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Abstract

Existing neural machine translation (NMT)

models generally translate sentences in isola-

tion, missing the opportunity to take advan-

tage of document-level information. In this

work, we propose to augment NMT models

with a very light-weight cache-like memory

network, which stores recent hidden represen-

tations as translation history. The probabil-

ity distribution over generated words is up-

dated online depending on the translation his-

tory retrieved from the memory, endowing

NMT models with the capability to dynami-

cally adapt over time. Experiments on mul-

tiple domains with different topics and styles

show the effectiveness of the proposed ap-

proach with negligible impact on the compu-

tational cost.

1 Introduction

Neural machine translation (NMT) has advanced the

state of the art in recent years (Kalchbrenner et al.,

2014; Cho et al., 2014; Sutskever et al., 2014; Bah-

danau et al., 2015). However, existing models gen-

erally treat documents as a list of independent sen-

tence pairs and ignore cross-sentence information,

which leads to translation inconsistency and ambi-

guity arising from a single source sentence.

There have been few recent attempts to model

cross-sentence context for NMT: Wang et al.

(2017a) use a hierarchical RNN to summarize the

previous K source sentences, while Jean et al.

(2017) use an additional set of an encoder and at-

tention model to dynamically select part of the pre-

vious source sentence. While these approaches have

proven their ability to represent cross-sentence con-

text, they generate the context from discrete lexi-

cons, thus would cause errors propagated from gen-

erated translations. Accordingly, they only take

into account source sentences but fail to make use

of target-side information.1 Another potential lim-

itation is that they are computationally expensive,

which limits the scale of cross-sentence context.

In this work, we propose a very light-weight alter-

native that can both cover large-scale cross-sentence

context as well as exploit bilingual translation his-

tory. Our work is inspired by recent successes

of memory-augmented neural networks on multi-

ple NLP tasks (Weston et al., 2015; Sukhbaatar et

al., 2015; Miller et al., 2016; Gu et al., 2018), es-

pecially the efficient cache-like memory networks

for language modeling (Grave et al., 2017; Daniluk

et al., 2017). Specifically, the proposed approach

augments NMT models with a continuous cache

(CACHE), which stores recent hidden representa-

tions as history context. By minimizing the compu-

tation burden of the cache-like memory, we are able

to use larger memory and scale to longer translation

history. Since we leverage internal representations

instead of output words, our approach is more ro-

bust to the error propagation problem, and thus can

incorporate useful target-side context.

Experimental results show that the proposed

approach significantly and consistently improves

translation performance over a strong NMT baseline

on multiple domains with different topics and styles.

We found the introduced cache is able to remember

translation patterns at different levels of matching

and granularity, ranging from exactly matched lexi-

1Wang et al. (2017a) indicate that “considering target-side

history inversely harms translation performance, since it suffers

from serious error propagation problems.”
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cal patterns to fuzzily matched patterns, from word-

level patterns to phrase-level patterns.

2 Neural Machine Translation

Suppose that x = x1, . . . xj , . . . xJ represents a

source sentence and y = y1, . . . yt, . . . yT a target

sentence. NMT directly models the probability of

translation from the source sentence to the target

sentence word by word:

P (y|x) =

T∏

t=1

P (yt|y<t,x). (1)

As shown in Figure 2 (a), the probability of generat-

ing the t-th word yt is computed by:

P (yt|y<t,x) = g(yt−1, st, ct) (2)

where g(·) first linearly transforms its input and then

applies a softmax function, yt−1 is the previously

generated word, st is the t-th decoding hidden state,

and ct is the t-th source representation. The decoder

state st is computed as follows:

st = f(yt−1, st−1, ct) (3)

where f(·) is an activation function, which is imple-

mented as GRU (Cho et al., 2014) in this work. ct is

a dynamic vector that selectively summarizes certain

parts of the source sentence at each decoding step:

ct =
J∑

j=1

αt,jhj (4)

where αt,j is the alignment probability calculated by

an attention model (Bahdanau et al., 2015; Luong et

al., 2015a), and hj is the encoder hidden state of the

j-th source word xj .
Since the continuous representation of a sym-

bol (e.g., hj and st) encodes multiple meanings of

a word, NMT models need to spend a substantial

amount of their capacity in disambiguating source

and target words based on the context defined by a

source sentence (Choi et al., 2016). Consistency is

another critical issue in document-level translation,

where a repeated term should keep the same trans-

lation throughout the whole document (Xiao et al.,

2011). Nevertheless, current NMT models still pro-

cess a document by translating each sentence alone,

Src
. . .开始都觉觉觉得得得 . . .大家觉觉觉得得得这也是

一次 机机机遇遇遇，一次 挑战。

Ref

. . . initially they all felt that . . . everyone

felt that this was also an opportunity

and a challenge .

