
Learning to Resolve Natural Language Ambiguities:
A Unified Approach

Dan Roth
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana 61801

danr@cs.uiuc.edu

Abstract

We analyze a few of the commonly used statistics based
and machine learning algorithms for natural language
disambiguation tasks and observe that they can bc re-
cast as learning linear separators in the feature space.
Each of the methods makes a priori assumptions, which
it employs, given the data, when searching for its hy-
pothesis. Nevertheless, as we show, it searches a space
that is as rich as the space of all linear separators.
We use this to build an argument for a data driven
approach which merely searches for a good linear sepa-
rator in the feature space, without further assumptions
on the domain or a specific problem.
We present such an approach - a sparse network of
linear separators, utilizing the Winnow learning aigo-
rlthrn - and show how to use it in a variety of ambiguity
resolution problems. The learning approach presented
is attribute-efficient and, therefore, appropriate for do-
mains having very large number of attributes.
In particular, we present an extensive experimental
comparison of our approach with other methods on
several well studied lexical disambiguation tasks such
as context-sensltlve spelling correction, prepositional
phrase attachment and part of speech tagging. In all
cases we show that our approach either outperforms
other methods tried for these tasks or performs com-
parably to the best.

Introduction

Many important natural language inferences can be
viewed as problems of resolving ambiguity, either se-
mantic or syntactic, based on properties of the sur-
rounding context. Examples include part-of speech
tagging, word-sense disambiguation, accent restoration,
word choice selection in machine translation, context-
sensitive spelling correction, word selection in speech
recognition and identifying discourse markers. In each
of these problems it is necessary to disambiguate two
or more [semantically, syntactically or structurally]-
distinct forms which have been fused together into the
same representation in some medium. In a prototypi-
cal instance of this problem, word sense disambiguation,

°Copyright (~) 1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

distinct semantic concepts such as interest rate and
has interest in Math are conflated in ordinary text.
The surrounding context - word associations and syn-
tactic patterns in this case - are sufflcicnt to identify
the correct form.

Many of these arc important stand-alone problems
but even more important is their role in many applica-
tions including speech recognition, machine translation,
information extraction and intelligent human-machine
interaction. Most of the ambiguity resolution problems
are at the lower level of the natural language inferences
chain; a wide range and a large number of ambigui-
ties arc to be resolved simultaneously in performing any
higher level natural language inference.

Developing learning techniques for language disam-
biguation has been an active field in recent years and
a number of statistics based and machine learning
techniques have been proposed. A partial list con-
sists of Bayesian classifiers (Gale, Church, & Yarowsky
1993), decision lists (Yarowsky 1994), Bayesian 
brids (Golding 1995), HMMs (Charniak 1993), induc-
tive logic methods (Zelle & Mooney 1996), memory-
based methods (Zavrel, Daelemans, & Veenstra 1997)
and transformation-based learning (Brill 1995). Most
of these have been developed in the context of a spe-
cific task although claims have been made as to their
applicativity to others.

In this paper we cast the disambiguation problem as
a learning problem and use tools from computational
learning theory to gain some understanding of the as-
sumptions and restrictions made by different learning
methods in shaping their search space.

The learning theory setting helps in making a few
interesting observations. We observe that many algo-
rithms, including naive Bayes, Brill’s transformation
based method, Decision Lists and the Back-off estima-
tion method can be re-cast as learning linear separators
in their feature space. As learning techniques for linear
separators these techniques are limited in that, in gen-
eral, they cannot learn all linearly separable functions.
Nevertheless, we find, they still search a space that is as
complex, in terms of its VC dimension, as the space of
all linear separators. This has implications to the gen-
eralization ability of their hypotheses. Together with
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the fact that different methods seem to use different a
priori assumptions in guiding their search for the linear
separator, it raises the question of whether there is an
alternative - search for the best linear separator in the
feature space, without resorting to assumptions about
the domain or any specific problem.

