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Chapter 7

LEARNING TO REASON ABOUT
DISTRIBUTION

Arthur Bakker and Koeno P. E. Gravemeijer
Freudenthal Institute, Utrecht University, the Netherlands

OVERVIEW

The purpose of this chapter is to explore how informal reasoning about distribution
can be developed in a technological learning environment. The development of
reasoning about distribution in seventh-grade classes is described in three stages as
students reason about different representations. It is shown how specially designed
software tools, students’ created graphs, and prediction tasks supported the learning
of different aspects of distribution. In this process, several students came to reason
about the shape of a distribution using the term bump along with statistical notions
such as outliers and sample size.

This type of research, referred to as “design research,” was inspired by that of
Cobb, Gravemeijer, McClain, and colleagues (see Chapter 16). After exploratory
interviews and a small field test, we conducted teaching experiments of 12 to 15
lessons in 4 seventh-grade classes in the Netherlands. The design research cycles
consisted of three main phases: design of instructional materials, classroom-based
teaching experiments, and retrospective analyses. For the retrospective analysis of
the data, we used a constant comparative method similar to the methods of Glaser
and Strauss (Strauss & Corbin, 1998) and Cobb and Whitenack (1996) to
continually generate and test conjectures about students’ learning processes.

DATA SET AS AN AGGREGATE

An essential characteristic of statistical data analysis is that it is mainly about
describing and predicting aggregate features of data sets. Students, however, tend to
conceive a data set as a collection of individual values instead of an aggregate that
has certain properties (Hancock, Kaput, & Goldsmith, 1992; Konold & Higgins,
2002; Ben-Zvi & Arcavi, 2001; Ben-Zvi, Chapter 6). An underlying problem is that
middle-grade students generally do not see “five feet” as a value of the variable
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“height,” but as a personal characteristic of, say, Katie. In addition to this view,
students should learn to disconnect the measurement value from the object or person
measured and consider data against a background of possible measurement values.
They should furthermore develop a notion of distribution, since that is an organizing
conceptual structure with which they can conceive the aggregate instead of just the
individual values (Cobb, 1999; Petrosino, Lehrer, & Schauble, 2003).

These learning goals formed the motivation to explore the possibilities for
students in early secondary education with little or no prior statistical knowledge to
develop an informal understanding of distribution. Such understanding could then be
the basis for more formal statistics in higher grades. The main question in this study
is therefore: How can seventh-grade students learn to reason about distribution in an
informal way?

DISTRIBUTION

To answer this question, we first analyze the relation between data and
distribution. Distinguishing between data as individual values and distribution as a
conceptual entity, we examine aspects of both data sets and distributions such as
center, spread, density, and skewness (Table 1). Measures of center include mean,
median, and midrange. Spread can be quantified with, for instance, range, standard
deviation, and interquartile range. The aspects and measures in the table should not
be seen as excluding each other; outliers and extreme values, for instance, influence
skewness, density, spread, and even most measures of center.

Table 1. Between data and distribution

distribution
(conceptual entity)

center
mean, median,
midrange, …

spread
range, standard
deviation, inter-

quartile range, …

density
(relative) frequency,
majority, quartiles

skewness
position majority of

data

data
(individual values)

This structure can be read upward and downward. The upward perspective is
typical for novices in statistics: Students tend to see individual values, which they
can use to calculate, for instance, the mean, median, range, or quartiles. This does
not automatically imply that they see mean or median as a measure of center or as
representative of a group (Mokros & Russell, 1995; Konold & Pollatsek, Chapter 8).
In fact, students need a notion of distribution before they can sensibly choose



LEARNING TO REASON ABOUT DISTRIBUTION 149

between such measures of center (Zawojewski & Shaughnessy, 2000). Therefore,
students need to develop the downward perspective as well: conceiving center,
spread, and skewness as characteristics of a distribution, and looking at data with a
notion of distribution as an organizing structure or a conceptual entity. Experts in
statistics can easily combine the upward and downward perspectives. We might say
that the upward perspective leads to a frequency distribution of a data set. In the
downward perspective, we typically use probability distributions such as the normal
distribution to model data.

The table shows that the concept of distribution has a complex structure, but this
concept is also part of a larger structure consisting of big ideas such as variation and
sampling (Reading & Shaughnessy, Chapter 9; Watson, Chapter 12). Without
variation, there is no distribution, and without sampling there are mostly no data.
We therefore chose to deal informally and coherently with all these big ideas at the
same time with distribution in a central position. As Cobb (1999) notes, focusing on
distribution as a multifaceted end goal of instruction might bring more coherence in
the statistics curriculum. The question is how. Our answer is to focus on the
informal aspects of shape.

