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Figure 1: Without 3D supervision, RingNet learns a mapping from the pixels of a single image to the 3D facial parameters

of the FLAME model [21]. Top: Images are from the CelebA dataset [22]. Bottom: estimated shape, pose and expression.

Abstract

The estimation of 3D face shape from a single image

must be robust to variations in lighting, head pose, ex-

pression, facial hair, makeup, and occlusions. Robustness

requires a large training set of in-the-wild images, which

by construction, lack ground truth 3D shape. To train

a network without any 2D-to-3D supervision, we present

RingNet, which learns to compute 3D face shape from a

single image. Our key observation is that an individual’s

face shape is constant across images, regardless of expres-

sion, pose, lighting, etc. RingNet leverages multiple images

of a person and automatically detected 2D face features. It

uses a novel loss that encourages the face shape to be sim-

ilar when the identity is the same and different for different

people. We achieve invariance to expression by represent-

ing the face using the FLAME model. Once trained, our

method takes a single image and outputs the parameters

of FLAME, which can be readily animated. Additionally

we create a new database of faces “not quite in-the-wild”

(NoW) with 3D head scans and high-resolution images of

the subjects in a wide variety of conditions. We evaluate

publicly available methods and find that RingNet is more

accurate than methods that use 3D supervision. The dataset,

model, and results are available for research purposes at

http://ringnet.is.tuebingen.mpg.de.

1. Introduction

Our goal is to estimate 3D head and face shape from a

single image of a person. In contrast to previous meth-

ods, we are interested in more than just a tightly cropped

region around the face. Instead, we estimate the full 3D

face, head and neck. Such a representation is necessary for

applications in VR/AR, virtual glasses try-on, animation,

biometrics, etc. Furthermore, we seek a representation that

captures the 3D facial expression, factors face shape from

expression, and can be reposed and animated. While there

have been numerous methods proposed in the computer vi-

sion literature to address the problem of facial shape esti-

mation [40], no previous methods address all of our goals.

Specifically, we train a neural network that regresses

from image pixels directly to the parameters of a 3D face

model. Here we use FLAME [21] because it is more ac-

curate than other models, captures a wide range of shapes,

models the whole head and neck, can be easily animated,

and is freely available. Training a network to solve this

problem, however, is challenging because there is little

paired data of 3D heads/faces together with natural images

of people. For robustness to imaging conditions, pose, fa-

cial hair, camera noise, lighting, etc., we wish to train from

a large corpus of in-the-wild images. Such images, by defi-

nition, lack controlled ground truth 3D data.

This is a generic problem in computer vision – finding

7763



2D training data is easy but learning to regress 3D from 2D

is hard when paired 3D training data is very limited and dif-

ficult to acquire. Without ground truth 3D, there are several

options but each has problems. Synthetic training data typ-

ically does not capture real-world complexity. One can fit

a 3D model to 2D image features but this mapping is am-

biguous and, consequently, inaccurate. Because of the am-

biguity, training a neural network using only a loss between

observed 2D, and projected 3D, features does not lead to

good results (cf. [17]).

To address the lack of training data, we propose a new

method that learns the mapping from pixels to 3D shape

without any supervised 2D-to-3D training data. To do so,

we learn the mapping using only 2D facial features, auto-

matically extracted with OpenPose [29]. To make this pos-

sible, our key observation is that multiple images of the

same person provide strong constraints on 3D face shape

because the shape remains constant although other things

may change such as pose, lighting, and expression. FLAME

factors pose and shape, allowing our model to learn what is

constant (shape) and factor out what changes (pose and ex-

pression).

While it is a fact that face shape is constant for an indi-

vidual across images, we need to define a training approach

that lets a neural network exploit this shape constancy. To

that end, we introduce RingNet. RingNet takes multiple

images of a person and enforces that the shape should be

similar between all pairs of images, while minimizing the

2D error between observed features and projected 3D fea-

tures. While this encourages the network to encode the

shapes similarly, we find this is not sufficient. We also add

to the “ring” a face belonging to a different random person

and enforce that the distance in the latent space between

all other images in the ring is larger than the distance be-

tween the same person. Similar ideas have been used in

manifold learning (e.g. triplet loss) [37] and face recogni-

tion [26], but, to our knowledge, our approach has not pre-

viously been used to learn a mapping from 2D to 3D geom-

etry. We find that going beyond a triplet to a larger ring, is

critical in learning accurate geometry.

