to operations on

lists?

• What sorts of theoretical guarantees are possible with semi-supervised ranking?

The first two challenges will be addressed in this dissertation.

24

Chapter 3

APPLICATIONS AND DATASETS

This thesis focuses on three applications: Information Retrieval, Machine Translation, and Com-

putational Biology. The idea is to utilize a variety of real-world datasets to test the effectiveness of

my algorithms. An algorithm may work well on one dataset but not the other, and investigation into

the reasons for such differences may lead to further insight about the algorithm and its assumptions.

3.1 Ranking in Information Retrieval

The goal of Information Retrieval (IR) is to help a user find the information he/she desires. The

user’s need can be very diverse. For example, in web search, the user’s need can be classified as

informational, navigational, and transactional [25]. The first, informational query, may range from

simple factoid questions such as “What is the highest mountain in the world?” to complex ones such

as “How have different parts of the world responded to the President’s new plan for Afghanistan”.

Users with navigational needs are interested in going to particular webpages on the web (e.g. the

query “NAACL 2009” may indicate a need for the user to find a conference website, which will

eventually help in satisfying other needs. Transactional needs represent a user’s wish to accomplish

some action on the web, such as the “Form 1040 download”.

The IR field is therefore very broad, encompassing studies of human interaction, document rep-

resentation, scalable architectures, etc. (Refer to a recent book by [110] for an overview). Ranking

is one of the core areas of study in IR due to its importance in presenting documents to users in an

efficient manner. Information is essential to making knowledgeable decisions, but information is

useless if the one who needs it cannot find it.

Ranking in IR is classified into two main categories: Static Ranking and Dynamic Ranking.

Suppose we have a large but fixed and finite document collection. Static ranking is the problem

of ordering documents without regard to a specific user query. This ordering can represent the a

priori “quality” of a document; high quality documents should have a prior probability of ranking

25

higher than a low quality document, independent of any user query. For example, Google’s famous

PageRank algorithm [24] assumes that webpages with many in-links are likely to be of much higher

quality than those with few in-links, i.e. p(d) = (1−α)+ α (∑d′∈Incoming
p(d′)
c(d′)). Here, p(d) is the

PageRank of document d (the higher the better), c(d′) is the number of out-links for document d′,

and α is a damping factor that is useful for computational issues and modeling a random surfer. We

see here that this recursive equation generates a static ranking of all webpages on the web, where

a webpage that is often linked by others with high pagerank is itself higher in rank. Importantly,

note that this ranking is only a function of the underlying web graph and is independent of any user

query.

In contrast, Dynamic ranking is the problem of ordering documents after a user-given query has

been observed, i.e. a user need has been stated. A large class of dynamic ranking functions are

human-engineered “metrics” that compute a score for each query-document pair. Documents are

then ranked by their respective scores. For example, using the vector space model, one can measure

the score of a query-document pair as the distance between suitably-defined query and document

vectors. Particular methods include TF-IDF and BM25, which have been shown to work well in

many evaluations.

Recently, the machine learning paradigm has emerged as a promising approach to solving rank-

ing problems. In this “Learning to Rank” setup, one first prepares a training set comprising queries

and documents labeled by their relevance. These query-document pairs are represented by feature

vectors, which could include a variety of metrics (e.g. BM25). Then a machine learning algorithm

learns the optimal combination of these features for predicting relevance rankings. The advantage

of the machine learning approach is that it can automatically tune the ranking function for the given

dataset. However, this also leads to a disadvantage: the ranking function can only be as good as the

quality and the size of labeled training data.

This thesis focuses on the dynamic ranking problem, where features derived from static ranking

may be employed.

26

Type of feature Examples

Document characteristics document length

Term matching of query and web document BM25[126], LMIR[165], tfidf

Term matching of query and metadata (anchor, title, URL) BM25, LMIR, tfidf

Static ranking PageRank[24], HITS[87]

Hyperlink-based scores Hyper-link feature propagation[123]

Table 3.1: Examples of TREC features

3.1.1 Information Retrieval Datasets

Our IR experiments are performed on the LETOR dataset (version 2) [107], which contains three

sets of document retrieval data: TREC’03, TREC’04, and OHSUMED. This is a dynamic re-ranking

(subset ranking) problem, where an initial set of documents have been retrieved and the goal is to

sort the set in an order most relevant to the query. This is a commonly-used benchmark task in IR.

The TREC data is a Web Track Topic Distillation task [50]. The goal is to find webpages that

are good entry points to the query topic. Figure 3.1 gives an example of a query and a subset of

webpages that ought to be returned by the ranker. As seen in the example, webpages such as “USDA

Cotton Program” provide a good entry point reference for a variety of information that will answer

the query; the webpage itself may not contain much information, but should contain pointers to

information. The original data consists of all webpages from a crawl of the .gov domain in 2004.

There are a total of 1,053,110 HTML webpages and 11,164,829 hyperlinks. The LETOR dataset

conveniently extracts many state-of-the-art features from query-document pairs, including BM25

[126], HITS [87], and Language Model [165], and hyperlink propagation [123]. A summary of

features is given in Table 3.1.

The OHSUMED data [68] consists of medical publications and the queries represent medical

search needs. It is a clinically-oriented MEDLINE subset, consisting of 348,566 references (out

of a total of over 7 million), covering all references from 270 medical journals over a five-year

period (1987-1991). An example query and relevant document is shown in Figure 3.2. Note that the

document fields are the title, abstract, MeSH indexing terms, author, source, and publication type.

27

QUERY:

Title: cotton industry

Description: Where can I find information about growing, harvesting cotton and turning

it into cloth?

EXAMPLE ANSWERS/HOMEPAGES

• Cotton Pathology Research Unit (cpru.usda.gov/)

• FAS Cotton Group (ffas.usda.gov/cots/cotton.html)

• Office of Textiles and Apparel (otexa.ita.doc.gov/)

• USDA Cotton Program (www.ams.usda.gov/cotton/)

Figure 3.1: Example TREC query and webpages

The features are in general of the term-matching type, ie. BM25, LMIR, and tfidf.

For TREC, documents are labeled {relevant,irrelevant}; an additional label {partially

relevant} is provided for OHSUMED. Table 3.2 summarizes the data (e.g. in TREC’03, the

ranker needs to sort on average 983 documents per query, with only 1 document in the set being

relevant); see [107] for details.

3.1.2 Information Retrieval Evaluation

The evaluation metrics are mean average precision (MAP) and normalized discount cumulative

gain (NDCG@n) [77]. MAP is defined using precision, the percentage of relevant documents up to

a given rank. For a set of R relevant documents, average precision (AP) is:

AP =
1

|R| ∑
d(j)∈R

precision@rank(j)

For example, for a set of documents with the following ranking: {relevant, irrelevant, relevant},

the precision at rank 1, 2, 3 are 1/1, 1/2, 2/3, respectively, and the AP is 1
2
(1/1+ 2/3) = 0.8. MAP

28

QUERY:

Patient Info: 60 year old menopausal woman without hormone replacement therapy

Information request: Are there adverse effects on lipids when progesterone is given with

estrogen replacement therapy

DOCUMENT:

Source: J Obstet Gynaecol 8707; 94(2):130-5

MeSH Keywords: Drug Combinations; Estrogens/AE/*TU; Female;Hemorrhage/CI; ...

Title: Continuous oestrogen-progestogen treatment and serum lipoproteins in

postmenopausal women.

Publication type: JOURNAL ARTICLE.

Abstract: Serum lipids and lipoproteins were examined in 44 healthy postmenopausal

women every 3 months during 1 year of treatment with either continuous

oestrogen-norethisterone acetate or placebo. Total serum cholesterol and

LDL-cholesterol levels were reduced by approximately 15% and 20% (P less than

0.001), respectively in the hormone group but were unchanged in the placebo group....

Moreover, the low frequency of bleeding with continuous oestrogen-proge stogen therapy

would make this an appropriate alternative in postmenopausal replacement therapy.

Author: Jensen J; Riis BJ; Strom V; Christiansen C.

Figure 3.2: Example OHSUMED query and document

is the mean of AP over all queries. NDCG is an alternative metric that takes into account multiple

levels of judgment (not only relevant vs. irrelevant). Similar to precision, NDCG is measured at a

given position:

NDCG(n) = Zk

n

∑
j=1

2r(j)−1

log(j)

Here r(j) = 0,1, ..M represents the M-level numerical rating for document d(j) (Higher value

indicates more relevance). The log is base 2 and we set log(1) = 1 (not 0) in the above equation. Zk

29

Table 3.2: IR Data characteristics

TREC’03 TREC’04 OHSUMED

#queries 50 75 106

#documents 49k 74k 16k

avg #document/query 983.4 988.9 152.3

#relevant documents 516 1600 4.8k

avg #relevant/query 1 0.6 28

avg #document pairs 302k 262k 369k

#features (original) 44 44 25

is a normalization constant that represents the score of the best possible ranking and allows NDCG

to be bounded by [0,1].

As reported by [107], some of the state-of-the-art results based on RankBoost and RankSVM

are as follows:

• TREC’03: RankBoost - 0.212 MAP, RankSVM - 0.256 MAP

• TREC’04: RankBoost - 0.383 MAP, RankSVM - 0.350 MAP

• OHSUMED: RankBoost - 0.440 MAP, RankSVM - 0.447 MAP

3.2 Ranking in Machine Translation

In machine translation systems, ranking algorithms are used as a “2nd-pass” decision maker that im-

proves upon the outputs of a “1st-pass” translation system. The 1st-pass system, due to constraints

in computing power, usually employs simpler features and knowledge sources when translating

foreign sentences. For each input sentence, it generates a set of likely hypotheses (N-best lists),

which is then re-ordered by a ranking algorithm that employs more powerful features or knowledge

sources. In a variant of this setup called “system combination”, multiple 1st-pass systems are simul-

taneously employed to generate multiple N-best lists, which are then combined and ranked. This

coarse-to-fine approach of ranking a hypothesis set generated by the 1st pass system can be very

30

effective in improving system accuracy. The assumption is that good translations lie in the set of the

hypotheses, and can be picked out by powerful ranking algorithms.

In machine translation, the ultimate output of the entire system is a single translation, so the

more specific loss function ltop that only measures the quality of the top hypothesis is used. In

addition, the labels {y(l)} are usually total orderings. Automatic metrics, which measure the distance

between translations and their corresponding human-produced references, provide an effective way

to label each hypothesis with a score. These scores (e.g. the BLEU metric for machine translation)

can be sorted to provide a total ordering. Further, multiple hypotheses may have the same loss,

so in practice we have ties. Finally, machine translation systems tend to have low-dimensional

feature vectors for representing hypotheses–this in turn impacts issues such as separability of data.

We note that there are research systems that operate on hundreds or thousands of features, but the

conventional systems usually work with on the order of 10 features. The features, which include

likelihood scores from language models, translation models, acoustic models, etc., are sometimes

called “sub-models” because they are each quite complex functions and encompass a significant

amount of information.

3.2.1 Machine Translation Datasets

We employ two machine translation datasets from the International Workshop on Spoken Language

Translation (IWSLT) shared task of 2007. One dataset is for Arabic-English translation, while

the other is for Italian-English translation. IWSLT evaluations, in general, focus on translation of

spontaneous speech. The Arabic-English task involves translation of transcribed read speech of the

Basic Travel Expression Corpus (BTEC) [143], which contain sentences similar to those found in a

traveler’s phrase book. The training data for the Italian-English task consisted of transcriptions of

read dialogs, whereas the test data contains spontaneous dialogs (e.g., between a travel agent and

his clients regarding transactions about ticket purchases and hotel reservations), so there is a data

mismatch condition in the Italian-English case.

The baseline systems used for this task are described in the System Description paper of Uni-

versity of Washington’s entry in IWSLT [86]. The work in this thesis is based on the University of

Washington system, so note that the following brief descriptions are related to the system and do

31

not represent the only approach for machine translation. Nevertheless, the University of Washington

system is a mainstream and competitive system in the framework of phrase-based statistical machine

translation. For a good recent survey of various approaches to machine translation, see [108].

The first-pass machine translation system is a statistical phrase-based MT system based on a

log-linear probability model:

e∗ = argmax
e

p(e| f) = arg max
e

{
K

∑
k=1

λkφk(e, f)} (3.1)

where e is the English sentence, f is the foreign (Italian or Arabic) sentence, λk are k weights to be

trained, and φk(e, f) are features such as phrase-based translation scores, lexical translation scores,

word count penalty, and language model score.

The weights are trained by Minimum Error Rate Training (MERT) [119] and decoding is done

via the Moses decoder (without factored models) [89]. The decoding generates N-best lists of size up

to 2000 hypotheses, which is then de-duplicated to remove identical hypotheses. This dataset is the

input to our second-pass ranker. For more details about the system, refer to the system description

[86]. A brief summary of the data characteristics are shown in Table 3.3.

Table 3.3: MT Data characteristics

Arabic-English (ar) Italian-English (it)

#lists (dev set) 482 500

#lists (test set) 499 494

avg hypothesis per list 260 362

minimum # of hypotheses in a list 2 1

maximum # of hypotheses in a list 1676 1626

#manual references 7 1

#features (original) 9 10

32

3.2.2 Machine Translation Evaluation

Traditionally, MT evaluation measures required examination of results by human judges, who an-

notated the adequacy of translation in capturing the meaning and fluency of the expression in the

target language. This is expensive, however, so the community has since moved towards automatic

evaluation metrics such as word error rate BLEU [122], PER [120], TER [140], and METEOR [98].

A common element of these automatic metrics is the requirement of one or more human-generated

translation of the test set, called references. The idea is to match the system output with these human

references; the larger the match, the better the translation.

In this work, we use BLEU [122], the most common evaluation metric to date. BLEU considers

n-gram matches of the system output with human references up to a maximum n (usually n=4, as

employed in this work). This rewards sentences where the local word order matches that of the

reference. BLEU is a precision-oriented measure in that it calculates the percentage of n-gram

matches out of the total number of n-grams in the sentence. A brevity penalty is introduced to

capture recall: it penalizes sentences that are significantly shorter than the reference. The BLEU

metric is computed over the whole corpus using the following equation:

BLEU = BP · exp(∑
n

log pn) (3.2)

where BP is the brevity penalty and pn is the precision of each n-gram.

Traditionally, researchers report the BLEU score of the top hypotheses chosen by the ranker. In

addition to this, here we report what we call Top-k BLEU oracle scores, which is a metric useful

for MT system combination scenarios. In this scenario, the 2-nd pass ranker not only outputs the

top hypothesis after re-ranking, but the Top-k hypotheses. The idea is that a downstream system

combination engine will gather these k-best lists from multiple MT systems and do an additional

re-ranking step. System combination has become an effective strategy in MT research due to, e.g.

advances in sentence/lattice alignment (c.f. [127]), and therefore we believe Top-k oracle is a mean-

ingful metric to report.

The Top-k BLEU oracle is best illustrated by an example. In Figure 3.3, we see seven hypoth-

esized translations (of the Arabic-English dataset) in the order ranked by the re-ranker. If we only

output a single sentence (“please press the button yellow), the BLEU score would be .53. If we in-

33

stead output the top-2 hypotheses (“please press the button yellow”, “please press button yellow”),

the best possible (oracle) BLEU score is still .53. If we output the top-4 hypotheses, the best possi-

ble BLEU score is 1.0. In this sense, the Top-k BLEU oracle represents the best possible achievable

BLEU score if the Top-k list is given to a system combination engine.1 Note that in this definition,

the Top-k BLEU oracle is a non-decreasing curve with respect to k.

In addition to BLEU, we report PER (position-independent word error rate) for the first hypoth-

esis in the re-ranked list.

REFERENCES

please press the yellow button

please push the yellow button

Hypotheses in ranked order and BLEU of individual hypothesis

(BLEU=.53) 1. please press the button yellow

(BLEU=.42) 2. please press button yellow

(BLEU=.41) 3. please press the button the yellow

(BLEU=1.0) 4. please press yellow button

(BLEU=.65) 5. please press the yellow the button

(BLEU=.43) 6. please press yellow the button

(BLEU=.35) 7. please press a yellow the button

Figure 3.3: Illustration of Top-k BLEU oracle score. Top-1 oracle=.53, Top-2 oracle=.53, Top-3

oracle=.54, Top-4 oracle=1.0, Top-5 oracle=1.0.

3.3 Ranking in Computational Biology (Protein Structure Prediction)

Protein structure prediction is an important research area within computational biology. The goal

is to predict the 3-D structure of a protein based on sequence (e.g. amino acid) information. This

1This assumes the system combination is simply choosing among sentences; more advanced system combination

methods merge different sentences and generate new ones, in which case the Top-k BLEU oracle becomes a lower

bound on the best possible score from system combination.

34

problem is of significant interest because while advances in genome sequencing techniques have

produced large datasets of linear amino acid sequences, full understanding of the biological role of

proteins require knowledge of their structure and function [10].

Protein structure prediction methods can generally be divided into two classes. Given a se-

quence with unknown protein structure, template-based modeling works by first identifying similar

sequences in a pre-established protein database (PDB), and then the predicted structure is con-

structed from these possibly-similar “templates” (c.f. [39]). On the other hand, in ab initio model-

ing, the 3-D structure is constructed from scratch by physical simulation and sampling the conformal

space [146]. In either case, a common component of the overall system involves ranking the set of

templates or samples in order to select the most promising candidates [124].

In this work, we follow the framework set up by [124]. The particular task is to select among

multiple protein structure candidates that are generated from various methods. The test set involves

the protein structures submitted to the the annual CASP (Critical Assessment of Methods of Protein

Structure Prediction) evaluation [116]. The CASP evaluation is a community-wide effort in protein

structure prediction, where different research groups around the world submit their structure predic-

tions on a common set of yet-to-be-known proteins. For each unknown protein sequence, we have

a set of candidate structures from various sites. The goal of the ranker is to choose the best among

the set.

The problem setup is therefore analogous to the machine translation task. Whereas MT rankers

work with a N-best list of hypothesis translations, the protein prediction ranker works with a N-best

list of candidate 3-D structures. In MT, the goal is to find the best translation that matches a human

reference translation. In protein prediction, the goal is to find the best structure that matches the

true structure as determined by X-ray crystallography or other methods (which are usually more

expensive than the computational approach).

3.3.1 Protein Structure Prediction Dataset

We use the protein structure prediction dataset provided by [124].2 The training data consists of

the predicted structures submitted to CASP5 and CASP6 evaluations. The native protein structures

2I am immensely grateful to Jian Qiu and Bill Noble for their numerous help on preparing this dataset.

35

from PDB used in the training set of [124] is not included here since our training algorithms are

based on ranking.3 The test set consists of proteins to be predicted for the CASP7 challenge.

A brief summary of data statistics is shown in Table 3.4. As seen, there are 99 proteins to be

predicted in the test set, each with around 211-267 candidate structures to choose from. The number

of candidate structures per list is more for the test set because the test set includes the top five models

submitted by site participants, whereas the training data only contains the top model. For details,

refer to [124].

Table 3.4: Protein Prediction Data characteristics

TRAINING SET TEST SET

#lists, i.e. number of proteins to predict 73 99

#candidate structures per list 61-132 211-267

Total number of structures 7730 24128

#features (original) 25 25

There are 25 features that represent each protein structure. The features divide into two major

types. One type measures the properties of the structure directly, such as pairwise atomic potential

of the fold, the overall shape and packing, and the hydrogen bonding patterns. The other type of fea-

ture are termed “consensus features” and measure the similarity of a structure to other structures in

the same list. The intuition is that correctly-folded structure is more likely to be similar to other pre-

dicted structures for the same target protein, and that incorrectly-folded structures would most likely

be outliers. For a given structure xi, its consensus feature is computed by median(sim(xi,x j)).∀ j 6= i.

sim(·, ·) is a similarity function that measure the distance between two structures (such as the GDT-

TS metric). The median, rather than the mean, is used to avoid being sensitive to skewed distribu-

tions.

3Qiu and Noble [124] trains by a regression objective, thereby allowing them to use these native protein structures as

additional information. We cannot use these native structures in ranking because they are not lists, but single points.

36

3.3.2 Protein Structure Prediction Evaluation

Our evaluation metric consists of the GDT-TS [164] and the z-score, following [124] and CASP

evaluations. The GDT-TS measures the structure’s backbone quality when compared to the true

structure. Similar to the MT evaluation, we also report the Top-k oracle GDT-TS scores (For K=5,

this is equivalent to the GDT-TS5 metric used in [124]). The higher the GDT-TS score, the more

similar the predicted structure is to the true structure. We report overall GDT-TS by averaging over

GDT-TS of all test proteins.

In addition, since GDT-TS scores are not calibrated across different proteins, we additionally

report z-scores. The z-scores are calculated by first taking the mean GDT-TS score of each list, then

measuring how many standard deviations (z) the chosen structure is from the mean. The z-score

calibrates for absolute differences of GDT-TS score between different protein targets. It can be

positive (meaning that the chosen structure is better than average) or negative (meaning that ranking

did worse than the average).

The state-of-the-art results, as reported in [124], can be summarized as:

• Top performing systems ([124]): GDT-TS = 0.589; z-score = 1.11 to 1.17

• Oracle (best structures are manually selected): GDT-TS = 0.636; z-score = 1.81

• The second-best system (SVR-noZhang in [124]) achieves GDT-TS = 0.576 and z-score=1.02.

This difference of (0.589-0.576=0.013) is statistically significant from the top performing

systems according to the Wilcoxon signed rank test.

Chapter Summary

We described the 3 applications (6 datasets) considered in this work. Characteristics of the datasets

are summarized in Table 3.5. Importantly, we note that each application has different characteristics,

which will be helpful in analyzing when an algorithm works and when it does not.

37

Table 3.5: Summary of all datasets used in this work.

Information retrieval Machine translation

TREC TREC OHSUMED Arabic- Italian- Protein

2003 2004 English English prediction

lists 50 75 106 482 500 73

label type discrete discrete discrete continuous continuous continuous

avg # objects/list 983 988 152 260 362 61-132

features 44 44 25 9 10 25

evaluation MAP, NDCG BLEU,PER GDT-TS, z-score

38

Chapter 4

A LOCAL/TRANSDUCTIVE FRAMEWORK FOR RANKING

In this chapter, we propose a simple yet flexible local/transductive meta-algorithm for ranking.

The key idea is to adapt the training procedure to each test list after observing the documents that

need to be ranked. This framework allows us to explore various assumptions in unlabeled data.

The organization of the chapter is as follows: The proposed local/transductive meta-algorithm

framework is presented in Section 4.1. Then we present a brief background review of RankBoost

(Section 5.1.2), a supervised ranking algorithm that serves as a basic component in each of the three

approaches we will discuss in subsequent chapters. Section 4.3 describes an extension of RankBoost

that works with continuous-value labels, which will be necessary for the machine translation task.

The goal of this chapter is to set up the basics, so that we can delve into actual algorithms in Chapters

5 to 7.

4.1 Description of Local/Transductive Framework

We use the following notation in this chapter. For concreteness, we will present the ideas using

Information Retrieval as an example, so objects are documents, and lists are documents to be ranked.

Let q = query, d = list of retrieved documents, and y = list of relevance judgments. Let S =

{(ql ,dl,yl)}l=1..L be the training set consisting of L tuples of query-document-labels. Documents

within the set dl will be indexed by superscripts, i.e. d
(j)
l where j = 1..Nl (Nl is the number of

documents retrieved for query ql). The traditional task of “supervised learning” is to learn a ranking

function using S; the ranker is then evaluated on a previously unseen and unlabeled test set E =

{(qu,du)}u=1..U , where U is the number of test queries. In transductive learning, both S and E

are available when building the ranking function, which is also then evaluated on E . This has the

potential to outperform supervised learning since (1) it has more data, and (2) it can adapt to the test

set. A pictorial representation of our problem is shown is Figure 4.1.