NMT
. . . felt that . . . we feel that it is also a

challenge and a challenge .

(a) The translation of “机遇” (“opportunity”) suffers

from the ambiguity problem, while the translation of

“觉得” (“feel”) suffers from a tense inconsistency

problem. The former problem is not caused by at-

tending to wrong source words, as shown below.

(b) Attention matrix.

Figure 1: An example translation.

suffering from inconsistency and ambiguity arising

from a single source sentence, as shown in Table 1.

These problems can be alleviated by the proposed

approach via modeling translation history, as de-

scribed below.

3 Approach

3.1 Architecture

The proposed approach augments neural machine

translation models with a cache-like memory, which

has proven useful for capturing a longer history for

the language modeling task (Grave et al., 2017;

Daniluk et al., 2017). The cache-like memory is es-

sentially a key-value memory (Miller et al., 2016),

which is an array of slots in the form of (key,

408



st

y
t

ct

y
t-1

(a) Standard NMT

key value

st

y
t

ct

y
t-1

Cache

matching

mt

rea
din
g

st~

+

combining

(b) NMT augmented with a continuous cache

Figure 2: Architectures of (a) standard NMT, and (b) NMT augmented with an external cache to exploit

translation history. At each decoding step, the current attention context ct that represents source-side content

serves as a query to retrieve the cache (key matching) and an output vector mt that represents target-side

information in the past translations is returned (value reading), which is combined with the current decoder

state st (representation combining) to subsequently produce the target word yt.

value) pairs. The matching stage is based on the

key records while the reading stage uses the value

records. From here on, we use cache to denote the

cache-like memory.

Since modern NMT models generate translation

in a word-by-word manner, translation information

is generally stored at word level, including source-

side context that embeds content being translated

and target-side context that corresponds to the gen-

erated word. With the goal of remembering trans-

lation history in mind, the key should be designed

with features to help match it to the source-side con-

text, while the value should be designed with fea-

tures to help match it to the target-side context. To

this end, we define the cache slots as pairs of vectors

{(c1, s1), . . . , (ci, si), . . . , (cI , sI)} where ci and si
are the attention context vector and its correspond-

ing decoder state at time step i from the previous

translations. The two types of representation vectors

correspond well to the source- and target-side con-

texts (Tu et al., 2017a).

Figure 2(b) illustrates the model architecture. At

each decoding step t, the current attention context

ct serves as a query, which is used to match and

read from the cache looking for relevant informa-

tion to generate the target word. The retrieved vec-

tor mt, which embeds target-side contexts of gen-

erating similar words in the translation history, is

combined with the current decoder state st to sub-

sequently produce the target word yt (Section 3.2).

When the full translation is generated, the decoding

contexts are stored in the cache as a history for fu-

ture translations (Section 3.3).

3.2 Reading from Cache

Cache reading involves the following three steps:

Key Matching The goal of key matching is to re-

trieve similar records in the cache. To this end, we

exploit the attention context representations ct to

define a probability distribution over the records in

the cache. Using context representations as keys in

the cache, the cache lookup operator can be imple-

mented with simple dot products between the stored

representations and the current one:

Pm(ci |ct) =
exp(c⊤t ci)∑I
i′=1 exp(c

⊤
t c

′
i)

(5)
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where ct is the attention context representation at

the current step t, ci is the stored representation

at the i-th slot of the cache, and I is the num-

ber of slots in the cache. In contrast to existing

memory-augmented neural networks, the proposed

cache avoids the need to learn the memory match-

ing parameters, such as those related to parametric

attention models (Sukhbaatar et al., 2015; Daniluk

et al., 2017), transformations between the query and

keys (Miller et al., 2016; Gu et al., 2018), or human-

defined scalars to control the flatness of the distribu-

tion (Grave et al., 2017).2

Value Reading The values of the cache is read by

taking a sum over the stored values si, weighted by

the matching probabilities from the keys, and the re-

trieved vector mt is returned:

mt =
∑

(ci,si)∈cache

Pm(ci |ct) si.

From the view of memory-augmented neural net-

works, the matching probability Pm(ci |ct) can

be interpreted as the probability to retrieve similar

target-side information mt from the cache given the

source-side context ct, where the desired answer is

the contexts related to similar target words generated

in past translations.