While we train with multiple images of a person, note

that, at run time, we only need a single image. With this

formulation, we are able to train a network to regress the

parameters of FLAME directly from image pixels. Because

we train this with “in the wild” images, the network is robust

across a wide range of conditions as illustrated in Fig. 1.

The approach is more general, however, and could be ap-

plied to other 2D-to-3D learning problems.

Evaluating the accuracy of 3D face estimation methods

remains a challenge and, despite many methods that have

been published, there are no rigorous comparisons of 3D

accuracy across a wide range of imaging conditions, poses,

lighting and occlusion. To address this, we collected a

Figure 2: The NoW dataset includes a variety of images

take in different conditions (top) and high-resolution 3D

head scans (bottom). The dark blue region is the part we

considered for face challenge.

new dataset called NoW (Not quite in-the-Wild), with high-

resolution ground truth scans and high-quality images of

100 subjects taken in a range of conditions (Fig. 2). NoW

is more complex than previous datasets and we use it to

evaluate all recent methods with publicly available imple-

mentations. Specifically we compare with [34], [35] and

[9], which are trained with 3D supervision. Despite not hav-

ing any 2D-to-3D supervision our RingNet method recovers

more accurate 3D face shape. We also evaluate the method

qualitatively on challenging in-the-wild face images.

In summary, the main contributions of our paper are: (1)

Full face, head with neck reconstruction from a single face

image. (2) RingNet – an end-to-end trainable network that

enforces shape consistency across face images of the sub-

ject with varying viewing angle, light conditions, resolution

and occlusion. (3) A novel shape consistency loss for learn-

ing 3D geometry from 2D input. (4) NoW – a benchmark

dataset for qualitative and quantitative evaluation of 3D face

reconstruction methods. (5) Finally, we make the model,

training code, and new dataset freely available for research

purposes to encourage quantitative comparison [25].

2. Related work

There are several approaches to the problem of 3D face

estimation from images. One approach estimates depth

maps, normals, etc.; that is, these methods produce a rep-

resentation of object shape tied to pixels but specialized for

faces. The other approach estimates a 3D shape model that

can be animated. We focus on methods in the latter cate-

gory. In a recent review paper, Zollhöfer et al. [40] describe

the state of the art in monocular face reconstruction and pro-

vide a forward-looking set of challenges for the field. Note,

that the boundary between supervised, weakly supervised,

and unsupervised methods is a blurry one. Most methods

use some form of 3D shape model, which is learned from

scans in advance; we do not call this supervision here. Here

the term supervised implies that paired 2D-to-3D data is

used; this might be from real data or synthetic data.If a 3D

model is first optimized to fit 2D image features, then we
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say this uses 2D-to-3D supervision. If 2D image features

are used but there is no 3D data in training the network,

then this is weakly supervised in general and unsupervised

relative to the 2D-to-3D task.

Quantitative evaluation: Quantitative comparison be-

tween methods has been limited by a lack of common

datasets with complex images and high-quality ground

truth. Recently, Feng et al. [10] organized a single image to

3D face reconstruction challenge where they provided the

ground truth scans for subjects. Our NoW benchmark is

complementary to this method as its focus is on extreme

viewing angles, facial expressions, and partial occlusions.

Optimization: Most existing methods require tightly

cropped input images and/or reconstruct only a tightly

cropped region of the face for which existing shape pri-

ors are appropriate. Most current shape models are de-

scendants of the original Blanz and Vetter 3D morphable

model (3DMM) [3]. While there are many variations and

improvements to this model such as [13], we use FLAME

[21] here because both the shape space and expression space

are trained from more scans than other methods. Only

FLAME includes the neck region in the shape space and

models the pose-dependent deformations of the neck with

head rotation. Tightly cropped face regions make the esti-

mation of head rotation ambiguous. Until very recently, this

has been the dominant paradigm [2, 30, 11]. For example,

Kemelmacher-Shlizerman and Seitz [18] use multi-image

shading to reconstruct from collection of images allowing

changes in viewpoint and shape. Thies et al. [33] achieve

accurate results on monocular video sequences. While these

approaches can achieve good results with high-realism, they

are computationally expensive.