Partly motivated by these insights, we present a new
algorithm, and show how to use it in a variety of dis-
ambiguation tasks. The architecture proposed, SNOW,
is a Sparse Network Of linear separators which utilizes
the Winnow learning algorithm. A target node in the
network corresponds to a candidate in the disambigua-
tion task; all subnetworks learn autonomously from the
same data, in an on line fashion, and at run time, they
compete for assigning the correct meaning. The archi-
tecture is data-driven (in that its nodes are allocated as
part of the learning process and depend on the observed
data) and supports efficient on-line learning. Moreover,
The learning approach presented is attribute-efficient
and, therefore, appropriate for domains having very
large number of attributes. All together, We believe
that this approach has the potential to support, within
a single architecture, a large number of simultaneously
occurring and interacting language related tasks.

To start validating these claims we present experi-
mental results on three disambiguation tasks. Prepo-
sitional phrase attachment (PPA) is the task of decid-
ing whether the Prepositional Phrase (PP) attaches 
the noun phrase (NP), as in Buy the car with the
steering wheel or to the verb phrase (VP), as in Buy
the car with his money. Context-sensitive Spelling
correction (Spell) is the task of fixing spelling errors
that result in valid words, such as It’s not to late,
where too was mistakenly typed as to. Part of speech
tagging (POS) is the task of assigning each word in
a given sentence the part of speech it assumes in this
sentence. For example, assign N or V to talk in the fol-
lowing pair of sentences: Have you listened to his
(him) talk .7. In all cases we show that our approach
either outperforms other methods tried for these tasks
or performs comparably to the best.

This paper focuses on analyzing the learning prob-
lem and on motivating and developing the learning ap-
proach; therefore we can only present the bottom line
of the experimental studies and the details are deferred
to companion reports.

The Learning Problem
Disambiguation tasks can be viewed as general classi-
fication problems. Given an input sentence we would
like to assign it a single property out of a set of po-
tential properties. Formally, given a sentence s and
a predicate p defined on the sentence, we let (7 
{ct, c2,...c,n} be the collection of possible values this
predicate can assume in s. It is assumed that one of
the elements in C is the correct assignment, c(s,p), 
can take values from {site, cite, sight} if the predicate
p is the correct spelling of any occurrence of a word
from this set in the sentence; it can take values from

{v, n} if the predicate p is the attachment of the PP to
the preceding VP (v) or the preceding NP (n), or it 
take values from {industrial, living organism} if the
predicate is the meaning of the word plant in the sen-
tence. In some cases, such as part of speech tagging, we
may apply a collection P of different predicates to the
same sentence, when tagging the first, second, kth word
in the sentence, respectively. Thus, we may perform a
classification operation on the sentence multiple times.
However, in the following definitions it would suffice to
assume that there is a single pre-defined predicate op-
erating on the sentence s; moreover, since the predicate
studied will be clear from the context we omit it and
denote the correct classification simply by c(s).

A classifier h is a function that maps the set S of all
sentences1, given the task defined by the predicate p,
to a single value in (7, h : S --+ C.

In the setting considered here the classifier h is se-
lected by a training procedure. That is, we assume~ a
class of functions 7i, and use the training data to select
a member of this class. Specifically, given a training cor-
pus St~ consisting of labeled example (s, c(s), a learning
algorithm selects a hypothesis h E 7/, the classifier.

The performance of the classifier is measured empiri-
cally, as the fraction of correct classifications it performs
on a set St, of test examples. Formally,

Perf(f) = I{s E St, lh(s) = c(s)}l/lIs ~ s,,}l. (1)

A sentence s is represented as a collection of fea-
tures, and various kinds of feature representation can
be used. For example, typical features used in correct-
ing context-sensitive spelling are context words - which
test for the presence of a particular word within :t:k
words of the target word, and collocations - which test
for a pattern of up to £ contiguous words and/or part-
of-speech tags around the target word.

It is useful to consider features as sequences of tokens
(e.g., words in the sentence, or pos tags of the words).
In many applications (e.g., n-gram language models),
there is a clear ordering on the features. We define here
a natural partial order -~ as follows: for features f, g
define f -~ g -- f C_ g, where on the right end side
features are viewed simply as sets of tokensa. A feature
f is of order k if it consists of k tokens.

A definition of a disambiguation problem consists of
the task predicate p, the set C of possible classifications
and the set J: of features, jr(k) denotes the features 
order k. Let [:7:[ = n, and zi be the ith feature, zi can
either be present (active) in a sentence s (we then say
that z~ = 1), or absent from it (z~ = 0). Given that,

XThe basic unit studied can be a paragraph or any other
unit, but for simplicity we will always call it a sentence.