Representation Combining The final decoder

state that is used to generate the next-word distri-

bution is computed from a linear combination of the

original decoder state st and the output vector mt

retrieved from the cache:3

s̃t = (1− λt)⊗ st + λt ⊗mt (6)

P (yt|y<t,x) = g(yt−1, ct, s̃t) (7)

where ⊗ is an element-wise multiplication, and λt ∈
R
d is a dynamic weight vector calculated at each de-

coding step. This strategy is inspired by the concept

of update gate from GRU (Cho et al., 2014), which

takes a linear sum between the previous hidden state

and the candidate new hidden state. The starting

point for this strategy is an observation: generating

2We tried these matching implementations in our prelimi-

nary experiments, but found no improvements for this task.
3We tried the strategy of “Gating Auxiliary Context” used

in (Wang et al., 2017a) in our preliminary experiments, and

found similar performance.

target words at different steps has the different needs

of the translation history. For example, translation

history representation is more useful if a similar slot

is retrieved in the cache, while less by other cases.

To this end, we calculate the dynamic weight vector

by:

λt = σ(Ust +Vct +Wmt) (8)

Here σ(·) is a logistic sigmoid function, and {U ∈
R
d×d,V ∈ R

d×l,W ∈ R
d×d} are the newly in-

troduced parameter matrices with d and l being the

number of units of decoder state and attention con-

text vector, respectively. Note that λt has the same

dimensionality as st and mt, and thus each element

in the two vectors has a distinct interpolation weight.

In this way, we offer a more precise control to com-

bine the representations, since different elements re-

tain different information.

The addition of the continuous cache to a NMT

model inherits the advantages of cache-like mem-

ories: the probability distribution over generated

words is updated online depending on the translation

history, and consistent translations can be generated

when they have been seen in the history. The neu-

ral cache also inherits the ability of the decoder hid-

den states to model longer-term cross-sentence con-

texts than intra-sentence context, and thus allows for

a finer modeling of the document-level context.

3.3 Writing to Cache

The cache component is an external key-value mem-

ory structure which stores I elements of recent his-

tories, where the key at position i ∈ [1,M ] is ki and

its value is vi. For each key-value pair, we also store

the corresponding target word yt as an indicator for

the following updating operator. 4

In this work, we focus on learning to remem-

ber and exploit cross-sentence translation history.

Accordingly, different from (Grave et al., 2017;

Kawakami et al., 2017) where the cache is up-

dated after each generation of target word, we write

to the cache after a translation sentence is fully

generated. Given a generated translation sentence

y = {y1, . . . , yt, . . . , yT }, its corresponding at-

tention vector sequence is {c1, . . . , ct, . . . , cT } and

4In the writing phrase, the cache component works like a

standard cache, in which the target word yt serves as the “key”

to address the “value” (kt, vt) for updating the cache.
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the decoder state sequence is {s1, . . . , st, . . . , sT }.

Each triple 〈ct, st, yt〉 is written to the cache as fol-

lows:

1. If yt does not exist in the cache, an empty slot

is chosen or the least recently used slot is over-

written, where the key slot is ct, the value slot

is st and the indicator is yt.

2. If yt already exists in the cache at some position

i, the key and value are updated: ki = (ki +
ct)/2 and vi = (vi + st)/2.

From the perspective of “general cache policy”, it

can be regarded as a sort of exponential decay, since

at each update the previous keys and values are

halved. From the perspective of continuous cache,

on the other hand, the intuition behind it is to model

temporal order for the same word – the more recent

histories serve as more important roles.

Some researchers may worry that the key ki and

the attention vector ct could be fully unrelated, since

they “align” the same word yt to the source words

of different source sentences. We believe that such

cases would rarely happen. When ct is aligned to a

target word yt (we assume that the aligns are always

correct and align error problem is beyond the focus

of this work), we expect that a certain portion of ct
and the embedding of yt are semantically equiva-

lent (that is how the information of the source side

is transformed to the target side). Therefore, there

should be always a certain relation among attention

vectors, which are aligned to the same target word.

Averaging the attention vectors in different source

sentences is expected to highlight the shared portion

(i.e., corresponds to yt) and dilute the unshared parts

(i.e., correspond to the contexts of different source

sentences).

3.4 Training and Inference

Training Two pass strategies have proven useful

to ease training difficulty when the model is rela-

tively complicated (Shen et al., 2016; Wang et al.,

2017b; Tu et al., 2017b). Inspired by this, we add the

cache to a pre-trained NMT model with fine training

of only the new parameters related to the cache.

First, we pre-train a standard NMT model which

is able to generate reasonable representations (i.e.,

ct and st) to interact with the cache. Formally, the

parameters θ of the standard NMT model are trained

to maximize the likelihood of a set of training exam-

ples {[xn,yn]}Nn=1:

θ̂ = argmax
θ

N∑

n=1

logP (yn|xn;θ) (9)

where the probabilities of generating target words

are computed by Equation 2.