Learning with 3D supervision: Deep learning meth-

ods are quickly replacing the optimization-based ap-

proaches [35, 39, 19, 16]. For example, Sela et al. [27] use

a synthetic dataset to generate an image-to-depth mapping

and a pixel-to-vertex mapping, which are combined to gen-

erate the face mesh. Tran et al. [34] directly regress the

3DMM parameters of a face model with a dense network.

Their key idea is to use multiple images of the same subject

and fit a 3DMM to each image using 2D landmarks. They

then take a weighted average of the fitted meshes to use it

as the ground truth to train their network. Feng et al. [9]

regress from image to a UV position map that records the

position information of the 3D face and provides dense cor-

respondence to the semantic meaning of each point on UV

space. All the aforementioned methods use some form of

3D supervision like synthetic rendering, optimization-based

fitting of a 3DMM, or a 3DMM to generate UV maps or

volumetric representation. None of the fitting-based meth-

ods produce true ground truth for real world face images,

while synthetically generated faces may not generalize well

to the real world [31]. Methods that rely on fitting a 3DMM

to images using 2D-3D correspondences to create a pseudo

ground truth are always limited by the expressiveness of the

3DMM and the accuracy of the fitting process.

Learning with weak 3D supervision: Sengupta et

al. [28] learn to mimic a Lambertian rendering process by

using a mixture of synthetically rendered images and real

images. They work with tightly cropped faces and do not

produce a model that can be animated. Genova et al. [12]

propose an end-to-end learning approach using a differen-

tiable rendering process. They also train their encoder using

synthetic data and its corresponding 3D parameters. Tran

and Liu [36] learn a nonlinear 3DMM model by using an

analytically differentiable rendering layer and in a weakly

supervised fashion with 3D data.

Learning with no 3D supervision: MoFA [32] esti-

mates the parameters of a 3DMM and is trained end-to-end

using a photometric loss and an optional 2D feature loss. It

is effectively a neural network version of the original Blanz

and Vetter model in that it models shape, skin reflectance,

and illumination to produce a realistic image that is matched

to the input. The advantage of this is that the approach is

significantly faster than optimization methods [31]. MoFA

estimates a tight crop of the face and produces good look-

ing results but has trouble with extreme expressions. They

only perform quantitative evaluation on real images using

the FaceWarehouse model as the “ground truth”; this is not

an accurate representation of true 3D face shape.

The methods that learn without any 2D-to-3D supervi-

sion all explicitly model the image formation process (like

Blanz and Vetter) and formulate a photometric loss and

typically also incorporate 2D face feature detections with

known correspondence to the 3D model. The problem with

the photometric loss is that the model of image formation is

always approximate (e.g. Lambertian). Ideally, one would

like a network to learn not just about face shape but about

the complexity of real world images and how they relate to

shape. To that end, our RingNet approach uses only the 2D

face features and no photometric term. Despite (or because

of) this, the method is able to learn a mapping from pixels

directly to 3D face shape. This is the least supervised of

published methods.

3. Proposed method

The goal of our method is to estimate 3D head and face

shape from a single face image I. Given an image, we as-

sume the face is detected, loosely cropped, and approxi-

mately centered. During training, our method leverages 2D

landmarks and identity labels as input. During inference it

uses only image pixels; 2D landmarks and identity labels

are not used.

Key idea: The key idea can be summarized as fol-

lows: 1) The face shape of a person remains unchanged,

even though an image of the face may vary in viewing an-
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Figure 3: RingNet takes multiple images of the same per-

son (Subject A) and an image of a different person (Sub-

ject B) during training and enforces shape consistency be-

tween the same subjects and shape inconsistency between

the different subjects. The computed 3D landmarks from

the predicted 3D mesh projected into 2D domain to com-

pute loss with ground-truth 2D landmarks. During infer-

ence, RingNet takes a single image as input and predicts

the corresponding 3D mesh. Images are taken from [6]. The

figure is a simplified version for illustration purpose.
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Figure 4: Ring element that outputs a 3D mesh for an image.

gle, lighting condition, resolution, occlusion, expression or

other factors. 2) Every person has a unique face shape (not

considering identical twins).