We now introduce our general framework for thinking about local/transductive ranking. We

39

Figure 4.1: Supervised learning, inductive semi-supervised learning, and transductive learning: here

we focus on the transductive setting, where test query is observed during training.

motivate it with the following question:

Suppose we observe a particular test query qu (let u = 1) and the corresponding list

of Nu=1 retrieved documents that need to be ranked (i.e. du=1 ≡ {d
(j)
u=1}, j = 1..Nu=1).

Each document in this list is a k-dimensional feature vector comprising BM25, TF-

IDF, etc. What information can we exploit from this k×Nu=1 set of numbers in order

to improve our ranking for this query?

It is important to note that we set up the problem so that only one test query/list is in focus at a

time, even though there may be U test queries in total. The rationale is that different test queries are

essentially independent problems from the perspective of the ranking function, and that it is likely

easier to extract information that will be helpful for one list, rather than many lists. 1

Algorithm 1 presents our general framework (meta-algorithm) for transductive ranking in pseudo-

code. For each test list u, first we obtain some information from the raw document feature vectors du

(line 2). Then, we use this additional information, together with the original labeled training data,

1The motivation here has some analogies to query classification (c.f. [59]), which believes that different classes of

queries are best served by different ranking functions. We push this to the extreme by making every query be served

by its own ranking function.

40

to obtain a ranking function (line 3). After the ranking function Fu(·) re-sorts the test list u, it can

be discarded (line 4). The loop (lines 1-5) need not be a sequential operation, but can be computed

in parallel since the ranking functions are trained independently.

Algorithm 1 Local/Transductive Meta-Algorithm

Input: Train set S = {(ql ,dl,yl}l=1..L

Input: Test set E = {(qu,du)}u=1..U

Output: Predicted rankings for test: {yu}u=1..U

1: for u = 1 to U do

2: Observe the test documents du = {d
(j)
u } j=1..Ju

for query qu.

3: Train a ranking function Fu(·) using the Train Set S and the additional observed information.

4: Predict the test ranking: yu = Fu(du)

5: end for

Our proposed meta-algorithm can be contrasted with the established method of pseudo-relevance

feedback, which can be seen as a kind of transductive ranking technique. Pseudo-relevance feedback

(c.f. [157], [110] chapter 9) uses words in the initial top retrieved documents to generate a new query,

which is then used to retrieve a new list of documents. Although this new query may contain some

noise, as in the semi-supervised method of self-training, it may retrieve more relevant documents

that have little match with the original query. Note that pseudo-relevance feedback occurs at query-

time and the result is query-specific. In this respect it is similar to our transductive meta-algorithm.

The three main differences are:

1. Pseudo-relevance feedback usually uses textual information from the test list, whereas our

transductive meta-algorithm works purely from the document feature vectors

2. Pseudo-relevance feedback usually creates a new query, whereas our meta-algorithm creates

new ranking function.

3. Pseudo-relevance feedback depends on a self-training/bootstrapping assumption, whereas our

meta-algorithm leaves the assumption unspecified.

41

Finally, we can also compare our meta-algorithm to local learning. Local learning differs from

traditional supervised learning in that it does not use the entire training set, but rather selects a

subset of samples close to each test sample [22]. The intuition is that fitting a smooth function

over a small partition of the feature space is easier than fitting a function over the entire space. Our

meta-algorithm could be termed local, due to properties such as training at query-time and fitting

test-specific functions; however, our meta-algorithm is more general in that it is not restricted to

techniques that subsample the training data. In the information retrieval literature, local learning by

k-nearest neighbors [62] and by query-time association rules [150] have achieved promising results.

The fact that we focus on a single test list at a time has several advantages:

1. Letting our unlabeled data be the test data (transductive scenario) is arguably a simpler situa-

tion than inductive semi-supervised learning [149]. One main goal of the thesis is to explore

how we can use unlabeled data, so the fact that the unlabeled data is the test data avoids

additional challenges associated with learning generalization.

2. Focusing on a single test list at a time can be thought of as a form of local learning. Since

ranking functions can be complex, local learning can be a convenient method to improve over

state-of-the art baselines.

3. Importantly, combining local learning with transductive learning means that we only work

with unlabeled objects from the same list at a time. This can help give a meaningful inter-

pretation when we adopt assumptions from semi-supervised classification. For instance, the

Low Density Assumption on pairwise instances extracted from a single list may reveal cluster

structure, which gives a meaningful interpretation that objects with good and bad ranks exist

on opposite sides of the feature space. However, if we had extracted pairwise instances from

multiple lists, the cluster structure (if it exists), would be more difficult to interpret.

We investigate three instantiations of this general framework: The Feature Generation approach

(Chapter 5) is based on discovering more salient features from the unlabeled test data and training a

ranker on this test-dependent feature-set. The Importance Weighting approach (Chapter 6) is based

on ideas in the domain adaptation literature, and works by re-weighting the training data to match

42

the statistics of each test list. The Low Density Separation approach (Chapter 7) exploits the cluster

assumption on pairs of objects extracted on the test list.

One note about terminology: We call the method “local” because it focused on a single test list

at a time, and “transductive” because it does not train until test data is received. However, some

may disagree with these terms. Especially, “transductive” sometimes imply that a set of test points

are provided–in our case we only have one test list and therefore do not leverage any potential

information that can be obtained across lists.

4.2 RankBoost: a supervised ranking algorithm

In successive chapters, we will use RankBoost or its variant as the component in Line 3 of Algorithm

1, therefore we will describe RankBoost in detail here. RankBoost [58] is an extension of the

boosting approach [129] for ranking. In each iteration, RankBoost searches for a weak learner that

maximizes the (weighted) pairwise ranking accuracy (defined as the number of document pairs that

receive the correct ranking). A weight distribution is maintained for all pairs of documents. If a

document pair receives an incorrect ranking, its weight is increased, so that the next iteration’s weak

learner will focus on correcting the mistake.

It is common to define the weak learner as a non-linear threshold function on the features (de-

cision stump). For example, a weak learner h(·) may be h(d(j)) = 1 if “BM25 score > 1” and

h(d(j)) = 0 otherwise. The final ranking function of RankBoost is a weighted combination of T

weak learners:

F(d(j)) =
T

∑
t=1

θtht(d
(j)), (4.1)

where T is the total number of iterations. θt is computed during the RankBoost algorithm and its

magnitude indicates the relative importance of a given weak learner (feature). Finally, a ranking

over a document list d is obtained by calculating y j = F(d(j)) for each document and sorting the list

by the value of y j.

43

Algorithm 2 RankBoost

Input: Train set S = {(ql ,dl,yl}l=1..L

Input: Initial distribution D(i, j) over (i,j)

Output: Ranking function F(·).

1: for t = 1 to T do

2: Find weak ranker ht(·) on weighted data D.

3: Choose step size θt

4: Update weights D(i, j) = D(i, j)expθt(ht(d
(i))−ht(d

(j))). Normalize.

5: end for

6: Output final ranking function F(d(n)) = ∑T
t=1 θtht(d

(n)).

4.3 Modifications to RankBoost for continuous-level judgments

RankBoost, by design, works with discrete relevance judgments. As seen in the pseudocode in

Algorithm 2, RankBoost extracts pairs of samples, where each pair represents two documents that

have different ranks. Two documents with the same rank are not included as pairwise data because

one does not need to learn whether one object is ranked higher than another.2 RankBoost generally

assumes a discrete set of relevance judgments, so it is clear which pairs of documents should be tied.

However, for Machine Translation (as well as Protein Structure Prediction), the “relevance judg-

ment” comes in the form of real-valued scores. In MT, this may be the sentence-level BLEU score;

for Protein Prediction, it may be the GDT-TS score of the structure. The question in this case is: If

we have two translations, do we extract them as a pair for RankBoost if one has BLEU of .43 and

the other has BLEU of .44? What if the difference is .43 vs. .45? Continuous value judgments pose

two problems for RankBoost:

1. A difference in value (i.e. .44 vs .43) may not be significant enough to warrant an extracted

pair. The values may be so close that the objects should practically be considered as tied.

2. If we were to extract pairs for all objects with absolute differences in their value judgments,

there may be too many pairs and the memory requirements may become prohibitive. In gen-

2There is recent work, however, that seeks to exploit this kind of tie information. c.f. [169].

44

eral, the number of pairs for continuous labels scale as O(N2) (where N is the number of

documents in a list), but for discrete labels with small cardinality, the number of extracted

pairs can be much smaller in practice.3 For large N (e.g. N=1000 for 1000-best lists), the

memory requirement for continuous labels may become prohibitive while that for discrete

labels may still run efficiently.

A solution to the continuous-value label problem is to quantize the values into discrete lev-

els. This approach was taken in [133], which applied RankSVM/Perceptron to MT Re-ranking by

“splitting” the N-best list into positive and negative hypotheses. This essentially corresponds to a

two-level quantization, where the midpoint is tuned. The results were mixed, however.

We use a different solution here. Rather than applying quantization, we extract pairs only if

their score difference is above a threshold. This is clarified in the simple pseudocode in Algorithm

3. To compare this approach with quantization, consider the list shown in Figure 4.2. We see that

quantization and Algorithm 3 extract very different pairs.

Algorithm 3 Pair extraction with threshold

Input: A training list (q,d,y), where d = {d(j)} j=1..N

Input: User-set threshold t ≥ 0

Output: A set P of pairs (i, j), i, j ∈ (1..N) which represent hard preference relations

1: for i = 1 to N do

2: for j = 1 to N do

3: if y(i) > (y(j) + t) then insert (i, j) in P.

4: end for

5: end for

The relative performance of these approaches depends on the data. Table 4.1 shows the dev set

BLEU score (on the Arabic task) for a variety of quantization and pair extraction schemes. We chose

the best one (threshold=30) in all our following experiments. In general, Algorithm 3 outperforms

quantization on machine translation datasets.

3e.g. Suppose we have only two discrete labels, then the number of pairs range from (N −1)∗1 = N −1 to (N/2)∗
(N/2) = N2/4.

45

BLEU of individual hypothesis in a list

(BLEU=1.0) 1. please press yellow button

(BLEU=.6) 2. please press the yellow the button

(BLEU=.5) 3. please press the button yellow

(BLEU=.4) 4. please press button yellow

(BLEU=.3) 5. please press a yellow the button

Figure 4.2: Pair extraction example. The quantization approach may discretize all labels with

BLEU>0.45 to 1 and all labels with BLEU < 0.45 to 0, leading to the pairs (1,4), (1,5), (2,4),

(2,5), (3,4). On the other hand, pair extraction with threshold (t=0.3) will extract entirely different

pairs: (1,2),(1,3),(1,4),(1,5),(2,5).

Chapter Summary

In this chapter we introduced the local/transductive framework for ranking. The next three chap-

ters will present practical algorithms that exploit different semi-supervised assumptions under this

framework.

We also reviewed RankBoost and a modification thereof to work with continuous-level labels.

This supervised ranking algorithm will be basic components in the local/transductive algorithms of

the next chapters.

46

Table 4.1: Dev set BLEU of various pair extraction schemes

Pair Extraction Method # Pairs Extracted Dev BLEU

Algorithm 3, t=40 41k 29.0

Algorithm 3, t=30 251k 29.2

Algorithm 3, t=20 1480k 29.1

Quantize: Best hyp = 1, Others = 0 24k 26.6

Quantize: All hyp with BLEU >40 = 1, Others = 0 282k 27.2

Quantize: All hyp with BLEU > than that chosen by MERT = 1 225k 27.3

Quantize: All hyp in top 70 percentile = 1 525k 26.4

Quantize by k-means 701k 27.3

47

Chapter 5

INVESTIGATING THE CHANGE OF REPRESENTATION ASSUMPTION

The Change of Representation Assumption assumes that better feature representations are pos-

sible, and that unlabeled data can help discover these representations. In this chapter, we present a

Feature Generation Approach (Section 5.1) which exploits this assumption under the Local/Transductive

Framework (introduced in Chapter 4). Experimental evaluation of this approach in Information Re-

trieval, Machine Translation, and Protein Structure are presented in Sections 5.3 to 5.5. In addition,

a novel feature extraction algorithm is described in Section 5.2–this method enhances the Feature

Generation Approach.

5.1 Feature Generation Approach

The Feature Generation (FG) Approach, works by finding better features on the test data. It employs

two components:

• First, an unsupervised method (e.g. principal components analysis) is applied to discover

salient features for the test list.

• Second, a supervised method for learning to rank (e.g. RankBoost) is applied to a labeled

training data with this new representation, which ideally is more pertinent to the test list in

question.

48

Algorithm 4 Feature Generation (FG) Approach to Transductive Ranking

Input: Train set S = {(ql ,dl,yl}l=1..L

Input: Test set E = {(qu,du)}u=1..U

Input: DISCOVER(), unsupervised algorithm for discovering salient patterns

Input: LEARN(), a supervised ranking algorithm

Output: Predicted rankings for test: {yu}u=1..U

1: for u = 1 to U do

2: Pu = DISCOVER(du) # find transform on test data

3: d̂u = Pu ·du # project test data along Pu

4: for l = 1 to L do

5: d̂l = Pu ·dl # project train data along Pu

6: end for

7: Fu(·) = LEARN({(ql, d̂l,yl)}l=1..L)

8: yu = Fu(d̂u) # predict test ranking

9: end for

Algorithm 4 shows the pseudocode for this Feature Generation approach1. DISCOVER() is a

generic unsupervised method that is applied to each test list du separately (line 2). LEARN() is a

generic supervised method for learning rank functions. Since the feature-based representations of

the training documents ({dl}l=1..L) are enriched with additional test-specific features (line 5), we

learn a different ranking function Fu(·) for each test query (line 7).

The usefulness of test-specific features and test-specific ranking functions is illustrated in Fig-

ures 5.1(a) and 5.1(b). These are plots of documents from two TREC’04 queries. The x-axis shows

the (normalized) HITS Hub score of a document, while the y-axis shows the (normalized) BM25

score of the extracted title (both are important features for learning). Irrelevant documents are plot-

ted as small crosses whereas relevant documents are large dots. For the first query (Fig. 5.1(a)),

we see that the data varies mostly along the y-axis (BM25); for the second query (Fig 5.1(b)), the

variation is on the x-axis (HITS). These two document lists would be better ranked by two different

1Here, line 2 corresponds to line 2 in the Algorithm 1, lines 3-7 correspond to line 3 in Algorithm 1.

49

−5 0 5 10 15 20 25
−1

0

1

2

3

4

5

6

7

HITS

B
M

2
5

TREC04 query192

(a)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

0

1

2

3

4

5

6

7

8

HITS

B
M

2
5

TREC04 query97

(b)

Figure 5.1: Plots of documents for 2 different queries in TREC’04 (y-axis = BM25, x-axis = HITS

score). Relevant documents are dots, irrelevant ones are crosses. Note that (a) varies on the y-axis

whereas (b) varies on the x-axis, implying that query-specific rankers would be beneficial.

rankers, e.g. one which ranks documents with BM25 > 2.5 as relevant, and the second which ranks

documents with HITS > 1.25 as relevant. A single ranker would find it difficult to simultaneously

rank both lists with high accuracy.

In this thesis, we use kernel principal components analysis (Kernel PCA) [130] as the unsu-

pervised method and RankBoost [58] as the supervised ranker. Kernel PCA is advantageous in its

flexibility in generating many different types of features by the use of different kernels.2 This is a

good combination with RankBoost, which has been shown to be relatively robust to variations in

tuning parameters and feature sets. These are described in detail in the following subsections.

5.1.1 Unsupervised feature extraction: Kernel PCA

Principal components analysis (PCA) is a classical technique for extracting patterns and performing

dimensionality reduction from unlabeled data. It computes a linear combination of features, which

forms the direction that captures the largest variance in the data set. This direction is called the

principal axis, and projection of a data point on it is called the principal component. The magnitude

of the principal component values indicates how close a data point is to the main directions of

variation.

2Since we are using PCA transforms, we are performing a kind of feature transformation as opposed to feature

selection.

50

Kernel PCA [130] is a powerful extension to PCA that computes arbitrary non-linear combi-

nations of features. As such, it is able to discover patterns arising from higher-order correlations

between features. We can imagine Kernel PCA as a procedure that first maps each data point into

a (possibly) non-linear and higher-dimensional space, then performs PCA in that space. More pre-

cisely, let d be a list of m documents and d(j) be the original feature vector of document j.3 Then

Kernel PCA can be seen as the following procedure:

1. Map each document d(j) to a new space d(j) 7→ Φ(d(j)), where Φ(·) is the (non-linear/high-

dimension) mapping.

2. Compute covariance matrix in this new space:

C = 1
m ∑m

j=1 Φ(d(j))Φ(d(j′))T . (T = transpose. Φ should be centered at zero mean–if not, this can

be achieved by some simple operations in kernel space [132])

3. Solve the eigen-problem: λ v = Cv.

4. The eigenvectors v with the largest eigenvalues λ form a projection matrix P. Datapoints can

now be projected to the principal axes of the non-linear space defined by Φ(·).

In practice, Kernel PCA uses the dual formulation to avoid solving the above eigen-problem in

high dimensional space (this is known as the kernel trick). See [130] for the derivation; here we

only present the steps needed for this paper:

1. Define a kernel function k(· , ·) : (d(j),d(j′)) → R which maps two document vectors to a real

number indicating the similarity between the two documents.

2. There exist kernels of the form

k(d(j),d(j′))= 〈Φ(d(j)),Φ(d(j′))〉, (i.e. dot product of the document mappings in high-dimensional

space) such that the mapping does not need to be computed explicitly to get the kernel value.

3In the context of Kernel PCA, we drop the subscript in du to avoid clutter. du or d is a document list; d(j) is one

document vector within the list.

51

3. Let the m×m matrix K be the kernel values of all pairs of documents in the list. i.e. K j j′ =

k(d(j),d(j′)) ∀ j, j′ ∈ {1,2, . . . ,m}. This kernel matrix can be centered to ensure that the fea-

tures Φ are zero-mean.

4. Kernel PCA reduces to solving the eigen-problem mλα = Kα . We pick only the α with the

largest eigenvalues.

5. For a new document d(n), its principal component is computed as ∑m
j=1 α jk(d

(j),d(n)).

The kernel function defines the type of non-linear patterns to be extracted. In this work, we use

the following kernels:

• Polynomial: Computes dot product of all monomials of order p, k(d(j),d(j′)) = 〈d(j),d(j′)〉p.

• Gaussian / Radial basis function: k(d(j),d(j′)) = exp(− ||d(j)−d(j′)||
2σ). This is an isotropic

kernel, with bandwidth σ adjusting for smoothness.

• Diffusion kernel [91]: This is suitable for graph data. We generate a k-nearest neighbor graph

with documents as nodes and edges defined by the inverse Euclidean distance 1/||d(j)−d(j′)||.

k(d(j),d(j′)) is defined by running a lazy random walk from d(j) to d(j′). A time-constant

parameter τ adjusts how long to run the random walk (e.g. larger τ leads to a more uniform

distribution). Performing Kernel PCA with diffusion kernels is equivalent to running PCA on

a non-linear manifold.

• Linear: k(d(j),d(j′)) = 〈d(j),d(j′)〉. Equivalent to PCA.

Kernel PCA scales as O(m3), due to solving the eigen-problem on the m× m kernel matrix

K. Nevertheless, extremely fast versions have been proposed; for instance, Sparse kernel feature

analysis [139] is based on sparsity constraints and can extract patterns in O(m).

5.1.2 Supervised Ranking Algorithm: RankBoost

We use RankBoost as the LEARN() component of the algorithm. In theory, many algorithms can be

plugged in for DISCOVER() and LEARN(). In practice, it is important to consider the interaction

52

between feature and learning, and to ensure that DISCOVER() generates features that LEARN() is

able to exploit. We believe that there are several advantages to using RankBoost with Kernel PCA

in our transductive framework:

1. Inherent feature selection: RankBoost selects T features that are most conducive to good

rankings. Since there are no guarantees that the Kernel PCA’s directions of high variance

always correspond to directions of good ranking, RankBoost’s inherent feature selection re-

duces the need for tuning. For a LEARN() algorithm without inherent feature selection, we

may have to tune for (a) number of Kernel PCA features, (b) relative importance of Kernel

PCA features compared to original features.

2. Non-linear thresholding in weak learners h(·): One could define the weak learner to be simply

the feature values (e.g. h(·) = raw BM25 score). This assumes that good ranking is directly

correlated to the feature values (e.g. large BM25 implies more relevance). Kernel PCA, how-

ever, may generate features that have a non-linear relationship to ranking (e.g. large positive

and negative deviation from the principal axes implies less relevance). Non-linear rankers can

handle this possibility more robustly.

3. “Anytime” training: Boosting can be seen as gradient descent in function space [112] and

each iteration improves on the training accuracy. If training time is a concern (e.g. in practical

deployment of the transductive framework), then RankBoost can be stopped before reaching

T iterations. The resulting ranker may be less optimized, but it should still give reasonable

predictions.

5.2 RankLDA: Supervised feature transformation for Ranking

The Feature Generation Approach described above employs Kernel PCA as the method to discover

useful features from the test list. However, this is not the only choice; in theory, any feature extrac-

tion/transformation method is possible.

In this section, we introduce a novel feature transformation method that complements Kernel

PCA. Kernel PCA is a totally unsupervised method, and as such, it ignores information from the

labeled part of the training data. While we rely on RankBoost to choose what Kernel PCA features

53

are important for ranking, we could also directly generate features correlated with rank from the

outset. We therefore introduce a supervised feature transformation method called RankLDA. The

contributions with this method are that:

1. To the best of our knowledge, it is the first supervised feature transformation method that

exploits rank information. Related methods such as Fisher’s Linear Discriminant Analy-

sis (LDA) was developed for classification, and therefore does not fit well into the ranking

framework.

2. Features generated by the proposed RankLDA can be included with the feature set generated

by Kernel PCA, thereby enlarging the model space for the Feature Generation Approach.

In the following, we first briefly review LDA, a feature transformation method for classification

of which our method is based, before describing our supervised RankLDA method.

5.2.1 Feature Transformation by Linear Discriminant Analysis (LDA)

Recall the notation as follows: Let q = query, d = list of retrieved documents, and y = list of

relevance judgments. Let S = {(ql ,dl,yl)}l=1..L be the training set consisting of L tuples of query-

doc-labels. Each document d
j
l is represented by a vector of K features, and the goal of feature

transformation is to find a transformation matrix A ∈ RK×K′
,K′ ≤ K such that the projected

document vectors d̂
j
l = AT d

j
l , after input to a ranking algorithm, lead to better test results: i.e., a

ranking algorithm trained on Ŝ = {(ql , d̂l,yl)}l=1..L should outperform the same algorithm trained

on S = {(ql ,dl,yl)}l=1..L . In supervised feature transformation, the labels yl are used for computing

A.

Fisher’s LDA is a classic method for computing the transformation matrix A for classification

problems. The main idea is to find a transformation vector α that maximizes the covariance (scat-

ter) among class means while minimizing the covariance within the same class. For a multi-class

classification problem on dataset ({dl,yl}l=1..L), we find α by:

arg max
α

α T Bα
α TWα

(5.1)

54

−20 −10 0 10 20 30 40
−5

0

5

10

15

20

25

x−axis

y
−

a
x
is

Rank1

Rank2

Rank3

Figure 5.2: An example where LDA fails at ranking. Projecting on the y-axis will optimize Eq. 5.1

but doing so will reverse ranks 2 and 3. The x-axis is a better projection that respects the properties

of linear ordering among ranks.

where B = ∑c(µc −µ)(µc −µ)T is the between-class scatter and W = ∑c ∑l:y=c(dl −µc)(dl −µc)
T

is the within-class scatter. (Here, c indexes the class, µc is the class mean, µ is the overall mean).

LDA can be applied to a ranking problem by treating the relevance judgment as class labels.

If discrete relevance judgment is provided for each document, then documents can be divided into

classes in a straightforward way (e.g. “very relevant”=class 3, “relevant”=class 2, “irrelevant”=class

1). If relevance judgment is continuous-valued or is in the form of preferences between document

pairs, then one should make some design decisions regarding how to map each document to a class

label.4

[104] proved that ranking errors are upper-bounded by classification errors. One might there-

fore imagine that the LDA may work for ranking problems. However, one can construct artificial

examples where achieving optimal class separation in the LDA sense actually reverses the ranking

(Figure 5.2).