2This is usually not made explicit in statistical learnlng
procedures, but is assumed there too.

3There are many ways to define features and order re-
lations among them (e.g., restricting the number of tokens
in a feature, enforcing sequential order among them, etc.).
The following discussion does not depend on the details; one
option is presented to make the discussion more concrete.



a sentence s can be represented as the set of all active
features in it s = (~il, zi2,.., zi~.).

From the stand point of the general framework the
exact mapping of a sentence to a feature set will not
matter, although it is crucially important in the spe-
cific applications studied later in the paper. At this
point it is sufficient to notice that the a sentence can be
mapped into a binary feature vector. Moreover, w.l.o.g
we assume that [C[ = 2; moving to the general case is
straight forward. From now on we will therefore treat
classifiers as Boolean functions, h : {0, 1}" -+ {0, 1}.

Approaches to Disambiguation

Learning approaches are usually categorized as statisti-
cal (or probabilistic) methods and symbolic methods.
However, all learning methods are statistical in the
sense that they attempt to make inductive generaliza-
tion from observed data and use it to make inferences
with respect to previously unseen data; as such, the sta-
tistical based theories of learning (Vapnik 1995) apply
equally to both. The difference may be that symbolic
methods do not explicitly use probabilities in the hy-
pothesis. To stress the equivalence of the approaches
further in the following discussion we will analyze two
"statistical" and two "symbolic" approaches.

In this section we present four widely used disam-
biguation methods. Each method is first presented as
known and is then re-cast as a problem of learning a lin-
ear separator. That is, we show that, there is a linear
condition ~,e~: wizi > $ such that, given a sentence
s = (zi~, zi2,...zi,~), the method predicts c = 1 if the
condition holds for it, and c = 0 otherwise.

Given an example s = (Zl, Z2...z,~) a prob-
abilistic classifier h works by choosing the ele-
ment of (7 that is most probable, that is h(s) 
argrnazc~eo Pr(ci[zl, z2, . . .z,~,) 4, where the probabil-
ity is the empirical probability estimated from the la-
beled training data. In general, it is unlikely that one
can estimate the probability of the event of interest
(ci [zl, z2,.., z,~) directly from the training data. There
is a need to make some probabilistic assumptions in
order to evaluate the probability of this event indi-
rectly, as a function of "more frequent" events whose
probabilities can be estimated more robustly. Different
probabilistic assumptions give rise to difference learning
methods and we describe two popular methods below.

The naive Bayes estimation (NB) The naive
Bayes estimation (e.g., (Duda ~ Hart 1973)) assumes
that given the class value c E C the features values are
statistically independent. With this assumption and
using Bayes rule the Bayes optimal prediction is given
by: h(s) = argmazc,ecIIm=lpr(a:j[ci)P(ci).

The prior probabilities p(ci) (i.e., the fraction of
training examples labeled with cl) and the conditional
probabilities Pr(zj Ic~) (the fraction of the training 

4As usual, we use the notation Pr(ci[~l, z2,.., z,~) as 
shortcut for Pr(c = ci[xl = al, z2 = a2 .... z,, = am).

amples labeled cl in which the jth feature has value
zj) can be estimated from the training data fairly
robustly5, giving rise to the naive Bayes predictor. Ac-
cording to it, the optimal decision is c = 1 when

P(c = 1)II~V(z, lc = 1)/P(c = O)HiP(z~lc = 

Denoting pi -= P(zi = llc = 1),qi --- P(zi =l[c = 0),
P(c = r) -- P(r), we can write this condition 

P(1)Hip~:’ (1 pi) 1-~’ P(1)Hi(1-PiW-PA-hz’--
:

r /~’l--pi" > 1,

P(0)IIiq~’(1 - x-z’ P(0)Hi(1 - . .~r--q~,"tz1 k 1-ql /

and by taking log we get that using naive Bayes esti-
mation we predict c = 1 if and only if

log P(1) +~ 1-pi 1- log ~ + E (log p’ q’ )z, > 0.
P(0)__" - qi i 1 - Pi qi

We conclude that the decision surface of the naive Bayes
algorithm is given by a linear function in the feature
space. Points which reside on one side of the hyper-
plane are more likely to be labeled 1 and points on the
other side are more likely to be labeled O.