Second, we fix the trained parameters θ̂ and only

fine train the new parameters γ = {U,V,W} re-

lated to the cache (i.e., Equation 8):

γ̂ = argmax
γ

N∑

n=1

logP (yn|xn; θ̂,γ) (10)

where the probabilities of generating target words

are computed by Equation 7, and θ̂ are trained pa-

rameters via Equation 9. During training, the rep-

resentations ct and st remain the same for a given

sentence pair with the fixed NMT parameters, thus

the cache can be explicitly trained to learn when to

exploit translation history to maximize the overall

translation performance.

Inference Once a model is trained, we use a beam

search to find a translation that approximately max-

imizes the likelihood, which is the same as standard

NMT models. After the beam search procedure is

finished, we write to the cache the representations

that correspond to the 1-best output. The reason why

we do not use k-best outputs or all hypotheses in the

beam search is two-fold: (1) we want to improve

the translation consistency for the final outputs; and

(2) continuous representations suffer less from data

sparsity problem, in the scenario of which k-best

outputs generally works better. Our premiliary ex-

periments validate our assumption, in which k-best

outputs or hypotheses does not show improvement

over their 1-best counterpart.

4 Experiment

4.1 Setup

Data We carried out Chinese-English translation

experiments on multiple domains, each of which dif-

fers from others in topic, genre, style, level of for-

mality, etc.
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Domain

Training Tuning Test

|S|
|W |

|S|
|W |

|S|
|W |

Zh En Zh En Zh En

News 1.25M 27.9M 34.5M 878 22.6K 23.7K 6.8K 174.1K 186.9K

Subtitle 2.15M 12.1M 16.6M 1.1K 6.7K 9.2K 1.2K 6.7K 9.5K

TED 0.21M 4.1M 4.4M 887 21.3K 17.5K 5.5K 104.1K 92.2K

Table 1: Statistics of sentences (|S|) and words (|W |). K stands for thousands and M for millions.

• News: The News domain is extracted from

LDC corpora.5 Most sentences in this cor-

pora are formal articles with syntactic struc-

tures such as complicated conjuncted phrases,

which make textual translation very difficult.

We choose the NIST 2002 (MT02) dataset as

tuning set, and the NIST 2003-2008 (MT03-08)

datasets as test sets.

• Subtitle: The subtitles are extracted from

TV episodes, which are usually simple and

short (Wang et al., 2018). Most of the transla-

tions of subtitles do not preserve the syntactic

structures of their original sentences at all. We

randomly select two episodes as the tuning set,

and two other episodes as the test set.6

• TED: The corpora are from the MT track

on TED Talks of IWSLT2015 (Cettolo et al.,

2012).7 Koehn and Knowles (2017) point

out that NMT systems have a steeper learning

curve with respect to the amount of training

data, resulting in worse quality in low-resource

settings. The TED talks are difficult to translate

for its variety of topics while small-scale train-

ing data. We choose the “dev2010” dataset as

the tuning set, and the combination of “tst2010-

2013” datasets as the test set.

The statistics of the corpora are listed in Table 1.

As seen, the averaged lengths of the source sen-

tences in News, Subtitle, and TED domains are 22.3,

5.6, and 19.5 words, respectively. We use the case-

insensitive 4-gram NIST BLEU score (Papineni et

5LDC2002E18, LDC2003E07, LDC2003E14,

LDC2004T07, LDC2004T08 and LDC2005T06.
6The corpora are available at https://github.com/

longyuewangdcu/tvsub.
7https://wit3.fbk.eu/mt.php?release=

2015-01

al., 2002) as evaluation metric, and sign-test (Collins

et al., 2005) for statistical significance test.

Models The baseline is a re-implemented

attention-based NMT system RNNSEARCH, which

incorporates dropout (Hinton et al., 2012) on the

output layer and improves the attention model by

feeding the lastly generated word. For training

RNNSEARCH, we limited the source and target

vocabularies to the most frequent 30K words in

Chinese and English, and employ an unknown

replacement post-processing technique (Jean et al.,

2015; Luong et al., 2015b). We trained each model

with the sentences of length up to 80 words in

the training data. We shuffled mini-batches as we

proceed and the mini-batch size is 80. The word

embedding dimension is 620 and the hidden layer

dimension is 1000. We trained for 15 epochs using

Adadelta (Zeiler, 2012), and selected the model that

yields best performances on the validation set.

For our model, we used the same setting as

RNNSEARCH if applicable. The parameters of

our model that are related to the standard en-

coder and decoder were initialized by the baseline

RNNSEARCH model and were fixed in the follow-

ing step. We further trained the new parameters re-

lated to the cache for another 5 epochs. Again, the

model that performs best on the tuning set was se-

lected as the final model.