We leverage this idea by introducing a shape consistency

loss, embodied in our ring-structured network. RingNet

(Fig. 3) is a multiple encoder-decoder based architecture,

with weight sharing between the encoders, and shape con-

straints on the shape variables. Each encoder in the ring is a

combination of a feature extractor network and a regressor

network. Imposing shape constraints on the shape variables

forces the network to disentangle facial shape, expression,

head pose, and camera parameters. We use FLAME [21]

as a decoder to reconstruct 3D faces from the semantically

meaningful embedding, and to obtain a decoupling within

the embedding space into semantically meaningful parame-

ters (i.e. shape, expression, and pose parameters).

We introduce the FLAME decoder, the RingNet archi-

tecture, and the losses in more details in the following.

3.1. FLAME model

FLAME uses linear transformations to describe iden-

tity and expression dependent shape variations, and stan-

dard linear blend skinning (LBS) to model neck, jaw, and

eyeball rotations around K = 4 joints. Parametrized by

coefficients for shape, ~β ∈ R
~|β|, pose ~θ ∈ R

3K+3, and

expression ~ψ ∈ R
~|ψ|, FLAME returns N = 5023 ver-

tices. FLAME models identity dependent shape variations

BS(~β;S) : R
~|β| → R

3N , corrective pose blendshapes

BP (~θ;P) : R3K+3 → R
3N , and expression blendshapes

BE(~ψ; E) : R
~|ψ| → R

3N as linear transformations with

learned bases S , E , and P . Given a template T ∈ R
3N in

the “zero pose”, identity, pose, and expression blendshapes,

are modeled as vertex offsets from T.

Each of the pose vectors ~θ ∈ R
3K+3 contains (K+1)

rotation vectors in axis-angle representation; i.e. one vec-

tor per joint plus the global rotation. The blend skinning

function W (T, J, ~θ,W) then rotates the vertices around

the joints J ∈ R
3K , linearly smoothed by blendweights

W ∈ R
K×N . More formally, FLAME is given as

M(~β, ~θ, ~ψ) =W (TP (~β, ~θ, ~ψ), J(~β), ~θ,W), (1)

with

TP (~β, ~θ, ~ψ) = T+BS(~β;S)+BP (~θ;P)+BE(~ψ; E). (2)

The joints are defined as a function of ~β since different face

shapes require different joint locations. We use Equation 1

for decoding our embedding space to generate a 3D mesh

of a complete head and face.

3.2. RingNet

The recent advances in face recognition (e.g. [38]) and

facial landmark detection (e.g. [4, 29]) have led to large im-

age datasets with identity labels and 2D face landmarks. For

training, we assume a corpus of 2D face images Ii, corre-

sponding identity labels ci, and landmarks ki.

The shape consistency assumption can be formalized

by ~βi = ~βj , ∀ci = cj (i.e. the face shape of one sub-

ject should remain the same across multiple images) and
~βi 6= ~βj , ∀ci 6= cj (i.e. the face shape of different subjects

should be distinct). RingNet introduces a ring-shaped ar-

chitecture that jointly optimizes for shape consistency for

an arbitrary number input images in parallel. For details

regarding the shape consistency, see Section 3.

RingNet is divided into R ring elements ei=Ri=1 as shown

in Figure 3, where each ei consists of an encoder and a de-

coder network (see Figure 4). The encoders share weights

across ei, the decoder weights remain fixed during train-

ing. The encoder is a combination of a feature extractor

network ffeat and regression network freg. Given an im-

age Ii, ffeat outputs a high-dimensional vector, which is
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then encoded by freg into a semantically meaningful vector

(i.e., fenc(Ii) = freg(ffeat(Ii))). This vector can be ex-

pressed as a concatenation of the camera, pose, shape and

expression parameters, i.e., fenc(Ii) = [cami, ~θi, ~βi, ~ψi],

where ~θi, ~βi, ~ψi are FLAME parameters.

For simplicity we omit I in the following and use

fenc(Ii) = fenc,i and ffeat(Ii) = ffeat,i. The regres-

sion network iteratively regresses fenc,i in an iterative error

feedback loop [17, 7], instead of directly regressing fenc,i
from ffeat,i. In each iteration step, progressive shifts from

the previous estimate are made to reach the current esti-

mate. Formally the regression network takes the concate-

nated [f tfeat,i, f
t
enc,i] as input and gives δf tenc,i as output.

