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Abstract

This paper provides a theoretical rationale for three experimental results of
Prospect Theory: risk preferences are over gains and losses, loss aversion and di-
minishing sensitivity. We consider a (boundedly rational) decision maker who does
not find her new optimal consumption bundle with certainty when she is faced with
a new income level. This alters her indirect utility function and makes her more
risk averse at her current reference income level and less risk averse for a range of
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1 Introduction

This paper provides a simple and novel explanation for the following widely accepted
experimental findings on attitudes towards risk:

(i) Risk preferences depend highly on the individual’s reference income level. The
reference income plays an important role in determining whether a lottery will be accepted
or not. Therefore, it is useful to consider losses and gains with respect to this reference
income level rather than to the absolute income level.

(ii) Individuals’ preferences exhibit loss aversion, that is, they are much more respon-
sive to losses than to gains. In terms of a von Neumann-Morgenstern utility function,
this means that a decrease in income by $ x results in a much higher utility loss than
the utility gain associated with an increase in income by $ x. In other words, the value
function is steeper in the loss region than in the gain region. This leads to high risk
aversion at the reference income level.

(iii) Individuals exhibit a ‘diminishing sensitivity’ to losses. An increase in a small
monetary loss leads to a far higher decrease in utility than an increase in a monetary loss
that was already large. People become more willing to take on risk after suffering a sub-
stantial loss. More specifically, they become less risk averse or even risk loving over losses.
This translates into a value function which is less concave or even convex in the loss region.

These findings are documented in Kahneman and Tversky’s (1979) seminal work on
Prospect Theory. Prospect Theory divides an individual’s choice process into two phases:
a framing/editing phase, in which individuals simplify and narrow their decision problem,
and an evaluation phase. For the latter phase, Kahneman and Tversky (1979) develop a
value function as depicted in Figure 1 using the certainty equivalence method. Following
Markowitz (1952), this value function is defined over gains and losses rather than over
absolute income. This value function can also be viewed as a “reference-dependent utility
function” where the reference income level is mr.

The aim of this paper is to explain observed features of an individual’s risk attitude
with a minimal departure from the standard von Neumann-Morgenstern utility setup. The
standard model implicitly assumes that people can immediately find their new optimal
consumption bundle as their income changes. After sudden changes in income, decision
makers have to choose a totally new optimal consumption bundle. However, choosing
an optimal consumption bundle given a choice of thousands of commodities is not an
easy task. Our model describes a boundedly rational decision maker who has to learn
and hence is unable to immediately find her optimal consumption bundle with certainty.
While the choices of rational agents are only constrained by their lack of information,
boundedly rational decision makers are in addition restricted in their ability to process
the available information. This can occur because they apply simpler but less precise
computational methods in order to save information processing costs and time.
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Figure 1: Value function of Tversky and Kahneman

The incorporation of these cognitive elements into the standard model alters the de-
cision maker’s attitude towards income lotteries. We show that bounded rationality in-
creases risk aversion at the reference income level and there exists a range of income levels
below the reference income where bounded rationality reduces risk aversion. Hence, we
provide a theoretical explanation for why people become less risk averse after they have
faced an unexpected loss. Our model also generates the reference-dependent preference
setting which was formally introduced in Tversky and Kahneman (1991).1

The structure of this paper is as follows. Section 2 provides the intuition behind
our model. The formal analysis is presented in Section 3. Conclusions and potential
applications of our model are presented in Section 4.

2 Intuition

A boundedly rational decision maker may not be able to consume her optimal consump-
tion bundle after an unexpected income change. There are at least two reasons why this
might occur. First, she is unable to choose her optimal bundle (with certainty), and sec-
ond, she does not know her truly optimal bundle because of limitations in her information
processing abilities.