The shape of a distribution is influenced by various statistical aspects. A high
peak, for example, is caused by a high frequency of a certain class and long tails on
the left or right with the hill out of center indicate skewed distributions. This implies
that by reasoning with informal terms about the shape of a distribution, students may
already reason with aspects of that distribution. And indeed, students in this study
used informal words to describe density (crowded, empty, piled up, clumped, busy),
spread (spread out, close together), and shape (hill, bump). If students compare the
height distributions of two different grades, they might realize that the graphs have
the same shape but are shifted in location (Biehler, 2001). And they might see that
samples of different sizes still have similar shapes. We envisioned that reasoning
with shapes forms the basis for reasoning about distributions.

METHODOLOGY AND SUBJECTS

To answer the main question of how students can develop a notion of
distribution, we carried out developmental research, which is also called design
research (Freudenthal, 1991; Gravemeijer, 1994; Edelson, 2002; Cobb & McClain,
Chapter 16). Design research typically involves the design of instructional materials,
teaching experiments, and retrospective analyses. In line with the principles of
Realistic Mathematics Education (Freudenthal, 1991; Gravemeijer, 1994) and the
National Council of Teachers of Mathematics (NCTM) Standards (2000), we looked
for ways to guide students in being active learners dealing with increasingly
sophisticated means of support.

To assist students in exploring data and developing the concept of distribution,
we decided to use some specially designed Minitools (see Cobb, 1999). These web
applets were developed by reasoning backward from the intended end goal of
reasoning about distribution to possible starting points. One aspect of distribution,
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shape, can be inferred from stacked dot plots. To understand what dots in a dot plot
stand for, students need to realize that a dot represents a value on some variable.
One way to help students develop this insight is to let them start with case-value
bars, which range from 0 to the corresponding value on the horizontal axis. We
presume that bars representing values are closer to students’ daily life reality than
dots on an axis, because they are used to bar graphs and because horizontal bars are
natural ways to symbolize certain variables such as the braking distance of cars, the
life span of batteries, or the wingspan of birds. For that reason, each case in Minitool
1 (Figure 1) is signified by a bar whose relative length corresponds to the value of
the case, and each case in Minitool 2 (Figure 2) is signified by a dot in a dot plot.

Figure 1. Minitool 1 (sorted by size and color).

To identify a baseline of what Dutch seventh-grade students already know about
statistics and how easily they would solve statistical problems using the two
Minitools, we interviewed 26 students about these issues. The students had
encountered no statistics before except the arithmetic mean and bar graphs. They
had almost no problems in reading off values from the Minitools, but they focused
on individual data values (Section 2). We then did a small field test and conducted
teaching experiments in 4 seventh-grade classes, which worked through a complete
sequence of 12 to 15 lessons of 50 minutes each. The experiments were carried out
during the school year 1999–2000, in a public school in a small town near Utrecht
(the Netherlands) that prepared about 800 students for university (vwo) or higher
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vocational education (havo). At that time about 15% of the Dutch students went to
the vwo level, 20% to the havo level, about 40% to the mavo level (for middle
vocational education), and the remaining 25% to lower vocational education (in the
meantime the last two levels have been merged). These percentages indicate that the
learning abilities of the vwo and havo students of our teaching experiments were
above average.

Figure 2. Minitool 2 (split colors and with vertical value bars).

The collected data include audio recordings, student work, field notes, and final
tests in all classes, as well as videotapes and pretests in the last two experiments (see
Table 2). The pretests were meant to find out if students already knew what we
wanted them to learn (they did not).

An essential part of the data corpus was a set of mini-interviews that were held
during lessons. Mini-interviews varied from about 20 seconds to 4 minutes and were
meant to find out what concepts and graphs meant for the students. We realize that
this influenced their learning, because the mini-interviews often stimulated
reflection. In our view, however, the validity of the research was not in danger: Our
aim was to find out how students could learn to reason with distribution, not whether
teaching the sequence in other seventh-grade classes would lead to the same results.