4The only additional modification we make in the ranking setting is to compute the scatter matrices independently for

each document list. This avoids problems of uncalibration across different lists, and also allows for extraction of more

features than the number of classes. For simplicity of presentation, in this paper, the B and W matrices are therefore

sums of matrices from L lists.

55

5.2.2 Description of RankLDA

Our RankLDA method extends Eq. 5.1 for ranking. For ease of presentation, consider a 3-level

ranking problem, where documents labeled 3 are preferred over those labeled 2, and 2 is preferred

over 1.

First, we modify the idea of between-class scatter for pairwise relations. For the 3-level rank

data, we would have 3 matrices: B12, B13, B23, where Bi j is the between-class scatter between docu-

ments labeled i and j.5 Second, we impose constraints on the projected variances α T Bi jα to respect

the fact that variance of far-apart ranks α T B13α should be larger than the variance of close-together

ranks, such as α T B12α . This constraint enforces the algorithm to avoid reversing ranks at the ex-

pense of improving separability. Putting it together, we have:

arg maxα
α T B̃α
α T Wα (5.2)

s.t. α T B13α > α T B12α

α T B13α > α T B23α

where B̃ = B13 + B12 + B23 is the combined between-class scatter. W is defined as in Equation 5.1.

Note that there is no constraint of the form α T B12α ∼ α T B23α , since we have no prior knowledge

which of the scatter values should be larger.

Algorithm 5 presents the general RankLDA method. In each iteration, we compute the projec-

tion vector α in line 3, and the method of deflation is used to generate orthogonal projections iter-

atively. Note that slack variables ξq are added to allow for constraint violations and the parameter

β determines the tradeoff. It is interesting to note that the objective in RankLDA has analogs to the

formulation of RankSVM [82]. The main difference is that the concept of margin is here replaced

with between-class scatter, and the constraints are now non-linear. We use a general interior-point

algorithm (Matlab Optimization Toolbox) to optimize the objective.

5For N-level rank data, we have N(N − 1)/2 matrices corresponding to N(N − 1)/2 pairwise binary classification

problems.

56

Algorithm 5 RankLDA

Input: Train set S = {(ql ,dl,yl}l=1..L

Input: K′ = number of features to be extracted

Input: β = slack tolerance parameter

Output: Projection matrix A

1: for k = 1 to K′ do

2: Compute Bi j for all (i, j) pairs of distinct labels in yl . Compute B̃ = ∑Bi j.

3: Find projection vector α :

arg maxα
α T B̃α
α T Wα −β ∑ξq

s.t. α T Bi jα + ξq > α T Brzα , ξq ≥ 0

for all preference relations (i ≤ r < z < j) or (i < r < z ≤ j)

4: A(:,k) = α

5: Deflation: B̃ = B̃ − (α T B̃α)∗αα T)

6: end for

While we do not attempt these here, RankLDA can be extended to include:

1. Non-linear formulation via kernels [132].

2. Semi-supervised extension by, e.g. adding a graph Laplacian objective [29].

5.3 Information Retrieval Experiments

We perform experiments on the LETOR dataset (version 2) [107], which contains three sets of

document retrieval data: TREC’03, TREC’04, and OHSUMED. Our experiments compare the Fea-

ture Generation Approach (FG) with baseline systems under 5-fold cross validation, using MAP

and NDCG as evaluation metrics. The Baseline is a supervised RankBoost, trained on the original

training data. See Chapter 3 for details about the data.

For Feature Generation, we employed the following kernels for Kernel PCA and extracted five

features for each, leading to an additional 25 features:

57

• Polynomial kernel, order 2

• Gaussian kernel, bandwidth = 1

• Diffusion kernel, time constant = 1

• Diffusion kernel, time constant = 10

• Linear kernel

Note that the hyperparameters of these features are chosen arbitrarily and have not been exten-

sively tuned. They are only tested on a small subset of the development data to ensure that they are

reasonable hyperparameters. The reason we chose not to tune the hyperparameters is that we work

in the transductive scenario, so in practice there will not be time to tune a new set of parameters for

a new set of dev/test data. We rely on RankBoost to choose the relevant features.

Table 5.1 shows the results (boldfaced MAP/NDCG numbers indicate a statistically significant

improvement (p < 0.05) over Baseline.) We observe that nice results: Feature Generation (FG) im-

proves over the Baseline in general. For example, for both TREC’03 and OHSUMED, FG achieves

MAP values that are significantly better than the baseline (.3058 vs. .2482 for TREC’03; .4481 vs.

.4424 for OHSUMED). Feature Generation also improves on all datasets for various NDCG values,

though not all improvements are considered statistically significant.

For the OHSUMED dataset, which contains three levels of relevance judgments, we additionally

applied RankLDA to create additional features for the Feature Generation Methods. The result row

labeled (FG + RankLDA features) in Table 5.1 represents running RankBoost on top of the 25 orig-

inal features, 25 Kernel PCA features, and 10 RankLDA features. We observe that FG+RankLDA

gave a slight improvement over FG in MAP, a strong improvement over NDCG@1, and few changes

for NDCG at lower positions. It is conceivable that the RankLDA features, which especially aim to

separate ranks with large differences, have more impact on ranking top documents. In other words,

whereas pairwise accuracy gives the same loss when a document with either relevance label 2 or

1 is ranked above a document with label 0, RankLDA would emphasize a larger separation for the

case of label 2 than that of label 1. This may have the affect of pushing label 2 documents higher in

the list, thereby improving NDCG@1.

58

Table 5.1: Main result for Feature Generation (FG). In general, FG provides improvements over

baseline. Statistically significant improvements are bold-fonted.

MAP N@1 N@3 N@5 N@10 N@14

TREC’03

Baseline (supervised) .2482 .3200 .3455 .3404 .3388 .3401

Feature Generation .3058 .5200 .4332 .4168 .3861 .3994

TREC’04

Baseline (supervised) .3712 .4800 .4237 .4144 .4471 .4686

Feature Generation .3760 .4800 .4514 .4415 .4665 .4910

OHSUMED

Baseline (supervised) .4424 .4906 .4543 .4501 .4230 .4218

Feature Generation (FG) .4444 .5094 .4787 .4600 .4469 .4377

FG + RankLDA features .4481 .5252 .4785 .4600 .4444 .4390

5.3.1 Information Retrieval: Detailed Analysis and Extensions

In order to understand the proposed framework better, we now describe an assortment of further

experiments and analyses.

1. How important is it to adapt to the test query?

Does the Feature Generation approach obtain gains because Kernel PCA extracts good features

per se, or particularly because the features are extracted on the test set (i.e. the local/transductive

aspect)? Kernel PCA may extract better features due to reductions in noise and discovery of useful

non-linear combinations (due to the kernel). In order to answer this question, a new system (KPCA

on train) was built based on feature transformations estimated from training data alone: Kernel

PCA was run on each training list (as opposed to projecting the training lists to principal directions of

the test lists). The subsequent rank learner and evaluation remain identical: we train RankBoost on

this data, which is the same training data as Baseline except for the additional Kernel PCA features

and evaluated this new ranking function on the test set. The results (Table 5.2) show that KPCA on

59

train is worse than Feature Generation (e.g. .2511 vs. .3058 MAP for TREC’03), implying that

the transductive aspect of adapting to each test query is essential.

Table 5.2: Feature Generation (transductive) outperforms KPCA on train (inductive); adapting to

test queries is a useful strategy.

TREC’03 TREC’04 OHSUMED

Feature Generation .3058 .3760 .4444

KPCA on train .2511 .3625 .4418

Baseline .2482 .3712 .4424

2. How can Kernel PCA features be interpreted?

Kernel PCA features are in general difficult to interpret because they involve non-linear combi-

nations and the α generated from the eigen-problem represents weights on samples, not features.

Some insight into this question might be obtained by computing the correlation between the values

of a Kernel PCA feature and an original feature. Table 5.3 lists some features that correlate with

particular kernel PCA features (e.g. in TREC’04 query10, the Diffusion feature correlated highly

with HITS). It is important to note, however, that this kind of analysis only serves as extra reference

to help us understand particular test queries: most Kernel PCA features have little correlation to

original features. The average correlation on TREC’04 is less than 0.15.

3. What are the most useful features?

For the Feature Generation system, what weak learners h(·) in the multiple ranking functions

(Fu(·) = ∑T
t=1 θtht(·)) achieve large |θt |? For instance, how often are Kernel PCA features cho-

sen compared to the original features? To analyze this, we look at the 25 FG ranking functions

in TREC’04 that improve more than 20% over the Baseline. For each ranking function, we look

at the top 5 features and note their type: {original, polynomial, rbf, diffusion,

linear}. 24 of 25 functions have both original and Kernel PCA features in the top 5, indicating

that Kernel PCA features are quite useful. It is even more interesting to note that no single combi-

nation of types is more prevalent than others. Figure 5.3 shows that the distribution of these (feature

60

Table 5.3: Some examples of original features that correlate highly with Kernel PCA features (coeff.

of determination in parentheses). However, most features (not listed) have low correlation due to

their non-linear relationship.

Polynomial Diffusion Linear

TREC’03 none Hyperlink feature LMIR.JM

query2 prop, weighted of anchor

out-link (.66) (.70)

TREC’04 dl of HITS authority LMIR.ABS

query10 anchor (.99) (.89) of title (.68)

OHSUMED none BM25 of BM25 of

query1 title+abstract title+abstract

(.78) (.82)

type) combinations. For example, seven of 25 rankers use a combination of original and diffusion

kernel features; four of 25 rankers use a combination of original and polynomial kernel features.

The results on the other two datasets show similar diversity. This again supports the intuition that

test-specific rankers are better than a single general ranker.

4. Linear vs. Non-linear PCA

How important is the non-linear aspect of Kernel PCA? Could similar gains be achieved if the

Feature Generation approach were restricted to using only linear PCA? To test this, we trained

new systems consisting of original features plus 5 linear PCA features, vs. original features + 5

polynomial, rbf, or diffusion kernel features. On TREC’04, we observe the MAP scores, in order:

.3701 (rbf), .3670 (poly), .3627 (diff), .3614 (linear). However, on TREC’03, linear is not the worst:

.3032 (diff), .2996 (linear), .2895 (poly), .2754 (rbf). Thus, non-linearity is important in most cases,

but one should not expect non-linear kernels to always outperform linear ones. The best strategy is

to employ multiple kernels.

61

orig only (1)

orig+diff (7)

orig+poly (4)
orig+linear (3)

orig+poly+diff (4)

orig+diff
 +linear (1)

orig+poly
+linear (4)

orig+rbf+diff (1)

Diversity of boosted rankers

Figure 5.3: Pie chart showing the distribution of feature-type combinations for the 25 best rankers

in the TREC’04 dataset. The number in the parenthesis indicates the count. For example, 3 of 25

rankers use a combination original and linear kernel features. The chart shows a diversity of feature

combinations.

62

20 10 0 10 20 30 40

>50% better

>20% better

>1% better

>1% worse

>20% worse

>50% worse

count (number of queries)

Relative changes in MAP

(a)

40 30 20 10 0 10 20 30 40

>50% better

>20% better

>1% better

>1% worse

>20% worse

>50% worse

count (number of queries)

Relative changes in MAP

(b)

60 40 20 0 20 40 60

>50% better

>20% better

>1% better

>1% worse

>20% worse

>50% worse

count (number of queries)

Relative changes in MAP

(c)

Figure 5.4: Query-level changes in MAP: We show the number of queries (in Feature
Generation) that improved/degraded compared to baseline. In TREC’03 (a), the majority

of queries improved, but in TREC’04 (b) and OHSUMED (c) a significant proportion degraded.

See text for more explanation.

63

5. How does performance vary across queries?

In Section 5.3, we present overall results averaged over all test queries. A more detailed analysis

would include per-query MAP and NDCG. Figure 5.4 reports a histogram of queries that are im-

proved vs. degraded by Feature Generation. For each plot, the bars on the right side indicate the

number of queries that improved more than 1%, 20%, and 50% over Baseline. Bars on the left side

indicate the number of queries that become more than 1%, 20%, and 50% worse than Baseline.

One observes that our FG approach does not give improvements across all queries. We are seeing

gains in Section 5.3 because the proportion of improved queries is greater than that of degraded

queries (especially for TREC’03).

It would be helpful to understand exactly the conditions under which the transductive approach

is beneficial vs. harmful. On TREC’03, there is slight evidence showing that FG seems to benefit

queries with poorer baselines (See Figure 5.5, scatterplot of baseline and transductive MAP scores).

One hypothesis is that the original features of more difficult queries are not sufficiently discrimi-

native, so Kernel PCA has more opportunity to show improvements. Viewed in another way, note

that many of the our features (e.g. tfidf) attempt to quantify the match between the query and the

document, so that high feature values usually correlate with better documents. However, while only

the relative differences between feature values matter in ranking, RankBoost gives absolute value

thresholds in its decision stumps. This implies that for some queries (possibly the difficult ones),

most documents may pass or fail the feature value thresholds. By applying Kernel PCA to the doc-

uments of these queries, we can again focus on the features that have large relative range, which is

expected to better discriminate among different documents in the set.

Nevertheless, it is difficult to test the above hypothesis. We attempted to see if differences at

the query level correlates with e.g. (a) number of documents, (b) number of relevant documents, (c)

pairwise ranking accuracy in training, but no single factor reliably predicts whether a query will be

benefited by the transductive ranker.

6. How do individual RankLDA features compare with LDA and original features?

How well do RankLDA and LDA perform, irrespective of the follow-up training algorithm for

ranking? In order to evaluate this, we compared the first projection vector α extracted via RankLDA

64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TD2003 MAP

transductive

b
a
s
e
lin

e

Figure 5.5: Scatterplot of TREC’03 MAP results for Feature Generation (x-axis) vs.

baseline (y-axis).

or LDA. Specifically, we compute a single α on the training set, and rank the documents in the test

set according to the projection values α T d.

Table 5.4 compares RankLDA and LDA with the best and worst of the original 25 original

features, where best/worst is determined on the test set (cheating experiment). For RankLDA, we

tried different β parameters (0.1,1,10,50,100) and report the one with the best setting based on

MAP/NDCG on the training set. We see that RankLDA consistently outperforms LDA, though it

does not achieve the (cheating) results of the best possible original feature.

RankLDA LDA Original (Min) Original (Max)

MAP 0.4309 0.3005 0.3331 0.4488

NDCG@1 0.4346 0.1429 0.1851 0.5042

NDCG@7 0.4149 0.1764 0.2328 0.4354

NDCG@14 0.4109 0.1865 0.2480 0.4208

Table 5.4: Performance of single features. RankLDA and LDA are the rankings derived from the

first projection vector α . The Original column presents the minimum and maximum test perfor-

mance among the 25 original features.

65

Table 5.5: Arabic-English MT results

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

MERT (supervised) Baseline 24.3 26.5 27.9 28.6 29.3 47.9

RankBoost (supervised) Baseline 23.7 26.4 28.0 28.9 29.6 47.9

Feature Generation (transductive) 23.4 25.7 27.0 27.9 28.6 48.3

5.4 Machine Translation Experiments

We apply the Feature Generation Approach on the two Machine Translation datasets, i.e. the Arabic-

English and Italian-English IWSLT 2007 tasks. The experimental setup is identical to that described

in the Information Retrieval experiments, except for the one modification to the RankBoost algo-

rithm for continuous-value labels (see Section 4.3). For details regarding the data and task, refer to

Section 3.

We compare the Feature Generation Approach with two baselines. Comparison with the super-

vised RankBoost baseline can give insight into the effect of unlabeled test data in training, since the

Feature Generation approach is based on RankBoost. However, RankBoost is not a conventional

algorithm used in MT, so we additionally compare with the MERT baseline. The MERT baseline

is computed by running the minimum error rate training (MERT) algorithm [119], which generates

linear weights.

The results for Arabic-English and Italian-English are presented in Tables 5.5 and 5.6. The

general observations are:

1. RankBoost is comparable to MERT in terms of BLEU results. For the Arabic task, RankBoost

performs slightly worse than MERT for Top-1 BLEU but appears to improve at a slightly

faster rate for Top-k with larger K.

2. However, Feature Generation gives degradation from the RankBoost baseline for both tasks.

For Top-1 BLEU, we have FG (23.4) vs. Baseline (23.7) for Arabic translation, and FG (21.2)

vs. Baseline (21.5) for Italian translation.

66

Table 5.6: Italian-English MT results

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

MERT (supervised) Baseline 21.2 23.1 24.3 25.0 25.7 52.6

RankBoost (supervised) Baseline 21.9 23.6 24.7 25.4 26.0 51.7

Feature Generation (transductive) 21.5 23.4 24.4 24.9 25.3 52.5

Surprisingly Feature Generation did not work well in MT (whereas it worked well in IR). In

order to analyze this, we first looked at the sentence-level BLEU score6 of Feature Generation vs.

RankBoost baseline results to see if there are consistent patterns of degradation. The visualization

(for the Arabic data, results for Top-5 BLEU) is shown in Figure 5.6. In these graphs, we take

the Top-5 result of FG (Overall BLEU=28.6) vs. RankBoost (Overall BLEU=29.6) and compared

BLEU at the sentence level. Interestingly, we see that differences on the sentence-level do not appear

to be large. The average difference of sentence-level BLEU scores between the two systems is only

0.5 points.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

F
e
a
tu

re
 G

e
n
e
ra

ti
o
n
 S

e
n
te

n
c
e
−

le
v
e
l
B

L
E

U

RankBoost Baseline Sentence−level BLEU

(a)

−40 −30 −20 −10 0 10 20 30 40
0

50

100

150

200

250

300

BLEU difference (FeatGen−RBbaseline), negative=baseline wins

(b)

Figure 5.6: Sentence-level BLEU analysis for Feature Generation vs. RankBoost Baseline. While

the corpus-level BLEU result for RankBoost is 1 point better, there does not appear to be significant

differences on the sentence level.

6Following [106], we compute a smoothed version of sentence-level BLEU with add-1 count for each n-gram precision

to prevent arbitrary zeros. An alternative but more complex method to approximating sentence-level BLEU is described

by [152].

67

We then looked deeper into the rankers that were trained via the Feature Generation method.

On average, the pairwise training accuracy of FG rankers is 85.33%, compared to the RankBoost

baseline, which is 82.42%. This means that the training algorithm in FG approach is optimizing

the objective it was designed for better, due to the additional features. In fact, the percentage of

weight that belongs to Kernel PCA features in the FG approach is around 0.4 (see Figure 5.7 for

a histogram), which means that Kernel PCA features are consistently being used to a large extent.

However, on the level of the individual ranker, the correlation coefficient between this percentage

(i.e. how much weight is dedicated to Kernel PCA features, as opposed to original features) and the

sentence-level BLEU, is r =−0.0131. This means that the amount of usage of Kernel PCA features

has little correlation to the sentence-level BLEU score. Our summary of the observations:

1. In MT, Feature Generation performs worse than Baseline on overall (corpus-level) BLEU, but

little difference is observed in sentence-level BLEU. Previous work has shown that sentence-

level BLEU may not correspond well to corpus-level BLEU, but there is little choice for us

since RankBoost (or any standard learning algorithm, with the exception of MERT) requires

labels on the sentence level.

2. Feature Generation is indeed selecting Kernel PCA features during training, leading to better

pairwise training accuracies, but rankers with more weight assigned to Kernel PCA do not

necessarily achieve better sentence-level BLEU.

3. Therefore, the problem is likely that the pairwise accuracy optimized by RankBoost does not

correlate very well with corpus-level BLEU.

In IR there is a strong relationship between the pairwise accuracy and the MAP and NDCG

metrics, so enlarging the model space with additional features can give gains overall. For MT, there

is a much larger chance of fitting a mismatched objective (since the link between pairwise accuracy

and corpus-level BLEU is weaker), so more complex model spaces can lead to overfitting.

Another possibility is regarding the characteristics of the original features. There has been

work [62] showing that cosine similarity with queries, for example, provide useful information

for comparing lists. But in our setup throughout, we ignore the query (in IR) or source sentence (in

68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

Percentage of weight in terms of KPCA features

c
o

u
n

t

Figure 5.7: The percentage of total weight in RankBoost belonging to Kernel PCA features, in

histogram (Arabic-English Translation Task)

MT); everything is done agnostically on the feature space.7 Despite this, in IR, features such as tf-idf

directly encode some information about the query (e.g. it counts the number of times the query term

occurs in the document). However, in MT, features such as translation models only encode some

information about the source sentences, since there there are many ways to translate a give phrase.

This difference could potentially have an effect on the Feature Generation method.

5.5 Protein Structure Prediction Experiments

We applied the Feature Generation Approach to the Protein Structure Prediction dataset, using the

same methods as IR. Although the Protein Prediction task also has continuous level labels like the

MT task, we did not find the need to adopt a threshold in the pair extraction part of RankBoost.

Empirically, we have observed that extracting all pairs without a threshold gave the best result on

the training data.

The results for Feature Generation and the RankBoost and MERT baselines are shown in Tables

5.7 and 5.8. The MERT baseline of (GDT=.581, z-score=1.07) is comparable to the Support Vector

Regression baseline reported in [124] (GDT=.589, z-score=1.07).

We observe that:

7The reason for ignore the query text information is that we want our methods to be application-dependent.

69

Table 5.7: Protein Prediction GDT-TS results

Top-k GDT-TS k=1 k=2 k=3 k=4 k=5

MERT (supervised) Baseline .581 .590 .597 .601 .604

RankBoost (supervised) Baseline .579 .590 .595 .599 .604

Feature Generation (transductive) .569 .586 .596 .601 .605

Table 5.8: Protein Prediction z-score results

Top-k z-score k=1 k=2 k=3 k=4 k=5

MERT (supervised) Baseline 1.07 1.17 1.26 1.31 1.34

RankBoost (supervised) Baseline 1.13 1.25 1.30 1.36 1.41

Feature Generation (transductive) 1.07 1.24 1.33 1.40 1.41

1. Feature Generation performs worse than the baseline for k=1, k=2, but is comparable for k>3

in Top-k GDT-TS.

2. The z-score results show similar trends. In general, we conclude that the Feature Generation

method gives little gains or degradations for the Protein Prediction dataset.

3. None of the differences are statistically significant according to the Wilcoxon signed rank test.

To analyze the results in more detail, we look at the scatterplot (Figure 5.8) of Top-1 GDT-TS

values for Feature Generation vs. the RankBoost baseline. The scatterplot shows that a majority of

test lists do not exhibit GDT-TS differences for Feature Generation vs. Baseline. Only 19% of the

lists are improved by 0.01 GDT-TS, and only 26% of the lists are degraded by 0.01.

Doing a similar analysis as done in Machine Translation, we looked at whether there are sys-

tematic differences between the 19% of FG rankers that improved vs. the 26% of FG rankers that

degraded. Our goal is to determine whether the rankers that improved used a larger fraction of

weight for the new Kernel PCA features in RankBoost. This would indicate whether the new fea-

tures were useful; if the opposite trend were observed, this would indicate that the new features were

70

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature Generation

B
a

s
e

lin
e

Figure 5.8: Scatterplot of GDT-TS values: Feature Generation (.569 average GDT-TS) vs. Baseline

(.581 average GDT-TS). The majority of lists are not affected by Feature Generation; 19% of the

lists are improved by 0.01, 26% of the lists are degraded. Correlation coefficient = .9717

actually detrimental. However, Figure 5.9 shows that there is actually little correlation between the

amount of KPCA usage and the GDT-TS value. Furthermore, observing the histogram of KPCA

usage (Figure 5.10), we see that there is on average only 17% usage of the new features, much

less than that of Machine Translation (40%). Further, the Pairwise Training accuracies of the FG

rankers (84.2% average accuracy, 83.9% minimum accuracy, 84.5% maximum accuracy) actually

do not deviate much from the Baseline system (83.6%). This is in contrast to what we observed in

Machine Translation–in that case, Pairwise Accuracy saw a statistically significant improvement of

3% when comparing FG to Baseline.