1It should be pointed out that there are other experimental findings, such as framing effects, which
cannot be brought in line with von Neumann-Morgenstern axioms. Alternative theories are needed to
address these issues. Camerer (1995) and Hey (1997) provide nice summaries of this literature.
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In the first scenario, the decision maker tries to consume her newly optimal consump-
tion bundle after the income change, but ends up not buying the targeted bundle with
certainty. This scenario serves as a metaphor for several realistic features of consumer
behavior. For example, in reality people buy commodities sequentially rather than buying
them all at once. If they temporarily forget that their income has declined, they might un-
consciously buy quantities that they are used to. Thus, when the decision maker is faced
with a new unfamiliar income level, she might end up buying too many of the goods that
she encounters first. In that case, she will not have enough money left for the remaining
commodities. Similarly, after winning a lottery people initially become overconfident and
they may overestimate how much they can afford to spend. Another reason why people
might depart from their optimal consumption plan is temptation. While we are used to
dealing with temptation at our familiar income level, the appropriate commitment devices
which ensure that we stick to our original consumption plan might not be in place at a
new income level. Durable goods that require monthly installments provide yet another
example. If an agent has purchased durable goods prior to the income change, she might
not be able to optimally adjust her consumption pattern after the change. In general, any
error in arithmetic or other bias might serve as a source of bounded rationality and lead
to a non-optimal choice of consumption bundle. The random choice approach, presented
in Section 3.1, illustrates how these errors affect the decision makers’ risk aversion.

In the second scenario, the decision maker is able to pick her targeted bundle without
any error, but she does not know her ‘truly’ optimal consumption bundle for unfamiliar
income levels. In other words, she is aware of the fact that there might exist a bundle
from which she would derive a higher experienced utility. The random utility approach
developed in Section 3.2 captures this feature by introducing random state-dependent
utility functions.

Since both approaches share a similar intuition, we illustrate the main arguments
that follow in this section within the context of the random choice approach. While the
decision maker will not choose her optimal consumption bundle with certainty after an
income change, she is very familiar with her optimal bundle at her reference income level
mr. Given this experience it is reasonable to assume that she will not make errors at her
reference income level.
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Figure 3: Indirect utility of rational and
boundedly rational agent

Figure 2 shows an individual’s consumption choice problem for three different income
levels m, mr, m. A rational decision maker always picks his optimal consumption bundle
x∗(m) at any income level m. That is, his indifference curve is tangent to the budget
line for any income level. His corresponding indirect utility function v(m) is depicted in
Figure 3. On the other hand, a boundedly rational decision maker is only able to consume
the optimal bundle at her reference income level mr (middle budget line). At this income
level, she does not make any errors and, hence, her indirect utility level vbr(mr) is as high
as the one of an identical rational decision maker. For any other positive income level
different from mr, she is not able to obtain the optimal consumption bundle with proba-
bility one. For example, at the higher income level m, she tries to consume x̂(m) = x∗(m)
but makes a random error in selecting the consumption bundle and, hence, she ends up
consuming x′(m) or x′′(m). Both bundles lie on an indifference curve which yields lower
utility than the one passing through x∗(m). Consequently, her indirect utility function
vbr(m) is strictly lower than the one of the rational decision maker. The same argument
applies for a lower income level m and any other strictly positive income level different
from mr. One can also view the resulting utility loss due to choice of a non-optimal
consumption bundle at other income levels as an implicit cost of re-optimization. A more
direct approach would be to assume these costs of re-optimization directly.

Figure 3 shows that since the boundedly rational decision maker’s indirect utility func-
tion is strictly lower than that of an identical rational agent around mr but equal at the
reference income level mr, her utility vbr(m) must be more concave than v(m) (and may
even be kinked) around mr. In other words, she is locally more risk averse at her refer-
ence income level than an identical rational decision maker. Hence, this setting provides
a natural explanation for the dependence of agents’ risk attitudes on the reference income
level and the high risk aversion at the reference income level. The reason for this “loss
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aversion” in our setting is that if a boundedly rational decision maker accepts a lottery,
she actually faces a compound lottery. At the first stage, a lottery outcome over income
is drawn, and at the second stage she faces another lottery caused by the error she makes
in choosing a consumption bundle. The latter stage always has a negative expected value
because she can only worsen her situation by making errors.

