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Abstract

Models trained in the context of continual learning (CL)

should be able to learn from a stream of data over an un-

defined period of time. The main challenges herein are:

1) maintaining old knowledge while simultaneously bene-

fiting from it when learning new tasks, and 2) guaranteeing

model scalability with a growing amount of data to learn

from. In order to tackle these challenges, we introduce

Dynamic Generative Memory (DGM) - synaptic plasticity

driven framework for continual learning. DGM relies on

conditional generative adversarial networks with learnable

connection plasticity realized with neural masking. Specifi-

cally, we evaluate two variants of neural masking: applied

to (i) layer activations and (ii) to connection weights di-

rectly. Furthermore, we propose a dynamic network ex-

pansion mechanism that ensures sufficient model capac-

ity to accommodate for continually incoming tasks. The

amount of added capacity is determined dynamically from

the learned binary mask. We evaluate DGM in the continual

class-incremental setup on visual classification tasks.

1. Introduction

Conventional Deep Neural Networks (DNN) fail to con-

tinually learn from a stream of data while maintaining

knowledge. Specifically, reusing old knowledge in new

contexts poses a severe challenge. Generally, there are sev-

eral fundamental obstacles on the way to a continually train-

able AI system: the problem of forgetting when learning

from new data (catastrophic forgetting), lack of model scal-

ability, i.e. the inability to scale up the model’s size with a

continuously growing amount of training data, and finally

inability to transfer knowledge across tasks.

Several recent approaches [9, 34, 2, 1] try to mitigate

forgetting in ANNs while simulating synaptic plasticity di-

rectly in the task solving network. It is noteworthy that these

methods topically tackle the task-incremental scenario, i.e.

a separate classifier is trained to make predictions about

each task. This further implies the availability of oracle

knowledge of the task label at inference time. Such eval-

uation is often referred to as multi-head evaluation in which

the task label is associated with a dedicated output head.

Alternatively, other approaches rely on single-head evalua-

tion [22, 2]. Here, the model is evaluated on all classes ob-

served during the training, no matter which task they belong

to. While single-head evaluation does not require oracle

knowledge of the task label, it also does not reduce the out-

put space of the model to the output space of the task. Thus

single-head evaluation represents a harder, yet more realis-

tic setup. Single-head evaluation is predominantly used in

class-incremental setup, in which every newly introduced

data batch contains examples of one to many new classes.

As opposed to the task-incremental situation, models

in class-incremental setup typically require the previously

learned information to be replayed when learning new cat-

egories [22, 2, 18]. The simplest way to accomplish this is

by retaining and replaying real samples of previously seen

categories to the task solver. However, retaining real sam-

ples has several intrinsic implications. First, it is very much

against the notion of bio-inspired design, as natural brains

do not feature the retrieval of information identical to orig-

inally exposed impressions [15]. Second, as pointed out by

[32, 22] storing raw samples of previous data can violate

data privacy and memory restrictions of real-world appli-

cations. Such restrictions are particularly relevant for the

vision domain with its continuously growing dataset sizes

and rigorous privacy constraints.

In this work, we address the “strict” class-incremental

setup. That is, we demand a classifier to learn from a

stream of data with different classes occurring at different

times with no access to previously seen data, i.e. no storing

of real samples is allowed. Such a scenario is solely ad-

dressed by methods relying on generative memory - a gen-

erative network is used to memorize previously seen data

distributions, samples of which can be replayed to the clas-

sifier at any time. Several strategies exist to avoid catas-

trophic forgetting in generative networks. The most suc-

cessful approaches rely on deep generative replay (DGR)

[30] - repetitive retraining of the generator on a mix of syn-

thesized samples of previous categories and real samples of

new classes. In this work we propose Dynamic Generative
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Memory (DGM) with learnable connection plasticity rep-

resented by parameter level attention mechanism. As op-

posed to DGR, DGM features a single generator that is able

to incrementally learn about new tasks without the need to

replay previous knowledge.

Another important factor in the continual learning set-

ting is the ability to scale, i.e. to maintain sufficient capac-

ity to accommodate for a continuously growing amount of

information. Given invariant resource constraints, it is in-

evitable that with a growing number of tasks to learn, the

model capacity is depleted at some point in time. This issue

is again exacerbated when simulating neural plasticity with

parameter level hard attention masking. In order to guaran-

tee sufficient capacity and constant expressive power of the

underlying DNN, we keep the number of ”free” parameters

(i.e. to which the gradient updates can be freely applied)

constant by expanding the network with exactly the number

of parameters that were blocked for the previous task.