For the retrospective analysis of the fourth teaching experiment, we have read
the transcripts, watched the videotapes, and formulated conjectures on students’
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learning based on the transcript and video episodes. The generated conjectures were
being tested at the other episodes and the rest of the collected data (student work,
field observations, and tests) in the next round of analysis (triangulation). Then the
whole generating and testing process was repeated. This method resembles Glaser
and Strauss’s constant comparative method (Strauss & Corbin, 1998; Cobb and
Whitenack, 1996). Important transcript fragments, including those in this chapter,
have been discussed with colleagues (peer examination).

Table 2. Overview of subjects, teaching experiments, data collection, number of lessons, and
levels of education

Subjects
(grade 7)

Type of Experiment Data Collection No. of
Lessons

Level

26 students
(1999)

Exploratory interviews
(15 minutes for two
students)

audio — mavo,
havo,
vwo

Class A (25) Exploratory field test 4 havo
Class F (27) First teaching

experiment
12 vwo

Class E (28) Second teaching
experiment

student work, final test,
field notes, audio

15 vwo

Class C (23)
(2000)

Third teaching
experiment

12 havo

Class B (23) Fourth teaching
experiment

idem plus pretest and
video

12 havo

12 classes
(2000–2002)

Implementation e-mail reports of two
teachers, field notes from
incidental visits

144 havo
and
vwo

Furthermore, we have identified patterns of student answers that were similar in
all teaching experiments, and categorized the evolving learning trajectory in three
stages according to students’ reasoning with the representations used. The sections
describing stages 1 and 2 describe observations that were similar for all four
observed classes. In the first stage, students worked with graphs in which data were
represented by horizontal bars (Minitool 1, Figure 1). In the second stage, from
lesson 5 to 12, students mainly worked with dot plots (Minitool 2, Figure 2). In the
third stage students used both Minitools and came to reason with bumps; the
examples stem from the second teaching experiment. The students in this class had
good learning abilities (vwo) and had 15 lessons—three more than in the other
classes. The specific stages began to overlap each other when we started to stimulate
comparison of different graphs during the last two teaching experiments.

STAGE 1—DATA ARE REPRESENTED BY BARS

The aim of the first activities was to let students reason about different aspects of
distributions in an informal way such as about majority, center, extreme values,
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spread-out-ness, and consistency. In the second lesson, for example, students had to
prepare reports to Consumer Reports (a consumers’ journal) on the quality of two
battery brands. They were given a data set of 10 battery life spans of two brands in
Minitool 1; using different computer options, they could sort the data and split the
data, for instance of the two brands. In the beginning they used the vertical value bar
(Figure 3) to read off values, but later sometimes to estimate the mean visually.

Figure 3. Estimating the mean of brand D with the movable vertical value bar (life span in
hours).

During this battery activity, students in all teaching experiments could already
reason about aspects of distributions. “Brand K has outliers, but you have more
chance for a good one,” was one answer. “Brand D is more reliable, since you know
that it will last more than 80 hours,” was another. This notion of reliability formed a
good basis for talking about spread. Our observations resemble those of Cobb
(1999) and Sfard (2000), who analyzed students’ spontaneous use of the notion of
“consistency.”

The activities with Minitool 1 afforded more than informal reasoning about
majority, outliers, chance, and reliability; they also supported the visual estimation
of the mean (Figures 3 and 4). After this strategy had spontaneously emerged in the
exploratory interviews, we incorporated instructional activities to evoke this strategy
in other classes as well (Bakker, 2003). Minitool 1 supported the strategy with the
movable vertical value bar. Students said that they cut off the longer bars, and gave
the bits to the shorter bars. Several students in different classes could explain that
this approach was legitimate: The total stays the same, and the mean is the total
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divided by the number. When students said that brand D is better because its mean is
higher, they used the mean to say how good the brand is. In that case, the mean is
not just a calculation on a collection of data, but refers to a whole subset of one
brand. As we intended, they learned to use the mean as a representative value for a
data set and to reason about the brand instead of the individual data values.

Figure 4. Scribblings on a transparency during class discussions after estimating means of
both brands. The mean of brand D is slightly higher than that of K.

To assess students’ understanding of distribution aspects and to establish a
tighter relationship between informal statistical notions and graphs, we decided to
“reverse” this battery task. In the last two teaching experiments, during the fourth
lesson, we asked students to invent their own data according to certain
characteristics such as “brand A is bad but reliable; brand B is good but unreliable;
brand C has about the same spread as brand A, but it is the worst of all brands.”
Many students produced a graph similar to the one in Figure 5 (in this case, the
variation of C is less than that of A). A sample response was:

Why is brand A better. Because it lives long. And it has little spread. Brand B is good
but unreliable. Because it has much spread. But it lives long. Brand C has little spread
but the life span is not very long.
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Figure 5. Invented data set according to certain features: Brand A is bad but reliable; brand B
is good but unreliable; brand C has about the same spread as brand A, but it is the worst of all.