Note from Figure 2 that as the income declines the budget line shortens and with it
the potential departure from the optimal bundle is reduced. This purely stems from the
fact that one cannot consume a negative amount of any good. At the zero-income level,
the decision maker cannot choose a non-optimal consumption bundle since she simply has
no income to spend.2 Hence, m = 0 forms the second focal point - marked by a circle
- where the indirect utility functions of the boundedly rational and the rational decision
maker coincide. From Figure 3 one can easily see that as m declines starting from mr,
vbr declines faster than v to guarantee that vbr < v for m ∈ (0, mr). To ensure that both
differentiable functions end up at the same utility level at m = 0 it has to be the case that
there exists a range of income levels between 0 and mr where vbr is less concave or even
convex. In other words, bounded rationality reduces risk aversion over this income range.
This result corresponds with the experimental observations of “diminishing sensitivity.”

Additional insights can be gained by relating these results to consumer theory. The
indirect utility function vbr(m) can be thought of as resulting from maximization behavior
subject to an additional constraint given by the error term. Given that the indirect utility
function of an identically rational individual v(m) is the envelope of vbr(m) with tangent
point at the reference income level, the increased risk aversion at mr follows naturally.
This is in the same vein as the Le Châtelier principle, especially if one assumes that the
decision maker learns to choose the new optimal consumption bundle over time. The Le
Châtelier Principle states that the response of optimized variables to a small structural
change to the system is reduced, if more constraints are added to how the variables can
be changed. In our case x∗(m) maximizes the utility function for a given income, m. The
additional random errors can be thought of as additional constraints on how x∗(m) can
change as m departs from mr.

This discussion also suggests that a decision maker is more risk averse if she has spent
a large amount of her money on durable goods. A sudden income change constrains her
from adjusting to the new optimal consumption bundle. She still has to consume the

2Literally interpreted, the bundle x consists of all consumption goods and m reflects the total income
of the decision maker. A different interpretation is possible in a setting where the decision maker lexico-
graphically prefers a certain level of basic goods, like food and housing, before demanding ‘extra treats’,
like restaurant visits and luxury goods. As long as the worst outcome of the lottery does not cut into the
expenditure on everyday needs, one can restrict the vector x to these non-basic goods. Since agents know
their optimal consumption bundle of everyday goods, m can then be viewed as the income earmarked for
non-basic goods.
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durable commodities that she bought in the previous periods. It is interesting that the
expected riskiness of the income stream together with her risk aversion determines the
amount she is willing to spend on durable commodities, which, in turn, influences her risk
aversion.

3 Formal Analysis

Before we formally develop the random choice and random utility approaches, let us first
make some rather standard assumptions on the decision maker’s preferences and their
utility representation. We assume that the decision maker is still fairly rational since she
has a transitive preference ordering which satisfies the von Neumann-Morgenstern axioms.

Assumption 1
(i) u : Rk

+ 7→ R, the utility function represents a complete, reflexive and transitive
preference ordering over the commodity space Rk

+ of k different goods.
(ii) u is a von Neumann Morgenstern utility function. That is, the decision maker

prefers random commodity bundle x̃ to x̃′ if and only if E[u(x̃)] ≥ E[u(x̃′)].
(iii) u is weakly increasing, and strictly increasing in at least one of its arguments.
(iv) u is twice differentiable, and all resulting indirect utility functions are also well

defined and twice differentiable.

The assumption that the utility functions are twice differentiable allows us to use the
Arrow-Pratt risk aversion measure.

3.1 Random Choice Approach

Let us now depart from the standard utility maximization problem and assume that the
decision maker might make errors in her consumption choice since she applies heuristics
instead of exact maximization procedures. She tries to consume target bundle x̂ but ends
up consuming xbr. That is, the actual consumption bundle chosen given an income of m
and a reference income level mr is

xbr(x̂, mr) := x̂(m, mr) + e(x̂, mr),

where x̂ is the target bundle the decision maker tries to achieve and ẽ is the error captured
by a k-dimensional random function. All terms depend on the reference income level mr.
Since we will not vary mr in our analysis, we will drop it as an argument.

