
Learning to Run Heuristics in Tree Search
Elias B. Khalil1, Bistra Dilkina∗1, George L. Nemhauser2, Shabbir Ahmed2, Yufen Shao3

1School of Computational Science & Engineering, Georgia Institute of Technology, Atlanta, GA, USA
2School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA

3ExxonMobil Upstream Research Company, Houston, TX, USA
{elias.khalil, bdilkina}@cc.gatech.edu, gn3@gatech.edu,

shabbir.ahmed@isye.gatech.edu, yufen.shao@exxonmobil.com

Abstract

“Primal heuristics” are a key contributor to the
improved performance of exact branch-and-bound
solvers for combinatorial optimization and integer
programming. Perhaps the most crucial question
concerning primal heuristics is that of at which
nodes they should run, to which the typical answer
is via hard-coded rules or fixed solver parameters
tuned, offline, by trial-and-error. Alternatively, a
heuristic should be run when it is most likely to
succeed, based on the problem instance’s charac-
teristics, the state of the search, etc. In this work,
we study the problem of deciding at which node
a heuristic should be run, such that the overall (pri-
mal) performance of the solver is optimized. To our
knowledge, this is the first attempt at formalizing
and systematically addressing this problem. Cen-
tral to our approach is the use of Machine Learning
(ML) for predicting whether a heuristic will suc-
ceed at a given node. We give a theoretical frame-
work for analyzing this decision-making process in
a simplified setting, propose a ML approach for
modeling heuristic success likelihood, and design
practical rules that leverage the ML models to dy-
namically decide whether to run a heuristic at each
node of the search tree. Experimentally, our ap-
proach improves the primal performance of a state-
of-the-art Mixed Integer Programming solver by up
to 6% on a set of benchmark instances, and by up to
60% on a family of hard Independent Set instances.

1 Introduction
Integer programming and combinatorial optimization are
powerful tools that can model a myriad of complex decision-
making tasks. Applications of Mixed Integer Programming
(MIP) have thus spanned domains as diverse as aircraft rout-
ing [Barnhart et al., 1998], wildlife conservation [Dilkina
and Gomes, 2010], sports scheduling [Nemhauser and Trick,
1998], dose distribution [Lee et al., 1999] and kidney ex-
change [Abraham et al., 2007], to mention a few. As such,

∗Corresponding author, bdilkina@cc.gatech.edu

improving the performance of MIP solvers can have a dra-
matic impact across various domains. A recent trend that has
shown strong promise for improving optimization is centered
around integrating artificial intelligence and machine learn-
ing (ML) within solvers. For instance, deep learning can
help tune gradient descent [Andrychowicz et al., 2016], re-
inforcement learning is used for job-shop scheduling [Zhang
and Dietterich, 1995], and classification is used for selecting
an algorithm for QBF subproblems [Samulowitz and Memi-
sevic, 2007]. In the context of MIP, ML has been used to
find good parameter configurations for a solver [Hutter et al.,
2009], design improved node [Sabharwal et al., 2012] or vari-
able [Khalil et al., 2016] selection strategies, or detect decom-
posable problem structure [Kruber et al., 2016]. In the same
spirit of augmenting exact solvers with ML, we propose a
framework for learning when to run heuristics during branch-
and-bound tree search, a task whose importance we motivate
shortly.
The Primal Side of Integer Programming. There are two
sides to any constrained optimization problem. On the one
hand, we want to find feasible solutions to the problem in-
stance at hand. On the other hand, we would like to prove the
optimality of the best feasible solution found, i.e. to guarantee
that no feasible solution with strictly better objective function
value exists. These two sides are particularly prominent in
MIP, the study of optimization problems with integer-valued
variables. To use the terminology of MIP, the primal side
refers to the quest for good feasible solutions, whereas the
dual side refers to the search for a proof of optimality.