Then we update the current estimate by,

fenc,i
t+1 = fenc,i

t + δfenc,i
t. (3)

This iterative network performs multiple regression itera-

tions per iteration of the entire RingNet training. The initial

estimate is set to ~0. The output of the regression network

is then fed to the differentiable FLAME decoder network

which outputs the 3D head mesh.

The number of ring elements R is a hyper-parameter

of our network, which determines the number of images

processed in parallel with optimized consistency on the ~β.

RingNet allows to use any combination of images of the

same subject and images of different subjects in parallel.

However, without loss of generality, we feed face images of

the same identity to {ej}
j=R−1
j=1 and different identity to eR.

Hence for each input training batch, each slice consists of

R− 1 images of the same person and one image of another

person (see Fig. 3).

3.3. Shape consistency loss

For simplicity let us call two subjects who have same

identity label “matched pairs” and two subjects who have

different identity labels are “unmatched pairs”. A key goal

of our work is to make a robust end-to-end trainable net-

work that can produce the same shapes from images of the

same subject and different shapes for different subjects. In

other words we want to make our shape generators discrim-

inative. We enforce this by requiring matched pairs to have

a distance in shape space that is smaller by a margin, η, than

the distance for unmatched pairs. Distance is computed in

the space of face shape parameters, which corresponds to a

Euclidean space of vertices in the neutral pose.

In the RingNet structure, ej and ek produce ~βj and ~βk,

which are matched pairs when j 6= k and j, k 6= R. Sim-

ilarly ej and eR produce ~βj and ~βR, which are unmatched

pairs when j 6= R. Our shape constancy term is then

∥

∥

∥

~βj − ~βk

∥

∥

∥

2

2
+ η ≤

∥

∥

∥

~βj − ~βR

∥

∥

∥

2

2
(4)

Thus we minimize the following loss while training

RingNet end-to-end, LS =

nb
∑

i=1

R−1
∑

j,k=1

max(0,
∥

∥

∥

~βij − ~βik

∥

∥

∥

2

2
−

∥

∥

∥

~βij − ~βiR

∥

∥

∥

2

2
+ η) (5)

which is normalized to,

LSC =
1

nb ×R
× LS (6)

where nb is the batch size for each element in the ring.

3.4. 2D feature loss

Finally we compute theL1 loss between the ground-truth

landmarks provided during the training procedure and the

predicted landmarks. Note that we do not directly predict

2D landmarks, but 3D meshes with known topology, from

which the landmarks are retrieved.

Given the FLAME template mesh, we define for each

OpenPose [29] keypoint the corresponding 3D point in the

mesh surface. Note that this is the only place where we

provide supervision that connects 2D and 3D. This is done

only once. While the mouth, nose, eye, and eyebrow key-

points have a fixed corresponding 3D point (referred to as

static 3D landmarks), the position of the contour features

changes with head pose (referred to as dynamic 3D land-

marks). Similar to [5, 31], we model the contour landmarks

as dynamically moving with the global head rotation (see

Sup. Mat.). To automatically compute this dynamic con-

tour, we rotate the FLAME template between -20 and 40

degrees to the left and right, render the mesh with texture,

run OpenPose to predict 2D landmarks, and project these

2D points to the 3D surface. The resulting trajectories are

symmetrically transferred between the left and right side of

the face.

During training, RingNet outputs 3D meshes, computes

the static and dynamic 3D landmarks for these meshes, and

projects these into the image plane using the camera param-

eters predicted in the encoder output. Henceforth we com-

pute the following L1 loss between the projected landmarks

kpi and the ground-truth 2D landmarks ki.

Lproj = ‖wi × (kpi − ki)‖1 (7)

where wi is the confidence score of each ground-truth land-

mark which is provided by the 2D landmark predictor. We

set it to 1 if the confidence is above 0.41 and to 0 otherwise.

The total loss Ltot, which trains RingNet end-to-end is

Ltot = λSCLSC + λprojLproj + λ~β

∥

∥

∥

~β
∥

∥

∥

2

2
+ λ~ψ

∥

∥

∥

~ψ
∥

∥

∥

2

2
(8)

where the λ are the weights of each loss term and the last

two terms regularize the shape and expression coefficients.
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Since BS(~β;S) and BE(~ψ; E) are scaled by the squared

variance, the L2 norm of ~β and ~ψ represent the Mahalanobis

distance in the orthogonal shape and expression space.

