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Abstract

Deep neural networks have been shown to be

very powerful modeling tools for many supervised

learning tasks involving complex input patterns.

However, they can also easily overfit to training

set biases and label noises. In addition to various

regularizers, example reweighting algorithms are

popular solutions to these problems, but they

require careful tuning of additional hyperparam-

eters, such as example mining schedules and

regularization hyperparameters. In contrast to

past reweighting methods, which typically consist

of functions of the cost value of each example,

in this work we propose a novel meta-learning

algorithm that learns to assign weights to training

examples based on their gradient directions. To

determine the example weights, our method

performs a meta gradient descent step on the

current mini-batch example weights (which are

initialized from zero) to minimize the loss on

a clean unbiased validation set. Our proposed

method can be easily implemented on any type

of deep network, does not require any additional

hyperparameter tuning, and achieves impressive

performance on class imbalance and corrupted

label problems where only a small amount of

clean validation data is available.

1. Introduction

Deep neural networks (DNNs) have been widely used for

machine learning applications due to their powerful capacity

for modeling complex input patterns. Despite their success,

it has been shown that DNNs are prone to training set

biases, i.e. the training set is drawn from a joint distribution

p(x, y) that is different from the distribution p(xv, yv) of the

evaluation set. This distribution mismatch could have many
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different forms. Class imbalance in the training set is a very

common example. In applications such as object detection

in the context of autonomous driving, the vast majority

of the training data is composed of standard vehicles but

models also need to recognize rarely seen classes such as

emergency vehicles or animals with very high accuracy.

This will sometime lead to biased training models that do

not perform well in practice.

Another popular type of training set bias is label noise.

To train a reasonable supervised deep model, we ideally

need a large dataset with high-quality labels, which require

many passes of expensive human quality assurance (QA).

Although coarse labels are cheap and of high availability,

the presence of noise will hurt the model performance, e.g.

Zhang et al. (2017) has shown that a standard CNN can

fit any ratio of label flipping noise in the training set and

eventually leads to poor generalization performance.

Training set biases and misspecification can sometimes be

addressed with dataset resampling (Chawla et al., 2002), i.e.

choosing the correct proportion of labels to train a network

on, or more generally by assigning a weight to each example

and minimizing a weighted training loss. The example

weights are typically calculated based on the training loss,

as in many classical algorithms such as AdaBoost (Freund

& Schapire, 1997), hard negative mining (Malisiewicz et al.,

2011), self-paced learning (Kumar et al., 2010), and other

more recent work (Chang et al., 2017; Jiang et al., 2017).

However, there exist two contradicting ideas in training

loss based approaches. In noisy label problems, we prefer

examples with smaller training losses as they are more

likely to be clean images; yet in class imbalance problems,

algorithms such as hard negative mining (Malisiewicz et al.,

2011) prioritize examples with higher training loss since

they are more likely to be the minority class. In cases when

the training set is both imbalanced and noisy, these existing

methods would have the wrong model assumptions. In fact,

without a proper definition of an unbiased test set, solving

the training set bias problem is inherently ill-defined. As the

model cannot distinguish the right from the wrong, stronger

regularization can usually work surprisingly well in certain

synthetic noise settings. Here we argue that in order to learn

general forms of training set biases, it is necessary to have

a small unbiased validation to guide training. It is actually
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not uncommon to construct a dataset with two parts - one

relatively small but very accurately labeled, and another

massive but coarsely labeled. Coarse labels can come from

inexpensive crowdsourcing services or weakly supervised

data (Cordts et al., 2016; Russakovsky et al., 2015; Chen &

Gupta, 2015).

Different from existing training loss based approaches, we

follow a meta-learning paradigm and model the most basic

assumption instead: the best example weighting should

minimize the loss of a set of unbiased clean validation

examples that are consistent with the evaluation procedure.

Traditionally, validation is performed at the end of training,

which can be prohibitively expensive if we treat the example

weights as some hyperparameters to optimize; to circumvent

this, we perform validation at every training iteration to

dynamically determine the example weights of the current

batch. Towards this goal, we propose an online reweighting

method that leverages an additional small validation set

and adaptively assigns importance weights to examples in

every iteration. We experiment with both class imbalance

and corrupted label problems and find that our approach

significantly increases the robustness to training set biases.

