
Under review as a conference paper at ICLR 2021

LEARNING TO REPRESENT PROGRAMS WITH HETERO-
GENEOUS GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Program source code contains complex structure information, which can be rep-
resented in structured data forms like trees or graphs. To acquire the structural
information in source code, most existing researches use abstract syntax trees
(AST). A group of works add additional edges to ASTs to convert source code
into graphs and use graph neural networks to learn representations for program
graphs. Although these works provide additional control or data flow information
to ASTs for downstream tasks, they neglect an important aspect of structure infor-
mation in AST itself: the different types of nodes and edges. In ASTs, different
nodes contain different kinds of information like variables or control flow, and the
relation between a node and all its children can also be different.
To address the information of node and edge types, we bring the idea of hetero-
geneous graphs to learning on source code and present a new formula of building
heterogeneous program graphs from ASTs with additional type information for
nodes and edges. We use the ASDL grammar of programming language to define
the node and edge types of program graphs. Then we use heterogeneous graph
neural networks to learn on these graphs. We evaluate our approach on two tasks:
code comment generation and method naming. Both tasks require reasoning on
the semantics of complete code snippets. Experiment results show that our ap-
proach outperforms baseline models, including homogeneous graph-based mod-
els, showing that leveraging the type information of nodes and edges in program
graphs can help in learning program semantics.

1 INTRODUCTION

Program source code contains rich structure information, like the syntax structure and control or
data flow. Learning from these structures has been a hot topic in the area of deep learning on source
code. In recent years, instead of applying basic sequential neural models, researchers have used
more complex neural networks to capture the explicit structure of source code. Most researches
use abstract syntax trees (AST) as they are easy-to-acquire for most programming languages and
semantically equivalent to source code.

A problem of ASTs is that they do not explicitly reflect structural information beyond syntax depen-
dencies, like control and data flow. A viable solution is adding different types of control and data
flow edges on ASTs to generate program graphs, and apply graph neural networks (GNN) on pro-
grams to learn their representations (Allamanis et al., 2018; Fernandes et al., 2019; Allamanis et al.,
2020). However, these approaches do not consider that apart from control or data flow edges, the
nodes and edges of the original ASTs are also differently typed. For example, in ASTs, some nodes
refer to identifiers, and some nodes define upper-level structures as control flows. For parent-child
links, the relation between a function definition node to its function body or one of its arguments is
apparently different. We believe if we explicitly add node and edge types to programs graphs, it will
help neural models to understand programs better.

Our idea of adding types to nodes and edges in AST coincides with the concept of heterogeneous
graphs. Heterogeneous graphs, or heterogeneous information networks (Shi et al., 2016), refer to a
group of graphs with multiple types of nodes and edges. A typical example of heterogeneous graphs
is knowledge graphs, in which the nodes are different types of entities, and the edges represent
different relations. In this paper, we propose an approach for building heterogeneous program graphs

1

Under review as a conference paper at ICLR 2021

from ASTs. To obtain the type of AST nodes and edges, we use the abstract syntax description
language (ASDL) (Wang et al., 1997) grammar.

After we acquire heterogeneous graphs for code snippets, we need to find a GNN model to effec-
tively represent these graphs. Although some existing GNN-for-code works (Fernandes et al., 2019;
Allamanis et al., 2020) have pointed out that there exist different types for AST nodes, they only
consider node type in the initial node embedding and neglect their differences in the message pass-
ing (Gilmer et al., 2017) step. So we turn our sight to the field of heterogeneous graph embeddings.
Recently, heterogeneous graph neural networks have become widely used in heterogeneous graph
embedding. Unlike traditional graph neural networks, heterogeneous graph neural networks are ca-
pable of integrating node and edge type information in the message passing stage and map different
types of nodes to different feature space. We use heterogeneous graph transformer (HGT) (Hu et al.,
2020b) on our heterogeneous program graphs to calculate the representation of programs.