This together indicates that Feature Generation simply did not affect the Protein Prediction

dataset very much. Unlike Information Retrieval, where new Kernel PCA features are useful, and

unlike Machine Translation, where new Kernel PCA features were helpful for pairwise accuracy but

harmed corpus-level BLEU, in the case of Protein Prediction, the effect of Kernel PCA was simply

neutral and not used frequently by RankBoost.

Chapter Summary

We presented and evaluated the Feature Generation approach, whose main idea is to use Kernel

PCA to discover better features from the test list before applying a supervised RankBoost learner.

71

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1
0.05

0.1

0.15

0.2

0.25

0.3

GDT−TS Difference (FG−Baseline)

P
e

rc
e

n
ta

g
e

 o
f

w
e

ig
h

ts
 i
n

 t
e

rm
s
 o

f
K

P
C

A

Figure 5.9: There is little correlation between the amount of Kernel PCA usage in Feature Genera-

tion vs. the GDT-TS score. (Protein Structure Prediction)

0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

Percentage of weight in terms of KPCA features

C
o
u
n
t

Figure 5.10: Percentage of total weight in RankBoost belonging to Kernel PCA features for Protein

Prediction. Here, on average we have 17% of the weight represented by KPCA. Compare this to

Machine Translation (Figure), which on average has 40% of weight dedicated to KPCA.

72

Results show that Feature Generation gave across-the-board improvements for all three Informa-

tion Retrieval datasets. However, it gave degradations for Machine Translation datasets and little

differences for the Protein Prediction dataset.

Our detailed analyses revealed several characteristics of the algorithm, such as:

• In Information Retrieval, it is not Kernel PCA per se, but its application on the test list that

lead to improvements.

• Different test lists are best represented by different Kernel PCA feature representations, which

reinforce the idea that test-specific ranking is a worthwhile research direction.

• For the machine translation datasets, the Feature Generation method is indeed choosing Ker-

nel PCA features and improving the training pairwise accuracy. The fact that the method

worked for Information Retrieval but not Machine Translation seems to indicate that pairwise

accuracy is not as beneficial a surrogate loss function in MT as in IR.

• In Protein Structure Prediction, the new Kernel PCA features are simply not chosen often,

which results in small changes in the pairwise training accuracy of RankBoost and overall

little difference compared to the Baseline.

In addition to the above, we presented a novel feature extraction procedure for datasets con-

taining more than two levels of discrete judgment labels. This RankLDA procedure could be used

to enhance the Kernel PCA feature set in the Feature Generation Approach, and we indeed show

improvements in the OHSUMED IR dataset.

73

Chapter 6

INVESTIGATING THE COVARIATE SHIFT ASSUMPTION

The idea of covariate shift (from domain adaptation literature) is that sample distribution differs

between the training and the test set, but the functional relationship (mapping input to output, i.e.

mapping a list to an ordering) remains the same. It assumes that observation of some unlabeled test

samples is sufficient to allow us to “shift” the training distribution such that it better matches the test

distribution.

In this chapter, we will propose a method that exploits the covariate shift assumption under

the Local/Transductive Framework. The proposed Importance Weighting Approach is presented in

Section 6.1 and evaluated in Sections 6.3 to 6.5. We also present a method to combine the Feature

Generation Approach with the Importance Weighting Approach in Section 6.2.

6.1 Importance Weighting Approach

We now detail a way to exploit the Covariate Shift Assumption under the Local/Transductive Frame-

work. The assumption is that each test list exists in a slightly different “domain” from the training

data, thus Importance Weighting techniques (which looks at the locations of the unlabeled data in

feature space) could correct the bias and improve results. A comparison of the standard covariate

shift assumption vs. our local/transductive version is shown in Table 6.1.

The Importance Weighting (IW) Approach requires the two following components:

• An domain adaptation algorithm, ADAPT(), that generates importance weights specific to

Table 6.1: Comparison of Covariate Shift Assumption for Classification and Ranking

Classification Local/Transductive Ranking

Feature Space Original vector of one object Difference features from pairs of objects

Test Domain All unlabeled vectors forms one domain One domain per list

74

each test list.

• A supervised learning to rank algorithm, WEIGHTED-LEARN(), that can train on weighted

data. Essentially, only a weighted subset of the training data most similar to the test list will

be used in computing the ranking function.

Algorithm 6 Importance Weighting (IW) Approach to Transductive Ranking

Input: Train set S = {(ql ,dl,yl}l=1..L

Input: Test set E = {(qu,du)}u=1..U

Input: ADAPT(), a domain adaptation algorithm

Input: WEIGHTED-LEARN(), a supervised ranking algorithm that handles weighted data

Output: Predicted rankings for test: {yu}u=1..U

1: for u = 1 to U do

2: W = ADAPT(du,{(ql ,dl,yl)}l=1..L) # find weighting over training samples such that samples

close to test have high weights

3: Fu(·) = WEIGHTED-LEARN(W,{(ql,dl,yl)}l=1..L)

4: yu = Fu(du) # predict test ranking

5: end for

Algorithm 6 shows the pseudo-code for the Importance Weighting (IW) approach. In our in-

stantiation, WEIGHTED-LEARN() is the AdaCost version of RankBoost [56] and ADAPT() is the

Kullback-Liebler Importance Estimation Procedure (KLIEP) [141]. KLIEP is currently the state-of-

the-art in importance weighting, its main advantages being its automatic model selection procedure

and proven convergence properties. The main issue here is how to adjust the importance weighting

method developed for classification to a ranking problem. The samples to which importance weights

are applied depends on WEIGHTED-LEARN(). Since AdaCost-RankBoost is a pairwise ranking

algorithm, our importance weights will be applied to samples consisting of document pairs. If

WEIGHTED-LEARN()were a regression-based method, then we would define importance weights

for each training document; for listwise methods, the importance weights would be defined on the

75

level of each query/list1 .

6.1.1 Computing the Importance Weights

Our domain adaptation method ADAPT() works in the following steps:

1. Extract all pairs of documents from the training set S = {(ql ,dl,yl}l=1..L where there are rank

differences (i.e. y
j

l=1 6= yk
l=1). This is the same set of document pairs that would be extracted

from a pairwise ranking algorithm which maximizes pairwise accuracy, such as RankBoost.

Suppose there are Lpair such document pairs.

2. Extract all pairs of documents from the test list du=1 ≡ {d
(j)
u=1}, j = 1..Nu=1. There will be a

total of Upair = Nu=1 ∗ (Nu=1 −1) such pairs.

3. For each train/test document pair, derive a single vector representation by taking the difference

of the original document feature vectors. For instance, for the document pair (d
(j)
l ,d

(k)
l) we

derive the difference vector x ≡ d
(j)
l −d

(k)
l . The set of difference vectors from the training set

will be {xl}l=1..Lpair
; the set of difference vectors from the test list will be {xu}u=1..Upair

.2

4. Run the KLIEP importance weighting algorithm [141] using {xu}u=1..Upair
as samples from

the target domain. The method will generate weights w(xl) for each sample in {xl}l=1..Lpair
.

For completeness, we briefly review KLIEP; for details, refer to [141]. KLIEP computes impor-

tance weights w(xl) without directly estimating the densities p̂test(x) and p̂test(x). The main idea is

to minimize the Kullback-Liebler divergence between the test distribution ptest(x) and the weighted

training distribution w(x)∗ ptrain(x):

KL(ptest(x)//w(x)∗ ptrain(x)) =

∫

ptest(x) log
ptest(x)

w(x)∗ ptrain(x)
dx (6.1)

=

∫

ptest(x) log
ptest(x)

ptrain(x)
dx−

∫

ptest(x) log w(x)dx (6.2)

1We would define importance weights on the level of lists in Section 8.4

2Note that for notational simplicity we have again overloaded the indexes u and l to index both lists and individual

vectors.

76

The first term does not depend on w and can be dropped in the following objective:

OKLIEP =
∫

ptest(x) log w(x)dx (6.3)

≈
1

Upair

Upair

∑
u=1

logw(xu) (6.4)

=
1

Upair

Upair

∑
u=1

log
B

∑
b=1

βbψb(xu) (6.5)

(6.6)

where the last line follows from parameterizing the weights w as a weighted average of basis func-

tions: w(x) = ∑B
b=1 βbψb(x). In this work, these bases are Gaussian kernels centered at the test

samples: ψb(x) = exp(− ||x−xu=b||
2σ).3 The kernel bandwidth σ are set by KLIEP’s automatic model

selection procedure. In addition, we will need the constraints that β ≥ 0 (so that the weights w are

positive) and 1 =
∫

w(x)ptrain(x)dx ≈ 1
Lpair

∑Lpair

x=1 ∑B
b βbψ(xl) (so that it is a proper distribution). The

resulting problem can be solved by linear programming. In the end, we have a weights w(xl) for

each document pair in the training data, where large values represent training document pairs occur

in high density regions of the test pairs.

6.1.2 AdaCost: RankBoost with Importance Weights

The weights {w(xl)}l=1..Lpair
are given to the AdaCost-RankBoost learning algorithm. AdaCost will

ensure that training document pairs with large weights are ranked correctly during training, possibly

at the expense of other document pairs with smaller importance weights.

Algorithm 7 shows the AdaCost modification. Note that the only change from traditional Rank-

Boost (Algorithm 2 is the cost factor c(i, j) in Line 4 and its incorporation into the update equation

in Line 5. The cost factor c(i, j) is computed such that:4

• If importance weight w(d(i)−d(j)) is large and prediction is incorrect (i.e. ht(d
(i) > ht(d

(j))),

then D(i, j) is increase much (i.e. c(i, j) is large)

3Note that the Gaussian kernel allows us to have infinite support for ptest(x) and ptrain(x). Otherwise the integration

in Equation 6.1 may not be valid.

4We use the formula c(i, j) = 0.5 ∗ w̃(d(i) − d(j))+ 0.5 if the pair is correctly ranked, and c(i, j) = −0.5 ∗ w̃(d(i) −
d(j))+0.5 otherwise. w̃ is w normalized to [0,1].

77

• If importance weight is small and prediction is incorrect, then D(i, j) increases only slightly.

• If importance weight is large and prediction is correct, then D(i, j) decreases only slightly.

• If importance weight is small and prediction is correct, then D(i, j) decreases much.

Algorithm 7 RankBoost - AdaCost version

Input: Train set S = {(ql ,dl,yl}l=1..L

Input: Initial distribution D(i, j) over (i,j)

Input: Weights on each training document pair w

Output: Ranking function F(·).

1: for t = 1 to T do

2: Find weak ranker ht(·) on weighted data D.

3: Choose step size θt

4: Compute cost factor c(i, j) depending on importance weight w

5: Update weights D(i, j) = D(i, j)exp (c(i, j)θt (ht(d
(i))−ht(d

(j)))). Normalize.

6: end for

7: Output final ranking function F(d(n)) = ∑T
t=1 θtht(d

(n)).

6.2 Combining Feature Generation and Importance Weighting

It is possible to combine Feature Generation and Importance Weighting into one method, since they

operate at different stages in the Local/Transductive Framework. Feature Generation modifies the

feature set, whereas Importance Weighting changes the optimization in RankBoost.

In this section we show one straightforward method for combining the two methods. The pro-

cedure is as follows:

1. For each test list, run Kernel PCA to obtain new feature representation

2. Run KLIEP on the new feature representation, obtaining a importance weighting for the train-

ing data (which are represented with augmented Kernel PCA features).

78

3. Train AdaCost-RankBoost on the augmented features and importance weights.

This combined method allows us to effectively select (soft) subsets of the training data while

training with test-specific features. Since we believe that different feature representations are op-

timal for different queries, it may be reasonable to also believe that we should train on different

subsets of the projected training data, rather than the whole set.

Whether this method works depends on whether both of Change of Representation and Covariate

Shift Assumptions are satisfied.

6.3 Information Retrieval Experiments

In the experiments, we used our own implementation of AdaCost-RankBoost; the KLIEP software

is available from [141]. We compare three systems: supervised RankBoost baseline, Importance

Weighting, and the combined Feature Generation / Importance Weighting ranker.

The results are shown in Table 6.2. We observe that

• Importance Weighting outperforms Baseline in all three datasets. For example for MAP, we

have .2482 (Baseline) vs. .2932 (Importance Weighting) for TREC’03. The improvements

are statistically significant for numerous metrics on all datasets.

• The Combined FG+IW method improves upon Importance Weighting and achieves the best

result overall. Further, observing Figure 6.1 which compares FG, IW, and FG+IW, we note

that on virtually all metrics and all datasets, the combined method performs better or equiva-

lent to either of FG or IW individually.

We now present a few more detailed analyses to better characterize the Importance Weighting

method:

1. What is the effect of extracting all pairs of test documents

We demonstrated that the Importance Weighting approach consistently improves over the supervised

Baseline. However, it is not clear whether our weights are optimal–there may be other sets of

weights that achieve even better results. In particular, we are interested in the question of whether

79

Table 6.2: Importance Weighting Results on Information Retrieval. Importance Weighting (IW)

outperforms the Baseline in various metrics. The combined Feature Generation (FG) and IW method

gave further improvements.

MAP N@1 N@3 N@5 N@10 N@14

TREC’03

Baseline (supervised) .2482 .3200 .3455 .3404 .3388 .3401

Importance Weighting .2932 .4800 .3858 .3862 .3713 .3755

Combined FG+IW .3219 .5250 .4321 .4138 .4023 .3990

TREC’04

Baseline (supervised) .3712 .4800 .4237 .4144 .4471 .4686

Importance Weighting .3834 .4800 .4456 .4353 .4653 .4810

Combined FG+IW .3891 .4833 .4487 .4483 .4554 .4873

OHSUMED

Baseline (supervised) .4424 .4906 .4543 .4501 .4230 .4218

Importance Weighting .4440 .5000 .4483 .4466 .4319 .4280

Combined FG+IW .4497 .5010 .4897 .4765 .4431 .4422

80

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10
0.4

0.45

0.5

0.55

Combined (FG+IW)

FeatureGeneration (FG)

ImportanceWeight (IW)

(a)

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Combined (FG+IW)

FeatureGeneration (FG)

ImportanceWeight (IW)

(b)

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10
0.35

0.4

0.45

0.5

Combined (FG+IW)

FeatureGeneration (FG)

ImportanceWeight (IW)

(c)

Figure 6.1: Combining Feature Generation with Importance Weighting allows for soft selecting of

the projected training data. Combined results improves MAP for all three datasets (a) OHSUMED,

(b) TREC’03, and (c) TREC’04. Results are mixed for NDCG.

81

extracting all pairs of documents from the test list actually introduces a bias in the test distribution,

since in actuality most of these pairs are not ranked pairs but ties.

Thus, we performed a cheating experiment: rather than extracting all pairs of documents in the

test list, we extract only the pairs that have rank differences by observing the test labels. These

“oracle” document pairs correspond to samples that contribute to the actual pairwise ranking test

accuracies. On average, this corresponds to a 70%-80% reduction in the number of document pairs.

This would therefore be a “more focused” target domain. The results in figure 6.2, as expected,

show that the current importance weights can be improved, though the gap is not large for the case

of OHSUMED. The test list has roughly 1000 documents for TREC’03 and 150 for OHSUMED.

We believe there is more chance for improvement in TREC’03 since there are many more possible

test document pairs in that dataset.

Note that this oracle result does not necessarily imply the absolute upper limit of the potential

of Importance Weighting, since we are still using a particular implementation (KLIEP) to compute

these weights. Though KLIEP is a state-of-the-art algorithm, there are other methods that may

potentially achieve better weights.5

2. What are the statistics for the importance weights?

We are interested in seeing how well-matched is the training set to the test query, and whether KLIEP

is indeed selecting subsets of the training data. Figure 6.3 shows histograms of importance weight

values associated with a random set of test queries. Note that the histograms vary widely, i.e. for

the same pairs of training documents, the corresponding importance weight varies a lot depending

on the test list in question. This supports our rationale for treating each test list as a new domain

adaptation problem.

Further, we compute general statistics on the importance weights, shown in Table 6.3. First,

note that the cardinality of the importance weight distribution is similar for both OHSUMED and

TREC’03: there are roughly 150k-230k training pairs for OHSUMED and 130k-270k training pairs

for TREC’03 (the variation is due to different folds). Therefore we may compare weight values

5For example, we have experimented with enhancing KLIEP with ranking-specific features derived from the initial

list. Though the results are not statistically different (not reported here), it does show small improvements over the

standard KLIEP algorithm. The point is that we think improvements to include ranking characteristics into a otherwise

standard Importance Weighting algorithm could bring additional improvements.

82

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10
0.4

0.45

0.5

0.55

All test pairs

Oracle test pairs

(a)

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

All test pairs

Oracle test pairs

(b)

Figure 6.2: Comparison of importance weights extracted with all test pairs (current implementation)

or oracle test pairs (cheating experiment). (a) OHSUMED shows a smaller gap, while (b) TREC’03

implies more chance for improvement can be achieved.

0 2 4 0 2 4 0 1 2 0 1 2

0 5 10 0 1 2 0 1 2 0 5 10

0 1 2 0 1 2 0 1 2 0 2 4

0 20 40 0 5 10 0 2 4 0 5 10

Figure 6.3: Importance weight histogram from some OHSUMED queries. The x-axis is the impor-

tance weight value; y-axis is the histogram count. The large variety in distribution implies that the

target test statistics differ drastically.

83

Table 6.3: Importance weight statistics. Median represent the average median value of importance

weights, across all test lists. Similarly, the 25Rh/75h quantile capture the value of the 25th and 75th

portion of the weight’s cumulative distribution function (CDF). Standard deviation and entropy

show how much the importance weight distribution differs from the uniform distribution. Uniform

distribution would achieve an entropy of 2.48 (entropy is calculated discretely by dividing the weight

histogram into 12 bins).

OHSUMED TREC’03 TREC’04

(all pair) (oracle pair) (all pair) (oracle pair) (all pair) (oracle pair)

Median 0.9142 0.6588 0.5140 0.0370 0.0461 0.0539

75th Quantile 1.2808 1.1304 1.3642 0.2406 0.5137 0.0772

25th Quantile 0.6104 0.3789 0.1420 0.0143 0.0011 0.0533

Mode 0.9031 0.6511 0.0416 28.9366 0.3041 56.4709

Std Deviation 0.5712 1.4719 1.2951 18.7540 3.2136 35.3528

Entropy 1.8582 1.7784 1.9653 0.8520 1.2753 0.4803

across datasets to draw some conclusions. The median value for importance weights is 0.91 for

OHSUMED and 0.51 for TREC’03. The 25th Quantile value is also much lower for TREC’03, im-

plying that KLIEP assigns relatively more low values to TREC’03 as compared to OHSUMED. Sim-

ilarly, the higher standard deviation in TREC’03 suggests that the weight distribution for TREC’03

is more skewed and broader than OHSUMED. In other words, we can say that the Importance

Weighting approach ignores more training data in TREC’03 than in OHSUMED. We are not certain

why this is so, but this may be due to the fact that the TREC data has more features, thus more

chance of domain variety.

We also observe interesting statistics when comparing the (all test pairs) with (oracle test pairs)

implementation (see Section 6.3). The (oracle test pairs) case results in a more focused target

domain, so the importance weight distribution becomes more peaked: the entropy becomes lower,

standard deviation becomes higher, and in general many more samples get low weights (leading to

lower median and lower 25th quantile).

84

3. Both FG and IW gave improvements over the Baseline. How do they compare under data ablation

experiments?

We performed data ablation experiments to see how Feature Generation and Importance Weighting

compare for low data scenarios. For each fold, we artificially limited the training data by taking

the first 40%, 60%, and 80% of the training data (i.e. TREC’03 has 30 queries for training in each

fold, so we would take the first 12, 18, and 24 queries as ablated data). The original datasplit is

already randomized and independently sampled, so we do not expect any biases with this subsam-

pling scheme. The results for MAP and NDCG@10 are shown in Figure 6.4. The Importance

Weighting approach consistently improves over the Baseline and can therefore be considered a rela-

tive safe/stable algorithm. On the other hand, Feature Generation performs well for 80% and 100%

but is usually worse than Baseline for 40% and 60% cases. (This corresponds to 18 and 27 train-

ing queries in TREC’04; 25 and 38 training queries in OHSUMED.) We believe this is due to the

fact that Feature Generation creates more features, and is therefore more sensitive to the amount of

training data.

6.4 Machine Translation Experiments

We repeated the experimental setup for Machine Translation. The results for Arabic-English and

Italian-English are presented in Tables 6.4 and 6.5. The general observations are:

1. Importance Weighting improves over the RankBoost baseline slightly for both tasks. In

Arabic-English translation, Importance Weighting is 0.7 to 0.9 BLEU points higher than Base-

line for Top-K (K = 1 to 5). In Italian-English, Top-1 BLEU is equivalent for both systems

but for K > 1, Importance Weighting outperforms by 0.5 to 1.1 BLEU points. However, these

improvements are not statistically significant according to the bootstrapping ttest procedure

[167].6

2. The Combined FG+IW performs worse than IW individually, in general, and is often worse

6BLEU is a corpus-level metric, not an average of sentence-level metrics. Therefore, in order to compute confidence

levels, bootstrapping is used. The idea is to randomly select (with repeats) sentences from the hypothesized outputs.

Each set of random selection corresponds to a “sample” in the significance test. We perform 1000 samples, compute

BLEU scores for each, and judge significance by the paired t-test, with p < 0.05.

85

Table 6.4: Arabic-English MT results

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

MERT (supervised) Baseline 24.3 26.5 27.9 28.6 29.3 47.9

RankBoost (supervised) Baseline 23.7 26.4 28.0 28.9 29.6 47.9

Importance Weighting (transductive) 24.6 27.1 28.7 29.6 30.5 47.7

FG+IW 23.3 26.0 27.6 28.4 29.0 47.9

Table 6.5: Italian-English MT results

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

MERT (supervised) Baseline 21.2 23.1 24.3 25.0 25.7 52.6

RankBoost (supervised) Baseline 21.9 23.6 24.7 25.4 26.0 51.7

Importance Weighting (transductive) 21.9 24.7 25.8 25.9 26.5 51.5

FG+IW 21.6 23.5 25.0 24.9 25.6 52.5

than the supervised Baseline as well.

It is interesting to observe that FG+IW performed worse than IW in Machine Translation but

gave further improvements in Information Retrieval. We suspect that since the new Kernel PCA

features do not correlate well with BLEU (and indeed FG did not perform well by itself in Machine

Translation), it is detrimental to include them in calculating importance weights.

6.5 Protein Structure Prediction Experiments

The results and conclusions for Protein Structure Prediction is very similar to that of Machine Trans-

lation. Tables 6.6 and 6.7 compares IW and FG+IW with baselines and show that:

1. Importance Weighting slightly improves over supervised baselines for all k’s in Top-k GDT-

TS. However, the improvements are not statistically significant according to the Wilcoxon

signed rank test.

86

Table 6.6: Protein Prediction GDT-TS results

Top-k GDT-TS k=1 k=2 k=3 k=4 k=5

MERT (supervised) Baseline .581 .590 .597 .601 .604

RankBoost (supervised) Baseline .579 .590 .595 .599 .604

Importance Weighting (transductive) .583 .596 .603 .605 .608

FG+IW .568 .584 .593 .596 .601

Table 6.7: Protein Prediction z-score results

Top-k z-score k=1 k=2 k=3 k=4 k=5

MERT (supervised) Baseline 1.07 1.17 1.26 1.31 1.34

RankBoost (supervised) Baseline 1.13 1.25 1.30 1.36 1.41

Importance Weighting (transductive) 1.15 1.26 1.33 1.35 1.39

FG+IW 1.02 1.23 1.29 1.32 1.39

2. Using the Kernel PCA features to compute important weights appear to be detrimental, and

the combined FG+IW performed worse than IW itself. This is observed in both GDT-TS

scores and z-scores.