Our contribution is twofold: (a) we introduce Deep Gen-

erative Memory (DGM) - an adversarially trainable genera-

tive network that features neural plasticity through efficient

learning of a sparse attention masks for the network weights

(DGMw) or layer activations (DGMa); To the best of our

knowledge we are the first to introduce weight level masks

that are learned simultaneously with the base network; Fur-

thermore, we conduct it in an adversarial context of a gen-

erative model; DGM is able to incrementally learn new in-

formation during adversarial training without the need to

replay previous knowledge to its generator. (b) We propose

an adaptive network expansion mechanism, facilitating re-

source efficient continual learning. In this context, we com-

pare the proposed method to the state-of-the-art approaches

for continual learning. Finally, we demonstrate that DGMw

accommodates for higher efficiency, better parameter re-

usability and slower network growth than DGMa.

2. Related Work

Among the first works dealing with catastrophic forget-

ting in the context of lifelong learning are [4, 16, 21], who

tackle this problem by employing shallow neural networks,

whereas our method makes use of modern deep architec-

tures. Lately, a wealth of works dealing with catastrophic

forgetting in context of DNNs have appeared in the litera-

ture, see e.g., [9, 34, 12, 29, 1, 24]. Thus, EWC [9] and

RWalk [2] rely on Fisher’s information to identify param-

eters that carry most of the information about previously

learned tasks, and apply structural regularization to “dis-

courage” change of these parameters. [34] and [1] identify

important parameter segments based on the sensitivity of

the loss or the learned prediction function to changes in the

parameter space. Instead of relying on “soft” regulariza-

tion techniques, [29] and [26] propose to dedicate separate

parameter subspaces to separate tasks. Serrà et al. [29] pro-

pose a hard attention to the task (HAT) mechanism. HAT

finds dedicated parameter subspaces for all tasks in a single

network while allowing them to mutually overlap. The op-

timal solution is then found in the corresponding parameter

subspace of each task. All of these methods have been pro-

posed for a “task-incremental learning” setup. In our work

we specifically propose a method to overcome catastrophic

forgetting within the “class-incremental” setup. Notably, a

method designed for class-incremental learning can be gen-

erally applied in a task-incremental setup.

Several continuous learning approaches [22, 18, 8], ad-

dress catastrophic forgetting in the class-incremental set-

ting, i.e. by storing raw samples of previously seen data

and making use of them during the training on subsequent

tasks. Thus, iCarl [22] proposes to find m most representa-

tive samples of each class whose mean feature space most

closely approximates the entire feature space of the class.

The final classification task is done by the means of the

nearest mean-of-exemplars classifier.

Recently, there has been a growing interest in employ-

ing deep generative models for memorizing previously seen

data distributions instead of storing old samples. [30, 31]

rely on the idea of generative replay, which requires retrain-

ing the generator at each time step on a mixture of syn-

thesized images of previous classes and real samples from

currently available data. However, apart from being ineffi-

cient in training, these approaches are severely prone to “se-

mantic drifting”. Namely, the quality of images generated

during every memory replay highly depends on the images

generated during previous replays, which can result in loss

of quality and forgetting over time. In contrast, we propose

to utilize a single generator that is able to incrementally

learn new information during the normal adversarial train-

ing without the need to replay previous knowledge. This is

achieved through efficiently learning a sparse mask for the

learnable units of the generator network.

Similar to our method, [28] proposed to avoid retrain-

ing the generator at every time-step on previous classes by

applying EWC [9] in the generative network. We pursue a

similar goal with the key difference of utilizing a hard atten-

tion mechanism similar to the one described by [29, 13, 14].

All three approaches make use of the techniques origi-

nally proposed in the context of binary-valued networks

[3]. Herein, binary weights are specifically learned from

a real-valued embedding matrix that is passed through a

binarization function. To this end, [13, 14] learn to mask

a pre-trained network without changing the weights of the

base networks, whereas [29] (HAT) features binary mask-

learning for the layer activations simultaneously to the train-

ing of the base network. While DGMa features HAT-

like layer activation masking, DGMw accomplishes binary

mask learning directly on the weights of the generator.

