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A b s t r a c t .  We describe an implemented system that learns to recognize 
human faces under varying pose and illumination conditions. The system 
relies on symmetry operations to detect the eyes and the mouth in a face 
image, uses the locations of these features to normalize the appearance of the 
face, performs simple but effective dimensionality reduction by a convolution 
with a set of Gaussian receptive fields, and subjects the vector of activities 
of the receptive fields to a Radial Basis Function interpolating classifier. 
The performance of the system compares favorably with the state of the art 
in machine recognition of faces. 

1 L e a r n i n g  f r o m  E x a m p l e s  a s  F u n c t i o n  I n t e r p o l a t i o n  

Classifying the image of a face as a picture of a given individual is probably the most 
difficult recognition task that humans carry out on a routine basis with nearly perfect 
success rate. It  is not too surprising, therefore, that advances in face recognition by 
computer fail to match recent progress in the recognition of general 3D objects. The 
major problem in face recognition appears to be the design of a representation that, 
on one hand, would be sufficiently informative to allow discrimination among inputs 
that are all basically similar to each other, and, on the other hand, would be efficiently 
computable. One way around this problem is to learn the required representations, e.g., 
by examining and remembering several instances of the input. 

How can such a simple scheme generalize recognition to novel instances? In a standard 
formulation of pattern recognition, a characteristic function is defined over a multidimen- 
sional space, so that its value is close to 1 over the region corresponding to instances of 
the pattern to be recognized, and is close to 0 elsewhere [2]. If the characteristic function 
is smooth, recognition may be generalized to novel patterns of the same class by interpo- 
lating the characteristic function, e.g., using splines. An efficient scheme for interpolating 
(or approximating) smooth functions was proposed recently under the name of HyperBF 
networks [9,6]. Within the HyperBF scheme, a multivariate function is expanded in terms 
of basis functions, with parameter values that  are learned from the data. For a scalar- 
valued function, the expansion has the form f (x )  = ~[~:=1 caG(llx - tall2), where the 
parameters ta  that correspond to the centers of the basis functions and the coefficients 
ca are unknown, and are in general much fewer than the data points (n < N).  The pa- 
rameters e, t are searched for during learning by minimizing the error functional defined 
as g [ f ]  = He, t = )"]~=I(A,) ~, where A i = Yl -- f (x )  = Yl -- ~ : = 1  cr - tall2). If  
the centers ta  are fixed (e.g., are a subset of the training examples), the coefficients ca 
can be found by pseudo-inverting a matrix composed of center responses to the training 
vectors [9] (other, iterative, methods such as gradient descent or stochastic search can 
be used for the minimization of H). HyperBF interpolation has been previously applied 
with success to 3D object recognition [7,3,1]. 
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2 Learn ing  Face  R e c o g n i t i o n  

2.1 P rep roces s lng  

Three-dimensional objects change their appearance when viewed from different direc- 
tions and when the illumination conditions vary. We used alignment [13] to remove the 
variability in the input images due to changing viewpoint. Our program starts with the 
identification of anchor points: image features that are both relatively viewpoint-invariant 
and well-localized. Good candidates for such features in face images are the eyes and the 
mouth. The input image is then subjected to a 2D affme transformation that normalizes 
its shape and size, so that the two eyes and the mouth are situated at fixed locations. The 
parameters of the transformation are computed from the desired and the actual locations 
of the anchor points in the image. We remark that the central assumption behind the 
choice of 2D affine transform as the normalizing operation is that faces are, to a first 
approximation, two-dimensional. 

Our method of detecting the eyes and the mouth in face images is based on the 
observation that the prominent facial features are highly symmetrical, compared to the 
rest of the face [10]. We proposed in [11] a low-level operator that captures the intuitive 
notion of such symmetries and produces a "symmetry map" of the image. This map is 
then subjected to clustering. Geometrical relationships among the clusters, together with 
the location of the midline (as defined by a cross-correlation between two halves of that 
portion of the image that presumably contains a face), allow us to infer the position of 
the face, and of the eyes and the mouth in it. These positions are then used as anchor 
points for affine normalization. 

After normalization, the input is a standard-size array of (8-hit) pixels, in which the 
value of each pixel is determined both by the geometry of the face and by the direction 
of the illumination. We next reduce the influence of illumination, by the usual method 
of taking a directional derivative of the intensity distribution at each pixel. The input 
is then subjected to dimensionaiity reduction, to increase both the efficiency and the 
effectiveness of the HyperBF classifier. 

A well-known statistical method for dimensionality reduction, principal component 
analysis, has been applied recently to face recognition with some success [5,12]. In the 
present work we chose to explore a considerably simpler method, based on the neuro- 
biological notion of receptive field (RF), defined as that portion of the retinal visual 
field whose stimulation affects the response of the neuron. Assuming that the neuron 
performs spatial integration over its RF, its output is a (possibly nonlinear) function 
of ffRF K(z, y)I(z, y)drdy, where I(x, y) is the input, and K(z ,  y) is a weighting kernel 
that we took to be Gaussian (ef. [8]). As noted in [4], pattern classification requires that 
dimensionality reduction facilitate discrimination between classes, rather than faithful 
representation of the data. Indeed, the vector of RF activities proved to be adequate for 
representing face images for recognition, although it would be impossible to recover from 
it the original structure of the image. 