4.2 Effect of Cache Size

Inspired by the recent success of the continuous

cache on language modeling (Grave et al., 2017),

we thought it likely that a large cache would benefit

from the long-range context, and thus outperforms a

small one. This turned out to be false. Table 2 lists

translation performances of different cache sizes on

the tuning set. As seen, small caches (e.g., size=25)

generally achieve similar performances with larger
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Cache News Subtitle TED Ave

0 38.36 27.54 8.45 24.78

25 39.34 28.36 9.24 25.65

50 39.36 28.32 9.18 25.62

100 39.48 28.15 9.23 25.62

200 39.39 28.39 8.98 25.59

500 39.56 28.10 9.07 25.58

1000 39.37 27.90 8.89 25.39

Table 2: Translation performances of different cache

sizes on the tuning sets.

Overwrite News Subtitle TED Ave

× 39.42 28.26 9.12 25.60

X 39.34 28.36 9.24 25.65

Table 3: Effect of the cache overwrite mechanism

for slots that correspond to the same target word.

caches (e.g., size=500). At the very start, we at-

tributed this to the strength of the cache overwrite

mechanism for slots that correspond to the same tar-

get word, which implicitly models long-range con-

texts by combining different context representations

of the same target word in the translation history.

As shown in Table 3, the overwrite mechanism con-

tributes little to the good performance of smaller

cache.

There are several more possible reasons. First, a

larger cache is able to remember a longer translation

history (i.e., cache capacity), while poses difficulty

to matching related records in the cache (i.e., match-

ing accuracy). Second, the current caching mecha-

nism fails to model long-range context well, which

suggests a better modeling of long-term dependency

for future work. Finally, neighboring sentences are

more correlated than long-distance sentences, and

thus modeling short-range context properly works

well (Daniluk et al., 2017). In the following exper-

iment, we try to validate the last hypothesis by vi-

sualizing which positions in the cache are attended

most by the proposed model.

Cache Matching Probability Distribution Fol-

lowing Daniluk et al. (2017), we plot in Figure 3

the average matching probability that the proposed

model pays to specific positions in the history. As

(a) size=25 (b) size=50

(c) size=100 (d) size=500

Figure 3: Average cache matching probability distri-

bution on the tune sets,where the leftmost positions

represent the most recent history.

seen, the proposed approach indeed pays more at-

tention to the most recent history (e.g., the leftmost

positions) in all domains. Specifically, the larger the

cache, the more attention the model pays to the most

recent history.

Notably, there are still considerable differences

among the different domains. For example, the pro-

posed model attends over records further in the past

more often in the Subtitle and TED domains than in

the News domain. This may be because a talk in the

TED testset contains more words than an article in

the News testset (1.9K vs. 0.6K words). Though a

scene in the Subtitle testset contains the least words

(i.e., 0.3K words), repetitive words and phrases are

observed in neighboring scenes of the same episode,

which is generally related to a specific topic. Given

that larger caches do not lead to any performance im-

provement, it seems to be notoriously hard to judge

whether long-range contexts are not modeled well,

or they are less useful than the short-range contexts.

We leave the validation for future work.

For the following experiments, the cache size is

set to 25 unless otherwise stated.
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Model
News Subtitle TED Ave

BLEU △ BLEU △ BLEU △ BLEU △

BASE 35.39 – 32.92 – 11.69 – 26.70 –

(Wang et al., 2017a) 36.52∗ +3.2% 33.34 +1.0% 12.43∗ +6.3% 27.43 +2.7%

(Jean et al., 2017) 36.11∗ +2.0% 33.00 0% 12.46∗ +6.6% 27.19 +1.8%

OURS 36.48∗ +3.1% 34.30∗ +3.9% 12.68∗ +8.5% 27.82 +4.2%

Table 4: Translation qualities on multiple domains. “*” indicates statistically significant difference (p <
0.01) from“BASE” , and “△” denotes relative improvement over “BASE”.

Model # Para.
Speed

Train Test

BASE 84.2M 1469.1 21.1

(Wang et al., 2017a) 103.0M 300.2 20.8

(Jean et al., 2017) 104.2M 933.8 19.4

OURS 88.2M 1163.9 21.1

Table 5: Model complexity. “Speed” is measured in

words/second for both training and testing. We em-

ploy a beam search with beam being 10 for testing.

4.3 Main Results

Table 4 shows the translation performances on mul-

tiple domains with different textual styles. As seen,

the proposed approach significantly outperforms the

baseline system (i.e., BASE) in all cases, demon-

strating the effectiveness and universality of our

model. We reimplemented the models in Wang et

al. (2017a) and Jean et al. (2017) on top of the base-

line system, which also exploit cross-sentence con-

text in terms of source-side sentences. Both ap-

proaches achieve significant improvements in the

News and TED domains, while achieve marginal or

no improvement in the Subtitle domain. Compar-

ing with these two approaches, the proposed model

consistently outperforms the baseline system in all

domains, which confirms the robustness of our ap-

proach. We attribute the superior translation quality

of our approach in the Subtitle domain to the ex-

ploitation of target-side information, since most of

the translations of dialogues in this domain do not

preserve the syntactic structure of their original sen-

tences at all. They are completely paraphrased in the

target language and seem very hard to be improved

with only source-side cross-sentence contexts.