While proving optimality is a key trait of exact solvers for
MIP, finding quality feasible solutions quickly is certainly
at least as crucial. For example, consider a real-world MIP
model that a company solves on a regular (e.g. daily) ba-
sis in order to plan its operations. When state-of-the-art MIP
solvers require many hours to solve an instance to optimality,
the user will expect good feasible solutions to be found much
earlier in the solving process, so that they are able to act upon
them and address their business needs promptly. An example
of such a challenging real-world scenario is that of the mar-
itime inventory routing problem (MIRP), described in [Papa-
georgiou et al., 2014]. For the 28 MIRP instances, the solver
Gurobi, with default settings (including parallel processing)
and no warm-starting, is not capable of finding any feasible
solutions for any of the instances in 24 hours [Papageorgiou et

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

659

al., 2014]. The delay in finding feasible solutions affects the
decision-maker’s ability to plan ahead and compare options
before deployment.
The Impact of Primal Heuristics. In this work, we focus
on the primal side of integer programming. We do note,
however, that finding better feasible solutions while solving
a MIP with branch-and-bound speeds up proving optimality
by pruning nodes with worse lower bounds, assuming a mini-
mization problem. The classical way by which the MIP solver
finds feasible solutions is through linear programming (LP)
relaxations: in a branch-and-bound search, after branching
on a subset of the integer variables of a MIP instance, solving
the LP relaxation of the restricted sub-problem may result in
an integer-feasible solution.

However, the MIP community has recently realized the
potential for combining primal heuristics with exact branch-
and-bound search to improve solution finding. Primal heuris-
tics are incomplete, bounded-time procedures that attempt to
find a good feasible solution. Primal heuristics may be used
as standalone methods, taking in a MIP instance as input, and
attempting to find good feasible solutions, or as sub-routines
inside branch-and-bound, where they are called periodically
during the search. In this work, we focus on the latter, which
we will expand on in the following paragraph.

A number of computational studies, with different MIP
solvers, have demonstrated the large impact that primal
heuristics have on branch-and-bound. An interesting finding
reported in [Berthold, 2006] is that on 97 easy benchmark in-
stances, the LP relaxation finds an optimal solution 59 times,
whereas on 26 hard instances it finds an optimal solution only
3 times; for the remaining instances, one of the primal heuris-
tics of the SCIP solver used by Berthold finds an optimal so-
lution. Berthold’s results show that the investment in devel-
oping effective primal heuristics has brought about significant
returns, most notably for harder instances. Even stronger re-
sults confirming the impact of heuristics on the solver CPLEX
are discussed in [Achterberg and Wunderling, 2013].
Our Problem Setting. Despite the success of primal heuris-
tics within MIP solving, there remains a number of central
issues pertaining to when and what heuristics should be run
during the search. For instance, in SCIP (a state-of-the-art
academic MIP solver), 43 primal heuristics have been imple-
mented. In the default settings of the solver, some heuris-
tics are turned off, others run very frequently (e.g. at every
node), while yet another subset runs occasionally (e.g. ev-
ery 10 or 20 nodes). Such rigid rules for running heuris-
tics are static, instance-oblivious, context-independent, and
are unable to adapt to the state of the search. Additionally,
the algorithmic differences between primal heuristics result
in substantial variation in performance. For instance, diving
and neighborhood search heuristics are much more compu-
tationally expensive than their rounding counterparts, but are
generally more likely to find quality feasible solutions.

Towards establishing a dynamic, data-driven approach to
the use of primal heuristics in tree search, we address the
problem of decision-making for primal heuristics. Assume
that P (t) is some primal performance measure, whose value
at time point t indicates how successful the solver has been on
the primal side up to t; the choice of the performance measure

P (.) will be discussed in detail in Section 2.2. In its simplest
form, a formulation of the problem addressed here is:

Given a primal heuristic H , a branch-and-bound
solver with search tree T , a time cutoff tmax, find
the subset of nodes of T at which executing H
results in the best primal performance possible,
P (tmax).

To our knowledge, the systematic study of this problem is
new. By “systematic”, we mean that there is a well-defined
objective function P (tmax) to optimize, and a clear decision
space, namely executing H or not at each node. We refer
to a procedure that decides when to run a primal heuristic as
a primal policy. The proposed problem raises a number of
interesting questions that span online decision-making under
uncertainty and ML.

2 Definitions
2.1 Branch-and-Bound for MIP
Tree search is the de facto approach for solving Mixed Integer
Linear Programming (MIP) problems of the form:

z∗ = min{cTx|Ax 6 b, x ∈ Rn, xj ∈ Z ∀j ∈ I}.

The vectors in the set XMIP = {x ∈ Rn|Ax 6 b, xj ∈
Z ∀j ∈ I} are called feasible solutions. A feasible solution
x∗ ∈ XMIP is optimal if cTx∗ = z∗.