This representation immediately implies that this
predictor is optimal also in situations in which the con-
ditional independence assumption does no hold. How-
ever, a more important consequence to our discussion
here is the fact that not all linearly separable functions
can be represented using this predictor (Roth 1998).

The back-otTestlmatlon (BO) Back-offestimation
is another method for estimating the conditional proba-
bilities Pr(cils). It has been used in many disambigua-
tion tasks and in learning models for speech recogni-
tion (Katz 1987; Chen & Goodman 1996; Collins &
Brooks 1995). The back-off method suggests to esti-
mate Pr(c~lz~, z, .... ,~,~) by interpolating the more
robust estimates that can be attained for the condi-
tional probabilities of more general events. Many vari-
ation of the method exist; we describe a fairly general
one and then present the version used in (Collins 
Brooks 1995), which we compare with experimentally.

When applied to a disambiguation task, BO assumes
that the sentence itself (the basic unit processed) is 
feature6 of maximal order f = f(k) E r. We estimate

er(c,I s) = Pr(c~l/(k)) = ~ A~er(cd/).
{IEJrlI-~I(~)}

eProblems of sparse data may arise, though, when a spe-
cific value of ~i observed in testing has occurred infrequently
in the training, in conjunction with cj. Various smoothing
techniques can be employed to get more robust estimations
but these considerations will not affect our discussion and
we disregard them.

6The assumption that the maximal order feature is the
classified sentence is made, for example, in (Collins 
Brooks 1995). In general, the method deals with multiple
features of the maximal order by assuming their conditional
independence, and superimposing the NB approach.



The sum is over all features f which are more general
(and thus occur more frequently) than f(k). The condi-
tional probabilities on the right are empirical estimates
measured on the training data, and the coefficients ),!
are also estimated given the training data. (Usually,
these are maximum likelihood estimates evaluated us-
ing iterative methods, e.g. (Samuelsson 1996)).

Thus, given an example s = (ml, m2... zm) the BO
method predicts c = 1 if and only if

a linear function over the feature space.
For computational reasons, various simplifying as-

sumptions are made in order to estimate the coefficients
Al; we describe here the method used in (Collins 
Brooks 1995)7. We denote by Af(f(Y)) the number 
occurrences of the jth order feature f(Y) in the training
data. Then BO estimates P = Pr(ca[f(~)) as follows:

In this case, it is easy to write down the linear sep-
arator defining the estimate in an explicit way. Notice
that with this estimation, given a sentence s, only the
highest order features active in it are considered. There-
fore, one can define the weights of the jth order feature
in an inductive way, making sure that it is larger than
the sum of the weights of the smaller order features.
Leaving out details, it is clear that we get a simple rep-
resentation of a linear separator over the feature space,
that coincides with the BO algorithm.

It is important to notice that the assumptions made
in the BO estimation method result in a linear decision
surface that is, in general, different from the one derived
in the NB method.

Transformation Based Learning (TBL) Trans-
formation based learning (Brill 1995) is a machine
learning approach for rule learning. It has been ap-
plied to a number of natural language disambiguation
tasks, often achieving state-of-the-art accuracy.

The learning procedure is a mistake-driven algorithm
that produces a set of rules. Irrespective of the learning
procedure used to derive the TBL representation, we
focus here on the final hypothesis used by TBL and how
it is evaluated, given an input sentence, to produce a
prediction. We assume, w.l.o.g, [CI = 2.

The hypothesis of TBL is an ordered list of transfor-
mations. A transformation is a rule with an antecedent

rThere, the empirical ratios are smoothed; experimen-
tally, however, this yield only a slight improvement, going
from 83.7% to 84.1% so we present it here in the pure form.

t and a consequents c E C. The antecedent ~ is a con-
dition on the input sentence. For example, in Spell,
a condition might be word W occurB within q-k of
the target word. That is, applying the condition to
a sentence s defines a feature ~(s) E W. Phrased differ-
ently, the application of the condition to a given sen-
tence s, checks whether the corresponding feature is
active in this sentence. The condition holds if and only
if the feature is active in the sentence.

An ordered list of transformations (the TBL hypoth-
esis), is evaluated as follows: given a sentence s, an
initial label c E O is assigned to it. Then, each rule is
applied, in order, to the sentence. If the feature defined
by the condition of the rule applies, the current label is
replaced by the label in the consequent. This process
goes on until the last rule in the list is evaluated. The
last label is the output of the hypothesis.