2. Related Work

The idea of weighting each training example has been well

studied in the literature. Importance sampling (Kahn &

Marshall, 1953), a classical method in statistics, assigns

weights to samples in order to match one distribution to

another. Boosting algorithms such as AdaBoost (Freund &

Schapire, 1997), select harder examples to train subsequent

classifiers. Similarly, hard example mining (Malisiewicz

et al., 2011), downsamples the majority class and exploits

the most difficult examples. Focal loss (Lin et al., 2017) adds

a soft weighting scheme that emphasizes harder examples.

Hard examples are not always preferred in the presence

of outliers and noise processes. Robust loss estimators

typically downweigh examples with high loss. In self-

paced learning (Kumar et al., 2010), example weights

are obtained through optimizing the weighted training

loss encouraging learning easier examples first. In each

step, the learning algorithm jointly solves a mixed integer

program that iterates optimizing over model parameters and

binary example weights. Various regularization terms on

the example weights have since been proposed to prevent

overfitting and trivial solutions of assigning weights to be all

zeros (Kumar et al., 2010; Ma et al., 2017; Jiang et al., 2015).

Wang et al. (2017) proposed a Bayesian method that infers

the example weights as latent variables. More recently,

Jiang et al. (2017) proposed to use a meta-learning LSTM

to output the weights of the examples based on the training

loss. Reweighting examples is also related to curriculum

learning (Bengio et al., 2009), where the model reweights

among many available tasks. Similar to self-paced learning,

typically it is beneficial to start with easier examples.

One crucial advantage of reweighting examples is robust-

ness against training set bias. There has also been a

multitude of prior studies on class imbalance problems,

including using dataset resampling (Chawla et al., 2002;

Dong et al., 2017), cost-sensitive weighting (Ting, 2000;

Khan et al., 2015), and structured margin based objectives

(Huang et al., 2016). Meanwhile, the noisy label problem

has been thoroughly studied by the learning theory commu-

nity (Natarajan et al., 2013; Angluin & Laird, 1988) and

practical methods have also been proposed (Reed et al.,

2014; Sukhbaatar & Fergus, 2014; Xiao et al., 2015; Azadi

et al., 2016; Goldberger & Ben-Reuven, 2017; Li et al.,

2017; Jiang et al., 2017; Vahdat, 2017; Hendrycks et al.,

2018). In addition to corrupted data, Koh & Liang (2017);

Muñoz-González et al. (2017) demonstrate the possibility

of a dataset adversarial attack (i.e. dataset poisoning).

Our method improves the training objective through a

weighted loss rather than an average loss and is an in-

stantiation of meta-learning (Thrun & Pratt, 1998; Lake

et al., 2017; Andrychowicz et al., 2016), i.e. learning to

learn better. Using validation loss as the meta-objective

has been explored in recent meta-learning literature for

few-shot learning (Ravi & Larochelle, 2017; Ren et al.,

2018; Lorraine & Duvenaud, 2018), where only a handful

of examples are available for each class. Our algorithm

also resembles MAML (Finn et al., 2017) by taking one

gradient descent step on the meta-objective for each iteration.

However, different from these meta-learning approaches,

our reweighting method does not have any additional hyper-

parameters and circumvents an expensive offline training

stage. Hence, our method can work in an online fashion

during regular training.

3. Learning to Reweight Examples

In this section, we derive our model from a meta-learning

objective towards an online approximation that can fit

into any regular supervised training. We give a practical

implementation suitable for any deep network type and

provide theoretical guarantees under mild conditions that

our algorithm has a convergence rate of O(1/ǫ2). Note that

this is the same as that of stochastic gradient descent (SGD).