A MIP can be solved by Branch-and-Bound (B&B), a
tree search algorithm that divides the original MIP into sub-
problems organized in a binary tree. At each node of the tree,
an LP relaxation of the sub-problem is solved. If the resulting
solution xN of the LP relaxation at a node N is integral, then
it is also a feasible solution to the MIP, i.e. xN ∈ XMIP .
If such an integral solution has an objective value that is bet-
ter than the best one found so far, it is referred to as the in-
cumbent, maintaining that designation until a better solution
is found. Otherwise, the node is either pruned, if its lower
bound is greater than the incumbent’s value, or branched on,
resulting in two child nodes that are added to the queue of
nodes to be processed.

2.2 Primal Integral
Our goal is to improve the primal performance of tree search,
i.e. the quality of and the speed at which feasible solutions
are found. The primal integral is a primal performance crite-
rion for MIP that was introduced in [Achterberg et al., 2012]
to formally capture these desired characteristics, and that we
adopt as a main measure of primal performance.

Let x∗ denote an optimal (or best known) solution for a
MIP, and x̃ denote a feasible solution for the same MIP. The
primal gap γ ∈ [0, 1] of solution x̃ is defined as:

γ(x̃) :=


0, if |cTx∗| = |cT x̃| = 0

1, if cTx∗ · cT x̃ < 0
|cT x̃−cT x∗|

max {|cT x̃|,|cT x∗|} , otherwise.
(1)

Let tmax ∈ R≥0 be a limit on the solution time of
the B&B MIP solver. Then, the primal gap function

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

660

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Solving this node LP…

P
ri

m
al

 G
ap

 𝑝
(𝑡
)

Time

No incumbent at first

… gives 1st

incumbent

Running H at this node…

… gives 2nd

incumbent
OPT found

Primal
Integral
𝑷(𝒕𝒎𝒂𝒙)

Figure 1: An illustration of the primal integral.

p : [0, tmax] 7→ [0, 1] is defined as:

p(t) :=

{
1, if no incumbent is found until point t,
γ(x̃(t)), with x̃(t) the incumbent at point t.

It is easy to see that p(t) is a nonincreasing step function in
[0, 1] that changes whenever a new incumbent is found, and
takes on a value of zero the moment an optimal solution is
found – see Figure 1. The primal integral P (T) of a branch-
and-bound run until a point in time T ∈ [0, tmax] is defined
as:

P (T) :=

Inc+1∑
i=1

p(ti−1) · (ti − ti−1),

where Inc is the number of incumbents, ti ∈ [0, T] for
i ∈ 1, . . . , Inc are the points in time when a new incum-
bent is found, t0 = 0 and tInc+1 = T . A graphical illus-
tration of the primal integral is shown in Figure 1. Note that
the primal-dual integral is another metric that is defined sim-
ilarly to the primal integral, with γ(x̃, z

¯
) := cT x̃−z

¯max {|cT x̃|,|z
¯
|} ,

PD(T) :=
∑Chn

i=1 p(ti−1) · (ti − ti−1), Chn the time points
at which either the global lower bound z

¯
or upper bound cT x̃

changed, and p(ti−1) = γ(x̃(t), z
¯
(t)) (or 1 if either bound

is undefined). However, the primal-dual integral confounds
the primal and dual sides, and is thus less relevant for our
purposes.

Achterberg et al. suggest that the primal integral be used to
measure the progress on the primal side during B&B [Achter-
berg et al., 2012]. The smaller P (tmax) is, the better the in-
cumbent finding. As such, we will consider optimizing the
primal integral directly, by means of making good decisions
regarding whether a primal heuristic should be run at each
node or not.

3 Theoretical Analysis
3.1 Problem Formulation
Should heuristic H be run at a given node N? An answer to
this question must study the trade-off between the potential
benefit of finding a better feasible solution if H is run at N ,
and the cost associated with running H (including the risk of
failure). Running H at every node may be undesirable, as
H may run for a long period of time, during which the MIP
could be solved to optimality, irrespective of H . Thus, it is

crucial to choose the right set of nodes at which to runH . We
now give the first general formulation of the problem we call
“Primal Integral Optimization” (PIO):

(PIO) Given a primal heuristic H , a branch-and-
bound MIP solver with search tree T and a time
cut-off tmax, find the subset of nodes of T at which
executingH results in a primal integral P (tmax) of
minimum value.

The first step towards formalizing PIO lies in defining a sim-
ple, conceptual model of branch-and-bound, within which we
can analyze the complexity of PIO, and the theoretical perfor-
mance of approaches to solving it. We will distinguish two
main settings:

– the offline setting, where the search tree T is fixed and
known in advance, and PIO amounts to finding the best
subset of nodes to run H at in hindsight;

– the online setting, where one must sequentially decide, at
each node, whether H should be run, without any knowl-
edge of the remainder of the tree or search.