Other works propose to use non-binary filters to define a
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Figure 1: Dynamic Generative Memory: auxiliary output of D is trained on the real samples of the current task t and synthesized sample

of previously seen tasks 1...t−1. Adversarial training is accomplished with real and fake samples of the current task. Connection plasticity

simulated with binary mask applied to the generators weights or activations is learned simultaneously to the adversarial training.

new task solving network in terms of a linear combination

of the parameters of a fixed base network [24, 23].

Similarly to [33], we propose to expand the capacity of

the employed base network, in our case the samples gen-

erator. The expansion is performed dynamically with an

increasing amount of attained knowledge. However, [33]

propose to keep track of the semantic drift in every neuron,

and then expand the network by duplicating neurons that are

subject to sharp changes. In contrast, we compute weights

importance concurrently during the course of network train-

ing by modeling the neuron behavior using learnable binary

masks. As a result, our method explicitly does not require

any further network retraining after expansion.

Other approaches like [8, 7, 27] try to explicitly model

short and long term memory with separate networks. In

contrast to these methods, our approach does not explicitly

keep two separate memory locations, but rather incorporates

it implicitly in a single memory network. Thus, the memory

transfer occurs during the binary mask learning from non-

binary (short term) to completely binary (long term) values.

3. Dynamic Generative Memory

Adopting the notation of [2], let St = {(xt
i, yti)}

nt

i=1 de-

note a collection of data belonging to the task t ∈ T , where

xt
i ∈ X is the input data and yt

i
∈ yt are the ground truth la-

bels. While in the non-incremental setup the entire dataset

S = ∪
|T |
t=0St is available at once, in an incremental setup

it becomes available to the model in chunks St specifically

only during the learning of task t. Thereby, St can be com-

posed of a collection of items from different classes, or even

from a single class only. Furthermore, at the test time the

output space covers all the labels observed so far featuring

the single head evaluation: Yt = ∪t
j=1yj .

We consider a continual learning setup, in which a task

solving model D has to learn its parameters θD from the

data St being available at the learning time of task t. Task

solver D should be able to maintain good performance on

all classes Yt seen so far during the training. A conventional

DNN, while being trained on St, would adapt its parameters

in a way that exhibits good performance solely on the labels

of the current task yt, the previous tasks would be forgotten.

To overcome this, we introduce a Generative Memory com-

ponent G, who’s task is to memorize previously seen data

distributions. As visualized in Fig. 1, samples of the previ-

ously seen classes are synthesized by G and replayed to the

task solver D at each step of continual learning to maintain

good performance on the entire Yt. We train a generative

adversarial network (GAN)[5] and a sparse mask for the

weights of its generator simultaneously. The learned masks

model connection plasticity of neurons, thus avoiding over-

writing of important units by restricting SGD updates to the

parameter segments of G that exhibit free capacity.

3.1. Learning Binary Masks

We consider a generator network GθG consisting of L
layers, and a discriminator network DθD . In our approach,

DθD serves as both: a discriminator for generated fake sam-

ples of the currently learned task (Ladv.) and as a classifier

for the actual learning problem (Lcls.) following the AC-

GAN [19] architecture. The system has to continually learn

T tasks. During the SGD based training of task t, we learn

a set of binary masks M t = [mt
1, ...,m

t
L] for the weights of

each layer. Output of a fully connected layer l is obtained

by combining the binary mask mt
l with the layer weights:

ytl = σact[(m
t
l ◦Wl)

⊤x], Wl ∈ R
n×p, (1)

for σact being some activation function. Wl is the weight

matrix applied between layer l and l−1, · ◦ · corresponds to

the Hadamard product. In DGMw mt
l is shaped identically

to Wl, whereas in case of DGMa the mask mt
l is shaped as

1×p and should be expanded to the size of Wl. Extension to

more complex models such as e.g. CNNs is straightforward.
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A single binary mask for a layer l and task t is given by:

mt
l = σ(s · etl), (2)

where etl is a real-valued mask embeddings matrix, s is a

positive scaling parameter s ∈ R+, and σ a thresholding

function σ : R → [0, 1]. Similarly to [29] we use the sig-

moid function as a pseudo step-function to ensure gradient

flow to the embeddings e. In training of DGMw, we an-

neal the scaling parameter s incrementally during epoch i
from 1/simax to simax (local annealing). simax is similarly

adjusted over the course of I epochs from 1/smax to smax

(global annealing with smax being a fixed meta-parameter).