Table 5 shows the model complexity. The cache

model only introduces 4M additional parameters

(i.e., related to Equation 8), which is small compared

to the numbers of the existing models, such as Wang

et al. (2017a) (i.e., 18.8M) and Jean et al. (2017)

(i.e., 20M). Our model is more efficient in training,

which benefit from training cache-related parame-

ters only. To minimize the waste of computation, the

other models sort 20 mini-batches by their lengths

before parameter updating (Bahdanau et al., 2015),

while our model cannot enjoy the benefit since it de-

pends on the hidden states of preceding sentences.8

Concerning decoding with additional attention mod-

els, our approach does not slow down the decoding

speed, while Jean et al. (2017) decreases decoding

speed by 8.1%. We attribute this to the efficient

strategies for cache key matching without any ad-

ditional parameters.

4.4 Deep Fusion vs. Shallow Fusion

Some researchers would expect that storing the

words may be a better way to encourage lexical con-

sistency, as done in Grave et al. (2017). Follow-

ing Gu et al. (2018), we call this a Shallow Fusion

at shallow word level, in contrast to deep fusion at

a deep representation level (i.e., our approach). We

follow Grave et al. (2017) to calculate the probabil-

ity of generating yt in shallow fusion as

P (yt) = (1− λt)Pvocab(yt) + λtPcache(yt)

Pcache(yt) = ✶{yt=yi}Pm(ci|ct)

in which Pvocab(yt) is the probability of the NMT

model (Equation 2) and Pm(ci|ct) is the cache prob-

8To make a fair comparison, which means our model is re-

quired to train all the parameters and the other models cannot

use mini-batch sorting; the training speeds for the models listed

in Table 5 are 728.8, 159.8, 572.4, and 627.3, respectively.
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Model Tune Test

BASE 38.36 35.39

Shallow Fusion 38.34 35.18

Deep Fusion 39.34 36.48

Table 6: Comparison of shallow fusion (i.e., words

as cache values) and deep fusion (i.e., continuous

vectors as cache values) in the News domain.

ability (Equation 5). We compute the interpolation

weight λt in the same way as Equation 8, except λt

is a scalar instead of a vector.

Table 6 lists the results by comparing shallow fu-

sion and deep fusion on the widely evaluated News

domain (Tu et al., 2016; Li et al., 2017; Zhou et

al., 2017; Wang et al., 2017c). As seen, deep fu-

sion significantly outperforms its shallow counter-

part, which is consistent with the results in Gu et al.

(2018). Different from Gu et al. (2018), the shallow

fusion does not achieve improvement over the base-

line system. One possible reason is the generated

words are less repetitive in the translation history

than in similar sentences retrieved from the train-

ing corpus. Accordingly, storing words in the cache

encourages lexical consistency at the cost of intro-

ducing noises, while storing continuous vectors im-

proves this problem by doing fusion in a soft way. In

addition, the continuous vectors can store useful in-

formation beyond a single word, which we will show

later.

4.5 Translation Patterns Stored in the Cache

In this experiment, we present analysis to gain in-

sight about what kinds of translation patterns are

captured by the cache to potentially improve trans-

lation performance, as shown in Figure 4.

Tense Consistency Consistency is a critical is-

sue in document-level translation, where a repeated

term should keep the same translation throughout

the whole document (Xiao et al., 2011; Carpuat and

Simard, 2012). Among all consistency cases, we

are interested in the verb tense consistency. We

found our model works well on improving tense

consistency. For example, the baseline model trans-

lated the word “觉得” into present tense “feel” in

present tense (Figure 4(a)), while from the transla-

tion history (Table 1) we can learn it should be trans-

lated into “felt” in past tense. The cache model can

improve tense consistency by exploring document-

level context. As shown in the left panel of Fig-

ure 4(b), the proposed model generates the correct

word “felt” by attending to the desired slot in the

cache. It should be emphasized that our approach is

still likely to generate the correct word even without

the cache slot “felt”, since the previously generated

word “everyone” already attended to a slot “should”,

which also contains information of the past tense.

The improvement of tense consistency may not lead

to a significant increase of BLEU score, but is very

important for user experience.