In its most general setting, the TBL hypothesis is not
a classifier (Brill 1995). The reason is that the truth
value of the condition of the ith rule may change while
evaluating one of the preceding rules. However, in many
applications and, in particular, in Spell (Mangu & Brill
1997) and PPA (Brill & Resnik 1994) which we discuss
later, this is not the case. There, the conditions do not
depend on the labels, and therefore the output hypoth-
esis of the TBL method can be viewed as a classifier.
The following analysis applies only for this case.

Using the terminology introduced above, let
(zq, ci~), (mi2, c4~),... (zik, c~k) be the ordered sequence
of rules defining the output hypothesis of TBL. (Notice
that it is quite possible, and happens often in practice,
for a feature to appear more than once in this sequence,
even with different consequents). While the above de-
scription calls for evaluating the hypothesis by sequen-
tially evaluating the conditions, it is easy to see that
the following simpler procedure is sufficient:

Search the ordered sequence in a reversed order. Let
mi~ be the first active feature in the list (i.e., the

largest j). Then the hypothesis predicts cij.

Alternatively, the TBL hypothesis can be represented
as a (positive) 1-Decision-List (pl-DL) (Rivest 1987),

9over the set ~" of features . Given the pl-DL represen-

ff
Else
Else ..,
Else
Else

mix is active then predict ok.
If x/k_x is active then predict Ck--1.

If mx is active then predict cl.
Predict the initial value

Figure 1: TBL as a pl-Decision List

SThe consequent is sometimes described as a transforma-
tion ci --+ ci, with the semantics - if the current label is el,
relabel it ci. When ]C] : 2 it is equivalent to simply using
cj as the consequent.

9Notice, the order of the features is reversed. Also, mul-
tiple occurrences of features can be discarded, leaving only
the last rule in which this feature occurs. By ’~positive" we
mean that we never condition on the absence of a feature,
only on its presence.



ration (Fig 1), we can now represent the hypothesis as 
linear separator over the set ~ of features. For simplic-
ity, we now name the class labels {-1, +1} rather than
~0, 1}. Then, the hypothesis predicts c ---- 1 if and only
¯ kif ~j=l 2J "cij" $~ > 0. Clearly, with this representation
the active feature with the highest index dominates the
prediction, and the representations are equivalentl°.

Decision Lists (pl-DL) It is easy to see (details
omitted), that the above analysis applies to pl-DL, 
method used, for example, in (Yarowsky 1995). The
BO and pl-DL differ only in that they keep the rules
in reversed order, due to different evaluation methods.

The Linear Separator Representation
To summarize, we have shown:
claim: All the methods discussed - NB, BO, TBL and
pl-DL search for a decision surface which is a linear
function in the feature space.

This is not to say that these methods assume that
the data is linearly separable. Rather, all the methods
assume that the feature space is divided by a linear
condition (i.e., a function of the form ~.e~ wi$i > 8)
into two regions, with the property that’~n one of the
defined regions the more likely prediction is 0 and in
the other, the more likely prediction is 1.

As pointed out, it is also instructive to see that these
methods yield different decision surfaces and that they
cannot represent every linearly separable function.

Theoretical Support for the Linear
Separator Framework

In this section we discuss the implications these obser-
vations have from the learning theory point of view.

In order to do that we need to resort to some of
the basic ideas that justify inductive learning. Why
do we hope that a classifier learned from the training
corpus will perform well (on the test data) ? Informally,
the basic theorem of learning theory (Valiant 1984;
Vapnik 1995) guarantees that, if the training data and
the test data are sampled from the same distribution11,

good performance on the training corpus guarantees
good performance on the test corpus.

If one knows something about the model that gener-
ates the data, then estimating this model may yield
good performance on future examples. However, in
the problems considered here, no reasonable model is
known, or is likely to exist. (The fact that the assump-
tions discussed above disagree with each other, in gen-
eral, may be viewed as a support for this claim.)

1°In practice, there is no need to use this representation,
given the efficient way suggested above to evaluate the clas-
sifier. In addition, very few of the features in ~" are active in
every example, yielding more efficient evaluation techniques
(e.g., (Valiant 1998))

11This is hard to define in the context of natural language;
typically, this is understood as texts of similar nature; see a
discussion of this issue in (Golding & Roth 1996).