The annealing the scheme is largely adopted from [29]:

simax =
1

smax

+ (smax −
1

smax

)
i− 1

I − 1
(3)

s =
1

simax

+ (simax −
1

simax

)
b− 1

B − 1
. (4)

Here b ∈ {1, . . . , B} is the batch index and B the number

of batches in each epoch of SGD training. DGMa only fea-

tures global annealing of s, as it showed better performance.

In order to prevent the overwriting of the knowledge re-

lated to previous classes in the generator network, gradients

gl w.r.t. the weights of each layer l are multiplied by the

reverse of the cumulated mask m≤t
l :

g′l = [1−m≤t
l ]gl, m≤t

l = max(mt
l ,m

t−1

l ), (5)

where g′l corresponds to the new gradient matrix and m≤t
l

is the cumulated mask.

Analogously to [29], we promote sparsity of the binary

mask by adding a regularization term Rt to the loss function

of the AC-GAN[19] generator:

Rt(M t,M t−1) =

∑L−1

l=1

∑Nl

i=1
mt

l,i(1−m<t
l,i )

∑L−1

l=1

∑Nl

i=1
1−m<t

l,i

, (6)

where Nl is the number of parameters of layer l. Here, pa-

rameters that were reserved previously are not penalized,

promoting reuse of units over reserving new ones.

3.2. Dynamic Network Expansion

As discussed by [33], significant domain shift between

tasks leads to rapid network capacity exhaustion, manifest-

ing in decreasing expressive power of the underlying net-

work and ultimately in catastrophic forgetting. In case of

DGM this effect will be caused by decreasing number of

“free ” parameters over the course of training due to param-

eter reservation. To avoid this effect, we take measures to

ensure constant number of free parameters for each task.

DGMa. Consider a network layer l with an input vec-

tor of size n, an output vector of size p, and the mask

m1
l ∈ [0, 1]1×p initialized with mask elements m1

l of all

neurons of the layer set to 0.5 (real-valued embeddings e1l
are initialized with 0). After the initial training cycle on task

1, the number of free output neurons in layer l will decrease

to p− δ1, where δt is the number of neurons reserved for a

generation task t, here t = 1. After the training cycle, the

number of output neurons p of the layer l will be expanded

by δ1. This guarantees that the free capacity of the layer is

kept constant at p neurons for each learning cycle.

DGMw. In case of DGMw, after the initial training cycle

the number of free weights will decrease to np − δ
′

1, with

δ
′

1 corresponding to the number of weights reserved for the

generation task 1. The number of output neurons p is ex-

panded by δ
′

1/n. The number of free weights of the layer is

kept constant, which can be verified by the following equa-

tion: (p + δt/n)n − δt = np. In practice we extend the

number of output neurons by ⌈δt/n⌉. The number of free

weight parameters in layer l is thus either np, if δt/n ∈ Z,

or np+ p, otherwise.

3.3. Training of DGM

The proposed system combines the joint learning of

three tasks: a generative, a discriminative and finally, a clas-

sification task in the strictly class-incremental setup.

Using task labels as conditions, the generator network

must learn from a training set Xt = {Xt
1, ..., X

t
N} to gen-

erate images for task t. To this end, AC-GAN’s conditional

generator synthesizes images xt = GθG(t, z,Mt), where

θG represents the parameters of the generator network, z
denotes a random noise vector. The parameters correspond-

ing to each task are optimized in an alternating fashion. As

such, the generator optimization problem can be seen as

minimizing LG = Lt
s − Lt

c + λRUR
t, with Lc a cross en-

tropy classification loss calculated on the the auxiliary out-

put, Ls a discriminative loss function used on the adversar-

ial output layer of the network (implemented to be compli-

ant with architectural requirements of WGAN[6]) , and Rt

the regularizer term expanded upon in equation 6. To pro-

mote efficient parameter utilization, taking into considera-

tion the proportion of the network already in use, the regu-

larization weight λRU is multiplied by the ratio α = St

Sfree
,

where St is the size of the network before training on task t,
and Sfree is the number of free neurons. This ensures that

less parameters are reused during early stages of training,

and more during the later stages when the model already

has gained a certain level of maturity.