3.5. Implementation details

The feature extractor network uses a pre-trained ResNet-

50 [15] architecture, also optimized during training. The

feature extractor network outputs a 2048 dimensional vec-

tor. That serves as input to the regression network. The re-

gression network consists of two fully-connected layers of

dimension 512 with ReLu activation and dropout, followed

by a final linear fully-connected layer with 159-dimensional

output. To this 159-dimensional output vector we concate-

nate the camera, pose, shape, and expression parameters.

The first three elements represent scale and 2D image trans-

lation. The following 6 elements are the global rotation and

jaw rotation, each in axis-angle representation. The neck

and eyeball rotations of FLAME are not regressed since

the facial landmarks do not impose any constraints on the

neck. The next 100 elements are the shape parameters, fol-

lowed by 50 expression parameters of FLAME. The differ-

entiable FLAME layer is kept fixed during training. We

train RingNet for 10 epochs with a constant learning rate

of 1e-4, and use Adam [20] for optimization. The differ-

ent model parameters are R = 6, λSC = 1, λproj = 60,

λ~β = 1e − 4, λ~ψ = 1e − 4, η = 0.5. The RingNet archi-

tecture is implemented in Tensorflow [1] and will be made

publicly available. We use VGG2 Face database [6] as our

training dataset which consists of face images and their cor-

responding labels. We run OpenPose [29] on the database

and compute 68 landmark points on the face. OpenPose

fails for many cases. After cleaning for the failed cases we

have around 800K images with their corresponding labels

and facial landmarks for our training corpus. We also con-

sider around 3000 extreme pose images with corresponding

landmarks provided by [4]. Since for these extreme images

we do not have any labels we replicate each image with ran-

dom crops and scale for matched pair consideration.

4. Benchmark dataset and evaluation metric

This section introduces our NoW benchmark for the task

of 3D face reconstruction from single monocular images.

The goal of this benchmark is to introduce a standard eval-

uation metric to measure the accuracy and robustness of 3D

face reconstruction methods under variations in viewing an-

gle, lighting, and common occlusions.

Dataset: The dataset contains 2054 2D images of 100

subjects, captured with an iPhone X, and a separate 3D head

scan for each subject. This head scan serves as ground-

truth for the evaluation. The subjects are selected to contain

variations in age, BMI, and sex (55 female, 45 male).

We categorize the captured data in four challenges;

neutral (620 images), expression (675 images), occlusion

(528 images) and selfie (231 images). Neutral, expression

and occlusion contain neutral, expressive, and partially oc-

cluded face images of all subjects in multiple views, rang-

ing from frontal view to profile view. Expression contains

different acted facial expressions such as happiness, sad-

ness, surprise, disgust, and fear. Occlusion contain images

with varying occlusions from e.g. glasses, sunglasses, facial

hair, hats or hoods. For the selfie category, participants are

asked to take selfies with the iPhone, without imposing con-

straints on the performed facial expression. The images are

captured indoor and outdoor to provide variations of natural

and artificial light.

The challenge for all categories is to reconstruct a neutral

3D face given a single monocular image. Note that facial

expressions are present in several images, which requires

methods to disentangle identity and expression to evaluate

the quality of the predicted identity.

Capture setup: For each subject we capture a raw head

scan in neutral expression with an active stereo system

(3dMD LLC, Atlanta). The multi-camera system consists

of six gray-scale stereo camera pairs, six color cameras,

five speckle pattern projectors, and six white LED panels.

The reconstructed 3D geometry contains about 120K ver-

tices for each subject. Each subject wears a hair cap during

scanning to avoid occlusions and scanner noise in the face

or neck region due to hair.

Data processing: Most existing 3D face reconstruction

methods require a localization of the face. To mitigate the

influence of this pre-processing step we provide for each

image, a bounding box, that covers the face. To obtain

bounding boxes for all images, we first run a face detec-

tor on all images [38], and then predict keypoints for each

detected face [4]. We manually select 2D landmarks for

failure cases. We then expand the bounding box of the land-

marks to each side by 5% (bottom), 10% (left and right),

and 30% to the top to obtain a box covering the entire face

including forehead. For the face challenge, we follow pro-

cessing protocol similar to [10]. For each scan, the face

center is selected, and the scan is cropped by removing ev-

erything outside of a specified radius. The selected radius

is subject specific computed as 0.7 × (outer eye dist +
nose dist) (see Figure 2).