With hindsight, we have come to see this back-and-forth movement between
interpreting graphs and constructing graphs according to statistical notions as an
important heuristic for instructional design in data analysis, for a number of reasons:

• Students can express ideas with graphs that they cannot express in words
(Lemke, 2003). If students invent their own data and graphs, teachers and
researchers can better assess what students actually understand.

• If students think of characteristics such as “good but not reliable,” the lack of
data prevents them from focusing on individual data, because it is
cognitively impossible to imagine many individual data points. With this
reverse activity, we create the need for a conceptual unity that helps in
imagining a collection of data with a certain property. The notion of
distribution serves that purpose (Section 3).

• In many schoolbooks, students mainly interpret ready-made graphs (Friel et
al., 2001; Moritz, Chapter 10). And if students have to make graphs, the goal
is too often just to learn how to produce a particular graph. De Lange,
Burrill, Romberg, & van Reeuwijk (1993) and Meira (1995) strongly
recommend letting students invent their own graphs. We may assume that
students’ own graphs are meaningful and functional for them.

• The importance of the back-and-forth movement between data and graphs
(or different graphs) is also indicated by the research on symbolizing.
Steinbring (1997), for example, distinguishes reference systems and symbol
systems. Students interpret a symbol system in the light of a better-known
reference system. Reference systems are therefore relatively well known and
symbol systems relatively unknown. In learning the relationship between a
symbol system and a reference system, students must go back and forth
between the two systems. A next step can then be that students use the
symbol system they have just learned to reason with (Minitool 1, for
example) as a reference system for a new symbol system (Minitool 2, for
example), and so on.
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From the examples of the first stage, it is clear that students informally reasoned
about different aspects of distribution from the very start. They argued about the
mean (how good the battery is), spread (reliability), chance for outliers or extreme
values, and where the majority is (skewness). Without the bar representation the
students would probably not have developed a compensating strategy for finding the
mean. Their reasoning, however, was bound to one representation and two contexts.

STAGE 2—DOTS REPLACE BARS

Our next aim was to let students reason about shapes of distributions in suitable
representations and in different contexts. Additionally, we strove for quantification
of informal notions such as frequency and the majority and to prepare students for
using conventional aggregate plots such as histograms and box plots.

As mentioned in the previous section, Minitool 1 can be seen as a reference
system for the new symbol system of Minitool 2. When solving problems with
Minitool 1, the students reasoned with the endpoints of the bars. In Minitool 1,
students could hide the bars, which they sometimes preferred, because “it is better
organized.” The dot plot of Minitool 2 can be obtained by hiding the bars of
Minitool 1 and imaginatively dropping the endpoints on the horizontal axis or on the
other dots that prevent them from dropping further down (cf. Wilkinson, 1999).
Note that the dots are stacked and do not move sideways to fill up white areas in the
graph (Figure 6). The advantages of this dot plot representation are that it is easy to
interpret, it comes closer to conventional representations of distributions than
Minitool 1, and students can organize data in ways that come close to histogram and
box plot, for instance.

Minitool 2 has more options to organize data than Minitool 1. Apart from sorting
by size and by subgroup (color), students can also group data into their own groups,
two equal groups (for the median), four equal groups (for a box plot, Figure 7a),
equal interval width (for a histogram, Figure 7b), and fixed group size (Figure 6b).
This last option turned out to be useful for stimulating reasoning about density.

A particular statistical problem that students solved with Minitool 2 was the one
on jeans sizes. Students had to report to a factory the percentage of each size that
should be made, based on a data set of the waist measurements (in inches) of 200
men. This activity, typically done during the ninth lesson, was meant to distract
students’ attention away from the mean and toward the whole distribution.
Furthermore, it could be an opportunity to let students reason about absolute and
relative frequencies.

We expected that students would reason about several aspects of distribution
when comparing different grouping options. The option of fixed group size (Figures
6b and 6c) typically evoked remarks such as “with the thin ones [the narrow bins]
you know that there are many dots together.” We interpret such expressions as
informal reasoning about density, which we see as a key aspect of distribution.
Many students used the four equal groups option to support their conclusion that
“you have to make a lot of jeans in sizes 34–36, and less of 44–46.” Generally, a
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skeptical question was needed to provoke more exact answers: “If the factory hired
you for $1,000, do you think the factory would be satisfied with your answer?” Most
students ended up with the fixed interval option and a table with percentages, that is,
relative frequencies.