3.1. From a meta-learning objective to an online

approximation

Let (x, y) be an input-target pair, and {(xi, yi), 1 ≤ i ≤ N}
be the training set. We assume that there is a small unbiased

and clean validation set {(xv
i , y

v
i ), 1 ≤ i ≤M}, and M ≪

N . Hereafter, we will use superscript v to denote validation

set and subscript i to denote the ith data. We also assume
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that the training set contains the validation set; otherwise,

we can always add this small validation set into the training

set and leverage more information during training.

Let Φ(x, θ) be our neural network model, and θ be the

model parameters. We consider a loss function C(ŷ, y) to

minimize during training, where ŷ = Φ(x, θ).

In standard training, we aim to minimize the expected loss

for the training set: 1
N

∑N
i=1 C(ŷi, yi) = 1

N

∑N
i=1 fi(θ),

where each input example is weighted equally, and fi(θ)
stands for the loss function associating with data xi. Here

we aim to learn a reweighting of the inputs, where we

minimize a weighted loss:

θ∗(w) = arg min
θ

N
∑

i=1

wifi(θ), (1)

with wi unknown upon beginning. Note that {wi}Ni=1 can

be understood as training hyperparameters, and the optimal

selection of w is based on its validation performance:

w∗ = arg min
w,w≥0

1

M

M
∑

i=1

fv
i (θ

∗(w)). (2)

It is necessary that wi ≥ 0 for all i, since minimizing the

negative training loss can usually result in unstable behavior.

Online approximation Calculating the optimal wi re-

quires two nested loops of optimization, and every single

loop can be very expensive. The motivation of our approach

is to adapt online w through a single optimization loop. For

each training iteration, we inspect the descent direction

of some training examples locally on the training loss

surface and reweight them according to their similarity to

the descent direction of the validation loss surface.

For most training of deep neural networks, SGD or its

variants are used to optimize such loss functions. At

every step t of training, a mini-batch of training examples

{(xi, yi), 1 ≤ i ≤ n} is sampled, where n is the mini-batch

size, n≪ N . Then the parameters are adjusted according to

the descent direction of the expected loss on the mini-batch.

Let’s consider vanilla SGD:

θt+1 = θt − α∇
(

1

n

n
∑

i=1

fi(θt)

)

, (3)

where α is the step size.

We want to understand what would be the impact of training

example i towards the performance of the validation set at

training step t. Following a similar analysis to Koh & Liang

(2017), we consider perturbing the weighting by ǫi for each

training example in the mini- batch,

fi,ǫ(θ) = ǫifi(θ), (4)

θ̂t+1(ǫ) = θt − α∇
n
∑

i=1

fi,ǫ(θ)
∣

∣

∣

θ=θt
. (5)

We can then look for the optimal ǫ∗ that minimizes the

validation loss fv locally at step t:

ǫ∗t = arg min
ǫ

1

M

M
∑

i=1

fv
i (θt+1(ǫ)). (6)

Unfortunately, this can still be quite time-consuming. To get

a cheap estimate of wi at step t, we take a single gradient

descent step on a mini-batch of validation samples wrt. ǫt,
and then rectify the output to get a non-negative weighting:

ui,t = −η
∂

∂ǫi,t

1

m

m
∑

j=1

fv
j (θt+1(ǫ))

∣

∣

∣

ǫi,t=0
, (7)

w̃i,t = max(ui,t, 0). (8)

where η is the descent step size on ǫ.

To match the original training step size, in practice, we

can consider normalizing the weights of all examples in a

training batch so that they sum up to one. In other words, we

choose to have a hard constraint within the set {w : ‖w‖1 =
1} ∪ {0}.

wi,t =
w̃i,t

(
∑

j w̃j,t) + δ(
∑

j w̃j,t)
, (9)

where δ(·) is to prevent the degenerate case when all wi’s

in a mini-batch are zeros, i.e. δ(a) = 1 if a = 0, and equals

to 0 otherwise. Without the batch-normalization step, it is

possible that the algorithm modifies its effective learning

rate of the training progress, and our one-step look ahead

may be too conservative in terms of the choice of learning

rate (Wu et al., 2018). Moreover, with batch normalization,

we effectively cancel the meta learning rate parameter η.