2.2 First Stage: Recognizing Individual Faces 

We tested our recognition program on the subset o f  the MIT Media Lab database of 
face images made available by Turk and Pentland [12], which contained 27 face images 
of each of 16 different persons. The images were taken under varying illumination and 
camera location. Of the 27 images available for each person, 17 randomly chosen ones 
served for training the HyperBF recognizer, and the remaining 10 were used for testing. 
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A different recognizer was created for each person, and was trained to output 1 for the 
images in the training set. 

The performance of the individual recognizers was assessed by computing a 16 x 16 
confusion table, in which the entries along the diagonal signified mean miss rates and 
the off-diagonal entries - -  mean false alarm rates. The table (see Figure 1, bottom) was 
computed row by row, as follows. First, recognizer for the person whose name appears at 
the head of the row was trained. Second, the recognition threshold was set to the mean 
output of the recognizer over the training set less two standard deviations. Third, the 
performance of the recognizer on the test images of the same person was computed and 
the miss rate entered on the diagonal of the table. The above choice of threshold resulted 
in a mean miss rate of about 10%. Finally, the false alarm rates for the recognizer on 
the images of the other 15 persons were computed and entered under the appropriate 
columns of the table. 

Our second experiment used no thresholds. Instead, recognition was declared for that 
person whose recognizer was the most active among the sixteen. The performance of this 
winner-take-all scheme is shown in Figure 2 (left). 

2.3 Second Stage: Incorporating Ensemble Knowledge 

An examination of the confusion table reveals that some of the individuals tended to 
be confused with almost any other person in the database. To take aclvantage of this 
"ensemble phenomenon", we trained another HyperBF module to accept vectors of in- 
dividual recognizer activities and to produce vectors of the same length in which the 
value corresponding to the activity of the correct recognizer was 1, and all other values 
were 0 (see Figure 1, right top). The training set for the second-stage HyperBF module 
was obtained by pooling the training sets of all 16 first-stage recognizers. The outcome 
of the recognition of a test image was determined by finding the coordinate in the output 
vector whose value was the closest to 1. The performance of the two-stage scheme was 
considerably better than that of the individual recognizer stage alone (9% error rate, 
compared to 22%), demonstrating the importance of ensemble knowledge for recognition 
(Figure 2, right). 

3 S u m m a r y  

The approach to face recognition described in this paper was made possible by recent 
advances in model-based object recognition [13], in automatic detection of spatial features 
[10,11], and in applications of learning and of function approximation to recognition and 
other visual functions [7,3,8]. The architecture of our system (in particular, its reliance on 
receptive fields for dimensionality reduction and for classification) has been inspired by 
the realization that receptive fields are the basic computational mechanism in biological 
vision. The system's performance, which at present stands at about 5 - 9 %  generalization 
error rate under changes of orientation, size and lighting, compares favorably with the 
state of the art in face recognition [12]. These results have the potential of contributing to 
the evaluation of a recently proposed theory of brain function [6], and of making practical 
impact in machine vision. 
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Fig.  1. Left top: a fa~e image from the database we used, courtesy of Turk and Pentland [12], 
before preprocessing. Left middle: a HyperBF network. Basis function centezs t~ (points in the 
multidimensional input spa~e) are prototypes for which the desired response is known. The 
output of the network is a linear superposition of the activities of all the basis function units. 
In the limit case, when the bases are delta functions, the network becomes equivalent to a 
look-up table holding the examples. Right top: The entire two-stage recognition scheme (see 
text for explanation). Bottom: A confusion table representation of the performance of the first 
stage. Entries along the diagonal correspond to ~miss" error rates; oi~-di~gonal entries signify 
ufalse-alaxm" error rates (zeros omitted for clarity). 
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b l l  -> .00 b l l  - )  .OB 
b r a  - )  .20 b ra  - )  .2B 
day -> .3B day - )  .OB 
foo -> . 40  f oo  -> .20 
irf -> .30 irf -> .20 
Joe -> .20 Joe -> . 10  
Mik -> .10 nik -> .8~ 
n l n  -> .@0 ~in ->  .80 
paa -> .10 paa -> .20 
r o b  -> .BO r o b  - )  .E~ 
s t a  -> .80 s t a  ->  . l g  
s t e  -> . 60  a t e  -> .29 
t h a  -> .20 t h a  -> .88 
tra -> .68 t r e  -> .1E 
vMb -> .30 vnb -> .1E 
w~v -> .28 uav -> .18 

Mean e r r o r  r a t a :  .22 Mean e r r o r  r a t e :  .89 

Fig.  2. Left: performance of the one-stage recognition scheme. Right: performance of the two- 
stage scheme that uses ensemble knowledge. 
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