Note that the decision maker need not necessarily aim for an optimal bundle, x∗(m) ∈
X∗(m) := arg max{u(x) s.t. px ≤ m}, given that she knows the distribution of the
error term. This is especially the case when the error term is biased. If, for example,
the decision maker always ends up accidentally buying too much chocolate, it is probably
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useful for her to aim at a consumption bundle with less chocolate than in the optimal
consumption bundle. Therefore, an optimal target bundle to aim for is given by

x̂∗(m) ∈ arg max{E[u(x̂ + e(x̂))] s.t. px̂ ≤ m}

Let us simplify the notation to ẽ(m) := e(x̂∗(m)), before imposing some restrictions
on the error term e(·).

Assumption 2 The error term ẽ(·) is such that
(i) it does not lead to negative consumption. That is, xbr ⊂ Rk

+;
(ii) any xbr is affordable and hence within the budget set;
(iii) the decision maker can choose her ‘familiar’ bundle without error at her reference

income level. Formally, there exists x̂∗(mr) ∈ X∗(mr) s.t. e(mr) = 0;
(iv) an error occurs with positive probability, that is, Pr[xbr(x̂) ∈ X∗(m)] < 1 unless it

is ruled out by (i)-(iii);
(v) all realizations of e(·) are twice differentiable in m to guarantee smoothness; and
(vi) the decision maker can always choose to spend less money on everything else

and spend the rest on the good i from which she derives strictly positive marginal
utility.

Assumption 2(i) rules out negative consumption for any commodity. Assumption 2(ii)
guarantees that the errors are such that the decision maker does not spend more than
her income. Assumption 2(iii) assumes that the decision maker knows how to choose the
optimal consumption bundle at the reference income level. In other words, she makes
no errors at the reference income level, mr. Assumption 2(iv) states that the boundedly
rational decision maker usually has trouble finding her optimal consumption bundle. As-
sumption 2(vi) rules out the possibility that an increase in income makes the decision
maker worse off. In other words, the increase in the error due to higher income has a
lower impact on the expected utility than the enlargement of the budget set. This as-
sumption is plausible since the decision maker does not need to spend all of her income.
Consequently, higher income does no harm. In addition, we assume that the decision
maker is sufficiently rational that she can spend the remaining income without error on a
‘special’ commodity i that leads to a strict increase in her utility. Consequently, she will
always strictly prefer higher income and spend all her money.

To clarify the analysis, let us define the indirect utility function v(m) := u(x∗(m)) of
an equivalent rational decision maker, who always chooses the optimal consumption bun-
dle x∗(m) ∈ arg max{u(x) s.t. px ≤ m}. Thus, v(m) contrasts with the indirect utility
function, vbr(m) := E[u(x̂∗(m) + ẽ(m))], of a boundedly rational decision maker. The
functional f(·) links both indirect utility functions by mapping v(m) onto vbr(m).

Definition 1 defines the standard Arrow-Pratt measures of (absolute) risk aversion for
the rational decision maker whose indirect utility function is v(m) and for the boundedly
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rational decision maker whose indirect utility function is vbr(m). The difference between
both measures c(m) isolates the part of risk aversion which is due to bounded rationality.

Definition 1 (i) The Arrow-Pratt measures of (absolute) risk aversion for the indirect

utility functions is r(m) := −∂2v/∂m2

∂v/∂m
for the rational decision maker and rbr(m) :=

−∂2vbr/∂m2

∂vbr/∂m
for the boundedly rational decision makers.

(ii) The risk aversion contribution of bounded rationality, c, is

c(m) := rbr(m)− r(m).

The definition of c(m) allows us to separate risk aversion into two parts, one being the
actual risk aversion given by the concavity of the utility function and the other being the
risk aversion contribution of bounded rationality (induced by the optimal consumption
bundle not being chosen). We will express the risk aversion contribution in terms of the
functional f(v) to simplify the proofs that follow. In the appendix we derive the equation

c(m) = −∂2f/∂v2

∂f/∂v
∂v
∂m

. A similar calculation can be found in Pratt (1964).

Lemma 1 shows that an error reduces the decision maker’s expected utility since a
non-optimal commodity bundle is consumed with positive probability. This is not the
case at a zero income level since no consumption takes place at that level. It is also not
the case at the reference income level mr because the decision maker has learnt how to
choose the optimal consumption bundle at that level. All proofs are presented in the
appendix.