The discriminator is optimized similarly through mini-

mizing LD = Lt
c + Lt

s + λGPL
t
gp, where Lt

gp represents

a gradient penalty term implemented as in [6] to ensure a

more stable training process.
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MNIST (%) SVHN(%) CIFAR10(%) ImageNet-50(%)

Method A5 A10 A5 A10 A5 A10 A30 A50

JT 97.66 98.10 85.30 84.82 82.20 64.20 57.35 49.88

E
p

is
o

d
ic

m
em

o
ry

iCarl-S [22] - 55.8 - - - - 29.38 28.98

EWC-S[9] - 79.7 - - - - - -

RWalk-S[2] - 82.5 - - - - - -

PI-S [34] - 78.7 - - - - - -

G
en

er
at

.

m
em

o
ry

EWC-M [28] 70.62 77.03 39.84 33.02 - - - -

DGR [30] 90.39 85.40 61.29 47.28 - - - -

MeRGAN [31] 98.19 97.00 80.90 66.78 - - - -

DGMw (ours) 98.75 96.46 83.93 74.38 64.94 51.70 32.14 17.82

DGMa (ours) 99.17 97.92 81.07 66.89 62.50 50.80 25.93 15.16

Table 1: Comparison to the benchmark presented by [2] (episodic memory with real samples) and [31] (generative memory) of approaches

evaluated in class-incremental setup. Joint training (JT) represents the upper bound. Both variants of our method are evaluated.

4. Experimental Results

We perform experiments measuring the classification ac-

curacy of our system in a strictly class-incremental setup

on the following benchmark datasets: MNIST [11], SVHN

[17], CIFAR-10 [10], and ImageNet-50 [25]. Similarly to

[22, 31, 2] we report an average accuracy (At) over the held-

out test sets of classes 0...t seen so far during the training.

Datasets. The MNIST and SVHN datasets are com-

posed of 60000 and 99289 images respectively, containing

digits. The main difference is in the complexity and vari-

ance of the data used. SVHN’s images are cropped pho-

tos containing house numbers and as such present varying

viewpoints, illuminations, etc. CIFAR10 contains 60000 la-

beled images, split into 10 classes, roughly 6k images per

class. Finally, we use a subset of the iILSVRC-2012 dataset

containing 50 classes with 1300 images per category. All

images are further resized to 32 x 32 before use.

Implementation details. We make use of the same ar-

chitecture for the MNIST and SVHN experiments, a 3-layer

DCGAN [20], with the generator’s number of parameters

modified to be proportionally smaller than in [31] (10%
of MeRGAN’s size for DGMw, and 44% for DGMa on

MNIST and SVHN). The projection and reshape operation

is performed with a convolutional layer instead of a fully

connected one. For the CIFAR-10 experiments, we use the

ResNet architecture proposed by [20]. For the ImageNet-50

benchmark, the discriminator features a ResNet-18 archi-

tecture. All are modified to function as an AC-GAN[19].

All datasets are used to train a classification network in

an incremental way. The performance of our method is eval-

uated quantitatively through comparison with benchmark

methods. Note that we compare our method mainly to the

approaches that rely on the idea of generative memory re-

0 1 2 4 5
Task

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

JT DGMw No replay DGMw+real

Figure 2: Top-5 performance of DGMw together with upper and

lower performance bounds measured for ImageNet-50 benchmark.

DGM+real denotes variation with different ratios of real samples

added to the replay loop (25%-75% of samples being real)

play, e.g. replaying generator synthesized samples of previ-

ous classes to the task solver without storing real samples of

old data. For the sake of fairness, we only consider bench-

marks evaluated in class-incremental single-head evaluation

setup. Hereby, to best of our knowledge [31] represent the

state-of-the-art benchmark followed by [30] and [28]. Next,

we relax the strict incremental setup and allow partial stor-

age of real samples of previous classes. Here we compare

to the iCarl [22], which is the state-of-the-art method for

continual learning with storing real samples.