We evaluate our approach on two tasks: comment generation and method naming, with two Python
datasets from different domains. These two tasks can be seen as two different forms of code summa-
rization, so both of them require understanding the semantics of the input code snippets. The results
show that our approach outperforms existing GNN models and other state-of-the-art approaches,
indicating the extra benefit of bringing heterogeneous graph information to source code.

To summarize, our contributions are: (1) To our knowledge, we are the first to put forward the idea
of representing programs as heterogeneous graphs and apply heterogeneous GNN on source code
snippets. (2) We propose an approach of using ASDL grammars to build heterogeneous program
graphs from program ASTs. (3) We evaluate our approach on two different tasks involving graph-
level prediction on source code snippets. Our approach outperforms other GNN models on both
comment generation and method naming tasks.

2 RELATED WORK

Graph Neural Networks on Program Code: Allamanis et al. (2018) first proposed an approach
for learning representation for programs with graph neural networks. They create program graphs
by adding edges representing data flows to ASTs, and use gated graph neural networks (GGNN)
(Li et al., 2016) to learn representations for program graph nodes. They evaluated their approach
on two node prediction tasks: variable naming and identifying variable misuse. Similar approaches
with AST-based program graphs and GGNN have been applied on multiple tasks in the follow-
ing researches, including code summarization (Fernandes et al., 2019), code expression generation
(Brockschmidt et al., 2019), learning code edit (Yin et al., 2019) and variable type inference (Alla-
manis et al., 2020). Si et al. (2018) applied a variant of graph convolutional network (GCN) (Kipf &
Welling) on augmented ASTs as a memory of an encoder-decoder model to generate loop invariants
for program verification. Cvitkovic et al. (2019) addresses the open vocabulary problem in source
code by adding a graph-structured cache to AST and evaluated multiple GNN models on cache-
augmented ASTs for fill-in-the-blank code completion and variable naming. Wang et al. (2020)
used graph matching network (Li et al., 2019) to learn the similarity of program graph pairs for code
clone detection. Dinella et al. (2020) used graph isomorphism network (GIN) (Xu et al., 2019) for
Javascript programs repair. Wei et al. (2019) extract “type dependency graphs” from TypeScript
programs and proposed a variant of graph attention network for type inference.

Heterogeneous Graph Neural Networks: Zhang et al. (2019) proposed heterogeneous graph neu-
ral network (HetGNN), which uses random walk to sample neighbours and an LSTM to aggregate
features for them. Wang et al. (2019) proposed heterogeneous graph attention network (HAN),
which extends graph attention networks to heterogeneous graphs with type-specific nodel-level at-
tention and semantic-level attention based on meta-paths. Hu et al. (2020b) proposed heterogeneous
graph transformer (HGT) which leverages multi-head attention based on meta relations. HGT has
achieved state-of-the-art results on multiple link prediction tasks on web-scale graphs.

Deep Learning for Code Summarization: Allamanis et al. (2016) first proposed method naming
as an extreme form of code summarization, and proposed a convolutional attention network to solve
this task. Hu et al. (2018) generate natural language code comments with a seq2seq model from se-
rialized ASTs. Fernandes et al. (2019) first use graph neural networks on code comment generation
and method naming. Alon et al. (2019) proposed the CODE2SEQ model for Java method nam-

2

Under review as a conference paper at ICLR 2021

ing, which encodes source code by extracting paths from ASTs. Cai et al. (2020) proposed a type
auxiliary guiding encoder-decoder model with a type-associated tree-LSTM encoder for code sum-
marization and achieved state-of-the-art results on multiple SQL-to-NL and code-to-NL datasets.
Ahmad et al. (2020) combines a transformer (Vaswani et al., 2017) encoder-decoder model with
copying mechanism (See et al., 2017) and relative position representations (Shaw et al., 2018). They
achieved state-of-the-art results on large-scale comment generation tasks in Java and Python.

3 APPROACH

In this section, we will introduce our procedure of generating heterogeneous program graphs (HPG)
from source code, and how to apply heterogeneous graph neural networks on heterogeneous program
graphs.