Lemma 1 A ‘focal point’ is an isolated income level where bounded rationality has no
impact on the utility level. At all other income levels, bounded rationality strictly reduces
the indirect utility function. The ‘focal points’ are 0 and mr. That is,
(i) vbr(m) = v(m) for m ∈ {0, mr}
(ii) vbr(m) < v(m) for m ∈ R+ \ {0, mr}.

Lemma 1 illustrates that the indirect utility function of an identical rational decision
maker (who makes no errors) serves as an upper envelope for the indirect utility function
of the boundedly rational agent. The two focal points 0 and mr are illustrated in Fig-
ure 3. The focal point 0 depends on the Assumption 2(i) xbr ⊂ Rk

+, which states that
consumption of any commodity cannot be negative. This binds the space for the error
term. If income decreases, this space also decreases. At zero income level, the possible
consumption set is the single point 0, i.e. the error term vanishes. In other words, there
is no possibility to err at a zero income level since only zero consumption (of non-basic
goods) is possible at that level. As pointed out in Footnote 2, for small lotteries the in-
come m can also be viewed as the income intended for non-basic goods, like extra treats,

9



if the decision maker lexicographically prefers a certain level of everyday goods over them.

The shape of vbr is also plausible in a truly dynamic learning model. Before the de-
cision maker has learnt how to choose her optimal consumption bundle at the reference
income level, x∗(mr), her expected utility is strictly below v(m) for all positive income
levels. After she knows x∗(mr), her utility level for incomes around mr increases, leading
to the indirect utility function vbr(m) illustrated in Figure 3.

Using Lemma 1, we can show that bounded rationality, defined in this subsection as
making small errors in choosing the optimal commodity bundle, increases risk aversion at
the reference income level.

Proposition 1 Bounded rationality increases absolute risk aversion at the reference in-
come level. More specifically,
(i) the risk aversion contribution coefficient is positive, i.e. c(mr) ≥ 0;
(ii) a boundedly rational decision maker strictly prefers the reference income level, mr,
to any non-degenerated lottery whose certainty equivalence for an identical rational deci-
sion maker is mr.

The high risk aversion at the reference income level mr is in line with the experimental
findings of loss aversion. For any outcome of the lottery which is different from 0 or mr,
the decision maker has to incur costs to find the new optimal consumption bundle, which
she does not achieve with certainty. Therefore, lotteries are less attractive for a boundedly
rational decision maker.3 Proposition 1 also highlights the importance of the reference
point for analyzing risk behaviour. The reference point also appears in related findings
such as the ‘status quo bias’ and the ‘endowment effect.4

Relaxing the assumption that the error term e(m) is twice differentiable could induce
a kink in the indirect utility function vbr at mr. For example if e(m) were V-shaped at
mr, a kink could arise at vbr(mr). However, a non-differentiable error function e(m) has
the disadvantage that the Arrow-Pratt risk aversion measure is not well defined. In that
case, local risk aversion can be measured by using the preference ordering over ε-income
lotteries by comparing their certainty equivalence. It is easy to see that Proposition 1
still holds for this case.5

While Proposition 1 shows that bounded rationality increases risk aversion at the ref-
erence income level, Proposition 2 claims that bounded rationality decreases risk aversion

3As pointed out in Section 2 the costs of re-optimization after an income change might be due to
durable goods. Koo and Singh (1998) independently derive a similar result to Proposition 1 for the
non-tradable good case.

4See Rabin (1998) for an explanation of the differences between loss aversion, “status quo bias” and
“endowment effect”.

5However, it would considerably increase the notational burden.
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or even leads to risk loving behaviour at a lower income level. The risk-seeking attitude
in parts of the loss region can be attributed to ‘diminishing sensitivity’.

Proposition 2 There exists a range of incomes (m, m) between the two focal points 0
and mr where bounded rationality reduces risk aversion or leads to risk loving behaviour.
That is, c(m) < 0 for some income range in (m, m).

As explained earlier, this result is driven by the fact that only smaller errors are pos-
sible at a lower income level. A lower income reduces the budget set within which the
consumption bundle that is eventually chosen, xbr = x̂∗ + ẽ, has to lie.