(a)

(b)

(c)

Figure 6. (a) Minitool 2 with jeans data set (waist size in inches, n = 200). (b) Fixed group
size with 20 data points per group. (c) Minitool 2 with “hide data” function.
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Figure 7. (a) Four equal group option with and without data. Box plot overlay was added after
these seventh-grade teaching experiments. (b) Fixed interval width option with and without

data. Histogram overlay was added after these seventh-grade teaching experiments.

An instructional idea that emerged during the last teaching experiment was that
of “growing samples.” Discussing and predicting what would happen if we added
more data appeared to lead to reasoning about several aspects of distribution in a
coherent way. For the background to this activity, we have to go back to a problem
from the beginning of the instructional unit:

In a certain hot air balloon basket, eight adults are allowed [in addition to the driver].
Assume you are going to take a ride with a group of seventh-graders. How many
seventh-graders could safely go into that balloon basket if you only consider weight?
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This question was meant to let students think about variation of weight,
sampling, and representativeness of the average. A common solution in all classes
was that students estimated an average or a typical weight for both adults and
children. Some used the ratio of those numbers to estimate the number of children
allowed, but most students calculated the total weight allowed and divided that by
the average student weight. The student answers varied from 10 to 16.

This activity formed the basis for a class discussion on the reliability of the
estimated weights, during which we asked for a method of finding more reliable
numbers. A student suggested weighing two boys and two girls. The outcome of the
discussion was that the students decided to collect weight data from the whole class.
(In the second teaching experiment, they also collected height data.)

In the next lesson, we first showed the sample of four weight data in Minitool 2
(Figure 8a) and asked what students expected if we added the rest of the data.
Students thought that the mean would be more precise. Because we did not want to
focus on the mean, we asked about the shape and the range. Some students then
conjectured that the range would be larger, and others thought the graph would grow
higher. After showing the data for the whole class (Figure 8b), we asked what would
happen if we added the data for two more classes (Figure 8c). In this way, extreme
values, spread, and shape became topics of discussion. The graphs that students
made to predict the shape if sample size were doubled tended to be smoother than
the graphs students had seen in Minitool 2 (Figure 8d). In our interpretation,
students started to see a pattern in the data—or in Konold and Pollatsek’s words, a
“signal in the noise” (Chapter 8). We concluded that stimulating reasoning about
distribution by “growing samples” is another useful heuristic for instructional design
in statistics education.

A conjecture about students’ evolving notion of distribution that was confirmed
in the retrospective analyses was that students tend to divide unimodal distributions
into three groups of low, “average,” and high values. We saw this conceptual
grouping into three groups for the first time in the second teaching experiment when
we asked what kind of graph students expected when they collected height data.
Daniel did three trials (Figure 9). During his second trial, he said: “You have smaller
ones, taller ones, and about average.” After the third trial he commented: “There are
more around the average.” Especially in the third trial, we clearly see his conceptual
organization into three groups, which is a step away from focusing on individual
data points.

One step further is when students think of small, average, tall, and “in between.”
When in the final test students had to sketch their class when ordered according to
height, Christa drew Figure 10 and wrote: “There are 3 smaller ones, about 10
average, 3 to 4 taller, and of course in between.”

The “average” group, the majority in the middle, seems to be more meaningful
to students than the single value of the mean. Konold and colleagues (2002) call
these ranges in the middle of distributions modal clumps. Our research supports their
view that these modal clumps may be suitable starting points for informal reasoning
about center, spread, and skewness. When growing samples, students might even
learn to see such aspects of distribution as stable features of variable processes.
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Figure 8. Growing samples (weight data in kg): (a) Four students; (b) one class; (c) three
classes; (d) a student’s smoother prediction graph of larger sample.

Figure 9. Three prediction trials of height data; the second and third show three groups.



LEARNING TO REASON ABOUT DISTRIBUTION 161

Figure 10. Class ordered by height. Christa’s explanation: “There are 3 smaller ones, about 10
average, 3 to 4 taller, and of course in between.”