3.2. Example: learning to reweight examples in a

multi-layer perceptron network

In this section, we study how to compute wi,t in a multi-

layer perceptron (MLP) network. One of the core steps is to

compute the gradients of the validation loss wrt. the local

perturbation ǫ, We can consider a multi-layered network

where we have parameters for each layer θ = {θl}Ll=1,

and at every layer, we first compute zl the pre-activation,

a weighted sum of inputs to the layer, and afterwards we

apply a non-linear activation function σ to obtain z̃l the

post-activation:

zl = θ⊤l z̃l−1, (10)

z̃l = σ(zl). (11)
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Figure 1. Computation graph of our algorithm in a deep neural

network, which can be efficiently implemented using second order

automatic differentiation.

During backpropagation, let gl be the gradients of loss wrt.

zl, and the gradients wrt. θl is given by z̃l−1g
⊤
l . We can

further express the gradients towards ǫ as a sum of local dot

products.

∂

∂ǫi,t
E

[

fv(θt+1(ǫ))
∣

∣

∣

ǫi,t=0

]

∝− 1

m

m
∑

j=1

∂fv
j (θ)

∂θ

∣

∣

∣

⊤

θ=θt

∂fi(θ)

∂θ

∣

∣

∣

θ=θt

=− 1

m

m
∑

j=1

L
∑

l=1

(z̃vj,l−1
⊤z̃i,l−1)(g

v
j,l

⊤gi,l).

(12)

Detailed derivations can be found in Supplementary Ma-

terials. Eq. 12 suggests that the meta-gradient on ǫ is

composed of the sum of the products of two terms: z⊤zv

and g⊤gv. The first dot product computes the similarity

between the training and validation inputs to the layer, while

the second computes the similarity between the training and

validation gradient directions. In other words, suppose that

a pair of training and validation examples are very similar,

and they also provide similar gradient directions, then this

training example is helpful and should be up-weighted, and

conversely, if they provide opposite gradient directions, this

training example is harmful and should be downweighed.

3.3. Implementation using automatic differentiation

In an MLP and a CNN, the unnormalized weights can

be calculated based on the sum of the correlations of

layerwise activation gradients and input activations. In more

general networks, we can leverage automatic differentiation

techniques to compute the gradient of the validation loss

wrt. the example weights of the current batch. As

shown in Figure 1, to get the gradients of the example

weights, one needs to first unroll the gradient graph of

the training batch, and then use backward-on-backward

automatic differentiation to take a second order gradient

pass (see Step 5 in Figure 1). We list detailed step-by-

step pseudo-code in Algorithm 1. This implementation can

be generalized to any deep learning architectures and can

be very easily implemented using popular deep learning

frameworks such as TensorFlow (Abadi et al., 2016).

Algorithm 1 Learning to Reweight Examples using Auto-

matic Differentiation

Require: θ0, Df , Dg , n, m
Ensure: θT

1: for t = 0 ... T − 1 do

2: {Xf , yf} ← SampleMiniBatch(Df , n)

3: {Xg, yg} ← SampleMiniBatch(Dg , m)

4: ŷf ← Forward(Xf , yf , θt)
5: ǫ← 0; lf ←

∑n
i=1 ǫiC(yf,i, ŷf,i)

6: ∇θt ← BackwardAD(lf , θt)

7: θ̂t ← θt − α∇θt
8: ŷg ← Forward(Xg, yg, θ̂t)
9: lg ← 1

m

∑m
i=1 C(yg,i, ŷg,i)

10: ∇ǫ← BackwardAD(lg, ǫ)
11: w̃ ← max(−∇ǫ, 0); w ← w̃∑

j
w̃+δ(

∑
j
w̃)

12: l̂f ←
∑n

i=1 wiC(yi, ŷf,i)

13: ∇θt ← BackwardAD(l̂f , θt)
14: θt+1 ← OptimizerStep(θt,∇θt)
15: end for

Training time Our automatic reweighting method will

introduce a constant factor of overhead. First, it requires two

full forward and backward passes of the network on training

and validation respectively, and then another backward on

backward pass (Step 5 in Figure 1), to get the gradients to the

example weights, and finally a backward pass to minimize

the reweighted objective. In modern networks, a backward-

on-backward pass usually takes about the same time as a

forward pass, and therefore compared to regular training,

our method needs approximately 3× training time; it is

also possible to reduce the batch size of the validation pass

for speedup. We expect that it is worthwhile to spend the

extra time to avoid the irritation of choosing early stopping,

finetuning schedules, and other hyperparameters.