Results. A quantitative comparison of both variants

of the proposed approach with other methods is listed in

Tab. 1. We use joint training (JT) as an upper perfor-

mance bound, where the task solver D is trained in a non-

incremental fashion on all real samples without adversarial

training being involved. The first set of methods evaluated

by [2] do not adhere to the strictly incremental setup, and

thus make use of stored samples, which is often referred to

as ”episodic memory”. The second set of methods we com-
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(b) Mask learning trajectories DGMa

Figure 3: Masks learning dynamics. Fig. (a) illustrates the ratio of newly blocked and reused neurons over the total number of used

neurons for a task t. Fig. (b) illustrates trajectories of mask value change for DGMa for a selected layer of G (bold line - layer occupation).

Top-1(%) Top-5(%)

Method A30 A50 A30 A50

JT 57.35 49.88 84.70 78.24

iCarl (K=1000) 29.38 28.98 69.98 59.49

iCarl (K=2000) 39.38 29.96 70.57 60.07

DGMw (K=1000) 36.87 18.84 69.13 43.12

DGMw (K=2000) 41.93 22.56 69.20 51.84

DGMw (r=0.75) 50.80 38.22 78.27 64.64

DGMw (r=0.5) 48.80 40.72 79.40 71.72

DGMw (r=0.25) 46.93 35.04 75.80 65.60

DGMw (r=0.1) 41.67 30.48 71.80 61.04

DGMw (r=0) 32.14 17.82 62.53 40.76

Table 2: Performance comparison of DGM and iCarl for different

values of r and memory size K.

pare with do not store any real data samples. Our method

outperforms the state of the art [28, 30] on the MNIST and

SVHN benchmarks through the integration of the memory

learning mechanism directly into the generator, and the ex-

pansion of said network as it saturates to accommodate new

information. We yield an increase in performance over [31],

a method that is based on a replay strategy for the gener-

ator and does not provide dynamic expansion mechanism

of the memory network, leading to increased training time

and sensitivity to semantic drift. As it can be observed for

both, our method and [31], the accuracy reported between

5 and 10-tasks of the MNIST benchmark has changed a lit-

tle, suggesting that for this dataset and evaluation method-

ology both approaches have largely curbed the effects of

catastrophic forgetting. Interestingly, DGM and MeRGAN

outperform JT on MNIST (A5) using the same architec-

ture. This suggests that the strictly incremental training

methodology forced the network to learn better generaliza-

tions compared to what it would learn given all the data.

Given the high accuracy reached on the MNIST dataset

largely gives rise to questions concerning saturation, we

opted to perform a further evaluation on the more visually

diverse SVHN dataset. In this context, increased data di-

versity translates to more difficult generation and suscep-

tibility to catastrophic forgetting. In fact, as can be seen

in Tab. 1, the difference between 5- and 10-task accuracies

is significantly larger in all methods than what can be ob-

served in the MNIST experiments. DGM strongly outper-

forms all other methods on the SVHN benchmark. This can

be attributed primarily to the efficient network expansion

that allows for more redundancy in reserving representative

neurons for each task, and a less destructive joint use of

neurons between tasks. Additionally, replay based methods

(like [30, 31]) can be potentially prone to generation of sam-

ples that represent class mixtures, especially for classes that

semantically interfere with each other. DGM is immune to

this problematic, since no generative replay is involved in

the generator’s training. Thus, DGM becomes more stable

in the face of catastrophic forgetting.

The quality of the generated images after 10 stages of in-

cremental training for MNIST and SVHN can be observed

in Fig. 5. The generative network is able to provide an in-

formative and diverse set of samples for all previously seen

classes without catastrophic forgetting.

Finally, in the ImageNet-50 benchmark, we incremen-

tally add 50 classes with 10 classes per step and evaluate the

classification performance of DGM using single-head eval-

uation. The dynamics of the top-5 classification accuracy of

our system is provided in Fig. 2. Looking at the qualitative

results shown in Fig. 5, it can be observed that generated

samples clearly feature class discriminative features which

are not forgotten after incremental training on 5 tasks of

the benchmark. Nevertheless, for each newly learned task

the discriminator network’s classification layer is extended

with 10 new outputs, making the complexity of the classi-

fication problem to grow constantly (from 10-way classi-

fication to 50-way classification). With the more complex

ImageNet samples also the generation task becomes much

harder than in datasets like MNIST and SVHN. These fac-

tors negatively impact the classification performance of the
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task solver presented in Fig. 2, where DGMw performs sig-

nificantly worse than the JT upper bound.
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Figure 4: Network growth (numb. of neurons) in the incremental

MNIST setup. Comparison of best performing DGMw and com-

parable DGMa (DGMw A10: 96.46%, DGMa - 96.98%).