STAGE 3—SYMBOLIZING DATA AS A “BUMP”

Though students in the first two teaching experiments started to reason with
majorities and modal clumps in the second stage, they did not explicitly reason with
shape. We had hoped that they would reason with “hills,” as was the case in the
teaching experiment of Cobb, Gravemeijer, and McClain (Cobb, 1999), but they did
not. A possible reason is that their teaching experiment lasted 34 lessons, whereas
ours lasted only 12 or 15 lessons. In the second teaching experiment, we decided to
try something else. In line with the reasons to let students invent their own data
(Section 5), we asked students to invent their own graphs of their own data. As a
follow-up of the balloon activity mentioned earlier, the students had to make a graph
for the balloon rider, which she could use in deciding how many students she could
safely take on board.

The students of the second teaching experiment drew various graphs. The
teacher focused the discussion on two graphs, namely, Michiel’s and Elleke’s
(Figure 11).

Figure 11. Michiel’s graph (left) and Elleke’s graph.
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The shorter bars represent students’ weights; the lightest bars signify girls’
weights. Though all students used the same data set, Michiel’s graph on a
transparency does not exactly match the values in Elleke’s graph on paper. Michiel’s
graph is more like a rough sketch.
Michiel’s graph is especially interesting, since it offered the opportunity to talk
about shape. Michiel explained how he got the dots as follows. (Please note that a
translation of ungrammatical spoken Dutch into written English does not sound very
authentic.)

Michiel: Look, you have roughly, averagely speaking, how many students had that
weight and there I have put a dot. And then I have left [y-axis] the number
of students. There is one student who weighs about 35 [kg], and there is
one who weighs 36, and two who weigh 38 roughly.

And so on: the dot at 48, for example, signifies about four students with weights
around 48. After some other graphs had been discussed, including that of Elleke, the
teacher asked the following question.

Teacher: What can you easily see in this graph [by Michiel]?
Laila: Well, that the average, that most students in the class, uhm, well, are

between 39 and, well, 48.
Teacher: Yes, here you can see at once which weight most students in this class

roughly have, what is about the biggest group. Just because you see this
bump here. We lost the bump in Elleke’s graph.

It was the teacher who used the term bump for the first time. Although she had
tried to talk about shapes earlier, this was the first time the students picked it up. As
Laila’s answer indicates, Michiel’s graph helped her to see the majority of the
data—between 39 and 48 kg. This “average” or group of “most students” is an
instance of what Konold and colleagues (2002) call a modal clump. Teachers and
curriculum designers can use students’ informal reasoning with clumps as
preparation for using the average as a representative value for the whole group, for
example.

Here, the teacher used the term bump to draw students’ attention to the shape of
the data. By saying that “we lost the bump in Elleke’s graph,” she invited the
students to think about an explanation for this observation. Nadia reacted as follows.

Nadia: The difference between … they stand from small to tall, so the bump, that
is where the things, where the bars [from Elleke’s graph] are closest to one
another.

Teacher: What do you mean, where the bars are closest?
Nadia: The difference, the endpoints [of the bars], do not differ so much with the

next one.
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Eva added to Nadia’s remarks:

Eva: If you look well, then you see that almost in the middle, there it is straight
almost and uh, yeah that [teacher points at the horizontal part in Elleke’s
graph].

Teacher: And that is what you [Nadia] also said, uh, they are close together and
here they are bunched up, as far as […] weight is concerned.

Eva: And that is also that bump.

These episodes demonstrate that, for the students, the bump was not merely a
visual characteristic of a certain graph. It signified a relatively large number of data
points with about the same value—both in a hill-type graph and in a value-bar
graph. For the students, the term bump signified a range where there was a relatively
high density of data points. The bump even became a tool for reasoning, as the next
episode shows, when students revisited the battery task as one of the final tasks.

Laila: But then you see the bump here, let’s say [Figure 3].
Ilona: This is the bump [pointing at the straight vertical part of the lower 10

bars].
Researcher: Where is that bump? Is it where you put that red line [the vertical value

bar]?
Laila: Yes, we used that value bar for it […] to indicate it, indicate the bump.

If you look at green [the upper ten], then you see that it lies further, the
bump. So we think that green is better, because the bump is further.

The examples show that some students started to reason about density and shape
in the way intended. However, they still focused on the majority, the modal clump,
instead of the whole distribution. This seemed to change in the 13th lesson of the
second teaching experiment

In that lesson, we discovered that asking students to predict and reason without
available data was helpful in fostering a more global view of data. A first example
of such a prediction question is what a graph of the weights of eighth-graders would
look like, as opposed to one of seventh-graders. We hoped that students would shift
the whole shape instead of just the individual dots or the majority.