3.1 HETEROGENEOUS PROGRAM GRAPHS

We build heterogeneous program graphs from program ASTs with the help from abstract syntax
description language (ASDL) grammar. Figure 1(a) demonstrates an excerpt for the Python ASDL
grammar 1. An ASDL grammar is similar to a context-free grammar (CFG), but with two more
types of important information: type and field. There are two categories of types in ASDL gram-
mars: composite type and primitive type. Each composite type defines a group of constructors (e.g.
in Figure 1(a), composite type stmt defines constructors FunctionDef, If, ...), and a construc-
tor specifies a group of fields. In a constructor, each field is labeled with a unique name, and also
decorated by a qualifier (single, optional (?) or sequential (*)), which denotes the valid number of el-
ements in that field. As ASDL grammars contain rich syntactic information, it has been successfully
applied to code generation and semantic parsing (Rabinovich et al., 2017; Yin & Neubig, 2018).

An AST can be built by applying a sequence of ASDL constructors. Figure 1(b) shows an example
of an ASDL AST in the form of a heterogeneous graph. We can see that all nodes are assigned
with a type (the left half) and a value (the right half). Here each non-terminal node corresponds to
a constructor, and each terminal node corresponds to a value with a primitive type. We assign node
values with constructor names or terminal token values and use their composite/primitive type as
node types for heterogeneous graphs. Each parent-child relationship belongs to a specific field in
the constructor of the parent node, so we associate each parent-child edge with their ASDL field
name. In practice (e.g., the Python AST), some nodes only have type information but do not have
node name (like node arg in Figure 1(b). This happens when a composite type only defines a single
constructor without a name), we set their node value the same as their type.

stmt = FunctionDef(identifier name, arguments args,
 stmt* body, expr* decorator_list, expr? returns,
 string? type_comment)
 If(expr test, stmt* body, stmt* orelse)
 ...
expr = BinOp(expr left, operator op, expr right)
 Call(expr func, expr* args, keyword* keywords)
 ...
arg = (identifier arg, expr? annotation, string? type_comment)

(a)

mod
Module

stmt
FunctionDef

body

identifier
runmodel

name args

AST
arguments

AST
arg

args

identifier
model

arg

stmt
Expr

body

expr
Call

value

expr
Attribute

func

expr
Name

identifier
model

identifier
run

attrvalue

id

mod Module

mod Module

mod Module

mod Module

mod Module

stmt FunctionDef

identifier runmodel arguments arguments stmt Expr

arg arg

identifier model

expr Call

expr Attribute

expr Name identifier run

identifier model

body

name args body

args value

arg func

value attr

id

def runmodel(model):

				model.run()

expr BinOp

operator Subexpr Name expr Name

identifier a identifier b

opleft right

id id

stmt If

stmt ...

body

stmt For

stmt ...

body

expr Lambda

expr ...

body

(b)

Figure 1: An example of the ASDL grammar of Python and an ASDL AST.

1Defined in https://docs.python.org/3/library/ast.html

3

Under review as a conference paper at ICLR 2021

We further present two simple examples to demonstrate the value of representing ASTs as heteroge-
neous graphs. Figure 2 (a) shows an AST subtree for an expression a-b. The left and right subtree
of the BinOp node have different fields (left and right). In GNNs, these two subtree are treated
equally as the neighbour of BinOp, which can make the model difficult to distinguish between the
semantics of a-b from b-a. With typed edges and heterogeneous graph neural networks, we are
able to let these two subtrees pass different messages to the BinOp node, making the GNN model
capable of reasoning on the order of oprands. Figure 2 (b) shows that sometimes edges of the same
type can be connected to different types of nodes. If, For and Lambda nodes all have a field
named body, but the semantics of the body field vary between the change of the node it connect
to. Generally, for differently typed nodes like If and Lambda, the semantic difference between
their body field is larger than the difference between the body fields for If and For. If we want
to address these subtle differences in the message passing stage of GNNs, we need to provide node
type information to models along with edge types.