The range of income levels (m, m) where risk aversion decreases because of bounded
rationality is determined by both the error term and the utility function. There are three
factors determining the size and location of that range of income levels. First, since in-
difference curves at lower income levels are generally more curved, the same error causes
a higher disutility at a lower income level. Second, the error possibility space shrinks as
income decreases. In the extreme case of a zero income, there is no ‘space’ left for any
error. One can show that the degree to which the error possibility space shrinks depends
on the number of available commodities. Third, the distance to the reference income
level increases as income decreases. It is plausible that the variance of the error term
increases with this distance. A larger variance in turn leads to a lower utility level for
strictly quasi-concave utility functions. All three factors influence the size and location
of this income range. Whereas the first factor suggests that the relevant range should
be further away from the reference income, the second suggests the opposite. The third
factor pushes (m, m) closer to mr if the variance of the error term increases concavely as
the distance from the reference income level increases.

Note that there might be more than one income region where bounded rationality
reduces risk aversion. This is particularly the case when the variance of the error term
e(m) does not have an inverse U-shape between m = 0 and mr.

3.2 Random Utility Approach

The random choice approach presented in Subsection 3.1 assumes that the decision maker
knows her optimal consumption bundle at each income level but is unable to pick it with
certainty. However, in reality a decision maker does not know her ‘truly’ optimal bundle
for each possible income level. She will only find the bundle which yields the highest
experienced utility at this income level after experimenting with different consumption
bundles at a given income level. To capture this fact, we introduce state depend utility
functions us(x).6 Which bundle leads to the highest experienced utility for a given income
m depends on the ex-post realization of the state s. For simplicity, we assume that s is

6In Friedman and Thisse (1994) a related random utility approach is applied to game theoretic settings.
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independently distributed of m. In other words, after the decision maker has won or lost
a lottery, she has to choose her new consumption bundle for her new income level without
knowing the realization of the state s upon which her utility function depends. She might
only realize that she has not chosen the optimal bundle for her new income level after
she has consumed the new bundle. At her reference income level mr we assume that
all possible us(x) lead to the same optimal consumption. She can rule out other utility
functions us(x) without this property since she knows which bundle leads to the highest
experienced utility at mr. This assumption - as formalized in A 3 (iia) - is justified by the
fact that the decision maker has faced the same choice problem many times before and
hence has figured out the optimal bundle at mr. At all positive income levels different
from mr Assumption 3(iib) rules out the case where all possible utility functions us(x)
would lead to the same optimal consumption bundle.

Assumption 3
(i) Each state-dependent utility function us(x) satisfies Assumptions 1 and each state s

occurs with strictly positive probability.
(ii) All state-dependent optimal bundles x∗

s(m) ∈ arg max{us(x) s.t. px ≤ m} =: X∗
s (m)

(a) coincide at the reference income level mr, that is x∗
s(m) = x∗

mr
for all states s;

(b) do not coincide for all income levels m ∈ R+ \ {0, mr}. That is, ∩sX
∗
s (m) = ∅.

Note that even though the decision maker does not know her state realized utility
function us(x), she still has a complete preference ordering over the whole commodity
space represented by Esus(x).

The effects on risk aversion in both approaches are driven by the fact that the deci-
sion maker does not choose the optimal consumption bundle with probability one. This
similarity already indicates that the results presented for the random choice approach
also hold for the random utility approach. However, there are differences between the
two approaches. In the random choice approach, the commodity bundle that is actually
consumed, xbr = x̂ + e, is random. In the random utility approach, the consumed bundle
xBR(m) := argmax{Esus(x) s.t. px ≤ m} is non-stochastic, while the optimal bundle
x∗

s(m) is state-dependent and hence random.7 Notice that the difference xBR(m)−x∗
s(m)

serves the same role as the error term e(m) in the random choice approach.