3.4. Analysis: convergence of the reweighted training

Convergence results of SGD based optimization methods

are well-known (Reddi et al., 2016). However it is still

meaningful to establish a convergence result about our

method since it involves optimization of two-level objectives

(Eq. 1, 2) rather than one, and we further make some first-

order approximation by introducing Eq. 7. Here, we show

theoretically that our method converges to the critical point

of the validation loss function under some mild conditions,

and we also give its convergence rate. More detailed proofs

can be found in the Supplementary Materials.
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Definition 1. A function f(x) : R
d → R is said to be

Lipschitz-smooth with constant L if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ R
d.

Definition 2. f(x) has σ-bounded gradients if ‖∇f(x)‖ ≤
σ for all x ∈ R

d.

In most real-world cases, the high-quality validation set is

really small, and thus we could set the mini-batch size m to

be the same as the size of the validation set M . Under this

condition, the following lemma shows that our algorithm

always converges to a critical point of the validation loss.

However, our method is not equivalent to training a model

only on this small validation set. Because directly training a

model on a small validation set will lead to severe overfitting

issues. On the contrary, our method can leverage useful

information from a larger training set, and still converge

to an appropriate distribution favored by this clean and

balanced validation dataset. This helps both generalization

and robustness to biases in the training set, which will be

shown in our experiments.

Lemma 1. Suppose the validation loss function is Lipschitz-

smooth with constant L, and the train loss function fi
of training data xi have σ-bounded gradients. Let the

learning rate αt satisfies αt ≤ 2n
Lσ2 , where n is the training

batch size. Then, following our algorithm, the validation

loss always monotonically decreases for any sequence of

training batches, namely,

G(θt+1) ≤ G(θt), (13)

where G(θ) is the total validation loss

G(θ) =
1

M

M
∑

i=1

fv
i (θt+1(ǫ)). (14)

Furthermore, in expectation, the equality in Eq. 13 holds

only when the gradient of validation loss becomes 0 at some

time step t, namely Et [G(θt+1)] = G(θt) if and only if

∇G(θt) = 0, where the expectation is taking over possible

training batches at time step t.

Moreover, we can prove the convergence rate of our method

to be O(1/ǫ2).

Theorem 2. Suppose G, fi and αt satisfy the

aforementioned conditions, then Algorithm 1 achieves

E
[

‖∇G(θt)‖2
]

≤ ǫ in O(1/ǫ2) steps. More specifically,

min
0<t<T

E
[

‖∇G(θt)‖2
]

≤ C√
T
, (15)

where C is some constant independent of the convergence

process.

4. Experiments

To test the effectiveness of our reweighting algorithm, we

designed both class imbalance and noisy label settings, and

a combination of both, on standard MNIST and CIFAR

benchmarks for image classification using deep CNNs.

4.1. MNIST data imbalance experiments

We use the standard MNIST handwritten digit classification

dataset and subsample the dataset to generate a class

imbalance binary classification task. We select a total

of 5,000 images of size 28×28 on class 4 and 9, where

9 dominates the training data distribution. We train a

standard LeNet on this task and we compare our method

with a suite of commonly used tricks for class imbalance:

1) PROPORTION weights each example by the inverse

frequency 2) RESAMPLE samples a class-balanced mini-

batch for each iteration 3) HARD MINING selects the highest

loss examples from the majority class and 4) RANDOM is a

random example weight baseline that assigns weights based

on a rectified Gaussian distribution:

wrnd
i =

max(zi, 0)
∑

i max(zi, 0)
, where zi ∼ N (0, 1). (16)

To make sure that our method does not have the privilege of

training on more data, we split the balanced validation set

of 10 images directly from the training set. The network is

trained with SGD with a learning rate of 1e-3 and mini-batch

size of 100 for a total of 8,000 steps.