mod Module

stmt FunctionDef

identifier runmodel comp arguments stmt Expr

comp arg

identifier model

expr Call

expr Attribute

expr Name identifier run

identifier model

body

name args body

args value

arg func

value attr

id

def	runmodel(model):
				model.run()

expr BinOp

operator Subexpr Name expr Name

identifier a identifier b

opleft right

id id

stmt If

stmt ...

body

stmt For

stmt ...

body

expr Lambda

expr ...

body

(a)

mod Module

stmt FunctionDef

identifier runmodel comp arguments stmt Expr

comp arg

identifier model

expr Call

expr Attribute

expr Name identifier run

identifier model

body

name args body

args value

arg func

value attr

id

def	runmodel(model):
				model.run()

expr BinOp

operator Subexpr Name expr Name

identifier a identifier b

opleft right

id id

stmt If

stmt ...

body

stmt For

stmt ...

body

expr Lambda

expr ...

body

(b)

Figure 2: Two examples demonstrating the effectiveness of edge and node types in ASTs.

In addition to AST edges, we follow previous works (Allamanis et al., 2018; Brockschmidt et al.,
2019) to add NextToken edges to the program graph. A NextToken edge connects a terminal
node to the next terminal by the order of program text. For each edge in the heterogeneous program
graph, we add a backward edge with a new edge type (e.g. the backward edge of a body edge is of
type body reverse) to improve the connectivity of graphs.

3.2 HETEROGENEOUS GRAPH TRANSFORMER

We use hetereogeneous graph transformer (HGT) (Hu et al., 2020b), an attention-based heteroge-
neous graph neural network, to learn representation for program graphs. A heterogeneous graph
G = (V, E ,A,R) consists of a node set V and an edge set E . The type of each node τ(n) and edge
φ(e) in the graph belongs to the node type set A and edge type setR.

An HGT layer consists of three components: heterogeneous mutual attention, heterogeneous mes-
sage passing, and target-specific aggregation. The heterogeneous mutual attention is similar to the
multi-head attention in transformer (Vaswani et al., 2017). For an edge e = (s, t), its attention is
computed by:

Attention(s, e, t) = softmax(‖
i∈[1,h]

att headi(s, e, t)) (1)

att headi(s, e, t) = (Ki(s)WATT
φ(e) Q

i(t)T) ·
µ〈φ(e)〉√

d
(2)

Ki(s) = K Lineariτ(s)(H
l−1[s]) (3)

Qi(t) = Q Lineariτ(t)(H
l−1[t]) (4)

The Keys and Queries are computed based on the type of source node s or target node t. Here H l[s]
is the state of node s at the l-th HGT layer. h is the number of attention heads. Then, we compute
the message for e:

4

Under review as a conference paper at ICLR 2021

Message(s, e, t) = ‖
i∈[1,h]

msg headi(s, e, t) (5)

msg headi(s, e, t) =M Lineariτ(s)(H
l−1[s])Wmsg

φ(e) (6)

Finally, HGT aggregate the message information with attention scores, and update node hidden
states with a residual connection:

H̃(l)[t] =
∑
∀s∈N(t)

(Attention(s, e, t) ·Message(s, e, t)) (7)

H(l)[t] = A Linearτ(t)(σ(H̃
(l)[t])) +H(l−1)[t] (8)

A key difference of HGT from previous GNN models is that HGT utilizes positional encodings
(Vaswani et al., 2017) to model the temporal order of nodes. In our approach, we assign a fixed
timestamp T (s) to each node s, which is defined by its position in the depth-first, left-to-right traver-
sal of its AST. We adopt sinusoid functions for positional encodings and add them to the initial node
embeddings as the input of the first HGT layer:

Base(T (s), 2i) = sin(T (s)/10000
2i
d) (9)

Base(T (s), 2i+ 1) = cos(T (s)/10000
2i+1

d) (10)
PE(T (s)) = T Linear(T (s)) (11)

H0[s] = embed(s) + PE(T (s)) (12)

4 EXPERIMENTS

4.1 DATASETS AND METRICS

We apply two different tasks to evaluate our program representation framework. The first one is code
comment generation. For this task, we use the CoNaLa (Yin et al., 2018) dataset, which contains
2,879 Python code-NL query pairs mined from StackOverflow. CoNaLa has been evaluated by
multiple previous works for code generation (Yin & Neubig, 2019; Ye et al., 2019) and comment
generation (Ye et al., 2019; Cai et al., 2020).