Further, we look at the scatterplot of GDT-TS values for Importance Weight vs. Baseline to

see how results vary by individual lists. Figure 6.5 shows that Importance Weighting can be called

a low-risk enhancement in the sense that the majority of lists (68%) are not affected much by the

weighting, and that the degree of improvement/degradation is relatively mild.

Chapter Summary

We presented the Importance Weighting Approach, which exploits the covariate shift assumption

by adapting the training distribution to each test list. This is achieved by modifying the KLIEP

importance weighting method for pairwise instances and using an AdaCost version of RankBoost

to incorporate distributions.

87

Importance Weighting appears to be a relatively stable method, achieving gains in all datasets.

In particular, the majority of gains in Information Retrieval are statistically significant. Data ablation

experiments also show Importance Weighting to be a stable method that consistently outperforms

the Baseline (in contrast to Feature Generation, which may underperform in low data scenarios).

We also experimented with a Combined Feature Generation and Importance Weighting ap-

proach, which has the potential to adapt to test lists both in distribution and feature representation.

This combined method gave further improvements in Information Retrieval, but actually degraded

results in Machine Translation and Protein Prediction. This is most likely due to the effectiveness of

Kernel PCA features in the first task and their corresponding ineffectiveness in the two latter tasks.

88

40 60 80 100
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

Percentage of training data

M
A

P

Base

FG

IW

40 60 80 100

0.3

0.32

0.34

0.36

0.38

0.4

Percentage of training data

N
D

C
G

@
1

0

Base

FG

IW

(a)

40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Percentage of training data

M
A

P

Base

FG

IW

40 60 80 100
0.36

0.38

0.4

0.42

0.44

0.46

0.48

Percentage of training data

N
D

C
G

@
1

0

Base

FG

IW

(b)

40 60 80 100
0.425

0.43

0.435

0.44

0.445

0.45

0.455

Percentage of training data

M
A

P

Base

FG

IW

40 60 80 100
0.39

0.4

0.41

0.42

0.43

0.44

0.45

Percentage of training data

N
D

C
G

@
1
0

Base

FG

IW

(c)

Figure 6.4: Data ablation results (MAP and NDCG@10) of (a) OHSUMED, (b) TREC’03, (c)

TREC’04 for 40%, 60%, and 80% subsets of training data. Importance Weighting consistently

improves over the Baseline. Feature Generation performs well for larger data but poorly in the 40%

and 60% cases.

89

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Importance Weighting

B
a
s
e
lin

e

Figure 6.5: Scatterplot of GDT-TS values: Importance Weights (.583 average GDT-TS) vs. Baseline

(.581 average GDT-TS). The majority of lists are not affected by Importance Weights; 12% of the

lists are improved by 0.01, 20% of the lists are degraded. Correlation coefficient = .9827

90

Chapter 7

INVESTIGATING THE LOW DENSITY SEPARATION ASSUMPTION

7.1 Pseudo Margin Approach

Here we propose a method to exploit the low density separation assumption under the Local/Transductive

Framework. Under the low density separation assumption, unlabeled data is used to define regions

of low-density vs. high density. The (classification) function is assumed to cut through low-density

regions, which corresponds to the intuition that objects that cluster together belong to the same

category.

One common way to implement this assumption is using the concept of a “pseudo-margin”

[82, 16, 51]. We will briefly portray this idea with boosting (classification), following [16]: For

labeled data {(xi,yi)}i = 1..L, where x are the features and y are the (classification) labels, AdaBoost

minimizes the following objective function:

∑
i∈labeled

exp(−yiF(xi)) (7.1)

where F(xi) is the value of the classification function on sample xi. The product yiF(xi) is called the

margin (following support vector machine literature), and it is positive if the (binary) classification

is correct, negative otherwise. By minimizing the objective, we are basically maximizing the margin

for labeled points.

For an unlabeled sample, the margin (or pseudo-margin, to make the distinction with the la-

beled case clear), the margin is defined as |F(xi)|. This is equivalent to assuming that the label is

sign(F(xi)), i.e. which means that we trust the prediction to be correct. The objective with unlabeled

points therefore becomes:

min ∑
i∈labeled

exp(−yiF(xi))+γ ∑
i∈unlabeled

exp(−|F(xi)|) (7.2)

The effect of the second term is low density separation. The hyperparameter γ adjusts for its

91

importance in the overall objective. The function F(·) will veer away from any unlabeled sample xi

in order to achieve large pseudo-margin.

Previous work in classification has applied the pseudo-margin idea to boosting. The ASSEM-

BLE system of [16] achieved the best result of the NIPS 2001 Unlabeled Data Competition. Here,

we will extend the pseudo-margin idea in [16] to RankBoost.

The main idea in our extension to ranking is to measure the pseudo-margin on pairwise samples.

In (supervised) RankBoost, the objective function minimizes:

∑
(i, j)

exp(−(F(xi)−F(x j)) (7.3)

for all pairs (i,j) where item i ranks above item j. Here, y∗ (F(xi)−F(x j)),y = 1 can be thought of

as the margin. To extend this to unlabeled samples, we simply define the pseudo-margin

|F(xi)−F(x j)|for any pair (i,j) from unlabeled list (7.4)

Thus, our approach first extracts all pairwise samples from an unlabeled list. Then we minimize,

∑
(i, j)∈labeled

exp(−(F(xi)−F(x j)))+γ ∑
(i, j)∈unlabeled

exp(−|F(xi)−F(x j)|) (7.5)

which leads to low density separation in the pairwise sample space. The pseudo-code for the

overall framework is shown in Algorithm 8, and the pseudo-code for the modified RankBoost is

shown in Algorithm 9. Note that in contrast to previous methods, this method requires a semi-

supervised ranking algorithm in the inner-loop of the general Local/Transductive Framework.

Importantly, we should note that using the pseudo-margin in binary classification automatically

carries an implicit (and usually valid) assumption that an unlabeled point is either one class or the

other. In a similar vein, using it in the ranking scenario automatically assumes that one item is defi-

nitely rank above another item (though we do not know which is which). This assumption in ranking

actually leaves out one potential option: that is, the two items being of the same rank. Therefore,

in cases where many ties are possible from the pairwise samples extracted from an unlabeled list,

pseudo-margin as defined here may not be a suitable way to exploit unlabeled data. We will observe

this effect in our experiments.

92

Algorithm 8 Pseudo-Margin (PM) Approach to Transductive Ranking

Input: Train set S = {(ql ,dl,yl}l=1..L

Input: Test set E = {(qu,du)}u=1..U

Input: PAIR-EXTRACT(), a procedure to extract pairs of samples

Input: SEMI-LEARN(), a semi-supervised ranking algorithm

Output: Predicted rankings for test: {yu}u=1..U

1: for u = 1 to U do

2: P = PAIR-EXTRACT(du)

3: Fu(·) = SEMI-LEARN(W,{(ql ,dl,yl)}l=1..L,P)

4: yu = Fu(du) # predict test ranking

5: end for

Algorithm 9 RankBoost with Pseudo-Margins

Input: Train set S = {(ql ,dl,yl}l=1..L

Input: Unlabeled Pairs P.

Input: Initial distribution D(i, j) over (i,j)

Output: Ranking function F(·).

1: for t = 1 to T do

2: Find weak ranker ht(·) on weighted data D.

3: Choose step size θt

4: Compute cost factor c(i, j) depending on importance weight w

5: Update weights D(i, j) = D(i, j)exp (c(i, j)θt (ht(d
(i))−ht(d

(j)))) for (i,j) from labeled data.

6: Update weights D(i, j) = D(i, j)exp (c(i, j)θt (|ht(d
(i))−ht(d

(j))|)) for (i,j) from unlabeled

data. Normalize.

7: end for

8: Output final ranking function F(d(n)) = ∑T
t=1 θtht(d

(n)).

93

7.2 Information Retrieval Experiments

In the experiments we evaluate whether low density separation of pairwise samples is a suitable

objective for ranking. We will compare three systems:

1. Baseline: Supervised RankBoost

2. Pseudo Margin Approach, as described in the previous section

3. Pseudo Margin with Oracle Pairs: This is a semi-cheating experiment where only pairs of

documents that are not tied in rank are extracted for computing pseudo margins. In other

words, whereas the standard (and non-cheating) Pseudo Margin Approach extracts all possible

pairs from the test list (i.e. (N ∗N −1)/2 pairs in total for N documents), the “Pseudo Margin

with Oracle Pairs” system extracts only a subset of pairs which are known to have rank label

differences.

It is important to note that the Oracle Pairs system, though provided with documents pairs that

are not tied, is not given information as to which of the pair is ranked above the other. That is why

we say it is a semi-cheating experiment. In a sense, this system more closely resembles the low

density separation assumption in classification, where it is clear that the unlabeled sample (in this

case, unlabeled pair) is one of two classes (and that their is no third option).

The Pseudo Margin Approach has one hyperparameter (γ) for trading off the effect of labeled

versus unlabeled samples. In all our experiments here we set it to a default of 0.5∗Nl/Nu (where

Nu and Nl are the number of unlabeled and unlabeled pairs), meaning that the loss from the pseudo-

margin is half of that of the real labeled margin. Preliminary experiments show that RankBoost

is relatively insensitive to the adjustment of this hyperparameter in reasonable domains: we obtain

similar results for values 0.1 to 1.0.

The results for Information Retrieval are shown in Table 7.1. We observe that:

• The Pseudo Margin Approach in general performs worse than or equal to the Baseline. The

only exception where Pseudo Margin performed better (statistically-significant) is for the

94

Table 7.1: Pseudo Margin Results. The Pseudo Margin approach performed equal to or worse than

the Baseline due to violation of the low density separation assumption. Most unlabeled document

pairs are in practice tied in rank and should not be encouraged to have large margins. Once these

tied pairs are removed, the Oracle Pairs result show dramatic improvements for all datasets.

MAP N@1 N@3 N@5 N@10 N@14

TREC’03

Baseline (supervised) .2482 .3200 .3455 .3404 .3388 .3401

Pseudo Margin .2502 .3400 .3399 .3500 .3403 .3433

w/ Oracle Pairs .5158 .7000 .6704 .6392 .6143 .6170

TREC’04

Baseline (supervised) .3712 .4800 .4237 .4144 .4471 .4686

Pseudo Margin .3502 .4533 .4143 .4070 .4350 .4524

w/ Oracle Pairs .6858 .8400 .7999 .7598 .7470 .7501

OHSUMED

Baseline (supervised) .4424 .4906 .4543 .4501 .4230 .4218

Pseudo Margin .4520 .4560 .4342 .4334 .4208 .4196

w/ Oracle Pairs .5136 .5252 .5159 .5117 .4941 .4948

MAP metric for OHSUMED.1

• Pseudo Margin with Oracle Pairs performed overwhelmingly above the baseline, giving the

best results so far. This is a semi-cheating experiment, but it shows how tied pairs invalidates

the low density separation assumption.

To investigate deeper the issue of tied pairs, consider the following statistic for TREC’03:

• There are roughly 983 documents per list. Thus the Pseudo Margin approach would extract

983∗982/2 = 482,653 pairs of documents.

1In this case, it appears that precision at low ends is benefiting from the Pseudo Margin, which improved MAP overall.

95

• There are however only 2 levels of relevance judgments in TREC (relevant vs. irrelevant), and

on average there are only 1 relevant document in the list of 983 documents. This means that

there are only 1∗982 = 982 pairs of documents with different ranks (i.e. the Oracle Pairs).

• Only 982 out of 482,653 pairs are not tied. This is 0.02%. In other words, the vast majority of

extracted pairs in the Pseudo Margin approach are forced to have large margin, but in actuality,

they should be tied and have little margin.2

The issue of tied ranks is interesting because it reveals a case where assumptions from semi-

supervised classification do not apply to ranking.

It may be possible to enhance the Pseudo Margin Approach in tied-rank datasets, using for

example a two-step approach. In the first step, a traditional ranker is used to order the test documents.

Then, assuming this is a relatively accurate ordering, we can divide the documents into top-half

and bottom-half, then extract document pairs between these two halves. This strategy relies on

the Bootstrapping assumption in the first step, but we do not need to assume that the top-half is

necessarily better than the bottom-half. The order could be reversed–as long as the tied pairs are

eliminated, then the low density separation assumption used in the second step becomes suitable.

Another possibility is to reformulate the objective such that tied pairs are accounted for. We

know that for non-tied pairs, we would like to minimize ∑(i, j)∈unlabeled exp(−|F(xi)−F(x j)|) and for

tied pairs, we would alternatively like to minimize ∑(i, j)∈unlabeled exp(|F(xi)−F(x j)|). Further, from

the labeled dataset, we can estimate the ratio of tied vs. non-tied pairs. This prior information could

potentially be incorporated into the obective such that a fraction of the unlabeled pairs maximizes

pseudo-margin while another portion minimizes it, and the optimization technique has the flexibility

to choose which pair belongs to which category. This is analogous to transductive SVM solutions

[82] where one can specify the ratio of positive vs. negative samples in the unlabeled sample.

2In fact, we performed an additional experiment where we minimize rather than maximize the pseudo-margin. This

actually gave improvements in OHSUMED (.4800 MAP) and TREC’04 (.3523 MAP), but not for TREC’03 (.2503

MAP).

96

7.3 Machine Translation Experiments

The experimental setup for Information Retrieval is repeated for Machine Translation, with very

different results.

Tables 7.3 and 7.4 show that the Pseudo Margin Approach gave significant improvements over

the Baseline, and in fact performs better than the Oracle Pairs version. Since machine translation

uses continuous-value labels, we define oracle pairs in the same way labeled pairs are defined: if

the difference of sentence-level BLEU exceeds a certain threshold, then a pair is considered to be

ranked. If the difference is below the threshold (or zero), then they are considered tied.

In Arabic-to-English translation, the Top-1 BLEU of 26.1 for Pseudo Margin outperforms the

Baseline of 24.3. Similarly, the BLEU score of Oracle Pairs (25.0) also improves upon the Base-

line. In Italian-to-English translation, Pseudo Margin (24.3) and Oracle Pairs (23.7) also outperform

Baseline (21.2). Interestingly, for this dataset, using only Oracle Pairs actually does not perform as

well as extracting all pairs. This is because there are actually relatively few ties in the Machine

Translation N-best lists–these lists have been de-duplicated so that identical surface strings are re-

moved, and so most pairs of hypotheses would likely benefit from the large pseudo-margin. In

contrast to the 0.02% non-tied pairs in Information Retrieval, in the Arabic task for example there

are up to 20% of pairs that are not tied in terms of sentence-level BLEU.

Finally, we compare the translation output of baseline vs. Pseudo Margin in more detail. Table

7.2 shows the breakdown comparison of BLEU computation. We observe that the gains in BLEU

for Pseudo Margin comes from better n-gram matches (and not the brevity term). Figure 7.1 shows

some example translations obtained by the different methods.

We conclude that the low density separation assumption works well for our machine translation

data. It would be worth investigating in future work whether this generalizes to other machine

translation datasets.

7.4 Protein Structure Prediction Experiments

The results for Protein Structure Prediction are shown in Tables 7.5 and 7.6. We observe slight

degradations with the Pseudo Margin Approach. The Oracle Pairs system performs slightly better

than the standard Pseudo Margin Approach, but do not outperform the Baseline as seen in Informa-

97

Table 7.2: Breakdown comparison of BLEU for Baseline (MERT) vs. Pseudo-Margin

Baseline Pseudo-Margin

1-gram precision 65.03 66.74

2-gram precision 33.23 35.29

3-gram precision 18.30 19.94

4-gram precision 9.83 11.07

overall precision .2497 .2685

length ratio (brevity) .9731 .9725

BLEU 24.3 26.1

Table 7.3: Arabic-English MT results. The Pseudo Margin Approach outperforms the Baseline in

all metrics. Boldface represents statistically significant improvement via the bootstrapping approach

[167]

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

MERT (supervised) Baseline 24.3 26.5 27.9 28.6 29.3 47.9

RankBoost (supervised) Baseline 23.7 26.4 28.0 28.9 29.6 47.9

Pseudo Margin 26.1 28.8 30.1 30.9 31.8 46.5

w/ Oracle Pairs 25.0 28.0 29.6 30.6 31.2 46.7

Table 7.4: Italian-English MT results. The Pseudo Margin Approach outperforms the Baseline in

all metrics. Boldface represents statistically significant improvement via the bootstrapping approach

[167]

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

MERT (supervised) Baseline 21.2 23.1 24.3 25.0 25.7 52.6

RankBoost (supervised) Baseline 21.9 23.6 24.7 25.4 26.0 51.7

Pseudo Margin 24.3 26.1 27.0 27.8 28.4 48.6

w/ Oracle Pairs 23.7 25.8 26.7 27.3 27.9 48.8

98

REF: the store is usually open from nine am to six pm

Baseline: open shop usually at nine SbAHAFAlY pm

Pseudo-Margin: open shop is usually at nine SbAHAFAlY six in the evening

REF: it’s not salt-free we can change it to salt-free if you need

Baseline: it’s not is it urgent but we can change for another seat is that man

Pseudo-Margin: it’s not is from the salt and but we can change for the last is it

REF:sorry you cannot turn the tv on until the plane has taken off

Baseline: excuse me i you turn tv until the plane departs

Pseudo-Margin: excuse me not you turn set until the plane departs

Figure 7.1: Example translation outputs for Baseline vs. Pseudo-Margin.

Table 7.5: Protein Prediction GDT-TS results

Top-k GDT-TS k=1 k=2 k=3 k=4 k=5

MERT (supervised) Baseline .581 .590 .597 .601 .604

RankBoost (supervised) Baseline .579 .590 .595 .599 .604

Pseudo Margin .574 .590 .599 .603 .608

w/ Oracle Pairs .578 .591 .599 .603 .608

tion Retrieval.

The scatterplot of Pseudo Margin vs. Baseline for individual test lists reveal an interesting result

(Figure 7.2). Compared to similar scatterplots for Importance Weighting and Feature Generation

(Figs 6.5 and 5.8), the results here are much more varied (and the correlation coefficient is smaller).

In the Pseudo Margin Approach, 70% of test lists differ by more than 0.01 from the Baseline GDT-

TS. (Among these, 37% of the lists are improved by 0.01, and 33% of the lists are degraded, but

overall the average GDT-TS is still a slight degradation.) Thus, in comparison, Pseudo Margin is a

riskier approach–there is much more potential to improve, as well as degrade the Baseline results.

99

Table 7.6: Protein Prediction z-score results

Top-k z-score k=1 k=2 k=3 k=4 k=5

MERT (supervised) Baseline 1.07 1.17 1.26 1.31 1.34

RankBoost (supervised) Baseline 1.13 1.25 1.30 1.36 1.41

Pseudo Margin 1.03 1.24 1.34 1.40 1.47

w/ Oracle Pairs 1.09 1.26 1.35 1.40 1.45

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pseudo Margin

B
a
s
e
lin

e

Figure 7.2: Scatterplot of GDT-TS values: Pseudo Margin (.574 average GDT-TS) vs. Baseline

(.581 average GDT-TS). In contrast to Importance Weighting, here the majority of lists are affected

by the Pseudo Margin Approach: 37% of the lists are improved by 0.01, 33% of the lists are de-

graded. Correlation coefficient = .9681

100

Chapter Summary

We apply the low density separation assumption to ranking by the definition of pseudo-margin

over pairs of unlabeled documents extracted from the test list. The three different datasets exhibit

drastically different results:

• In Information Retrieval, the abundance of tied-ranks led to inferior performance of the

Pseudo Margin approach. However, once these ties are eliminated in a semi-cheating ex-

periment, significant improvements can be seen. An avenue of future research is to use an

initial ranking to identify possible tied pairs and eliminate them before the Pseudo Margin

approach is applied.

• In Machine Translation, Pseudo Margin give significant improvements. The Oracle Pairs

version also gave improvements, albeit less.

• We observe slight degradations with Pseudo Margin on the Protein Prediction dataset. These

degradations are not statistically significant.

The Pseudo Margin Approach therefore appears to be high-risk and high-reward. If the low

density assumption is satisfied (as in the case of Machine Translation or Oracle Pairs in Information

Retrieval), then significant gains may be seen. On the other hand, issues such as tied ranks may

violate the assumption and lead to degradations for this method.

101

Chapter 8

KERNELS ON LISTS

In this chapter we will introduce a kernel that operates on lists. The motivation for such a kernel

is that it enables more classification techniques to be applied to ranking. In the following, Sections

8.1 and 8.2 will discuss the motivation and the related work in detail. The proposed List Kernel is

presented in Section 8.3.

We will apply list kernels for semi-supervised ranking in two distinct ways: Section 8.4 explores

using list kernels under the Covariate Shift Assumption, similar to the Importance Weighting method

of Section 6 with the exception that kernels are applied to pairs of lists rather than pairs of vectors.

Section 8.5 uses the distance information between lists in the framework of graph-based methods

and proposes a variant of label propagation called Ranker Propagation.

8.1 Motivation

Many popular learning algorithms, be it supervised or semi-supervised, work with kernels that char-

acterize the similarity between sample points. For example, support vector machines use kernel

functions to measure the similarity of sample points in some implicitly-defined high-dimensional

space. The use of kernels not only gives computational speed-ups but also accuracy improvements.

Graph-based methods represent another class of techniques where kernels1 or similarity informa-

tion between points are central; in this case, the overall manifold of the dataset is captured by local

distance functions. Many kernel methods or graph-based methods are modular with respect to the

kernel they use, giving the designer the flexibility to plug-in different kernels (which may represent

different quantifications of the designer’s concept of invariance). It is however challenging to apply

these methods directly to ranking if the kernels are defined over samples points (e.g. vectors), rather

than lists (e.g. set of vectors).

We are therefore motivated to develop novel kernels that operate on lists. With List Kernels, we

1Kernels are actually not required for graph-based learning; it is sufficient to have a non-negative similarity function.

102

can conceivably adapt many kernel and graph-based methods for ranking problems. The criteria for

a List Kernel K(·, ·) is as follows:

• The List Kernel K(·, ·) is a function that maps two lists to a non-negative scalar. i.e. K(x,y) :

Rd×Nx ×RdxNy → R+, where x and y are two lists.

• The number of vectors in x and y need not be equivalent, i.e. Nx = Ny is not required.

• The kernel is computed only using information from the unlabeled portion of the lists (e.g.

the features of each hypothesis in an N-best list), and no labeled information is utilized.

• Intuitively, the kernel should give large values for two lists that are similar, and small values

for two lists that are dissimilar, where the concept of similarity is yet to be defined.

• K(x,y) is symmetric (i.e. K(x,y) = K(y,x)) and positive semi-definite (i.e. cT ∗K(x,y)∗c ≥ 0,

for any x,y and any c ∈ Rm 6= 0)

8.2 Related Work on Kernels

While kernel design has been an active area of research, there has been considerably little related

work for kernels on lists. Most previous work has focused on kernels for vectorial data, combina-

torial data, and structured data (c.f. [132]). To the best of our knowledge, the only work involving

kernels over lists of vectors are in the computer vision literature. The motivation in these cases is

to deviate from the common practice of representing a two-dimensional image as a single vector

(e.g. a 32 x 32 image would be represented as a vector of length 1024, where each entry is a pixel).

Instead, the image would be represented by 32 vectors of length 32 each.

The works in computer vision (more specifically, image recognition) trace their ideas to mainly

two different approaches. One is based on distance measures between probability distributions

induced from the list of vectors, while the other is based purely on geometrical properties.

The work of Kondor & Jebara [90] is based on first generating a probability distribution that

represents each list, then measuring the divergence between the distributions. Conceptually, the

following steps are involved:

103

1. For list x = {zn}n=1..Nx
, train a multivariate Gaussian p(z)= 1

(2π)d/2|Σ|1/2 exp{−(z−µ)T Σ−1(z−µ)}

using the Nx vectors in the list.

2. Similarly, obtain the multivariate Gaussian by training on vectors in list y (i.e. compute the

mean µ and covariance Σ).