Figure 2 plots the test error rate across various imbalance

ratios averaged from 10 runs with random splits. Note

that our method significantly outperforms all the baselines.

With class imbalance ratio of 200:1, our method only

reports a small increase of error rate around 2%, whereas

other methods suffer terribly under this setting. Compared

with resampling and hard negative mining baselines, our

approach does not throw away samples based on its class

or training loss - as long as a sample is helpful towards the

validation loss, it will be included as a part of the training

loss.

4.2. CIFAR noisy label experiments

Reweighting algorithm can also be useful on datasets where

the labels are noisy. We study two settings of label noise

here:

• UNIFORMFLIP: All label classes can uniformly flip to

any other label classes, which is the most studied in

the literature.

• BACKGROUNDFLIP: All label classes can flip to a

single background class. This noise setting is very

realistic. For instance, human annotators may not

have recognized all the positive instances, while the
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Figure 2. MNIST 4-9 binary classification error using a LeNet on

imbalanced classes. Our method uses a small balanced validation

split of 10 examples.

rest remain in the background class. This is also

a combination of label imbalance and label noise

since the background class usually dominates the label

distribution.

We compare our method with prior work on the noisy label

problem.

• REED, proposed by Reed et al. (2014), is a bootstrap-

ping technique where the training target is a convex

combination of the model prediction and the label.

• S-MODEL, proposed by Goldberger & Ben-Reuven

(2017), adds a fully connected softmax layer after the

regular classification output layer to model the noise

transition matrix.

• MENTORNET, proposed by Jiang et al. (2017), is

an RNN-based meta-learning model that takes in a

sequence of loss values and outputs the example

weights. We compare numbers reported in their paper

with a base model that achieves similar test accuracy

under 0% noise.

In addition, we propose two simple baselines: 1) RANDOM,

which assigns weights according to a rectified Gaussian (see

Eq. 16); 2) WEIGHTED, designed for BACKGROUNDFLIP,

where the model knows the oracle noise ratio for each

class and reweights the training loss proportional to the

percentage of clean images of that label class.

Clean validation set For UNIFORMFLIP, we use 1,000

clean images in the validation set; for BACKGROUNDFLIP,

we use 10 clean images per label class. Since our method

uses information from the clean validation, for a fair

comparison, we conduct an additional finetuning on the

clean data based on the pre-trained baselines. We also study

the effect on the size of the clean validation set in an ablation

study.

Hyper-validation set For monitoring training progress

and tuning baseline hyperparameters, we split out another

Table 1. CIFAR UNIFORMFLIP under 40% noise ratio using a

WideResNet-28-10 model. Test accuracy shown in percentage.

Top rows use only noisy data, and bottom uses additional 1000

clean images. “FT” denotes fine-tuning on clean data.

MODEL CIFAR-10 CIFAR-100

BASELINE 67.97 ± 0.62 50.66 ± 0.24
REED-HARD 69.66 ± 1.21 51.34 ± 0.17

S-MODEL 70.64 ± 3.09 49.10 ± 0.58
MENTORNET 76.6 56.9

RANDOM 86.06 ± 0.32. 58.01 ± 0.37

USING 1,000 CLEAN IMAGES

CLEAN ONLY 46.64 ± 3.90 9.94 ± 0.82
BASELINE +FT 78.66 ± 0.44 54.52 ± 0.40

MENTORNET +FT 78 59
RANDOM +FT 86.55 ± 0.24 58.54 ± 0.52

OURS 86.92 ± 0.19 61.34 ± 2.06

5,000 hyper-validation set from the 50,000 training images.

We also corrupt the hyper-validation set with the same noise

type.

Experimental details For REED model, we use the best

β reported in Reed et al. (2014) (β = 0.8 for hard

bootstrapping and β = 0.95 for soft bootstrapping). For

the S-MODEL, we explore two versions to initialize the

transition weights: 1) a smoothed identity matrix; 2) in

background flip experiments we consider initializing the

transition matrix with the confusion matrix of a pre-trained

baseline model (S-MODEL +CONF). We find baselines

can easily overfit the training noise, and therefore we also

study early stopped versions of the baselines to provide a

stronger comparison. In contrast, we find early stopping not

necessary for our method.