The second task is method naming, where we predict a suitable name for a method. We choose
the ogbg-code dataset from open graph benchmark (OGB) (Hu et al., 2020a). Each sample in
ogbg-code consists of a method definition, and a method name split into sub-tokens. As our ap-
proach requires building heterogeneous graphs, we do not use the off-the-shelf graphs in the dataset,
but create our own graphs from source code instead. We list the statistics of our datasets in Table 1.
Apart from the statistics on traditional graph structures, we also show the average number of three
most frequent node types in our datasets: stmt, expr and identifier. We can see that these
two datasets are greatly different on many aspects. In CoNaLa, each code sample only contains a
single line of code and do not contain complex control flows. This result in its graph scales smaller
than ogbg-code, and the proportion of stmt nodes are smaller. For output tokens, the lengths
of than ogbg-code are much shorter than CoNaLa. As we do not perform node compression for
ASTs, our number of nodes in ogbg-code is slightly larger than reported in Hu et al. (2020a). In
our experiments we use 8 node types and 114 edge type (including inverse edge types and NextTo-
ken) to build graphs for the datasets.

For both tasks, we report the results in ROUGE-L (Lin, 2004) and F1. We additionally report the
BLEU-4 (Papineni et al., 2002) score for the comment generation tasks and exact matching accuracy
for method naming. Notice that we follow Alon et al. (2019); Hu et al. (2020a) and calculate the F1
on bag-of-words, so different from other metrics, F1 score do not consider the order of the output
tokens.

5

Under review as a conference paper at ICLR 2021

Table 1: Statistics of our experiment datasets.

CoNaLa ogbg-code

Train 2,279 407,976
Valid 100 22,817
Test 500 21,948

Avg. nodes in code 16.8 135.2
Avg. edges in code 41.1 364.9
Avg. tokens in summary 13.9 2.2

Avg. stmt nodes 1.1 12.7
Avg. expr nodes 8.0 60.1
Avg. identifier nodes 5.7 49.2

4.2 IMPLEMENTATION

We use the same encoder-decoder model for both our tasks. For the GNN encoders, we stack
the GNN models for 8 layers. We follow Fernandes et al. (2019) and use a LSTM with pointer
mechanism (See et al., 2017) as the decoder. The decoder calculates attention scores from the states
of the input graph in the final GNN layer. As the goal of the decoder’s pointer mechanism is to copy
input tokens (usually identifier names) into output sequences, we do not calculate attention on all
nodes, but only on terminal token nodes.

We compare our approach with several existing GNN models based on homogeneous graphs, in-
cluding GGNN (Li et al., 2016) and R-GCN (Schlichtkrull et al., 2018). For all GNN models, we
keep the decoder unchanged and use the same graph constructing strategy as our proposed approach.
For models on homogeneous graphs, we remove the node type information but keep the edge type
information since all our GNN baselines are capable of handling different edge types. As previous
GNN-for-code works (Allamanis et al., 2018; Fernandes et al., 2019) did not use AST edge types,
we also report result of baseline models on graphs without AST edge types (all AST edges are typed
with parent-child). We also compare with state-of-the-art approaches for code summarization,
including TAG (Cai et al., 2020), the current state-of-the-art on CoNaLa comment generation, and
TransCodeSum (Ahmad et al., 2020), the current state-of-the-art on datasets from Github 2. For the
method naming task, we additionally include the results from the official OGB baselines (Hu et al.,
2020a) since we used a different approach to create program graphs for this task. We implement all
models in PyTorch with the graph neural network library DGL 3.