3. Compute the distance between distributions of two lists (p(z) and p′(z)) using the Bhat-

tacharyya distance:

K(p(z), p′(z)) =
∫

(
√

p(z)−
√

p′(z))dz (8.1)

While different distances on distributions (e.g. the Kullback-Liebler Divergence) could be used,

[90] showed that efficient computation of the above kernel can be achieved with the Bhattacharyya

distance. The final kernel value can be computed in closed-form based on means and covariances,

without requiring integration. For convenience, we will refer to this as the Bhattacharyya kernel.

The works of Yamaguchi et. al. [161] and Wolf & Shashua [154] are based on geometric

properties of the lists using the concept of principal component angles, due to Hotelling [71]. Let

Ux and Uy be the subspaces spanned by samples in list x and y, respectively. This subspace can

be computed by principal components analysis, for example, leading to Ux = [u1
xu2

xu3
x ..], where

< ui
x,u

j
x >= 0 ∀ i 6= j. The principal angle between the two subspaces is defined as:

cos(θ) = max
u∈Ux

max
v∈Uy

uT v (8.2)

In other words, the kernel value between two lists is the maximum dot product between two sets

of basis functions computed by principal components analysis. For convenience, we will refer to

this second approach as the principal angles kernel.

Note that both of the above kernels capture some information about the orientation of the list. If

two lists differ from only slight rotation, they will receive high similarity. In addition, the principal

angles kernel has a shift-invariant property, meaning that one could add a constant offset to all ele-

ments of a list without affecting the kernel value. It is also scale-invariant since a constant multiplier

will not change the set of basis functions. On the other hand, the Bhattacharyya kernel is sensitive

to shifts and scaling in feature space. For the application of ranking, we imagine that the shape and

104

Table 8.1: A summary of properties of kernels on sets of vectors. List Kernel is proposed in Section

8.3

Bhattacharyya Principal Angles List Kernel

Shift-invariance no yes yes

Scale-invariance no yes yes

Rotation-invariance no no no

orientation of the list is most important, since it shows the relationship among objects in the same

list. In many cases, what the ranker does is to tradeoff the relative importance of different features,

and this ratio manifests itself in the shape and orientation of the list. Shape, however, is not captured

by the principal angles kernel since it only uses information about the PCA eigenvectors, and not

the eigenvalues. Shift invariance and scale invariance may be desirable properties if we believe that

the ranking function should not vary drastically at different parts of the feature space. They may not

be desirable properties if we believe otherwise.

A summary of different properties of is shown in Table 8.1.

8.3 Formulation of a List Kernel

In this section we present our kernel, which we simply call the List Kernel. Part of the formulation

turns out to be similar to the principal angles kernel since we focus on geometric properties of point

clouds, though there are significant differences. We will try to characterize shape and rotation differ-

ences between two lists. The main idea is to first use principal component analysis to characterize

the subspace spanned by objects within a list, then use a maximum weighted bipartite matching

algorithm to find the distance between all basis vectors of this subspace. One can imagine trying to

rotate one list such that it maximally aligns to the second list. The amount of work required to do

this is the difference, and the inverse would be the similarity. The matching algorithm is required

because there are many ways to match basis vectors from one list to basis vectors of the other list.

We will enforce an one-to-one mapping between basis vectors because we are “rotating” the list as

a rigid body in space and not doing any deformation. In sum, we compare two lists by shape and

orientation similarity, and in the following we propose one specific algorithm to achieve it.

105

The pseudo-code for List Kernel is shown in Algorithm 10. To illustrate the kernel, suppose we

have computed the basis vectors for list x: [u1
x u2

x u3
x], as well as the basis vectors for list y: [u1

y u2
y u3

y].

For ease of explanation, supposed we had only extracted the top three principal component axes.

If the top eigenvectors (principal axes) u1
x and u1

y point in similar directions, then their dot product

is high and the corresponding list kernel value will be high. On the other hand, if u1
x and u1

y are

dissimilar, but u1
x and u2

y are similar, then the list kernel value should be medium-ranged (in effect

weighted by λ 1
x ×λ 2

y). Finally, if none of the three eigenvectors of x match well with that of y, then

the list kernel value will be small. The goal of the maximum bipartite matching step in Algorithm

10 is to find the best possible one-to-one correspondence between the two subspaces, so therefore

the list kernel value is defined as the attained matching value.

Algorithm 10 Computing the List Kernel

Input: List x and list y.

Output: Kernel value K(x,y).

1: [Ux;Λx] = PCA(x) (Compute M principal component axes um
x , m = 1..M and eigenvalues λ m

x ,

based on vectors in list x.)

2: [Uy;Λy] = PCA(y) (Similarly compute for list y.)

3: Define a bipartite graph G with M2 edges and 2M nodes. One side of the graph represent um
x

and the other side represent um
y .

4: for m = 1 to M do

5: for m′ = 1 to M do

6: Compute the edge weight, defined as the dot product between principal axes, weighted by

the corresponding eigenvalues λ m
x λ m′

y · | < um
x ,um′

y > |.

7: end for

8: end for

9: Compute maximum weighted bipartite matching on graph G. The unnormalized kernel value

K̂(x,y) is defined as the maximum matching value, i.e. K̂(x,y) = ∑M
m=1 λ m

x λ a(m)
y · |< um

x ,u
a(m)
y >

|. where a(·) is a bijection a : 1..M → 1..M that represents the bipartite matching.2

10: The output kernel value K(x,y) is normalized by the norm of eigenvalues:

K(x,y) = K̂(x,y)/(||λx|| · ||λy||)

106

This list kernel has advantages over the principal angles kernel because it considers the overall

shape and orientation of the lists. The principal angles kernel, with its “max-max” operation only

considers the correspondence of only one pair of eigenvectors. Principal angles kernel can be seen

as an extension of cosine distance (for vectors) to subspaces. Since the focus is on “cosine distance”

between subspaces, there is no measure of the shape, which is characterized by ratios of eigenvalues

of difference principal component axes. For example, if u1
x matches well with u2

y , the principal

component kernel will achieve high value regardless of whether the remaining eigenvectors match

well. Further, the lack of weighting of principal axes may lead to stronger sensitivity to the number

of components extracted (M). It is important to note that while both methods employ principal

components as a first step, the principal angles kernel is most concerned with measuring the angle

between subspaces, while our proposed list kernel focuses on matching the overall shapes between

point clouds in lists. The List Kernel is also shift-invariant. The example in Figure 8.1 illustrates

how List Kernel works.

We use the Hungarian Method (also known as the Kuhn-Munkres algorithm) for weighted bi-

partite matching. The overall computation cost is:

• O(d3) for the principal components analysis (d is the dimension of the feature vectors, which

range from 10-50 in our tasks)

• plus O(M2) for computing the edge weights in the bipartite graph G. (M is the number of

principal components extracted, which can be a small integer (e.g. 5 or 10).)

• plus O(M3) for the bipartite matching. Since M is a small integer, the computations required

for list kernel is not at all prohibitive in practice.

We now show that Algorithm 10 generates a valid kernel.

Proposition 8.3.1. The function K(x,y) in Algorithm 10 is symmetric, i.e. K(x,y) = K(y,x).

Proof.

K(x,y) =
∑M

m=1 λ m
x λ a(m)

y · | < um
x ,u

a(m)
y > |

(||λx|| · ||λy||)

107

−6 −4 −2 0 2 4 6 8
−5

0

5

−8 −6 −4 −2 0 2 4 6 8
−2

0

2

−4 −3 −2 −1 0 1 2 3 4
−10

0

10

Figure 8.1: Illustration of list kernel. The top data is characterized a [.9 .3] vector as its first principal

axes (large eigenvalue 5.2) and a [.3 -.9] vector as its second axes (small eigenvalue 0.1). The second

and third datasets are rotations of the the first by 25 and 90 degrees, respectively. In the second

dataset, the first principal axis is a [1 0] vector. In the third dataset, the first principal axis is a [.3

-.9] vector. The principal angles kernel would therefore find that the first and third data are close.

However, the list kernel would successively discover via the maximum weighted bipartite matching

procedure that the second dataset (which has less rotation) is closer to the first: it would match the

axes that have both small cosine distance as well as large eigenvalues.

108

=
∑M

m=1 λ a(m)
y λ m

x · | < u
a(m)
y ,um

x > |

(||λy|| · ||λx||)

=
∑M

m=1 λ m
y λ a−1(m)

x · | < um
y ,u

a−1(m)
x > |

(||λy|| · ||λx||)

= K(y,x)

Proposition 8.3.2. The function K(x,y) in Algorithm 10 is satisfies the Cauchy-Schwartz Inequality,

i.e. K(x,y)2 ≤ K(x,x)K(y,y).

Proof. First, we show that K(x,x) = 1:

K(x,x) =
∑M

m=1 λ m
x λ a(m)

x · | < um
x ,u

a(m)
x > |

(||λx|| · ||λx||)

=
∑M

m=1 λ m
x λ m

x · | < um
x ,um

x > |

(||λx|| · ||λx||)

=
∑M

m=1 λ m
x λ m

x

(||λx|| · ||λx||)

=
||λ ||2

(||λx|| · ||λx||)
= 1

The second step follows from the fact that maximum bipartite matching would achieve a(m) = m ∀m

since < um
x ,um

x >= 1 and < um
x ,um′

x >= 0 for any m 6= m′. The third step is a result of < um
x ,um

x >= 1.

Next we show that K(x,y)2 is bounded by 1. Note that < um
x ,u

a(m)
y >≤ 1, so that K(x,y) ≤

∑M
m=1 λ m

x λ a(m)
y

(||λx ||·||λy ||)
≤ 1 where the last inequality follows from applying Cauchy-Schwartz to the vectors of

eigenvalues.

Theorem 8.3.3 (Mercer’s Theorem, c.f. [132]). Every positive (semi) definite, symmetric function

is a kernel: i.e., there exists a feature mapping φ such that it is possible to write: K(x,y) =<

φ(x),φ(y) >.

Mercer’s Theorem is a powerful theorem which says that as long our function is positive semi-

definite, we can be certain that there is an inherent (possibly high dimensional) feature representation

whose dot product is the kernel function. We do not need to explicitly construct this feature space.

Proposition 8.3.4. The function K(x,y) in Algorithm 10 satisfies the Mercer Theorem.

109

Proof. We have already proved that K(x,y) is symmetric. To see that it is positive semi-definite,

we just need to observe that K(x,y) ≥ 0 for any x,y. We prove this by contradiction: Suppose

K(x,y) < 0 for some x,y. This implies that ∑M
m=1 λ m

x λ a(m)
y · | < um

x ,u
a(m)
y > | is negative. However,

by construction, we will only obtain non-negative eigenvalues λx from PCA. Further, the absolute

value operation | < um
x ,u

a(m)
y > | ensures non-negativity. Thus, the statement that K(x,y) < 0 for

some x,y is false.

8.4 Importance Weighting with List Kernels

In this section, we explore a direct application of list kernels which is more similar to the standard

classification scenario of covariate shift adaptation. The motivation is similar to the Importance

Weighting Approach of the Local/Transductive Framework, as described in Section 6. The main

difference is that we now focus on lists, rather than on pairs of objects within lists. The advantage

with using lists as the atomic object is that list-based optimization methods, such as Minimum Error

Rate Training (MERT), can be applied.

In Algorithm 11, we outline the procedure for using list kernels to implement the covariate shift

assumption on lists. The idea is that if the test set contains lists all with a certain shape, then the

training lists with similar shapes should be emphasized during training.

Algorithm 11 List-based Importance Weighting for Minimum Error Rate Training

Input: Train set S = {(ql ,dl,yl}l=1..L

Input: Test set E = {(qu,du)}u=1..U

Output: Weight vector w, for testing on E .

1: For all pairs of lists in S∪E , compute list kernel value K(·, ·)

2: Apply the KLIEP algorithm on L+U “samples”, where each sample is a list, with the list kernel

providing distance information. L importance weights will be generated.

3: Train MERT with importance weights to obtain the adapted weight vector w (Algorithm 12).

The traditional MERT algorithm is modified to allow importance weights as in Algorithm 12.

110

Algorithm 12 Minimum Error Rate Training with Importance Weights

Input: Train set S = {(ql ,dl,yl}l=1..L

Input: Importance weights v ∈ RL.

Output: Weight vector w, for testing on E .

1: Initialize w

2: for i = 1..I (I is the number of features) do

3: Perform line search along feature i to find inflection points that cause hypothesis changes in

S.

4: For each inflection point, compute a weighted BLEU score, where the weights depend on the

v.

5: Choose wi that maximize the weighted BLEU score.

6: end for

7: Repeat for J iterations

8.4.1 Evaluation in Machine Translation

In our evaluation, we compared four systems:

• MERT baseline (supervised)

• MERT with Importance Weights computed from Principal Angles Kernel

• MERT with Importance Weights computed from List Kernel

• Importance Weight with RankBoost in the Local/Transductive Framework (Section 6). There

are two main differences between the Local/Transductive Framework and the techniques de-

scribed in this section: (1) the Local/Transductive Framework computes new weights for each

test list, whereas techniques in this section has one weight based on the entire set of test lists.

(2) the KLIEP algorithm for Local/Transductive Framework is based on (difference) pairs of

objects, whereas here it is based on lists.

For both Arabic and Italian datasets, we observe a small improvement over the MERT baseline

with using List Kernel weights (e.g. 0.8 BLEU improvement). On the other hand, the Principal

111

Angles Kernel did not achieve significantly different results from the MERT baseline. Detailed

examination of the importance weights reveal that they seldom differed from 1, which implies that

there is little distributional difference between training and test lists from the perspective of the

Principal Angles Kernel. The List Kernel, due to its more fine-grained characterization of overall

shapes, could achieve better results by capturing slight differences between the distributions.

Furthermore, for the Arabic task, we observe an interesting result where the top-1 BLEU of

List Kernel is better than that of the Importance Weighing Approach in the Local/Transductive

Framework, but for Top-k, k > 1, the result is reversed. It is plausible that since the List Kernel

allows us to use MERT, which directly optimizes top-1 BLEU, we could achieve the best top-1

result using this method. On the other hand, for higher k’s, RankBoost may sometimes be superior

to MERT. There are however too many differences between the two methods to firmly make this

conclusion, yet we would just like to point out the possibility. Nevertheless, we observe that the List

Kernel does indeed enable us to adapt new methods to ranking and give slight improvements. These

improvements, however, are not statistically significant under the bootstrap test.

Table 8.2: Arabic-English MT results with Importance Weighting. Best results are underlined (no

results were statistically significantly better).

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

MERT (supervised) Baseline 24.3 26.5 27.9 28.6 29.3 47.9

Importance Weighting by Principal Angles Kernel 24.4 26.5 27.7 28.5 29.2 48.0

Importance Weighting by List Kernel 25.1 27.0 28.0 28.8 29.5 48.0

Importance Weight - Local/Transductive 24.6 27.1 28.7 29.6 30.5 47.7

8.4.2 Evaluation in Protein Structure Prediction

The evaluation for protein structure prediction is similar in setup as the machine translation tasks.

In this case, there is a slight trend showing that List Kernel improves upon Principal Angles Kernel,

but the difference between List Kernel and the Baseline are small.

Analysis of the importance weights from both Principal Angles Kernel and List Kernel reveal

112

Table 8.3: Italian-English MT results with Importance Weighting. Best results are underlined (no

results were statistically significantly better).

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

MERT (supervised) Baseline 21.2 23.1 24.3 25.0 25.7 52.6

Importance Weighting by Principal Angles Kernel 21.4 23.5 24.4 25.6 26.0 52.4

Importance Weighting by List Kernel 22.0 24.0 24.5 25.8 26.1 51.8

Importance Weight - Local/Transductive 21.9 24.7 25.8 25.9 26.5 51.5

Table 8.4: Protein Prediction GDT-TS results

Top-k GDT-TS k=1 k=2 k=3 k=4 k=5

MERT (supervised) Baseline .581 .590 .597 .601 .604

Importance Weighting by Principal Angles Kernel .572 .584 .591 .596 .599

Importance Weighting by List Kernel .581 .591 .597 .601 .602

Importance Weighting - Local/Transductive .583 .596 .603 .605 .608

much sparsity, i.e. around 70%-90% of the weights were close to zero. This means that a sig-

nificantly small set of training data was selected in the training process. Contrasting this with the

machine translation results, we can say that:

• In Protein Prediction, there is an observable difference between the shapes of lists in the

training set vs. the test set (thus leading to sparsity). In machine translation, this difference is

too fined grained to be captured by the Principal Angles kernel–but it is captured by the List

Kernel.

• In Protein Prediction, the List Kernel matches the Baseline result, which means that the small

percentage of training data it selected correctly captures the characteristics of the dataset.

However, it is insufficient to improve upon the Baseline. In contrast, in Machine Translation,

there is a slight improvement obtained by List Kernels.

113

Table 8.5: Protein Prediction z-score results

Top-k z-score k=1 k=2 k=3 k=4 k=5

MERT (supervised) Baseline 1.07 1.17 1.26 1.31 1.34

Importance Weighting by Principal Angles Kernel 1.02 1.15 1.23 1.31 1.36

Importance Weighting by List Kernel 1.08 1.20 1.25 1.30 1.31

Importance Weighting - Local/Transductive 1.15 1.26 1.33 1.35 1.39

8.4.3 Evaluation in Information Retrieval

For information retrieval datasets, we evaluated the list kernel derived importance weights using

the RankBoost algorithm (AdaCost version). RankBoost requires importance weights for pairs of

documents, whereas now we have derived weights directly for each list. As a result, we simply tie

each pair of documents to have the same weight as the list it comes from (i.e. all pairs in the same

list receive the same weight; only pairs from different lists are weighted differently).

The result is shown in Table 8.6. In all datasets, we observe virtually no difference between the

baseline RankBoost and the importance weight methods, either based on Principal Angles Kernel

or List Kernel. Observation of the actual weight values reveal that almost all weights are valued at

1, meaning that very little data weighting is done in practice. This explains the lack of difference

from Baseline results.

We conclude that importance weighting under the Local/Transductive framework produced pos-

itive results, though importance weighting under the current setup produced no discernable differ-

ence. We think this indicates that there is little distributional difference between the training set and

the test set (which is possible under the data preparation conditions of LETOR, since queries were

drawn randomly from the same set), though differences between the training set and one test list is

large enough to be exploited. In addition, it is possible that the larger degree of freedom in pairs vs.

list weighting could have an impact.

114

Table 8.6: Information Retrieval Results for List Kernel Importance Weighting. List Kernel and

Principal Angles Kernel give virtually the same result as Baseline, due to the lack of deviation in

the importance weights in practice.

MAP N@1 N@3 N@5 N@10 N@14

TREC’03

Baseline (supervised RankBoost) .2482 .3200 .3455 .3404 .3388 .3401

Importance Weight - Principal Angles .2480 .3200 .3452 .3410 .3394 .3411

Importance Weight - List Kernel .2490 .3200 .3455 .3414 .3378 .3411

Importance Weight - Local/Transductive .2932 .4800 .3858 .3862 .3713 .3755

TREC’04

Baseline (supervised RankBoost) .3712 .4800 .4237 .4144 .4471 .4686

Importance Weight - Principal Angles .3703 .4777 .4230 .4184 .4454 .4666

Importance Weight - List Kernel .3700 .4790 .4242 .4153 .4433 .4690

Importance Weight - Local/Transductive .3834 .4800 .4456 .4353 .4653 .4810

OHSUMED

Baseline (supervised RankBoost) .4424 .4906 .4543 .4501 .4230 .4218

Importance Weight - Principal Angles .4420 .4901 .4534 .4512 .4224 .4218

Importance Weight - List Kernel .4429 .4900 .4554 .4511 .4243 .4222

Importance Weight - Local/Transductive .4440 .5000 .4483 .4466 .4319 .4280

115

Table 8.7: Comparison of Manifold Assumption for Classification and Ranking

Manifold Assumption - Classification Manifold Assumption - Ranking

Atomic object A vector (sample) A list (set of vectors)

Distance Kernel defined between pairs of vectors List Kernel

Smoothness Labels vary slowly along manifold Rankers vary slowly along manifold

8.5 Graph-based Methods with List Kernels

In this section, we explore another application of list kernels for semi-supervised ranking. In particu-

lar, we focus on utilizing the manifold assumption, common in graph-based methods. The manifold

assumption (for classification) says that samples close together should receive similar labels. We

will extend this manifold assumption to lists, to say that lists close to each other should be best

ranked by similar rankers. In other words, the ranking function should vary smoothly over a mani-

fold defined on lists. Table 8.7 compares the traditional manifold assumption for classification, and

the version we extend to ranking.

We proposed a Ranker Propagation method for implementing the above Manifold Assumption.

The idea is to train list-specific rankers for each list in the training set, and propagate the ranker

parameters to the test lists using distance information (derived from list kernels). This is formalized

in Algorithm 13.

116

Algorithm 13 Ranker Propagation

Input: Train set S = {(ql ,dl,yl}l=1..L

Input: Test set E = {(qu,du)}u=1..U

Output: Rankers {wu}u=1..U , one for each test list

1: For all pairs of lists in S ∪E , compute list kernel value K(·, ·). This forms the basis of the

underlying graph/manifold.

2: Compute Laplacian L = D−K, where Dii = ∑ j Ki j is the degree matrix

3: for l=1..L do

4: Compute list-specific weights: wl = MERT(dl,yl)

5: Normalize weights: wl = wl

||wl ||

6: end for

7: Let Wu = −L−1
uu ×LulWl , where Wl is the stacking of wl and Wu is the stacking of wu.

We can show that Step 7 of Algorithm 13 minimizes for

∑
i j

Ki j||wi −w j||
2 (8.3)

in a manner similar to Label Propagation [172], which optimizes

∑
i j

Ki j(yi − y j)
2 (8.4)

See Appendix A for derivations. In these equations, K is a pairwise similarity measure, wi ∈ Rt

is a vector (linear ranker), and yi ∈ R is a scalar (classification label). Note that our objective

in Equation 8.3 essentially states if two lists have high similarity (i.e. high Ki j, then the rankers

wi and w j should be similar in the 2-norm. The 2-norm is intuitive if we assume a linear ranker

parameterized by the scoring function wT x, so that the difference between scores using different

rankers is ||wT
i x−wT

j x|| = ||(wi −w j)
T x||.

Finally, we note that after the weight vectors are trained for each test list, we can rank the results

and produce the final ranking outputs. It is important to distinguish that we are propagating rankers

rather than the ranks themselves. The ranks are computed after the the ranker for each test list

is determined. An illustration summarizing the manifold assumption and the Ranker Propagation

method is shown in Figure 8.2.

117

Figure 8.2: Manifold Assumption and Ranker Propagation.

8.5.1 Evaluation in Machine Translation

In the following experiments, we compare the Ranker Propagation method with two baselines: su-

pervised MERT and a random method where the ranker for a test list is randomly drawn from the

set of training-list rankers.

We observe nice improvements with using Ranker Propagation. For example, on the Arabic-

English MT task, BLEU improved by 1.3 points from 24.3 (baseline MERT) to 25.6 (Ranker Propa-

gation). On the Italian-English MT task, BLEU improved by 1.1 points from 21.2 (baseline MERT)

to 22.3 (Ranker Propagation). The Random Selection results were significantly below the MERT

baseline.

We therefore conclude:

1. The List Kernel is effective in capturing distances between lists that lead to meaningful rank-

ing functions.

2. In conjunction with the Ranker Propagation algorithm, the List Kernel achieves more than

1 point BLEU over the MERT baseline. The improvement of 25.6 over 24.3 (baseline) in

Arabic translation is statistically significant (others are not).

118

3. The above improvement can be explained by the fact that Ranker Propagation fits more spe-

cific rankers individually to each list.

Table 8.8: Arabic-English MT results with Ranker Propagation. Statistically significant improve-

ments are boldfaced; best but not statistically significant results are underlined.

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

MERT (supervised) Baseline 24.3 26.5 27.9 28.6 29.3 47.9

Random Selection 22.7 25.2 26.4 27.4 28.0 50.0

Ranker Propagation 25.6 27.3 28.4 29.4 30.0 47.5

Table 8.9: Italian-English MT results with Ranker Propagation. Statistically significant improve-

ments are boldfaced; best but not statistically significant results are underlined.