To make our results comparable with the ones reported

in MENTORNET and to save computation time, we ex-

change their Wide ResNet-101-10 with a Wide ResNet-

28-10 (WRN-28-10) (Zagoruyko & Komodakis, 2016)

with dropout 0.3 as our base model in the UNIFORMFLIP

experiments. We find that test accuracy differences between

the two base models are within 0.5% on CIFAR datasets

under 0% noise. In the BACKGROUNDFLIP experiments,

we use a ResNet-32 (He et al., 2016) as our base model.

We train the models with SGD with momentum, at an initial

learning rate 0.1 and a momentum 0.9 with mini-batch size

100. For ResNet-32 models, the learning rate decays×0.1 at

40K and 60K steps, for a total of 80K steps. For WRN and

early stopped versions of ResNet-32 models, the learning

rate decays at 40K and 50K steps, for a total of 60K steps.

Under regular 0% noise settings, our base ResNet-32 gets

92.5% and 68.1% classification accuracy on CIFAR-10 and

100, and the WRN-28-10 gets 95.5% and 78.2%. For the

finetuning stage, we run extra 5K steps of training on the
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Table 2. CIFAR BACKGROUNDFLIP under 40% noise ratio using

a ResNet-32 model. Test accuracy shown in percentage. Top

rows use only noisy data, and bottom rows use additional 10 clean

images per class. “+ES” denotes early stopping; “FT” denotes

fine-tuning.

MODEL CIFAR-10 CIFAR-100

BASELINE 59.54 ± 2.16 37.82 ± 0.69
BASELINE +ES 64.96 ± 1.19 39.08 ± 0.65

RANDOM 69.51 ± 1.36 36.56 ± 0.44
WEIGHTED 79.17 ± 1.36 36.56 ± 0.44

REED SOFT +ES 63.47 ± 1.05 38.44 ± 0.90
REED HARD +ES 65.22 ± 1.06 39.03 ± 0.55

S-MODEL 58.60 ± 2.33 37.02 ± 0.34
S-MODEL +CONF 68.93 ± 1.09 46.72 ± 1.87

S-MODEL +CONF +ES 79.24 ± 0.56 54.50 ± 2.51

USING 10 CLEAN IMAGES PER CLASS

CLEAN ONLY 15.90 ± 3.32 8.06 ± 0.76
BASELINE +FT 82.82 ± 0.93 54.23 ± 1.75

BASELINE +ES +FT 85.19 ± 0.46 55.22 ± 1.40
WEIGHTED +FT 85.98 ± 0.47 53.99 ± 1.62

S-MODEL +CONF +FT 81.90 ± 0.85 53.11 ± 1.33
S-MODEL +CONF +ES +FT 85.86 ± 0.63 55.75 ± 1.26

OURS 86.73 ± 0.48 59.30 ± 0.60

limited clean data.

We report the average test accuracy for 5 different random

splits of clean and noisy labels, with 95% confidence

interval in Table 1 and 2. The background classes for the 5

trials are [0, 1, 3, 5, 7] (CIFAR-10) and [7, 12, 41, 62, 85]

(CIFAR-100).

4.3. Results and Discussion

The first result that draws our attention is that “Random” per-

forms surprisingly well on the UNIFORMFLIP benchmark,

outperforming all historical methods that we compared.

Given that its performance is comparable with Baseline

on BACKGROUNDFLIP and MNIST class imbalance, we

hypothesize that random example weights act as a strong

regularizer and under which the learning objective on

UNIFORMFLIP is still consistent.

Regardless of the strong baseline, our method ranks the top

on both UNIFORMFLIP and BACKGROUNDFLIP, showing

our method is less affected by the changes in the noise type.

On CIFAR-100, our method wins more than 3% compared

to the state-of-the-art method.