Teacher: What would a graph of the weights of eighth-graders look like?
Luuk: I think about the same, but another size, other numbers.
Guyonne: The bump would be more to the right.
Teacher: What would it mean for the box plots?
Michiel: Also moves to the right. That bump in the middle is in fact just the box

plot, which moves more to the right.

It could well be that Luuk reasoned with individual numbers, but he thought that
the global shape would look the same. Instead of talking about individual data
points, Guyonne talked about a bump, in singular, shifted to the right. Michiel
related to the box plot as well, though he just referred to the box of the box plot.

Another prediction question also led to reasoning about the whole shape, this
time in relation to other statistical notions such as outliers and sample size. Note that
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students used the term outliers for extreme values, not for values that are
questionable.

Researcher: If you would measure all seventh-graders in the city instead of just
your class, how would the graph change, or wouldn’t it change?

Elleke: Then there would come a little more to the left and a little more to the
right. Then the bump would become a little wider, I think. [She
explained this using the term outliers.]

Researcher: Is there anybody who does not agree?
Michiel: Yes, if there are more children, than the average, so the most, that also

becomes more. So the bump stays just the same.
Albertine: I think that the number of children becomes more and that the bump

stays the same.

In this episode, Elleke relates shape to outliers; she thinks that the bump grows
wider if the sample grows. Michiel argues that the group in the middle also grows
higher, which for him implies that the bump keeps the same shape. Albertine’s
answer is interesting in that she seems to think of relative frequency: for her the
shape of the distribution seems to be independent of the sample size. If she thought
of absolute frequency she would have thought that the bump would be much higher.
Apparently, the notion of a bump helped these students to reason about the shape of
the distribution in hypothetical situations. In this way, they overcame the problem of
seeing only individual data points and developed the notion of a bump, which served
as a conceptual unity.

There are several reasons why predictions about shape in such hypothetical
situations can help to foster understanding of shape or distribution. First, if students
predict a graph without having data, they have to reason more globally with a
property in their mind. Konold and Higgins (2002) write that with the individuals as
the foci, it’s difficult to see the forest for the trees. Our conclusion is that we should
ask questions about the forest, or predict properties of other forests—which we
consider another heuristic for statistics education. This heuristic relates to the
cognitive limitations mentioned in Section 5: If there are no available data and
students have to predict something on the basis of some conceptual characteristic, it
is impossible to imagine many individual data points.

A second reason has to do with the smoothness of graphs. Cobb, McClain, and
Gravemeijer (2003) assume that students can more easily reason about hills if the
hills are smooth enough. We found evidence that the graphs students predict tend to
be smoother than the graphs of real data, and we conjecture that reasoning with such
smoother graphs helps students to see the shape of a distribution through the
variation or, in other words, the signal through the noise (Konold & Pollatsek,
Chapter 8). If they do so, they can model data with a notion of distribution, which is
the downward perspective we aimed for (Section 3).

A last example illustrates how several students came to reason about
distributions. These two girls were not disturbed by the fact that distributions did not
look like hills in Minitool 1. The question they dealt with was whether the
distributions of the battery brands looked normal or skewed, where normal was
informally defined as “symmetrical, with the median in the middle and the majority
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close to the median.” The interesting point is that they used the term hill to indicate
the majority (see Figure 3), although it looked straight in the case-value bar graph.
This indicates that the hill was not a visual tool; it had become a conceptual tool in
reasoning about distributions.

Albertine: Oh, that one [battery brand D in Figure 3] is normal […].
Nadia: That hill.
Albertine: And skewed if like here [battery brand K] the hill [the straight part] is

here.

DISCUSSION

The central question of this chapter was how seventh-grade students could learn
to reason about distributions in informal ways. In three stages, we showed how
certain instructional activities, supported by computer tool use and the invention of
graphs, stimulated students to reason about aspects of distributions. After a summary
of the results we discuss limitations of this study and implications for future
research.

When solving statistical problems with Minitool 1, students used informal words
such as majority, outliers, reliability, and spread out. The examples show that
students reasoned about aspects of distribution from the very start of the experiment.
The students invented data sets in Minitool 1 that matched certain characteristics of
battery brands such as “good but not reliable.” We argued that letting students
invent their own data sets could stimulate them to think of a data set as a whole
instead of individual data points (heuristic 1). The bar representation of Minitool 1
stimulated a visual compensation strategy of finding the mean, whereas many
students found it easier to see the spread of the data in Minitool 2.