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

MERT (supervised) Baseline 21.2 23.1 24.3 25.0 25.7 52.6

Random Selection 19.3 22.4 23.6 24.1 24.3 54.1

Ranker Propagation 22.3 23.9 25.4 26.0 26.2 50.9

8.5.2 Evaluation in Protein Structure Prediction

The evaluation for Protein Structure Prediction is similar to Machine Translation. We again observe

that Ranker Propagation with List Kernels outperform the baseline by a nice margin. For instance,

the GDT-TS (k=1) of Ranker Propagation is .591, .010 point higher than the Baseline of .581.

Correspondingly, the z-score improved from 1.07 (baseline) to 1.20 (Ranker Propagation). This is

the best result thus far in Protein Structure Prediction in this work. All improvements in this case

are statistically significant. We conclude that the manifold assumption is effective for the Protein

Structure Prediction task.

119

Table 8.10: Protein Prediction GDT-TS results. Ranker Propagation gives statistically significant

improvements over baseline supervised algorithm (Statistical significance is judged by the Wilcoxon

signed rank test).

Top-k GDT-TS k=1 k=2 k=3 k=4 k=5

MERT (supervised) Baseline .581 .590 .597 .601 .604

Random Selection .521 .549 .567 .582 .588

Ranker Propagation .591 .600 .605 .609 .612

Table 8.11: Protein Prediction z-score results

Top-k z-score k=1 k=2 k=3 k=4 k=5

MERT (supervised) Baseline 1.07 1.17 1.26 1.31 1.34

Random Selection 0.51 0.81 0.96 1.11 1.16

Ranker Propagation 1.20 1.31 1.37 1.41 1.44

8.5.3 Evaluation for Information Retrieval

In Information Retrieval, we use Rank SVM [82] as the base linear ranker. Each training list is

optimized to obtain a linear weight vector, which is then propagated to the test lists via similarities

defined by the List Kernel. Table 8.12 shows the results.

We observe that Ranker Propagation performed worse than the supervised Rank SVM baseline,

possibly because the List Kernel did not give accurate similarities. In order to improve the reliability

of the List Kernel, we therefore performed feature selection on the original features. In particular,

we deleted features with weight values less than 0.1 according to the baseline Rank SVM. This

corresponds to features that are less useful for ranking (they are about 10%-20% of the features).

List Kernel built on this reduced feature set gave improvements over the baseline. We therefore

think that IR features may be noisy with respect to the ranking task, and these noisy features in

particular may have high variance. These high variance but relatively useless features dominate the

List Kernel computation, leading to degraded results. When these features are removed, List Kernel

gave improvements. For example, in TREC’03, MAP improved from .2199 (baseline) to .2324; in

120

Table 8.12: Ranker Propagation for Information Retrieval. Ranker Propagation with Feature Selec-

tion outperforms both baseline and Ranker Prop with no feature selection. The Oracle result shows

the accuracy if using Rank SVMs trained directly on the test lists.

MAP N@1 N@3 N@5 N@10 N@14

TREC’03

Baseline (RankSVM) .2199 .3600 .3358 .3236 .3134 .3132

RankerProp (NoSelection) .1994 .3400 .3014 .3086 .2916 .2956

RankerProp (FeatureSelect) .2324 .3700 .3480 .3273 .3198 .3186

Oracle .7580 .8800 .8256 .8094 .7881 .7998

TREC’04

Baseline (RankSVM) .3618 .4467 .4167 .4062 .4164 .4077

RankerProp (NoSelection) .3560 .4433 .4087 .3929 .4090 .4147

RankerProp (FeatureSelect) .3683 .4600 .4237 .4216 .4190 .4313

Oracle .8972 .9333 .9219 .9093 .9035 .9094

OHSUMED

Baseline (RankSVM) .4401 .4989 .4456 .4426 .4284 .4152

RankerProp (NoSelection) .4149 .4048 .3768 .3619 .3589 .3627

RankerProp (FeatureSelect) .4453 .5191 .4789 .4483 .4338 .4133

Oracle .6636 .7170 .6825 .6588 .6505 .6512

OHSUMED, MAP improved from .4401 to .4453 (both statistically significant).

The Oracle results in Table 8.12 shows the potential improvement one may acquire if the test-

specific weights were perfect, i.e. trained directly on the test list itself. The fact that there is large

potential for improvement (even over the nice results of the current List Kernels) shows that im-

proving upon the List Kernel may be a promising area of future work.

121

Chapter 9

OVERALL COMPARISONS AND CONCLUSIONS

This chapter summarizes the main conclusions and observations of this investigation and sug-

gests future work.

9.1 Cross-Method Comparisons

In this section we will seek to compare all the previously proposed method. First, to summarize our

methods:

• Under the Local/Transductive Framework, we proposed three main methods: Feature Gen-

eration (FG), Importance Weighting (IW), and Pseudo Margin (PM). In addition, we have a

combination method of Feature Generation and Importance Weighting.

• Using List Kernels, we explored two methods: One is also based on the Importance Weighting

Assumption. The other, Ranker Propagation, is based on the Manifold Assumption.

The overall results for Information Retrieval are presented in Tables 9.1 and 9.2. We observe

that FG, IW, and FG+IW perform well. Ranker Propagation gave significant improvements over the

Rank SVM baseline, but not necessarily the RankBoost baseline.

Tables 9.3 and 9.4 summarize the results for machine translation. We note that Ranker Propaga-

tion and Pseudo Margin gave the strongest improvements. This is followed by Importance Weight-

ing (both the List Kernel and the Local/Transductive versions), which sometimes gave improve-

ments (but is in general not statistically significant).

Tables 9.5 and 9.6 give the overall results for Protein Structure Prediction. We observe that

Ranker Propagation is the only method that give statistically significant improvements. Importance

Weighting gave slight improvements but it is not statistically significant. Other methods degraded

the Baseline results (also not statistically significant, however).

A concise summary of results for all datasets is presented in Table 9.7

122

Table 9.1: Overall results for TREC. FG and IW approaches generally improved for all datasets.

RankerProp outperformed the RankSVM baseline of which it is based (see Table 8.12) but does not

always outperform the RankBoost baseline.

MAP N@1 N@3 N@5 N@10 N@14

TREC’03

Supervised Baseline: RankBoost .2482 .3200 .3455 .3404 .3388 .3401

Supervised Baseline: RankSVM .2199 .3600 .3358 .3236 .3134 .3132

Feature Generation (FG) .3058 .5200 .4332 .4168 .3861 .3994

Importance Weighting (IW) .2932 .4800 .3858 .3862 .3713 .3755

Combined FG+IW .3219 .5250 .4321 .4138 .4023 .3990

Pseudo Margin .2502 .3400 .3399 .3500 .3403 .3433

Importance Weighting by List Kernel .2490 .3200 .3455 .3414 .3378 .3411

RankerProp (FeatureSelect) .2324 .3700 .3480 .3273 .3198 .3186

TREC’04

Supervised Baseline: RankBoost .3712 .4800 .4237 .4144 .4471 .4686

Supervised Baseline: RankSVM .3618 .4467 .4167 .4062 .4164 .4077

Feature Generation (FG) .3760 .4800 .4514 .4415 .4665 .4910

Importance Weighting (IW) .3834 .4800 .4456 .4353 .4653 .4810

Combined FG+IW .3891 .4833 .4487 .4483 .4554 .4873

Pseudo Margin .3502 .4533 .4143 .4070 .4350 .4524

Importance Weighting by List Kernel .3700 .4790 .4242 .4153 .4433 .4690

RankerProp (FeatureSelect) .3683 .4600 .4237 .4216 .4190 .4313

123

Table 9.2: Overall results for OHSUMED.

MAP N@1 N@3 N@5 N@10 N@14

OHSUMED

Supervised Baseline: RankBoost .4424 .4906 .4543 .4501 .4230 .4218

Supervised Baseline: RankSVM .4401 .4989 .4456 .4426 .4284 .4152

Feature Generation (FG) .4444 .5094 .4787 .4600 .4469 .4377

FG + RankLDA features .4481 .5252 .4785 .4600 .4444 .4390

Importance Weighting (IW) .4440 .5000 .4483 .4466 .4319 .4280

Combined FG+IW .4497 .5010 .4897 .4765 .4431 .4422

Pseudo Margin .4520 .4560 .4342 .4334 .4208 .4196

Importance Weighting by List Kernel .4429 .4900 .4554 .4511 .4243 .4222

RankerProp (FeatureSelect) .4453 .5191 .4789 .4483 .4338 .4133

Table 9.3: Overall Arabic-English MT results.

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

Supervised Baseline: MERT 24.3 26.5 27.9 28.6 29.3 47.9

Supervised Baseline: RankBoost 23.7 26.4 28.0 28.9 29.6 47.9

Feature Generation (FG) 23.4 25.7 27.0 27.9 28.6 48.3

Importance Weighting (IW) 24.6 27.1 28.7 29.6 30.5 47.7

FG+IW 23.3 26.0 27.6 28.4 29.0 47.9

Pseudo Margin 26.1 28.8 30.1 30.9 31.8 46.5

Importance Weighting by List Kernel 25.1 27.0 28.0 28.8 29.5 48.0

Ranker Propagation 25.6 27.3 28.4 29.4 30.0 47.5

124

Table 9.4: Overall Italian-English MT results.

Top-k BLEU k=1 k=2 k=3 k=4 k=5 PER

Supervised Baseline: MERT 21.2 23.1 24.3 25.0 25.7 52.6

Supervised Baseline: RankBoost 21.9 23.6 24.7 25.4 26.0 51.7

Feature Generation (FG) 21.5 23.4 24.4 24.9 25.3 52.5

Importance Weighting (IW) 21.9 24.7 25.8 25.9 26.5 51.5

FG+IW 21.6 23.5 25.0 24.9 25.6 52.5

Pseudo Margin 24.3 26.1 27.0 27.8 28.4 48.6

Importance Weighting by List Kernel 22.0 24.0 24.5 25.8 26.1 51.8

Ranker Propagation 22.3 23.9 25.4 26.0 26.2 50.9

Table 9.5: Overall GDT-TS Results for Protein Prediction

Top-k GDT-TS k=1 k=2 k=3 k=4 k=5

Supervised Baseline: MERT .581 .590 .597 .601 .604

Supervised Baseline: RankBoost .579 .590 .595 .599 .604

Feature Generation (FG) .569 .586 .596 .601 .605

Importance Weighting (IW) .583 .596 .603 .605 .608

FG+IW .568 .584 .593 .596 .601

Pseudo Margin .574 .590 .599 .603 .608

Importance Weighting by List Kernel .581 .591 .597 .601 .602

Ranker Propagation .591 .600 .605 .609 .612

125

Table 9.6: Overall z-score Results for Protein Prediction

Top-k z-score k=1 k=2 k=3 k=4 k=5

Supervised Baseline: MERT 1.07 1.17 1.26 1.31 1.34

Supervised Baseline: RankBoost 1.13 1.25 1.30 1.36 1.41

Feature Generation (FG) 1.07 1.24 1.33 1.40 1.41

Importance Weighting (IW) 1.15 1.26 1.33 1.35 1.39

FG+IW 1.02 1.23 1.29 1.32 1.39

Pseudo Margin 1.03 1.24 1.34 1.40 1.47

Importance Weighting by List Kernel 1.08 1.20 1.25 1.30 1.31

Ranker Propagation 1.20 1.31 1.37 1.41 1.44

9.2 Summary of Contributions

We present one of the first studies that investigate ranking problems in the context of semi-supervised

learning. Drawing inspirations from related work in semi-supervised classification and domain

adaptation, we investigated several assumptions for which unlabeled data may be helpful:

• Change of Representation Assumption: use unlabeled data to generate more salient features

• Covariate Shift Assumption: use unlabeled (test) data to discover the training samples that

are similar in distribution to the test samples and place corresponding weights on the training

data to correct for the bias.

• Low Density Separation Assumption: use unlabeled data to discover low density regions,

which are to be avoided by the ranking function.

• Manifold Assumption: use unlabeled data to discover local similarities and manifold struc-

ture, which can be exploited for smoothness regularization.

Two main algorithmic contributions are introduced. First, the Local/Transductive Meta-algorithm

allows us to implement the first three assumptions, leading respectively to the Feature Generation

126

Table 9.7: Summary of Results. + indicates improvement over baseline, - indicates degradation. =

indicates similar results. ++ indicates the best method for a given dataset.

Information Machine Protein

Retrieval Translation Prediction

Feature Generation + - =

Importance Weight (Local/Transductive) + = =

FG+IW ++ - =

Pseudo-Margin = ++ =

Importance Weight (List Kernel) = = =

Ranker Propagation = + ++

method, the Importance Weighting method, and the Pseudo-margin method. Second, a novel List

Kernel was developed, which enabled examination of the Manifold Assumption.

We performed experiments on a total of six different real-world datasets, which come from

Information Retrieval, Machine Translation, and Computational Biology (Protein Structure Predic-

tion). We observe that different methods perform well for different datasets. Though it is difficult

to judge in advance which method works best for which kind of dataset, our analysis of the results

give the following guidelines:

• How well does Pairwise Accuracy correlate with the final evaluation metric (e.g. MAP,

BLEU, GDT-TS)? If the correlation is relatively strong, Feature Generation methods may

benefit because there are more features to optimize with. Otherwise, Feature Generation may

overfit due to the larger feature space. Also important for Feature Generation is the question

of whether the assumption made by PCA (that high variance features are important) is valid

with the ranking task.

• How often do tie ranks occur in lists? If ties occur often, then Pseudo Margin is not a valid

approach because the low density separation assumption is violated.

• Importance Weighting (especially the Local/Transductive version) is a relatively risk-free

127

method. It either performs better or equal to the baseline and rarely rarely degrades results.

For any dataset where we believe there might be slight differences within each list, Importance

Weighting is a recommended approach.

• Ranker Propagation appears to be a method that improves results for all datasets. In particular,

datasets with smaller feature sets (less than 25) seem to benefit more.

9.3 Future Work

9.3.1 Computational Speedup for the Local/Transductive Framework

The Local/Transductive Framework requires training during test time. Therefore, computational

speed is an issue if semi-supervised ranking were to be deployed in practical systems. For example,

in our Feature Generation experiments which are run on an Intel x86-32 (3GHz CPU), KernelPCA

(implemented in Matlab/C-MEX) took on average 23sec/query for TREC and 4.3sec/query for

OHSUMED; RankBoost (implemented in C++) took 1.4sec/iteration for TREC and 0.7sec/iteration

for OHSUMED. The total compute time per query (assuming 150 iterations) is around 233sec/query

for TREC and 109sec/query for OHSUMED.

To achieve near real-time computation, a combination of better code optimization, distributed

computation, and algorithmic improvements are needed. We will highlight one algorithmic idea

here based on caching: In the context of local learning in ranking, [62] has shown that offline

solutions empirically approximate the accuracies of online k nearest neighbors. Therefore one al-

gorithmic solution is to precompute a set of RankBoost rankers and select the “best” one during test

time. For example, for Importance Weighting, multiple rankers can be pre-computed from various

random weighting of the training set; these are then matched to test lists during query time by a

fast distribution matching procedure (c.f. [65]). For Feature Generation, we would precompute a

variety of RankBoost using Kernel PCA features generated from different subsets of the training or

development set. During test time, we would then match the basis vector of the test list with those

in the training/development set using, e.g., the List Kernel as distance measure.

The performance of these solutions will be characterized by a speed vs. MAP/NDCG trade-

off that depends on the granularity of pre-computed components. If there are more pre-computed

128

rankers, then the matching operation at query time will become more expensive, but the results can

be more suitable for the test list.

9.3.2 Nonlinear extensions to Ranker Propagation

The current Ranker Propagation method assumes that linear weights (which represent a linear

ranker) are smoothly varying across the manifold. This linear assumption allows for a straightfor-

ward and computationally efficient propagation algorithm. However, in cases where linear rankers

are not sufficient1, we may desire an algorithm that propagates nonlinear or kernelized rankers (e.g.

RankBoost or RankSVM with nonlinear kernels).

The first challenge would be the characterization of “smoothness” for non-linear rankers. Smooth-

ness is easy to quantify in the linear case using L2 norm, because L2 differences in linear weights

has a correspondence to changes in ranking on a list. In other words, imagine two identical linear

rankers: as we gradually adjust one of the weights of one ranker, the corresponding ordering of

items will change in a monotonic way. On the other hand, in order to quantify the difference in

orderings achieved by two non-linear rankers, we would likely need to compute the ordering (rather

than directly comparing ranker parameters, as done in the linear case). In other words, we would

like to minimize an objective like the following:

∑
i j

Ki j(D(σ(Fi(xi)),σ(Fj(xi)))+D(σ(Fi(x j)),σ(Fj(x j))) (9.1)

where σ(Fj(xi)) represents the permutation of objects in xi under the ranker Fj and D(·) is some

divergence between two permuations (or simply a rank-based evaluation metric such as MAP). In

other words, we apply two neighboring rankers to the two respective lists and want to ensure that

the final permutations will be similar. Depending on the form of F and D, this may present both

interesting computational and algorithmic challenges.

1In our datasets, linear rankers appear to be sufficiently expressive. Note that we are fitting a separate linear ranker to

each list, as opposed to one linear ranker for the entire dataset.

129

9.3.3 Different formulations of the List Kernel

Our List Kernel attempts to quantify the shape/orientation similarity between lists and is based on

geometric properties, e.g. principal component axes. An underlying assumption with using princi-

pal component analysis is that of Gaussianity. Therefore in this respect, our List Kernel also has

similarities to the Bhattacharyya kernel of [90] with assumes Gaussianity.

In general, it would be interesting to explore different types of list kernels under the application

of ranking. We described several properties, such as shift-invariant, scale-invariant, and rotation-

invariant, and it would be worthwhile to investigate which ones would be desirable in certain appli-

cations.

An additional avenue of future research is kernel learning (c.f. [96]). One could first define a list

kernel that is parameterized. Then, we could learn the best parameters based on our (labeled) data

which indicates which two lists should be similar. For example, we could train rankers on individual

labeled lists, measure how different the rankers are, and use the resulting distance to learn the kernel.

This kernel can then be applied to any unlabeled data.

9.3.4 Inductive semi-supervised ranking algorithms

All methods presented in this work are transductive in the sense that the test data is required. In

the Local/Transductive Framework, we depend on observing one test list. In Ranker Propagation

and Importance Weighting with List Kernels, we need the entire test set. It would be worthwhile to

develop algorithms that exploit any unlabeled data, in particular those that are not the test set.

We note that not all methods should be extended to inductive algorithms, however. For example,

the entire motivation of Importance Weighting rests on the assumption that there is a distribution

difference between training and test, so it is natural to operate transductively. However, for the

Feature Generation and Pseudo Margin approaches, it is possible to imagine unlabeled non-test

dataset giving exploitable information. These inductive methods would need to be developed outside

of the Local/Transductive Framework.

For the Ranker Propagation Method, there are ways to convert it to an inductive method and

extend to out-of-sample lists, either by a k-nearest neighbor search (using List Kernel distances)

when a new test list arrives, or a warping of the function space to match that of the manifold [136].

130

A brief sketch of the k-nearest neighbor search solution for Ranker Propagation is as follows:

1. Construct graph on labeled and unlabeled (non-test) lists.

2. Apply Ranker Propagation to obtain rankers on unlabeled (non-test) lists

3. When a test list arrives, perform k-nearest neighbor search on all labeled and unlabeled lists.

4. Each ranker within the neighborhood provides a ranking to the test list.

5. The ranking are aggregated using consensus ranking techniques or ideas from social choice

theory. See, e.g. [114, 88].

9.3.5 Theory for the proposed methods

We have empirically examined the proposed methods under several datasets and provided some

intuitions of “what method works for what kind of dataset” in Section 9.2. In addition to these

empirical observations, it would be worthwhile to investigate theoretically how each method can

help, using techniques from statistical learning theory (c.f. [97, 149]).

While general theories and bounds for semi-supervised learning (e.g. [11]) may be difficult to

derive and challenging to fit to real-world scenarios, algorithm-specific theories may be possible. In

other words, bounds tailored to specific methods such as Feature Generation or Importance Weight-

ing may be practically useful and insightful. For example, one promising direction is the work on

analysis of representations by [14]. This theory aims to explain the tradeoff in designing feature

representations for domain adaptation problems. Briefly, the generalization bounds indicate that a

good feature representation should simultaneously achieve low error on the source (training) domain

while minimizing the “distance” between the induced marginal distributions of the two domains2.

Our Feature Generation Approach may be analyzed under this theory or variant thereof: for each

test list, we can compute whether the the new Kernel PCA features reduce training error while min-

imizing the distance between the test distribution and the training distribution. We have already

2One of the main contributions of this work is a definition of a distance over distributions that is both practically

computable and meaningful for representing changes in representation.

131

observed that training error is minimized in both Information Retrieval and Machine Translation

experiments. If we also observe that the distribution distances decreased for Information Retrieval,

but increased for Machine Translation, then we would have a theoretical confirmation for why the

same method worked for one dataset but not another.

In summary, this dissertation presents one of the first comprehensive evaluation of several ap-

proaches for semi-supervised ranking. We have observed that different methods work well for

different datasets, and have provided empirical analyses of the reasons. A significant step for-

ward in future work would involve algorithm-specific bounds that seek to explain the results in a

theoretically-motivated way.

132

BIBLIOGRAPHY

[1] S. Abney. Understanding the Yarowsky algorithm. Computational Linguistics, 30(3), 2004.

[2] S. Agarwal. Ranking on graph data. In ICML, 2006.

[3] N. Ailon. Reconciling real scores with binary comparisons: A unified logistic model for

ranking,. In NIPS, 2008.

[4] A. Alexandrescu and K. Kirchhoff. Data-driven graph construction for semi-supervised

graph-based learning in NLP. In Proc. of NAACL Human Language Technologies, 2007.

[5] Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learning for

structured variables. In Proceedings of Neural Information Proccessing Systems, 2005.

[6] R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks

and unlabeled data. Technical report, IBM T.J. Watson Research Labs, 2004.

[7] R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks

and unlabeled data. JMLR, 2005.

[8] A. Argyriou, M. Herbster, and M. Pontil. Combining graph laplacians for semi-supervised

learning. In NIPS, 2005.

[9] K. Arrow. Social Choice and Individual Values. Yale University Press, 2nd ed., 1970.

[10] D. Baker. Protein structure prediction and structural genomics. In Science, volume 294, pages

93–96. American Association for the Advancement of Science, 2001.

[11] M. Balcan and A. Blum. A pac-style model for learning from labeled and unlabeled data. In

Proceedings of Computational Learning Theory, 2005.

[12] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: a geometric framework for

learning from examples. Technical report, University of Chicago, 2004.

[13] M. Belkin, P. Niyogi, and V. Sindhwani. On manifold regularization. In AISTAT, 2005.

[14] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for domain

adaptation. In NIPS, 2006.

133

[15] K. P. Bennett and A. Demiriz. Semi-supervised support vector machines. In NIPS 12, pages

368–374, 1998.

[16] K. P. Bennett, A. Demiriz, and R. Maclin. Exploiting unlabeled data in ensemble methods.

In Proc. of SIGKDD-2002, Edmonton, Alberta, 2002.

[17] S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning for differing training and

test distributions. In ICML, 2007.

[18] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural correspondence

learning. In EMNLP, 2006.

[19] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In

Proc. 19th International Conference on Machine Learning (ICML-2001), 2001.

[20] A. Blum, J. Lafferty, M. Rewbangira, and R. Reddy. Semi-supervised learning using ran-

domized mincuts. In Proc. International Conference on Machine Learning (ICML-2004),

2004.

[21] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Pro-

ceedings of Computational Learning Theory, 1998.

[22] L. Bottou and V. N. Vapnik. Local learning algorithms. Neural Computation, 4(6):888–900,

1992.

[23] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Press, 2004.

[24] S. Brin and L. Page. The anatomy of large scale hypertextual web search engine. In Proc. of

the 7th International World Wide Web Conference, 1998.