In the absence of this knowledge a learning method
merely attempts to make correct predictions. Under
these conditions, it can be shown that the error of
a classifier selected from class 7-/ on (previously un-
seen) test data, is bounded by the sum of its train-
ing error and a function that depends linearly on the
complexity of 7/. This complexity is measured in
terms of a combinatorial parameter - the VC-dimension
of the class 7-/ (Vapnik 1982) - which measures the
richness of the function class. (See (Vapnik 1995;
Kearns & Vazirani 1992)) for details).

We have shown that all the methods considered here
look for a linear decision surface. However, they do
make further assumptions which seem to restrict the
function space they search in. To quantify this line of
argument we ask whether the assumptions made by the
different algorithms significantly reduce the complexity
of the hypothesis space. The following claims show that
this is not the case; the VC dimension of the function
classes considered by all methods are as large as that
of the full class of linear separators.
Fact 1-" The VC dimension of ~he class of linear sepa-
rators over n variables is n + 1.
Fact 2" The VC dimension of the class of pl-DL over
n variables1~ is n + 1.
Fact 3-" The VC dimension of the class of linear sepa-
rators derived by either NB or BO over n variables is
bounded below by n.

Fact 1 is well known; 2 and 3 can be derived directly
from the definition (l~.oth 1998).

The implication is that a method that merely
searches for the optimM linear decision surface given
the trMning data may, in general, outperform all these
methods also on the test data. This argument can be
made formM by appealing to a result of (Kearns
Schapire 1994), which shows that even when there is
no perfect classifier, the optimal linear separator on a
polynomial size set of training examples is optimal (in
a precise sense) also on the test data.

The optimality criterion we seek is described in Eq.
1. A linear classifier that minimizes the number of dis-
agreements (the sum of the false positives and false neg-
atives classifications). This task, however, is known to
be NP-hard (HSffgen & Simon 1992), so we need to re-
sort to heuristics. In searching for good heuristics we
are guided by computational issues that are relevant to
the natural language domain. An essential property of
an algorithm is being feature-efficient. Consequently,
the approach describe in the next section makes use of
the Winnow algorithm which is known to produce good
results when a linear separator exists, as well as under
certain more relaxed assumptions (Littlestone 1991)¯

12In practice, when using pl-DL as the hypothesis class
(i.e., in TBL) an effort is made to discard many of the fea-
tures and by that reduce the complexity of the space; how-
ever, this process, which is data driven and does not a-prlori
restrict the function class can be employed by other meth-
ods as well (e.g., (Blum 1995)) and is therefore orthogonal
to these arguments.



The SNOW Approach

The SNOW architecture is a network of threshold gates.
Nodes in the first layer of the network are allocated to
input features in a data-driven way, given the input
sentences. Target nodes (i.e., the element c E C) are
represented by nodes in the second layer. Links from
the first to the second layer have weights; each target
node is thus defined as a (linear) function of the lower
level nodes. (A similar architecture which consists of an
additional layer is described in (Golding & Roth 1996).
Here we do not use the "cloud" level described there.)

For example, in Spell, target nodes represent mem-
bers of the confusion sets; in POS, target nodes corre-
spond to differen~ pos tags. Each target node can be
thought of as an autonomous network, although they
all feed from the same input. The network is sparse in
that a target node need not be connected to all nodes
in the input layer. For example, it is not connected to
input nodes (features) that were never active with it 
the same sentence, or it may decide, during training to
disconnect itself from some of the irrelevant inputs.

Learning in SNOW proceeds in an on-line fashion13.

Every example is treated autonomously by each tar-
get subnetworks. Every labeled example is treated as
positive for the target node corresponding to its label,
and as negative to all others. Thus, every example is
used once by all the nodes to refine their definition in
terms of the others and is then discarded. At prediction
time, given an input sentence which activates a subset
of the input nodes, the information propagates through
all the subnetworks; the one which produces the highest
activity gets to determine the prediction.