Next, we relax the strict incremental setup and allow the

DGM to partially store real samples of previous classes. We

compare the performance of DGM to the state-of-the-art

iCarl [22]1. Noteworthy, iCarl relies only on storing real

samples of previous classes introducing a smart sample se-

lection strategy. We define a ratio of stored real and total

replayed samples r = nr/N , where N is the total num-

ber of samples replayed per class and nr is the number of

randomly selected real samples stored per each previously

seen class. To keep the number of replayed samples bal-

anced with the number of real samples of the currently ob-

served classes, N is set to be equal to the average number of

samples per class in the currently observed data chunk St.

Furthermore, similarly to iCarl [22] we define K to be the

total number of real samples that can be stored by the algo-

rithm at any point of time. We compare DGMw with iCarl

for different values of K allowing the storage of K/|Yt|
samples per class.

From Tab. 2 we observe that DGM is outperformed by

iCarl when no real samples are replayed (i.e. r = 0) after

50 classes in top-1 and after 30 and 50 classes in top-5 accu-

racy. DGMw with r = 0 outperforms iCarl with K = 1000
in top-1 accuracy after 30 classes. Furthermore, we observe

that adding real samples to the replay loop boosts DGM’s

classification accuracy beyond the iCarl’s one. Thus, al-

ready for r = 0.1 the performance of our system can be

improved significantly. We now consider DGM and iCarl

with the same memory size K (we test for K = 1000 and

K = 2000). Here DGM outperforms iCarl in top-1 accu-

racy after 30 classes, and almost reaches it in Top-5 accu-

racy. This is largely attributed to the advantage of DGM us-

ing generated samples additionally to the stored real once.

Yet, a significant performance drop is observed after learn-

ing 5 tasks (A50), where DGMw is outperformed by iCarl.

This can be attributed to (a) the fact that the number of sam-

ples replayed per class decreases over time due to fixed K

1 We use classes of ImageNet-50 with 32× 32 resolution and the iCarl

implementation under https://github.com/srebuffi/iCaRL

Dataset Method Size init. Size final A10(%)

MNIST DGMw 5.58e+4 3.83e+5 96.46

MeRGAN 5.18e+5 5.18e+5 97.00

SVHN DGMw 5.58e+4 3.99e+5 74.38

MeRGAN 5.18e+5 5.18e+5 66.78

Table 3: Comparison of generator’s base network’s size (number

of parameters) of DGMw and MeRGAN.

and increasing number of classes (e.g. for K = 2000, 66

samples are played per class after seeing 30 classes, and 40

samples after 50 classes), as well as (b) iCarl’s smart sam-

ples selection strategy that favors samples that better ap-

proximate the mean of all training samples per class. Such

samples selection strategy appears to works better in a situ-

ation where the number of real samples available per class

decreases over time. It is noteworthy that iCarl’s samples

selection strategy can also be applied to DGM.

Growth Pattern Analysis. One of the primary strengths

of DGM is an efficient generator network expansion com-

ponent, removing which would lead to the inability of the

generator to accommodate for memorizing new task. Per-

formance of DGM is directly related to how the network

parameters are reserved during incremental learning,which

ultimately depends on the generator’s ability to general-

ize from previously learned tasks. Fig. 4 reports network

growth against the number of tasks learned. We find that

learning masks directly for the layer weights (DGMw) sig-

nificantly slows down the network growth. Furthermore,

one can observe the high efficiency of DGM’s sub-linear

growth pattern as compared to the worst-case linear growth

scenario. Interestingly, as shown in Tab.3, after incremen-

tally learning 10 classes the final number of generator’s base

network’s parameters is lower than the one of the bench-

marked MeRGAN [31]. More specifically, we observe the

final network’s size reduction of 26% on MNIST, and 23%
on SVHN as compared to MeRGAN’s fixed generator. In

general, growth pattern of DGM depends on various fac-

tors: e.g. initialization size, similarity and order of classes

etc.. A rather low saturation tendency of DGM’s growth

pattern observed in Fig. 4 can be attributed to the fact that

with growing amount of information stored in the network,

selecting relevant knowledge becomes increasingly hard.