[25] A. Broder. A taxonomy of web search. SIGIR Forum, 36(2):3–10, 2002.

[26] C. Burges, R. Ragno, and Q. Le. Learning to rank with non-smooth cost functions. In NIPS,

2006.

[27] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender.

Learning to rank using gradient descent. In ICML, 2005.

[28] L. Busse, P. Orbanz, and J. Buhmann. Cluster analysis of heterogenous rank data. In ICML,

2007.

[29] D. Cai, X. He, and J. Han. Semi-supervised discriminant analysis. In ICCV, 2007.

134

[30] C. Callison-Burch, D. Talbot, and M. Osborne. Statistical machine translation with word-

and sentence-aligned parallel corpora. In Proc. ACL 2004, 2004.

[31] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y.-L. Huang, and H.-W. Hon. Adapting ranking SVM to

document retrieval. In SIGIR, 2006.

[32] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise to listwise

approach. In SIGIR, 2007.

[33] V. Castelli and T. M. Cover. On the exponential value of labeled samples. Pattern Recogn.

Lett., 16(1):105–111, 1995.

[34] V. Castelli and T. M. Cover. The relative value of labeled and unlabeled samples in pattern

recognition with an unknown mixing parameter. IEEE Transactions on Information Theory,

1996.

[35] O. Chapelle, V. Sindhwani, and S. Keerthi. Branch and bound for semi-supervised support

vector machines. In Advances in Neural Information Processing Systems (NIPS), 2006.

[36] O. Chapelle, J. Weston, and B. Schoelkopf. Cluster kernels for semi-supervised learning. In

Proceedings of Neural Information Proccessing Systems, 2003.

[37] O. Chapelle and A. Zien. Semi-supervised classification by low density separation. In Proc.

of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS), 2005.

[38] D. Chen, J. Yan, G. Wang, Y. Xiong, W. Fan, and Z. Chen. Transrank: A novel algorithm

for transfer of rank learning. In IEEE International Conference on Data Mining (ICDM),

Workshop on Domain Driven Data Mining, 2008.

[39] D. Chivian and D. Baker. Homology modeling using parametric alignment ensemble gen-

eration with consensus and energy-based model selection. Nucleic Acids Research, 34(17),

2006.

[40] W. Chu and Z. Ghahramani. Extension of gaussian processes for ranking. In NIPS Workshop

on Learning to Rank, 2005.

[41] W. Cohen, R. Schapire, and Y. Singer. Learning to order things. Journal of Artificial Intelli-

gence Research, 1999.

[42] M. Collins. Discriminative reranking for natural language processing. In ICML, 2000.

[43] M. Collins and T. Koo. Discriminative reranking for natural langauge parsing. Computational

Linguistics, 31(1), 2005.

135

[44] R. Collobert, J. Weston, and L. Bottou. Trading convexity for scalability. In Proc. of the

International Conference on Machine Learning (ICML), 2006.

[45] W. S. Cooper, F. C. Gey, and D. P. Dabney. Probabilistic retrieval based on staged logistic

regression. In SIGIR, 1992.

[46] A. Corduneanu and T. Jaakkola. Stable mixing of complete and incomplete information.

Technical report, CSAIL, MIT, 2001.

[47] A. Corduneanu and T. Jaakkola. On information regularization. In Proceedings of Uncer-

tainty in Artificial Intelligence, 2003.

[48] A. Corduneanu and T. Jaakkola. Distributed information regularization on graphs. In Pro-

ceedings of Neural Information Proccessing Systems, 2004.

[49] D. Cossock and T. Zhang. Subset ranking using regression. In COLT, 2006.

[50] N. Craswell and D. Hawking. Overview of the trec 2003 web track. In E. M. Voorhees

and L. P. Buckland, editors, NIST Special Publication 500-255:The Twelfth Text REtrieval

Conference (TREC 2003). NIST, 2003.

[51] F. d’Alche Buc, Y. Grandvalet, and C. Ambroise. Semi-supervised marginboost. In NIPS,

2002.

[52] O. Dekel, C. Manning, and Y. Singer. Log-linear models for label ranking. In NIPS, 2004.

[53] A. P. Dempster, N. M. Laird, and D. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society, 1(39):1–38, 1977.

[54] K. Duh and K. Kirchhoff. Learning to rank with partially-labeled data. In SIGIR, 2008.

[55] D. Eramian, M. Shen, D. Devos, F. Melo, A. Sali, and M. Marti-Renom. A composite score

for predicting errors in protein structure models. Protein science, 2006.

[56] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. Adacost: misclassification cost-sensitive

boosting. In In Proc. 16th International Conf. on Machine Learning, pages 97–105. Morgan

Kaufmann, 1999.

[57] M. Fligner and J. Verducci. Probability Models and Statistical Analyses for Ranking Data.

Springer, 1993.

[58] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient boosting algorithm for combining

preferences. Journal of Machine Learning Research, 4, 2003.

136

[59] A. Fujii. Modeling anchor text and classifying queries to enhance web document retrieval.

In WWW, 2008.

[60] A. Fujino, N. Ueda, and K. Saito. A hybrid generative/discriminative approach to semi-

supervised classifier design. In Proc. of AAAI, 2005.

[61] G. Fung and O. Mangasarian. Semi-supervised support vector machines for unlabeled data

classification. Technical Report TechReport 99-05, University of Wisconsin, Data Mining

Institute, 1999.

[62] X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, and H.-Y. Shum. Query dependent ranking

using k-nearest neighbor. In SIGIR, 2008.

[63] C. Goutte, H. Déjean, E. Gaussier, N. Cancedda, and J.-M. Renders. Combining labelled

and unlabelled data: a case study on Fisher kernels and transductive inference for biological

entity recognition. In Proc. 6th conference on Natural language learning (CoNLL), pages

1–7, 2002.

[64] Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In Pro-

ceedings of Neural Information Proccessing Systems, 2004.

[65] S. Guha, A. McGregor, and S. Venkatasubramanian. Streaming and sublinear approximation

of entropy and information distances. In SODA, 2006.

[66] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. Manifold-ranking based image retrieval.

In ACM Conference on Multimedia, 2004.

[67] R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for ordinal regression.

In ICANN, 1999.

[68] W. R. Hersh, C. Buckley, T. J. Leone, and D. H. Hickam. Ohsumed: An interactive retrieval

evaluation and new large test collection for research. In Proceedings of the 17th Annual ACM

SIGIR Conference, 1994.

[69] T. Hertz, A. Bar-Hillel, and D. Weinshall. Learning a kernel function for classification with

small training samples. In ICML, 2006.

[70] A. Holub, M. Welling, and P. Perona. Exploiting unlabelled data for hybrid object classifica-

tion. In NIPS 2005 Workshop in Inter-Class Transfer, 2005.

[71] H. Hotelling. Relationships betwen two sets of variates. Biometrika, 28:321–372, 1936.

[72] J. Huang, C. Guestrin, and L. Guibas. Fourier theoretic probabilistic inference over permuta-

tions. JMLR, 2009.

137

[73] J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf. Correcting sample

selection bias by unlabeled data. In NIPS, 2007.

[74] Z. Huang, M. Harper, and W. Wang. Mandarin part-of-speech tagging and discriminative

reranking. In EMNLP, 2007.

[75] T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In

NIPS, 1998.

[76] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. In Advances in

Neural Information Processing Systems, 1999.

[77] K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant docu-

ments. In SIGIR, 2000.

[78] H. Ji, C. Rudin, and R. Grishman. Re-ranking algorithms for name tagging. In NAACL

Workshop on Computationally Hard Problems and Joint Inference, 2006.

[79] J. Jiang. A literature survey on domain adaptation of statistical classifiers; url:

http://sifaka.cs.uiuc.edu/jiang4/domainadaptation/survey/, 2008.

[80] F. Jiao, S. Wang, C.-H. Lee, R. Greiner, and D. Schuurmans. Semi-supervised conditional

random fields for improved sequence segmentation and labeling. In COLING/ACL, pages

209–216, Sydney, Australia, July 2006. Association for Computational Linguistics.

[81] T. Joachims. Transductive inference for text classification using support vector machines. In

International Conference on Machine Learning, 1999.

[82] T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.

[83] T. Joachims. Transductive learning via spectral graph partitioning. In International Confer-

ence on Machine Learning (ICML), 2003.

[84] T. Joachims. Training linear SVMs in linear time. In KDD, 2006.

[85] A. Kapoor, Y. Qi, H. Ahn, and R. Picard. Hyperparameter and kernel learning for graph-based

semi-supervised classification. In NIPS, 2005.

[86] K. Kirchhoff and M. Yang. The university of washington machine translation system for the

iwslt 2007 competition. In IWSLT, 2007.

[87] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5),

1999.

138

[88] A. Klementiev, D. Roth, K. Small, and I. Titov. Unsupervised rank aggregation with domain

specific expertise. In IJCAI, 2009.

[89] P. Koehn et al. Moses: open source toolkit for statistical machine translation. In ACL, 2007.

[90] R. Kondor and T. Jebara. A kernel between sets of vectors. In ICML, 2003.

[91] R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In

Proc. of the International Conference on Machine Learning, 2002.

[92] T. Kudo, J. Suzuki, and H. Isozaki. Boosting-based parse reranking with subtree features. In

ACL, 2005.

[93] J. Lafferty and L. Wasserman. Challenges in statistical machine learning. Statistica Sinica,

16(2), 2006.

[94] J. Lafferty and L. Wasserman. Statistical analysis of semi-supervised regression. In NIPS,

2007.

[95] J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional random fields: Representation and clique

selection. In Proceedings of International Conference on Machine Learning, 2004.

[96] G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoui, and M. Jordan. Learning the kernel matrix

with semi-definite programming. Journal of Machine Learning Research, 5, 2004.

[97] J. Langford. Tutorial on practical prediction theory for classification. JMLR, 2005.

[98] A. Lavie and A. Agarwal. METEOR: An automatic metric for mt evaluation with high levels

of correlation with human judgments. In Workshop on Statistical Machine Translation, 2007.

[99] N. Lawrence and M. Jordan. Semi-supervised learning with gaussian processes. In Advances

in Neural Information Processing Systems, 2005.

[100] Q. Le and A. Smola. Direct optimization of ranking measures. Technical report, NICTA,

2007.

[101] G. Lebanon and J. Lafferty. Cranking: combining rankings using conditional probability

models on permuations. In ICML, 2002.

[102] C.-H. Lee, S. Wang, F. Jiao, D. Schuurmans, and R. Greiner. Learning to model spatial de-

pendency: semi-supervised discriminative random fields. In Advances in Neural Information

Processing Systems (NIPS), 2006.

139

[103] B. Leskes. The value of agreement: A new boosting algorithm. In Proceedings of Computa-

tional Learning Theory, 2005.

[104] P. Li, C. Burges, and Q. Wu. Learning to rank using classification and gradient boosting.

Technical Report MSR-TR-2007-74, Microsoft Research, 2007.

[105] W. Li and A. McCallum. Semi-supervised sequence modeling with syntactic topic models.

In AAAI-05, The 20th National Conference on Artificial Intelligence, 2005.

[106] P. Liang, A. Bouchard-Cote, D. Klein, and B. Taskar. An end-to-end discriminative approach

to machine translation. In ACL, 2006.

[107] T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li. LETOR: Benchmark dataset for research on

learning to rank for informationretrieval. In SIGIR Workshop on Learning to Rank for IR

(LR4IR), 2007.

[108] A. Lopez. Statistical machine translation. ACM Computing Surveys, 40(3), 2008.

[109] D. Luce and H. Raiffa. Games and Decisions: Introduction and Critical Survey. Dover, 1989.

[110] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cam-

bridge University Press, 2008.

[111] J. I. Marden. Analyzing and Modeling Rank Data. Chapman & Hall/CRC, 1996.

[112] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting as gradient descent. In NIPS, 2000.

[113] P. McCullagh and J. Nelder. Generalized Linear Models. Chapman and Hall, London, 1989.

[114] M. Meila, K. Phadnis, A. Patterson, and J. Bilmes. Consensus ranking under the exponential

model. Technical report, UW Statistics, 2008.

[115] D. Metzler. Direct maximization of rank-based metrics. Technical report, Univ. of Mas-

sachusetts, Amherst, CIIR, 2006.

[116] J. Moult, F. Kryzysztof, B. Rost, T. Hubbard, and A. Tramontano. Critical assessment of

methods of protein structure prediction (casp) - round 6. Proteins, 61(S7):3–7, 2005.

[117] K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training. In

CIKM, 2000.

[118] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and

unlabeled documents using em. Machine Learning, 30(3), 2000.

140

[119] F. Och. Minimum error rate training in statistical machine translation. In ACL, 2003.

[120] F. Och and H. Ney. Discriminative and maximum entropy models for statistical machine

translation. In ACL, 2002.

[121] C. Oliveira, F. Cozman, and I. Cohen. Splitting the unsupervised and supervised components

of semi-supervised learning. In ICML 2005 Workshop on Learning with Partially Classified

Training Data, 2005.

[122] K. Papineni, S. Roukos, ToddWard, and W.-J. Zhu. Bleu: A method for automatic evaluation

of machine translation. In ACL, 2002.

[123] T. Qin, T.-Y. Liu, X.-D. Zhang, Z. Chen, and W. Y. Ma. A study of relevance propagation for

web search. In SIGIR, 2005.

[124] J. Qiu, W. Sheffler, D. Baker, and W. Noble. Ranking protein structures with support vector

regression. Proteins: Structure, Function, and Bioinformatics, 2007.

[125] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning

from unlabeled data,. In ICML, 2007.

[126] S. Robertson. Overview of the Okapi projects. Journal of Documentation, 53(1), 1997.

[127] A.-V. I. Rosti, N. F. Ayan, B. Xiang, S. Matsoukas, R. M. Schwartz, and B. J. Dorr. Combin-

ing outputs from multiple machine translation systems. In NAACL-HLT, 2007.

[128] C. Rudin. Ranking with a p-norm push. In COLT, 2006.

[129] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predic-

tions. Machine Learning, 37(3), 1999.

[130] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as kernel eigen-

value problem. Neural Computation, 10, 1998.

[131] A. Shashua and A. Levin. Taxonomy of large margin principle algorithms for ordinal regres-

sion. In NIPS, 2002.

[132] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge Univ.

Press, 2004.

[133] L. Shen, A. Sarkar, and F. Och. Discriminative reranking for machine translation. In HLT-

NAACL, 2004.

141

[134] H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-

likelihood function. Journal of Statistical Planning and Inferenc, 90, 2000.

[135] V. Sindhwani, S. Keerthi, and O. Chapelle. Deterministic annealing for semi-supervised

kernel machines. In Proc. of the International Conference on Machine Learning (ICML),

2006.

[136] V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from transductive to semi-

supervised learning. In ICML, 2005.

[137] A. Singh, R. Nowak, and X. Zhu. Unlabeled data: Now it helps, now it doesn’t. In NIPS,

2008.

[138] A. Smola and R. Kondor. Kernels and regularization on graphs. In Conference on Learning

Theory (COLT), 2003.

[139] A. Smola, O. Mangasarian, and B. Schölkopf. Sparse kernel feature analysis. Technical

Report 99-03, University of Wisconsin, Data Mining Institute, 1999.

[140] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul. A study of translation edit

rate with targeted human annotation. In AMTA, 2006.

[141] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanbe. Direct

importance estimation for covariate shift adaptation. Annals of the Institute of Statistical

Mathematics, 60(4), 2008.

[142] M. Szummer and T. Jaakkola. Information regularization with partially labelled data. In

Proceedings of Neural Information Proccessing Systems, 2002.

[143] T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto, and S. Yamamoto. Toward a broad-

coverage bilingual corpus for speech translation of travel conversation in the real world. In

LREC, 2002.

[144] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction mod-

els: A large margin approach. In Proceedings of International Conference on Machine Learn-

ing, 2005.

[145] T. Truong, M.-R. Amini, and P. Gallinari. Learning to rank with partially labeled training

data. In International Conference on Multidisciplinary Infomation Science and Technology,

2006.

[146] J. Tsai, R. Bonneau, A. V. Morozov, B. Kuhlman, C. A. Rohl, and D. Baker. An improved pro-

tein decoy set for testing energy functions for protein structure prediction. Proteins, 53(76),

2003.

142

[147] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma. FRank: A ranking method with

fidelity loss. In SIGIR, 2007.

[148] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning

for interdependent and structured output spaces. In Proceedings of International Conference

on Machine Learning, 2004.

[149] V. Vapnik. Statistical Learning Theory. Springer, 1998.

[150] A. Veloso, H. Almeida, M. Goncalves, and W. M. Jr. Learning to rank at query-time using

association rules. In SIGIR, 2008.

[151] J. Wang, M. Li, Z. Li, and W.-Y. Ma. Learning ranking function via relevance propagation.

Technical report, Microsoft Research Asia, 2005.

[152] T. Watanabe, J. Suzuki, H. Tsukada, and H. Isozaki. Online large-margin training for statis-

tical machine translation. In EMNLP-CoNLL, 2007.

[153] J. Weston, R. Kuang, C. Leslie, and W. Noble. Protein ranking by semi-supervised network

propagation. BMC Bioinformatics, 2006.

[154] L. Wolf and A. Shahsua. Learning over sets using kernel principal component angles. JMLR,

2003.

[155] Q. Wu, C. J. Burges, K. Svore, and J. Gao. Ranking, boosting, and model adaptation. Tech-

nical report, Microsoft Research, 2008.

[156] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to rank -

theory and algorithm. In ICML, 2008.

[157] J. Xu and W. B. Croft. Query expansion using local and global document analysis. In ACM

SIGIR Conference on Research and Development in Information Retrieval, 1996.

[158] J. Xu and H. Li. AdaRank: A boosting algorithm for information retrieval. In SIGIR, 2007.

[159] J. Xu, L. Yu, and M. Li. Consensus fold recognition by predicted model quality. In Proc. of

the 3rd Asia-Pacific Bioinformatics Conference, 2005.

[160] L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector

machines. In AAAI, 2005.

[161] O. Yamaguchi, K. Fukui, and K. Maeda. Face recognition using temporal image sequence.

In IEEE International Conference on Automatic Face & Gesture Recognition, 1998.

143

[162] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In ACL,

1995.

[163] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimization

average precision. In SIGIR, 2007.

[164] A. Zemla. LGA: a method for finding 3d similarities in protein structures. Nucleic Acids

Research, 31:3370–3374, 2003.

[165] C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to

ad hoc information retrieval. In ACM SIGIR Conference on Research and Development in

Information Retrieval, 2001.

[166] T. Zhang and F. J. Oles. A probability analysis on the value of unlabeled data for classification

problems. In Proc. 17th International Conference on Machine Learning (ICML-2000), San

Franscisco, CA, 2000. Morgan Kaufmann.

[167] Y. Zhang, S. Vogel, and A. Waibel. Interpreting bleu/nist scores: How much improvement do

we need to have a better system? In LREC, 2004.

[168] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schölkopf. Ranking on data manifolds.

In NIPS, 2004.

[169] K. Zhou, G.-R. Xue, H. Zha, and Y. Yu. Learning to rank with ties. In SIGIR, 2008.

[170] X. Zhu. Semi-supervised learning literature survey. Technical Re-

port 1530, Computer Sciences, University of Wisconsin-Madison, 2005.

http://www.cs.wisc.edu/∼jerryzhu/pub/ssl survey.pdf.

[171] X. Zhu and Z. Ghahramani. Towards semisupervised classification with Markov random

fields. Technical Report CMU-CALD-02-106, Carnegie Mellon University, 2002.

[172] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and

harmonic functions. In Proc. of ICML-2003, 2003.

[173] X. Zhu, Z. Ghahramani, and J. Lafferty. Nonparametric transforms of graph kernels for semi-

supervised learning. In NIPS, 2005.

144

Appendix A

RANKER PROPAGATION OBJECTIVE FUNCTION

Algorithm 13 in Section 8.5 describes an method for propagating rankers across a graph defined

on lists. Here we show that the algorithm minimizes the following objective:

∑
i j

Ki j||wi −w j||
2 (A.1)

where K is a pairwise similarity measure and wi ∈ Rt is a vector representing a ranker situated on

list i. The sum i j is over all pairs of lists. The objective essentially states that if two lists are close

by Ki j, then we want the difference ||wi −w j||
2 between their rankers to be small in the L2 sense.

To begin, we rewrite the objective in order to optimize each dimension separately:

∑
i j

Ki j||wi −w j||
2 = ∑

i j

Ki j||wi −w j||
2

= ∑
i j

Ki j ∑
t

(w(t)i −w(t) j)
2

= ∑
t
∑
i j

Ki j(w(t)i −w(t) j)
2

where t indexes a feature within the ranker vector wi (i.e. w(t)i is the t-th parameter of the ranker

for list i). Next, we proceed with a derivation similar to Label Propagation [172]:

∑
t
∑
i j

Ki j(w(t)i −w(t) j)
2 = ∑

t
∑
i j

(Ki jw(t)2
i + w(t)2

j −2w(t)iw(t) j)

= ∑
t

(∑
i j

Ki jw(t)2
i +∑

i j

Ki jw(t)2
j −2∑

i j

Ki jw(t)iw(t) j)

= ∑
t

(∑
i

(w(t)2
i ∑

j

Ki j)+∑
j

(w(t)2
j ∑

i

Ki j)−2∑
i j

Ki jw(t)iw(t) j)

= ∑
t

(2∑
i

(w(t)2
i ∑

j

Ki j)−2∑
i j

Ki jw(t)iw(t) j)

= 2∑
t

(∑
i

(w(t)2
i Dii)−∑

i j

Ki jw(t)iw(t) j) (A.2)

145

= 2∑
t

(W (t)T DW (t)−W (t)T KW (t)) (A.3)

= 2∑
t

(W (t)T (D−K)W(t))

= 2∑
t

(W (t)T LW (t)) (A.4)

Step A.2 above follows from the definition Dii = ∑ j Ki j. Step A.3 is a simple rewrite in terms

of matrices, i.e., D is a diagonal matrix with Dii on the diagonal, and W (t) is a matrix containing a

stacking of w(t)i for all i. In Step A.4 we see the graph Laplacian L = D−K. Step A.4 is a concave

function with respect to W (t).

In order to minimize A.4 with respect to W (t) for all t, we take the first derivative and set it to

zero:

∂2∑t(W (t)T LW (t))

∂W (t)
= 4LW (t)

LW (t) = 0

In order to optimize only on weights on unlabeled lists, while keeping weights on labeled lists

fixed, we write the Laplacian and weight matrices to separate the labeled and unlabeled parts:

Lll Llu

Lul Luu

W (t)l

W (t)u

 = 0

Finally we obtain the equation:

LulW (t)l + LuuW (t)u = 0

W (t)u = −inv(Luu)∗LulW (t)l (A.5)

For each dimension of the ranker, we calcuate Equation A.5 to obtain the weight values for that

dimension for all unlabeled lists. Note that since we do not impose constraints on the weight vectors

for unlabeled lists, we can calculate the weights for each dimension separately, all in closed-form.

If we were to impose constraints (e.g. forcing the weights on unlabeled list to normalize), then we

would alternatively optimize the objective using, e.g., a projected subgradient method [23].

146

VITA

Kevin K. Duh received his Bachelor of Science in Electrical and Computer Engineering from

Rice University in 2003. Thereafter he worked briefly at NTT Labs in Japan, and in 2004 he joined

the Signals, Speech, and Language Interpretation (SSLI) Lab at the University of Washington. He

received his Master of Science and Doctor of Philosophy degrees in Electrical Engineering from

the University of Washington in 2006 and 2009, respectively. While a graduate student, he served

as co-chair for the Student Research Workshop of the Association for Computational Linguistics

(ACL) in 2006 and the Semi-supervised Learning for Natural Language Processing Workshop of

the North American Association for Computational Linguistics (NAACL) in 2009. He was awarded

the National Science Foundation Graduate Research Fellowship from 2005 to 2008.