A local learning algorithm, Winnow (Littlestone
1988), is used at each target node to learn its depen-
dence on other nodes. Winnow is a mistake driven
on-line algorithm, which updates its weights in a mul-
tiplicative fashion. Its key feature is that the num-
ber of examples it requires to learn the target function
grows linearly with the number of relevan~ attributes
and only logarithmically with the total number of at-
tributes. Winnow was shown to learn efficiently any
linear threshold function and to be robust in the pres-
ence of various kinds of noise, and in cases where no
linear-threshold function can make perfect classifica-
tions and s~ill maintain its abovementioned dependence
on the number of total and relevant attributes (Little-
stone 1991; Kivinen & Warmuth 1995).

Notice that even when there are only two target nodes
and the cloud size (Golding & R.oth 1996) is SNOW
behaves differently than pure Winnow. While each of
the target nodes is learned using a positive Winnow al-
gorithm, a winner-take-all policy is used to determine
the prediction. Thus, we do not use the learning al-
gorithm here simply as a discriminator. One reason is
that the SNOW architecture, influenced by the Neu-
roidal system (Valiant 1994), is being used in a system

laAlthough for the purpose of the experimental study we
do not update the network while testing.

Table 1: Spell System comparison. The second
column gives the number of test cases. All algorithms
were trained on 80% of Brown and tested on the other
20%; Baseline simply identifies the most common mem-
ber of the confusion set during training, and guesses it
every time during testing.

Sets Cases Baseline NB TBL SNOW I

I14 1503 71.1 89.9 88.5 93.5
21 4336 74.8 93.8 96.4

developed for the purpose of learning knowledge rep-
resentations for natural language understanding tasks,
and is being evaluated on a variety of tasks for which
the node allocation process is of importance.

Experimental Evidence

In this section we present experimental results for
three of the most well studied disambiguation prob-
lems, Spell, PPA and POS. We present here only
the bottom-line results of an extensive study that ap-
pears in companion reports (Golding & Roth 1998;
Krymolovsky & Roth 1998; Roth & Zelenko 1998).

Context Sensitive Spelling Correction Context-
sensitive spelling correction is the task of fixing spelling
errors that result in valid words, such as It’s no$ to la~e,
where ~oo was mistakenly typed as ~o.

We model the ambiguity among words by confusion
sets. A confusion set (7 = {el,..., c,~} means that each
word ci in the set is ambiguous with each other word.
All the results reported here use the same pre-defined
set of confusion sets (Golding & Roth 1996).

We compare SNOW against TBL (Mangu & Brill
1997) and a naive-Bayes based system (NB). The latter
system presents a few augmentations over the simple
naive Bayes (but still shares the same basic assump-
tions) and is among the most successful methods tried
for the problem (Golding 1995). An indication that 
Winnow-based algorithm performs well on this prob-
lem was presented in (Golding & Roth 1996). However,
the system presented there was more involved than
SNOW and allows more expressive output represen-
tation than we allow here. The output representation
of all the approaches compared is a linear separator.

The results presented in Table 1 for NB and SNOW
are the (weighted) average results of 21 confusion sets,
19 of them are of size 2, and two of size 3. The results
presented for the TBLi4 method are taken from (Mangu
& Brill 1997) and represent an average on a subset of
14 of these, all of size 2.

Prepositional Phrase Attachment The problem
is to decide whether the Prepositional Phrase (PP) at-
taches to the noun phrase, as in Buy the car with

i4Systems are compared on the same feature set. TBL
was also used with an enhanced feature set (Mangu & BfiU
1997) with improved results of 93.3% but we have not run
the other systems with this set of features.



Table 2: PPA System comparison. All algorithms
were trained on 20801 training examples from the WSJ
corpus tested 3097 previously unseen examples from
this corpus; all the system use the same feature set.

I3097 59.0 83.0 81.9 84.1 83.9

the steering wheel or the verb phrase, as in Buy the
car with his money. Earlier works on this problem
(Ratnaparkhi, Reynar, & Roukos 1994; Brill & Resnik
1994; Collins & Brooks 1995) consider as input the
four head words involved in the attachment - the VP
head, the first NP head, the preposition and the second
NP head (in this case, buy, car, with and steering
wheel, respectively). These four-tuples, along with the
attachment decision constitute the labeled input sen-
tence and are used to generate the feature set. The
features recorded are all sub-sequences of the 4-tuple,
total of 15 for every input sentence. The data set
used by all the systems in this in this comparison was
extracted from the Penn Treebank WSJ corpus by (Rat-
naparkhi, Reynar, & Roukos 1994). It consists of 20801
training examples and 3097 separate test examples. In
a companion paper we describe an extensive set of ex-
periments with this and other data sets, under various
conditions. Here we present only the bottom line results
that provide direct comparison with those available in
the literature 1~. The results presented in Table 2 for
NB and SNOW are the results of our system on the
3097 test examples. The results presented for the TBL
and BO are on the same data set, taken from (Collins
& Brooks 1995).