Furthermore, in the random utility setting we have to specify whether the identical
rational decision maker, who serves as a benchmark, knows his us already (i) prior to his
decision to accepts/rejects the lottery or only (ii) prior to his consumption choice. In the
former case, the benchmark rational indirect utility function is only unique if we assume
in addition that all state dependent utility functions us(x) will lead to the same (rational)

7The superscript “BR” in capital letters refers to the bounded rational decision maker in the random
utility approach. Similarly, we replace r, rbr and c with their equivalents in capital letters to distinguish
the random utility setting from the random choice setting.
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indirect utility function, i.e. us(x
∗
s(m)) = v(m) for all s. To avoid this assumption, we

choose the latter case as the benchmark. That is, the rational decision maker does not
know his utility function at the time of his lottery choice, but he will know it before he
makes his final consumption decision. More formally, his expected indirect utility function
is given by E[v(m)] = Es[us(x

∗
s(m))]. Having defined the benchmark, the analysis can be

conducted analogously to the random choice approach. It is easy to see that the indirect
utility function of a boundedly rational decision maker E[vBR(m)] := Es[us(x

BR(m))] is
always strictly below E[v(m)] except at the focal points 0 and mr. Consequently, the
proofs of Propositions 1 and 2 can also be applied to the random utility approach. The
proof of Proposition 3 in the appendix provides the formal argument.

Proposition 3 Proposition 1 and 2 also hold for the random utility approach. In partic-
ular, C(mr) = RBR(mr) − R(mr) > 0 and there exists a region of income level (m, m)
between 0 and mr, where C(m) < 0.

In reality, a boundedly rational decision maker probably does not know her optimal
consumption bundle and she errs in choosing it. We do not need any further analysis to
see that our results still hold if one combines the random utility approach and the random
choice approach.

4 Possible Extensions and Conclusion

Our analysis shows that one factor contributing to risk aversion is the fact that the de-
cision maker must find her new consumption bundle after the outcome of the lottery has
been realized. This requires that she incurs thinking costs in the realized state of the
world. After extending the analysis, it is not surprising that one observes more misjudge-
ment in decisions made about the acceptance of a lottery than in consumption choice.
Evaluating a lottery is a much more difficult task because one not only incurs thinking
costs in the realized state, but in all possible states. Therefore, the boundedly rational
decision maker will apply a simpler heuristic in evaluating a lottery.

A related area of research examines the question of finding the optimal planning hori-
zon in a world with uncertainty. Planning for a distant future increases the number of
states exponentially, which makes the maximization problem much more complicated.
Therefore, boundedly rational decision makers will apply a heuristic which is less precise
for long horizon problems than for short-term problems. It remains to be shown that
the optimal heuristic provides a fairly exact prediction for the near future and a rougher
prediction for the distant future. It also seems plausible that increasing uncertainty levels
make people more short-sighted, which can explain why high volatility in the inflation
rate, i.e. price uncertainty, hurts the economy. The optimal planning horizon solution also
provides an explanation for the demand for flexibility or liquidity and for why we observe
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incomplete contracts.

The model can be extended to include uncertainty in both income and prices. It is
a well known fact that in traditional microeconomic models where the decision maker’s
utility function is quasi-concave and exhibits constant marginal utility of income, the de-
cision maker is risk loving with respect to price uncertainty. This is due to the fact that
she chooses her optimal consumption bundle after the prices are realized. In an analysis
with error possibilities similar to ours, this risk loving behavior need not be true.

A Appendix

A.1 Proof of c(m) = −∂2f/∂v2

∂f/∂v
∂v
∂m

Note that v(m) is strictly increasing in m due to Assumption 1(iii). Consequently, the
inverse of v(m) exists and is denoted by h(v(m)) = m. The functional f(·) is given by
f(v) = vbr(h(v)). Since v(m) is twice continuously differentiable in m, so is h(v) and
f(v).

∂vbr

∂m
=

∂f

∂v

∂v

∂m
∂2vbr

∂m2
= (

∂2f

∂v2

∂v

∂m
)
∂v

∂m
+

∂f

∂v

∂2v

∂m2

−∂2vbr/∂m2

∂vbr/∂m
= −∂2f/∂v2

∂f/∂v

∂v

∂m
− ∂2v/∂m2

∂v/∂m

rbr = c + r

A.2 Proof of Lemma 1

(i) (1) For m = 0
Since xbr

s ∈ Rk
+ and pxbr

s = m = 0 ∀s ∀xbr
s , xbr

s (0) = x∗(0) ∀s.
(2) For m = mr

By Assumption 2(iii), es(x
∗
i (mr)) = 0 ∀s. Hence, xbr(x̂∗

i (mr)) ∈ X∗(mr).
(ii) For each m ∈ R+ \ {0, mr}

By Assumption 2(iv), Pr(xbr(x̂(m) ∈ X∗(m)) < 1 and thus v(m) > vbr(m).