Fuzzily Matched Patterns Besides exactly

matched lexical patterns (e.g., the slot “felt”), we

found that the cache also stores useful “fuzzy

match” patterns, which can improve translation

performance by acting as some kind of “indicator”

context. Take the generation of “opportunity” in the

left panel of Figure 4(b) as an example, although

the attended slots “courses”, “training”, “pressure”,

and “tasks” are not matched with “opportunity” at

lexical level, they are still helpful for generating the

correct word “opportunity” when working together

with the attended source vector centering at “机遇”.

Patterns Beyond Word Level By visualizing the

cache during the translation process, we found that

the proposed cache is able to remember not only

word-level translation patterns, but also phrase-level

translation patterns, as shown in the right panel of

Figure 4(b). The latter is especially encouraging to

us, since phrases play an important role in machine

translation while it is difficult to integrate them into

current NMT models (Zhou et al., 2017; Wang et al.,

2017c; Huang et al., 2018). We attribute this to the

fact that decoder states, which serve as cache values,

stores phrasal information due to the strength of de-

coder RNN on memorizing short-term history (e.g.,

previous few words).

5 Related Work

Our research builds on previous work in the field of

memory-augmented neural networks, exploitation of

cross-sentence contexts and cache in NLP.

Memory-Augmented Neural Networks Neural

Turing Machines (Graves et al., 2014) and Mem-
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Input 大家觉觉觉得得得这也是一次 机机机遇遇遇，一次 挑战。

Reference everyone felt that this was also an opportunity and a challenge .

BASE we feel that it is also a challenge and a challenge .

OURS everyone felt that this was an opportunity and a challenge .

Input 这确实是中中中国国国队队队不能“善终”的一个原因。

Reference this is indeed a reason why the chinese team could not have a “ good ending . ”

BASE this is indeed the reason why china can not be “ hospice . ”

OURS this is indeed a reason why the chinese team cannot be “ hospice . ”

(a) We italicize some mis-translated errors and highlight the correct ones in bold. Our approach is able

to correct the errors with the target-side context retrieved from the cache, as shown below.

(b) Visualization of the cache matching matrix, in which the x-axis is the generated words and the

y-axis is the cache slots indicated by the corresponding word in translation history. Our approach

improves performance by retrieving useful information (e.g., verb tense for “felt” and phrasal-level

patterns for “the chinese team”, in boxes with red frames) from the cache.

. . .觉觉觉得得得新课程 . . . . . .，然后中中中国国国队队队将比分 . . .

. . . felt that new courses . . . . . . , the chinese team won the . . .

. . .在听完了所有培培培训训训课程后 . . . . . .中中中国国国队队队经常是在形势大好 . . .

. . . after listening to all training courses . . . . . . the chinese team often does not have a . . .

(c) Bilingual snippets in translation history that correspond to the slots in boxes with red frames.

Figure 4: Translation examples in which the proposed approach shows its ability to remember translation

patterns at different levels of granularity and matching.
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ory Networks (Weston et al., 2015; Sukhbaatar et

al., 2015) are early models that augment neural net-

works with a possibly large external memory. Our

work is based on the Memory Networks, which

have proven useful for question answering and doc-

ument reading tasks (Weston et al., 2016; Hill et al.,

2016). Specifically, we use the Key-Value Mem-

ory Network (Miller et al., 2016), which is a sim-

plified version of Memory Networks with better in-

terpretability and has yielded encouraging results in

document reading (Miller et al., 2016), question an-

swering (Pritzel et al., 2017) and language model-

ing (Tran et al., 2016; Grave et al., 2017; Daniluk et

al., 2017). We use the memory to store information

specific to the translation history so that this infor-

mation is available to influence future translations.

Closely related to our approach, Grave et al. (2017)

use a continuous cache to improve language model-

ing by capturing longer history. We generalize from

the original model and adapt it to machine transla-

tion: we use the cache to store bilingual information

rather than monolingual information, and release the

hand-tuned parameters for cache matching.

In the context of neural machine transla-

tion, Kaiser et al. (2017) use an external key-value

memory to remember rare training events in test

time, and Gu et al. (2018) use a memory to store a set

of sentence pairs retrieved from the training corpus

given the source sentence. This is similar to our ap-

proach in exploiting more information than a current

source sentence with a key-value memory. Unlike

their approaches, ours aims to learning to remem-

ber translation history rather than incorporating ar-

bitrary meta-data, which results in different sources

of the auxiliary information (e.g., previous transla-

tions vs. similar training examples). Accordingly,

due to the different availability of target symbols in

the two scenarios, different strategies of incorporat-

ing the retrieved values from the key-value memory

are adopted: hidden state interpolation (Gulcehre et

al., 2016) performs better on our task while word

probability interpolation (Gu et al., 2016) works bet-

ter in Gu et al. (2018).