When working with Minitool 2, students developed qualitative notions of more
advanced aspects of distribution such as frequency, classes, spread, quartiles,
median, and density. The dot plot representation in combination with the options to
structure data into two equal groups, four equal groups, fixed group size, and fixed
interval width supported the development of an understanding of the median, box
plot, density, and histogram respectively. Like Konold and colleagues (2002), we
expect that modal clumps are useful to help students reason with center and other
distribution aspects. Growing samples is a promising instructional activity to let
students reason with stable features of variable processes (heuristic 2). The big ideas
of sampling and distribution can thus be developed coherently, but how this could
be done is a topic of future research.

In the third stage, students started to reason with bumps in relation to statistical
notions such as majority, outliers, and sample size in hypothetical situations and in
relation to different graphs. We argued that predictions about the shape and location
of distributions in hypothetical situations are useful to foster a more global view and
to let students see the signal in the noise (heuristic 3).
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IMPLICATIONS

The results of this research study suggest that it is important to provide
opportunities for students to contribute their own ideas to the learning process,
which requires much discussion and interaction during class. We believe that formal
measures such as median and quartiles should be postponed until intuitive notions
about distribution have first been developed. We also encourage teachers to allow
students to use less than precise statistical definitions as students develop their
reasoning, and then make a transition to more specific definitions as students are
able to comprehend these details. We are convinced that teachers should try to learn
about how students are reasoning about distribution by listening and observing as
well as by gathering assessment data. A type of assessment that we found useful
asked students to create a graph representing statistical information. One such task
that was very effective asked students to make graphs that were compatible with a
short story with both informal and statistical notions related to running practice.
There were no restrictions on the type of graph students could use. We had
deliberately incorporated characteristics in the story that ranged from easy (the
fastest runner needed 28 minutes) to difficult (the spread of the running times at the
end was much smaller than in the beginning but the range was still pretty big). This
is the item we used:

A seventh grade is going to train for running 5 km. To track their improvement
they want to make three graphs. One before training starts, one halfway through, and
one after ten training sessions. Draw the graphs that belong to the following story:

• Before training started some students were slow and some were already very
fast. The fastest ran the 5 km in 28 minutes. The spread between the other
students was large. Most of them were on the slow side.

• Halfway through, the majority of the students ran faster, but the fastest had
improved his time only a little bit, as had the slowest.

• After the training sessions had finished, the spread of the running times was
much smaller than in the beginning, but the range was still pretty big. The
majority of the students had improved their times by about 5 minutes. There
were still a few slow ones, but most of the students had a time that was
closer to the fastest runner than in the beginning.

We found that students were able to represent many elements in their graphs and
we learned more about their thinking and reasoning by examining their
constructions.

Although we conclude that it is at least possible for seventh-graders to develop
the kind of reasoning about distribution that is shown in this chapter, it should be
stressed that the students in these experiments had above-average learning abilities
and had been stimulated to reflect during mini-interviews. Other students probably
need more time or need to be older before they can reason about distribution in a
similar way.
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Another limitation of this study is that the examples of the third stage were to a
certain extent unique for the second teaching experiment. What would have
happened if Michiel had not made his “bump” graph? This research does not
completely answer that question (there was some reasoning with bumps in the third
and fourth teaching experiment), but it shows what the important issues are and
which heuristics might be useful for instructional activities.

In addition, we noticed that making predictions graphs without having data is not
a statistical practice that automatically emerges from doing an instructional
sequence such as the one described here. We concluded this from observations
during the two subsequent school years, when two novice teachers used the
materials in 12 other seventh-grade classes. When we asked prediction questions,
the students seemed confused because they were not used to such questions. An
implication for teaching is that establishing certain socio-mathematical norms and
certain practices (Cobb & McClain, Chapter 16) are as important as suitable
computer tools, carefully planned instructional activities, and skills of the teacher to
orchestrate class discussions.

These teachers also reported that some of the statistical problems we had used or
designed were too difficult and not close enough to the students’ world of
experience. The teachers also needed much more time than we used in the first year,
and they found it difficult to orchestrate the class discussions. We acknowledge that
the activities continually need to be adjusted to local contingencies, that the mini-
interviews probably had a learning effect, and that the teachers needed more
guidance for teaching such a new topic. Hence, another question for future research
is what kind of guidance and skills teachers need to teach these topics successfully.

NOTE
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