4.3 RESULTS AND ANALYSIS

Table 2 and 3 separately shows the experiment results on comment generation and method naming.
Results show that on both tasks, combining heterogeneous program graphs with HGT makes a sub-
stantial improvement over other GNN models based on homogeneous or partially-homogeneous
(since they still use typed edges) graphs. Within GNN baseline models, GGNN and R-GCN
achieve similar performances, with R-GCN a little worse. On CoNaLa, we achieve performances
comparable to the state-of-the-art approach TransCodeSum, with a higher ROUGE-L and slightly
lower BLEU and F1. On method naming, our approach outperforms all baselines and achieves
the new state-of-the-art on ogbg-code. Unlike CoNaLa, TransCodeSum performs poorly on the
ogbg-code dataset, which is worse than GNN baselines. On ogbg-code, our GNN baselines
are outperformed by Hu et al. (2020a), showing that the improvement of our approach on this task
comes from the heterogeneous type information and HGT, not the differences in basic graph struc-
tures. For GNN baseline models, in most experiments, their performances improve when given AST
edge types based on ASDL fields. Although these models cannot handle node type information, they
can still benefit from edge types for learning on source code tasks.

2As Cai et al. (2020) did not release their source code, we only report their results on CoNaLa as described in
their paper. Ahmad et al. (2020) split source code tokens by CamelCase and snake case during preprocessing,
but we do not perform token splitting in our approach. So we reproduced their model without token splitting.

3https://www.dgl.ai/

6

Under review as a conference paper at ICLR 2021

Table 2: Results on the comment generation task.

BLEU ROUGE-L F1

GGNN w/ AST edge type 11.8 23.0 16.7
GGNN w/o AST edge type 11.6 21.4 15.0
R-GCN w/ AST edge type 11.1 20.4 17.9
R-GCN w/o AST edge type 11.1 18.5 13.6

TAG (Cai et al., 2020) 14.1 31.8 -
TransCodeSum (Ahmad et al., 2020) 16.4 29.0 30.5
HPG+HGT (ours) 16.2 32.1 26.5

Table 3: Results on the method naming task.

ROUGE-L F1 Accuracy

GGNN w/ AST edge type 32.19 32.00 33.70
GGNN w/o AST edge type 32.07 31.90 33.70
R-GCN w/ AST edge type 26.99 27.86 29.71
R-GCN w/o AST edge type 27.90 28.54 29.77

GCN (Hu et al., 2020a) - 32.63 -
GIN (Hu et al., 2020a) - 32.04 -
TransCodeSum (Ahmad et al., 2020) 21.51 21.95 9.23

HPG+HGT (ours) 34.28 36.15 38.94

Ablatioin Study. To study the effect of different types of edges and nodes in our approach, we
perform the following types of ablations for our approach:

• Remove node type (assign all nodes with the same type) and edge type information. This
helps us understand the contribution of graph “heterogeneity” for source code understand-
ing.

• Remove the backward edges for NextToken edges or assign the same edge type to back-
ward edges as to forward edges. This may provide some insight into the design of program
graphs from ASTs.

Table 4 shows the ablation results on CoNaLa. We can see that removing node types or edge types
both result in a drop in model performance, and removing them both cause the results to drop further.
This proves that leveraging node and edge types in ASTs both help GNN models to better under-
standing program semantics. When we remove NextToken backward edges, the performance
drops slightly, indicating that increasing graph connectivity is more important than feeding the exact
one-directional order information to program graphs. If we use the same edge type for a forward
edge and its inverse, the model also performs worse. This denotes that probably assigning different
types of edges with different directions makes GNNs easier to capture the tree structure in ASTs.

Table 4: Ablation study of our approach on the CoNaLa dataset.