Evaluation metric: Given a single monocular image,

the challenge consists of reconstructing a 3D face. Since

the predicted meshes occur in different local coordinate sys-

tems, the reconstructed 3D mesh is rigidly aligned (rotation,

translation, and scaling) to the scan using a set of corre-

sponding landmarks between the prediction and the scan.

We further perform a rigid alignment based on the scan-

to-mesh distance (which is the absolute distance between

each scan vertex and the closest point in the mesh surface)

between the ground truth scan, and the reconstructed mesh

using the landmarks alignment as initialization. The error
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for each image is then computed as the scan-to-mesh dis-

tance between the ground truth scan, and the reconstructed

mesh. Different errors are then reported including cumula-

tive error plots over all distances, median distance, average

distance, and standard deviation.

How to participate: To participate in the challenge, we

provide a website [25] to download the test images, and to

upload the reconstruction results and selected landmarks for

each registration. The error metrics are then automatically

computed and returned. Note that we do not provide the

ground truth scans to prevent fine-tuning on the test data.

5. Experiments

We evaluate RingNet qualitatively and quantitatively

and compare our results with publicly available methods,

namely: PRNet (ECCV 2018 [9]), Extreme3D (CVPR 2018

[35]) and 3DMM-CNN (CVPR 2017 [34]).

Quantitative evaluation: We compare methods on [10]

and our NoW dataset.

Feng et al. benchmark: Feng et al. [10] describe a

benchmark dataset for evaluating 3D face reconstruction

from single images. They provide a test dataset, that con-

tains facial images and their 3D ground truth face scans

corresponding to a subset of the Stirling/ESRC 3D face

database. The test dataset contains 2000 2D neutral face

images, including 656 high-quality (HQ) and 1344 low-

quality (LQ) images. The high quality images are taken

in controlled scenarios and the low quality images are ex-

tracted from video frames. The data focuses on neutral faces

whereas our data has higher variety in expression, occlu-

sion, and lighting as explained in Section 4.

Recall that the methods we compare with (PRNet, Ex-

treme3D, 3DMM-CNN) use 3D supervision for training

whereas our approach does not. PRNet [9] requires a very

tightly cropped face region to give good results and per-

forms poorly when given the loosely cropped input image

that comes with the benchmark database (see Sup. Mat.).

Rather than try to crop the images for PRNet, we run it

on the given images and note when it succeeds: it outputs

meshes for 918 of the low resolution test images and for 509

of the high-quality images. To be able to compare with PR-

Net, we run all the other methods only on the 1427 images

for which PRNet succeeds.

We compute the error using the method in [10], which

computes the distance from ground truth scan points to the

estimated mesh surface. Figure 5 (left and middle) show

the cumulative error curve for different approaches for the

low-quality and high-quality images respectively; RingNet

outperforms the other methods. Table 1 reports the mean,

standard deviation and median errors.

NoW face challenge: For this challenge we use cropped

scans like [10] to evaluate different methods. We first per-

form a rigid alignment of the predicted meshes to the scans

Method

Median

(mm)

Mean

(mm)

Std

(mm)

LQ HQ LQ HQ LQ HQ

PRNet [9] 1.79 1.60 2.38 2.06 2.19 1.79

Extreme3D [35] 2.40 2.37 3.49 3.58 6.15 6.75

3DMM-CNN [34] 1.88 1.85 2.32 2.29 1.89 1.88

Ours 1.63 1.58 2.08 2.02 1.79 1.69

Table 1: Statistics on Feng et al. [10] benchmark

Method
Median

(mm)

Mean

(mm)

Std

(mm)

PRNet [9] 1.51 1.99 1.90

3DMM-CNN [34] 1.83 2.33 2.05

FLAME-neutral [21] 1.24 1.57 1.34

Ours 1.23 1.55 1.32

Table 2: Statistics for the NoW dataset face challenge.