Exploitation of Cross-Sentence Context Cross-

sentence context, which is generally encoded into a

continuous space using a neural network, has a no-

ticeable effect in various deep learning based NLP

tasks, such as language modeling (Ji et al., 2015;

Wang and Cho, 2016), query suggestion (Sordoni et

al., 2015), dialogue modeling (Vinyals and Le, 2015;

Serban et al., 2016), and machine translation (Wang

et al., 2017a; Jean et al., 2017).

In statistical machine translation, cross-sentence

context has proven useful for alleviating inconsis-

tency and ambiguity arising from a single source

sentence. Wide-range context is firstly exploited

to improve statistical machine translation mod-

els (Gong et al., 2011; Xiao et al., 2012; Hardmeier

et al., 2012; Hasler et al., 2014). Closely related to

our approach, Gong et al. (2011) deploy a discrete

cache to store bilingual phrases from the best trans-

lation hypotheses of previous sentences. In contrast,

we use a continuous cache to store bilingual repre-

sentations, which are more suitable for neural ma-

chine translation models.

Concerning neural machine translation, Wang et

al. (2017a) and Jean et al. (2017) are two early at-

tempts to model cross-sentence context. Wang et

al. (2017a) use a hierarchical RNN to summarize

the previous K (e.g., K = 3) source sentences,

while Jean et al. (2017) use an additional set of

encoder and attention model to encode and select

part of the previous source sentence for generating

each target word. While their approaches only ex-

ploit source-side cross-sentence contexts, the pro-

posed approach is able to take advantage of bilin-

gual contexts by directly leveraging continuous vec-

tors to represent translation history. As shown in Ta-

bles 4 and 5, the proposed approach is more robust

in improving translation performances across differ-

ent domains, and is more efficient in both training

and testing.

Cache in NLP In the NLP community, the con-

cept of “cache” is firstly introduced by Kuhn and

Mori (1990), which augments a statistical language

model with a cache component and assigns rela-

tively high probabilities to words that occur else-

where in a given text. The success of the cache

language model in improving word prediction rests

on capturing the “burstiness” of word usage in a

local context. It has been shown that caching is

by far the most useful technique for perplexity re-

duction over the standard n-gram approach (Good-

man, 2001), and becomes a standard component in
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most LM toolkits, such as IRSTLM (Federico et al.,

2008). Inspired by the great success of caching on

language modeling, Nepveu et al. (2004) propose to

use a cache model to adapt language and translation

models for SMT systems, and Tiedemann (2010) ap-

ply an exponentially decaying cache for the domain

adaptation task. In this work, we have generalized

and adapted from the original discrete cache model,

and integrate a “continuous” cache-like memory into

NMT models.

6 Conclusion

We propose to augment NMT models with a cache-

like memory network, which stores translation his-

tory in terms of bilingual hidden representations at

decoding steps of previous sentences. The cache

component is an external key-value memory struc-

ture with the keys being attention vectors and val-

ues being decoder states collected from translation

history. At each decoding step, the probability dis-

tribution over generated words is updated online de-

pending on the history information retrieved from

the cache with a query of the current attention vec-

tor. Using simply a dot-product for key matching,

this history information is quite cheap to store and

can be accessed efficiently.

In our future work, we expect several develop-

ments that will shed more light on utilizing long-

range contexts, e.g., designing novel architectures,

and employing discourse relations instead of di-

rectly using decoder states as cache values.

Acknowledgments

Yang Liu is supported by the National Key R&D

Program of China (No. 2017YFB0202204) and Na-

tional Natural Science Foundation of China (No.

61432013, No. 61522204). We thank action edi-

tor Philipp Koehn and three anonymous reviewers

for their insightful comments.

References

[Bahdanau et al.2015] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate.

In ICLR 2015.

[Carpuat and Simard2012] Marine Carpuat and Michel

Simard. 2012. The trouble with SMT consistency.

In The Workshop on Statistical Machine Translation,

pages 442–449.

[Cettolo et al.2012] Mauro Cettolo, Christian Girardi, and

Marcello Federico. 2012. Wit3: web inventory of

transcribed and translated talks. In EAMT 2012, pages

261–268.

[Cho et al.2014] Kyunghyun Cho, Bart van Merrienboer,

Caglar Gulcehre, Fethi Bougares, Holger Schwenk,

and Yoshua Bengio. 2014. Learning phrase repre-

sentations using RNN encoder-decoder for statistical

machine translation. In EMNLP 2014, pages 1724–

1734.

[Choi et al.2016] Heeyoul Choi, Kyunghyun Cho, and

Yoshua Bengio. 2016. Context-dependent

word representation for neural machine translation.

arXiv:1607.00578.

[Collins et al.2005] M. Collins, P. Koehn, and
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