A.3 Proof of Proposition 1

(i) Since c(m) = −∂2f/∂v2

∂f/∂v
∂v
∂m

, it is sufficient to determine the sign of the three factors.

(1) ∂v
∂m

> 0, since u(x) is strictly increasing in at least one argument.

Let g(v(m)) := f(v(m))− v(m). Since f(·) and v(m) ∈ C2,
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g(·) ∈ C2. By Lemma 1, g(·) has a local maximum at v(mr).

Therefore, ∂g
∂v
|v(mr)= 0 and ∂2g

∂v2 |v(mr)≤ 0, which yields

(2) ∂f
∂v
|v(mr)= 1 > 0,

(3) ∂2f
∂v2 |v(mr)≤ 0.

(ii) Take any lottery m̃ (with distribution F ) whose certainty equivalence for
a rational decision maker is mr, i.e. EF [v(m̃)] = v(mr). By Lemma 1
vbr(mj) < v(mj) for any realization mj of m̃ /∈ {0, mr}. Thus,
EF [vbr(m̃)] < EF [v(m̃)] = v(mr) = vbr(mr).

A.4 Proof of Proposition 2

c(m) = −∂2f/∂v2

∂f/∂v
∂v
∂m

. It is sufficient to determine the sign of the factors.

(1) ∂v
∂m

> 0 as shown in the proof of Proposition 1.

(2) ∂f
∂v

> 0, since ∂vbr

∂m
= ∂f

∂v
∂v
∂m

and v and vbr are strictly increasing in m.

(3) ∃ (m, m) ⊂ (0, mr), s.t. ∂2f
∂v2 > 0 on (v(m), v(m)).

This is shown in the following three steps:

(3.1) ∃ a ⊂ (v(0), v(mr)) s.t. ∂2f
∂v2 |a> 0.

By Lemma 1, f(v(0)) = v(0) and f(v(ε)) < v(ε) for sufficiently

small ε > 0. From this we can conclude that ∂f
∂v
|v(ε/2)< 1. We also

know from Proposition 1 that ∂f
∂v
|v(mr)= 1. Applying the mean value

theorem on ∂f
∂v

(·), ∃ a ∈ (v(ε/2), v(mr)) such that

∂2f
∂v2 |a=

=1︷ ︸︸ ︷
∂f/∂v |v(mr) −

<1︷ ︸︸ ︷
∂f/∂v |v(ε/2)

v(mr)− v(ε/2)︸ ︷︷ ︸
>0

> 0.

(3.2) Since f is twice differentiable and ∂2f
∂v2 > 0 at a, this must be also true

at (a− ε′, a + ε′) for small ε′ > 0.
(3.3) Since v(·) is strictly increasing and continuous in m there exists for

each ϑ ∈ (a− ε′, a + ε′) a corresponding m such that ϑ = v(m).

A.5 Proof of Proposition 3

E[v(m)] = E[vBR(m)] for m ∈ {0, mr} since xBR
s (mr) = x∗

s(mr) ∀s and xBR
s (0) = x∗

s(0) =
0 ∀s.
E[v(m)] < E[vBR(m)] for m ∈ R+ \{0, mr} since ∩sX

∗
s (m) = ∅ and, hence a non-random

bundle xBR cannot be optimal in all states of the world.
E[v(m)] and E[vBR(m)] are strictly increasing and twice differentiable since all us are
strictly increasing in at least one argument xi and all us are twice differentiable.
Hence analogous to the random choice approach, there exists a function f ′ and C =

−∂2f ′/∂v2

∂f ′/∂v
∂v
∂m

. Since the random utility approach is isomorphic with the random choice
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approach from this point onwards, it follows immediately that the same results arise.
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