R Median (mm) Mean (mm) Std (mm)

3 1.25 1.68 1.51

4 1.24 1.67 1.50

5 1.20 1.63 1.48

6 1.19 1.63 1.48

Table 3: Effect of varying number of ring elements R. We

evaluate on a validation set described in the ablation study.

for all the compared methods. Then we compute the scan-

to-mesh distance [10] between the predicted meshes and the

scans as above. Figure 5 (right) shows the cumulative er-

ror curves for the different methods; again RingNet outper-

forms the others. We provide the mean, median and stan-

dard division error in Table 2.

Qualitative results: Here we show the qualitative re-

sults of estimating a 3D face/head mesh from a single face

image on CelebA [22] and MultiPIE dataset [14]. Figure 1

shows a few results for RingNet, illustrating its robustness

to expression, gender, head pose, hair, occlusions, etc. We

show robustness of our approach under different conditions

like lighting, poses and occlusion in Figures 6 and 7. Qual-

itative comparisons are provided in the Sup. Mat.

Ablation study: Here we provide some motivation for

the choice of using a ring architecture in RingNet by com-

paring different values for R in Table 3. We evaluate these

on a validation set that contains 2D images and 3D scans of

10 subjects (six subjects from [8], four from [21]) For each

subject we choose one neutral scan and two to four scanner

images, reconstruct the 3D meshes for the images, and mea-

sure the scan-to-mesh reconstruction error after rigid align-

ments. The error decreases when using a ring structure with

more elements over using a single triplet loss only, but it

also increases training time. To make a trade of between

time and error, we chose R = 6 in our experiments.
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Figure 5: Cumulative error curves. Left to right: LQ data of [10]. HQ data of [10]. NoW dataset face challenge.

Figure 6: Robustness of RingNet to varying lighting condi-

tions. Images from the MultiPIE dataset [14].

Figure 7: Robustness of RingNet to occlusions, variations

in pose, and lighting. Images from the NoW dataset.

6. Conclusion

We have addressed the challenging problem of learning

to estimate a 3D, articulated, and deformable shape from a

single 2D image with no paired 3D training data. We have

applied our RingNet model to faces but the formulation is

general. The key idea is to exploit a ring of pairwise losses

that encourage the solution to share the same shape for im-

ages of the same person and a different shape when they

differ. We exploit the FLAME face model to factor face

pose and expression from shape so that RingNet can con-

strain the shape while letting the other parameters vary. Our

method requires a dataset in which some of the people ap-

pear multiple times, as well as 2D facial features, which

can be estimated by existing methods. We provide only the

relationship between the standard 2D face features and the

vertices of the 3D FLAME model. Unlike previous meth-

ods we do not optimize a 3DMM to 2D features, nor do we

use synthetic data. Competing methods typically exploit a

photometric loss using an approximate generative model of

facial albedo, reflectance and shading. RingNet does not

need this to learn the relationship between image pixels and

3D shape. In addition, our formulation captures the full

head and its pose. Finally, we have created a new public

dataset with accurate ground truth 3D head shape and high-

quality images taken in a wide range of conditions. Sur-

prisingly, RingNet outperforms methods that use 3D super-

vision. This opens many directions for future research, for

example extending RingNet with [24]. Here we focused on

a case with no 3D supervision but we could relax this and

use supervision when it is available. We expect that a small

amount of supervision would increase accuracy while the

large dataset of in-the-wild images provides robustness to

illumination, occlusion, etc. Our 2D feature detector does

not include the ears, though these are highly distinctive fea-

tures. Adding 2D ear detections would further improve the

3D head pose and shape. While our model stops with the

neck, we plan to extend our model to the full body [23].

It would be interesting to see if RingNet can be extended

to reconstruct 3D body pose and shape from images solely

using 2D joints. This could go beyond current methods,

like HMR [17], to learn about body shape. While RingNet

learns a mapping to an existing 3D model of the face, we

could relax this and also optimize over the low-dimensional

shape space, enabling us to learn a more detailed shape

model from examples. For this, incorporating shading cues

[32, 28] would help constrain the problem.
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[40] M. Zollhöfer, J. Thies, P. Garrido, D. Bradley, T. Beeler,

P. Prez, M. Stamminger, M. Niener, and C. Theobalt. State

of the art on monocular 3D face reconstruction, tracking, and

applications. Computer Graphics Forum, 37(2):523–550,

2018. 1, 2

7772