BLEU ROUGE-L METEOR F1

Full model 16.2 32.1 26.5

-AST node type 15.3 30.0 25.1
-AST edge type 14.9 29.5 23.8
-AST node type and edge type 14.7 29.2 21.3

-NextToken backward edges 16.0 31.1 25.9
Backward edges with same type 15.8 30.9 25.4

7

Under review as a conference paper at ICLR 2021

5 CONCLUSION & FUTURE WORK

In this paper, we put forward the idea of heterogeneity in program ASTs, and presented a framework
of representing source code as heterogeneous program graphs (HPG) using ASDL grammars. By
applying heterogeneous graph transformer on our HPG, our approach significantly outperforms pre-
vious GNN models on two graph-level prediction tasks for source code: comment generation and
method naming.

In the future, we plan to evaluate our approach on more tasks, especially node or link prediction
tasks. We would also extend our approach to other programming languages and propose new models
more suited for heterogeneous program graphs.

REFERENCES

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. A transformer-based ap-
proach for source code summarization. In Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 4998–5007, Online, July 2020. Association for Compu-
tational Linguistics.

Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for extreme
summarization of source code. In International conference on machine learning, pp. 2091–2100,
2016.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018.

Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. Typilus: neural type hints.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 91–105, 2020.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from struc-
tured representations of code. In International Conference on Learning Representations, 2019.

Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polozov. Generative
code modeling with graphs. In International Conference on Learning Representations, 2019.

Ruichu Cai, Zhihao Liang, Boyan Xu, Zijian Li, Yuexing Hao, and Yao Chen. TAG : Type auxiliary
guiding for code comment generation. In Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 291–301. Association
for Computational Linguistics, 2020.

Milan Cvitkovic, Badal Singh, and Animashree Anandkumar. Open vocabulary learning on source
code with a graph-structured cache. In International Conference on Machine Learning, pp. 1475–
1485. PMLR, 2019.

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. Hoppity: Learn-
ing graph transformations to detect and fix bugs in programs. In International Conference on
Learning Representations, 2020.

Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Structured neural summarization.
In International Conference on Learning Representations, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020a.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation. In 2018
IEEE/ACM 26th International Conference on Program Comprehension (ICPC), pp. 200–20010.
IEEE, 2018.

8

Under review as a conference paper at ICLR 2021

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of The Web Conference 2020, pp. 2704–2710, 2020b.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural
networks. In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceed-
ings, 2016.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. In International Conference on
Machine Learning, pp. 3835–3845, 2019.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the 55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 1139–1149, 2017.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic Web
Conference, pp. 593–607. Springer, 2018.

Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 1073–1083, 2017.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
464–468, 2018.

Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. A survey of heterogeneous
information network analysis. IEEE Transactions on Knowledge and Data Engineering, 29(1):
17–37, 2016.

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning loop invariants
for program verification. In Advances in Neural Information Processing Systems, pp. 7751–7762,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Daniel C Wang, Andrew W Appel, Jeffrey L Korn, and Christopher S Serra. The zephyr abstract
syntax description language. In DSL, volume 97, pp. 17–17, 1997.

Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. Detecting code clones with graph neural
network and flow-augmented abstract syntax tree. In 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp. 261–271. IEEE, 2020.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The World Wide Web Conference, pp. 2022–2032, 2019.

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. Lambdanet: Probabilistic type inference
using graph neural networks. In International Conference on Learning Representations, 2019.

9

Under review as a conference paper at ICLR 2021

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Hai Ye, Wenjie Li, and Lu Wang. Jointly learning semantic parser and natural language generator
via dual information maximization. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 2090–2101, 2019.

Pengcheng Yin and Graham Neubig. Tranx: A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pp. 7–12, 2018.

Pengcheng Yin and Graham Neubig. Reranking for neural semantic parsing. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 4553–4559, 2019.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning to
mine aligned code and natural language pairs from stack overflow. In 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR), pp. 476–486. IEEE, 2018.

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L Gaunt.
Learning to represent edits. In International Conference on Learning Representations, 2019.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Heteroge-
neous graph neural network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 793–803, 2019.

10

	Introduction
	Related Work
	Approach
	Heterogeneous Program Graphs
	Heterogeneous Graph Transformer

	Experiments
	Datasets and Metrics
	Implementation
	Results and Analysis

	Conclusion & Future Work