Understanding the reweighting mechanism It is bene-

ficial to understand how our reweighting algorithm con-

tributes to learning more robust models during training.

First, we use a pre-trained model (trained at half of the

total iterations without learning rate decay) and measure the

example weight distribution of a randomly sampled batch

of validation images, which the model has never seen. As

shown in the left figure of Figure 3, our model correctly
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Figure 3. Example weights distribution on BACKGROUNDFLIP.

Left: a hyper-validation batch, with randomly flipped background

noises. Right: a hyper-validation batch containing only on a single

label class, with flipped background noises, averaged across all

non-background classes.
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Figure 4. Effect of the number of clean imaged used, on CIFAR-10

with 40% of data flipped to label 3. “ES” denotes early stopping.

pushes most noisy images to zero weights. Secondly,

we conditioned the input mini-batch to be a single non-

background class and randomly flip 40% of the images to

the background, and we would like to see how well our

model can distinguish clean and noisy images. As shown in

Figure 3 right, the model is able to reliably detect images

that are flipped to the background class.

Robustness to overfitting noise Throughout experimen-

tation, we find baseline models can easily overfit to the noise

in the training set. For example, shown in Table 2, applying

early stopping (“ES”) helps the classification performance of

“S-Model” by over 10% on CIFAR-10. Figure 6 compares

the final confusion matrices of the baseline and the proposed

algorithm, where a large proportion of noise transition

probability is cleared in the final prediction. Figure 7 shows

training curves on the BACKGROUNDFLIP experiments.

After the first learning rate decay, both “Baseline” and “S-

Model” quickly degrade their validation performance due

to overfitting, while our model remains the same validation

accuracy until termination. Note that here “S-Model” knows

the oracle noise ratio in each class, and this information is
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Figure 5. Model test accuracy on imbalanced noisy CIFAR experi-

ments across various noise levels using a base ResNet-32 model.

“ES” denotes early stopping, and “FT” denotes finetuning.
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Figure 6. Confusion matrices on CIFAR-10 UNIFORMFLIP (top)

and BACKGROUNDFLIP (bottom)

not available in our method.

Impact of the noise level We would like to investigate

how strongly our method can perform on a variety of noise

levels. Shown in Figure 5, our method only drops 6%

accuracy when the noise ratio increased from 0% to 50%;
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Figure 7. Training curve of a ResNet-32 on CIFAR-10 BACK-

GROUNDFLIP under 40% noise ratio. Solid lines denote validation

accuracy and dotted lines denote training. Our method is less prone

to label noise overfitting.

whereas the baseline has dropped more than 40%. At 0%

noise, our method only slightly underperforms baseline.

This is reasonable since we are optimizing on the validation

set, which is strictly a subset of the full training set, and

therefore suffers from its own subsample bias.

Size of the clean validation set When the size of the

clean validation set grows larger, fine-tuning on the val-

idation set will be a reasonble approach. Here, we

make an attempt to explore the tradeoff and understand

when fine-tuning becomes beneficial. Figure 4 plots the

classification performance when we varied the size of the

clean validation on BACKGROUNDFLIP. Surprisingly, using

15 validation images for all classes only results in a 2% drop

in performance, and the overall classification performance

does not grow after having more than 100 validation images.

In comparison, we observe a significant drop in performance

when only fine-tuning on these 15 validation images for the

baselines, and the performance catches up around using

1,000 validation images (100 per class). This phenomenon

suggests that in our method the clean validation acts more

like a regularizer rather than a data source for parameter fine-

tuning, and potentially our method can be complementary

with fine-tuning based method when the size of the clean

set grows larger.

5. Conclusion

In this work, we propose an online meta-learning algorithm

for reweighting training examples and training more robust

deep learning models. While various types of training set

biases exist and manually designed reweighting objectives

have their own bias, our automatic reweighting algorithm

shows superior performance dealing with class imbalance,

noisy labels, and both. Our method can be directly applied

to any deep learning architecture and is expected to train

end-to-end without any additional hyperparameter search.

Validating on every training step is a novel setting and we

show that it has links with model regularization, which can

be a fruitful future research direction.
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