Plasticity Evolution Analysis. We analyze how learn-

ing is accomplished within a given task t, and how this

further affects the wider algorithm. For a given task t, its

binary mask Mt is initialized with the scaling parameter

s = 1. Fig. 3(b) shows the learning trajectories of the mask

values over the learning time of task t. Here, at task ini-

tialization of DGMa the mask is completely non-binary (all

mask values are 0.5). As training progresses, the scaling pa-

rameter s is annealed, the network is encouraged to search
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Figure 5: Images generated by DGM for MNIST(top), SVHN(middle) after training on 10 tasks, and ImageNet(bottom) after 5 tasks.

for the most efficient parameter constellation (epoch 2-10).

But with most mask values near 0 (most of the units are not

used, high efficiency is reached), the network’s capacity to

learn is greatly curtailed. The optimization process pushes

the mask to become less sparse, the number of non-zero

mask values is steadily increasing until the optimal mask

constellation is found, a trend observed in the segment be-

tween the epoch 10 and 55. This behaviour can be seen as

a short-term memory formation - if learning was stopped at

e.g. epoch 40 only a relatively small fraction of learnable

units would be masked in a binary way, the units with non-

binary mask values would be still partially overwritten dur-

ing the subsequent learning resulting in forgetting. A tran-

sition from short to the long-term memory occurs largely

within the epochs 45-65. Here the most representative units

are selected and reserved by the network, parameters that

have not made this transition are essentially left as unused

for the learning task t. Finally, the optimal neuron constella-

tion is optimized for the given task from epoch 60 onwards.

For a given task t, masked units (neurons in DGMa, net-

work weights in DGMw) can be broadly divided into three

types: (i) units that are not used at all (U) [masked with 0]

, (ii) units that are newly blocked for the task (NBt), (iii)

units that have been reused from previous tasks (Rt). Fig-

ure 3(a) presents the evolution of the ratio of the (NBt) and

(Rt) types over the total number of units blocked for the

task t. Of particular importance is that the ratio of reused

units is increasing between tasks, while the ratio of newly

blocked units is decreasing. These trends can be justified by

the network learning to generalize better, leading to a more

efficient capacity allocation for new tasks.

Memory Usage Analysis. We evaluate the viability

of generative memory usage from the perspective of re-

quired disc space. Storing the generator for the ImageNet-

50 benchmark (weights and masks) corresponds to the disc

space requirement of 228MB. Thereby storing the prepro-

cessed training samples of ImageNet-50 results in the re-

quired disc space of 315MB. In this particular case storing

the generator 27.5% more memory efficient than storing the

training samples. Naturally, this effect will become more

pronounced for larger datasets.

As discussed in Sec. 4, DGMw features a more effi-

cient network growth pattern as compared to DGMa. Yet,

DGMw’s attention masks are shaped identically to the

weight matrices and thus require more memory. Tab. 4

gives an overview of the required disc space for different

components of DGMa and DGMw (masks are stored in

a sparse form). Less total disc space is required to store

DGMw’s model as compared to DGMa, which suggests

that DGMw’s model growth efficiency compensates for the

higher memory required for storing its masks. During the

training, DGMw still exhibits a larger memory consump-

tion, as the real-valued mask embeddings for the currently

learned task must be kept in memory in a non-sparse form.

Size5(MB) Size10(MB)

DGMa DGMw DGMa DGMw

Weights 6.7 1.1 14.0 2.0

Masks 0.4 3.8 0.8 9.9

Total 7.1 4.9 14.8 11.9

Table 4: Disc space required to store different components of

DGMw and DGMa in Megabytes (MB) after 5 and 10 tasks. Com-

pared models exhibit comparable performance on MNIST.

5. Conclusion

In this work we study the continual learning problem in a

single-head, strictly incremental context. We propose a Dy-

namic Generative Memory approach for class-incremental

continual learning. Our results suggest that DGM success-

fully overcomes catastrophic forgetting by making use of

a conditional generative adversarial model where the gen-

erator is used as a memory module endowed with neural

masking. We find that neural masking works more efficient

when applied directly to layers’ weights instead of activa-

tions. Future work will address the limitations of the DGM

including missing backward knowledge transfer and limited

saturation of the network growth pattern.
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