Part of Speech Tagging A part of speech tagger
assigns each word in a sentence the part of speech that
it assumes in that sentence. See (Brill 1995) for a sur-
vey of much of the work that has been done on POS in
the past few years. Typically, in English there will be
between 30 and 150 different parts of speech depending
on the tagging scheme. In the study presented here, fol-
lowing (Brill 1995) and many other studies there are 
different tags. Part-of-speech tagging suggests a special
challenge to our approach, as the problem is a multi-
class prediction problem (Roth & Zelenko 1998). In the
SNOW architecture, we devote one linear separator to
each pos tag and each sub network learns to separate its
corresponding pos tag from all others. At run time, all
class nodes process the given sentence, applying many
classifiers simultaneously. The classifiers then compete
for deciding the pos of this word, and the node that
records the highest activity for a given word in a sen-
tence determines its pos. The methods compared use

15SNOW was evaluated with an enhanced feature set
(Krymolovsky & Roth 1998) with improved results of 84.8%.
(Collins & Brooks 1995) reports results of 84.4% on a dif-
ferent enhanced set of features, but other systems were not
evaluated on these sets.

Table 3: POS System comparison. The first col-
umn gives the number of test cases. All algorithms
were trained on 550, 000 words of the tagged WSJ cor-
pus. Baseline simply predicts according to the most
common pos tag for the word in the training corpus.

Test Baseline TBL SNOW [

Icases

250,000 94.4 96.9 96.8

context and collocation features as in (Brill 1995).
Given a sentence, each word in the sentence is as-

signed an initial tag, based on the most common part
of speech in the training corpus. Then, for each word in
the sentence, the network processes the sentence, and
makes a suggestion for the pos of this word. Thus, the
input for the predictor is noisy, since the initial assign-
ment is not accurate for many of the words. This pro-
cess can repeat a few times, where after predicting the
pos of a word in the sentence we re-compute the new
feature-based representation of the sentence and predict
again. Each time the input to the predictors is expected
to be slightly less noisy. In the results presented here,
however, we present the performance without the re-
cycling process, so that we maintain the linear function
expressivity (see (Roth & Zelenko 1998) for details).

The results presented in Table 3 are based on ex-
periments using 800,000 words of the Penn Treebank
Tagged WSJ corpus. About 550,000 words were used
for training and 250,000 for testing. SNOW and TBL
were trained and tested on the same data.

Conclusion
We presented an analysis of a few of the commonly
used statistics based and machine learning algorithms
for ambiguity resolution tasks. We showed that all the
algorithms investigated can be re-cast as learning lin-
ear separators in the feature space. We analyzed the
complexity of the function space in which each of these
method searches, and show that they all search a space
that is as complex as the space of all linear separa-
tors. We used these to argue motivate our approach of
learning a sparse network of linear separators (SNOW),
which learns a network of linear separator by utilizing
the Winnow learning algorithm. We then presented
an extensive experimental study comparing the SNOW
based algorithms to other methods studied in the liter-
ature on several well studied disambiguation tasks. We
present experimental results on Spell, PPA and POS.
In all cases we show that our approach either outper-
formed other methods tried for these tasks or performs
comparably to the best. We view this as a strong ev-
idence to that this approach provides a unified frame-
work for the study of natural language disambiguation
tasks.

The importance of providing a unified framework
stems from the fact the essentially all ambiguity resolu-
tion problems that are addressed here are at the lower
level of the natural language inferences chain. A large



number of different kinds of ambiguities are to be re-
solved simultaneously in performing any higher level
natural language inference (Cardie 1996). Naturally,
these processes, acting on the same input and using the
same "memory", will interact. A unified view of ambi-
guity resolution within a single architecture, is valuable
if one wants understand how to put together a large
number of these inferences, study interactions among
them and make progress towards using these in per-
forming higher level inferences.
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