In practice, the online setting is more relevant as it is repre-
sentative of actual MIP solving. Thus, we will analyze online
decision-making algorithms next, and bound their worst-case
performance compared to an optimal solution obtained of-
fline, in hindsight. Note that such an offline solution is easy to
compute via dynamic programming if the B&B tree is known
and fixed in advance. We do not provide the details of the
offline algorithm, as it is not of practical interest.

Central to the algorithms that we analyze is the notion of an
oracle which, when queried at a given node, tells the online
algorithm whether heuristic H will find an incumbent or not.
We will analyze the performance of an online algorithm under
two different assumptions on the oracle’s behavior. In the first
setting, the oracle is assumed to be perfect, in that it returns
the correct answer (i.e. whether H will find an incumbent
or not) at every node at which it is queried. In the second
setting, the oracle is assumed to be faulty, making a mistake
with a given probability.

To see how this conceptual framework is tied to the pro-
posed ML approach to PIO, notice that an ML model of
heuristic success can be seen as a faulty oracle: the model
is likely to miss a few incumbents, or wrongly predict incum-
bents at some nodes. Since the heuristic is run at nodes during
B&B, any decision-making algorithm must act online, using
only information about the solving process up to the given
point in time. Our theoretical analysis aims at substantiating
the practical ML approach to PIO of Section 4.

3.2 Competitive Ratio under a Perfect Oracle
The online PIO problem is a challenging one, since decisions
regarding running H at a node must be made without any
knowledge of the remainder of the search tree, and the incum-
bents that may be found later by LP orH . As a first result, we
will analyze the following simple rule of thumb for deciding
whether to run a primal heuristic at a node: if the oracle says
that H can find an incumbent solution at node Ni, then run
H; otherwise, do not run H . We refer to this rule of thumb as
Run-When-Successful (RWS).

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

661

To analyze online algorithms, we resort to worst-case anal-
ysis using the competitive ratio [Albers, 2003]. Assume we
are given a sequence of “requests” σ (in our case, each re-
quest is a node at which we run H or not). Let A(σ) denote
the cost incurred by a deterministic online algorithm A, and
let OPT (σ) denote the cost incurred by an optimal offline
algorithm OPT . The algorithm A is called c-competitive if
there exists a constant a such that A(σ) ≤ c · OPT (σ) + a,
for ∀σ; c is the competitive ratio.

Theorem 1. RWS achieves a competitive ratio of

1 +
tH
tLP

with respect to the optimal offline solution, where tH , tLP

are the fixed running times of H and an LP relaxation solve,
respectively.

Proof. Let PRWS denote the primal integral value obtained
on an instance I using the RWS rule, and POPT the optimal
primal integral value for I . Assume the optimal primal policy
for heuristic H goes through n nodes before finding an opti-
mal solution to the MIP I . Notice that RWS will require at
most n nodes as well, since RWS guarantees that at any node,
its incumbent is the best possible up to that node. Let T RWS

H

be the set of time points at which RWS runsH , and T OPT
LP the

set of time points at which the optimal primal policy solves
an LP. Then, PRWS can be upper bounded as:

PRWS ≤ POPT +
∑

ti∈T RWS
H

p(ti) · tH .

The upper bound is valid because the worst RWS can do is run
for tH seconds multiple times and not improve the incumbent.
Dividing both sides of the above inequality by POPT , we
obtain:

PRWS

POPT
≤ 1 +

∑
ti∈T RWS

H
p(ti) · tH

POPT

≤ 1 +

∑
ti∈T RWS

H
p(ti) · tH∑

ti∈T OPT
LP

p(ti) · tLP
≤ 1 +

tH
tLP

.

The second inequality is valid because

POPT ≥
∑

ti∈T OPT
LP

p(ti) · tLP ,

i.e. the optimal primal integral has value at least that of the LP
solves weighted by the primal gap p(ti). The final inequality
is valid because∑

ti∈T RWS
H

p(ti) · tH ≤
∑

ti∈T OPT
LP

p(ti) · tLP ,

as H is run at most as frequently as LPs are solved, and the
primal gap value at any node at which RWS runs H is at worst
equal to the corresponding gap value for the optimal primal
policy.

It is interesting to see how the bound in this theorem holds
up in practice on real MIP instances from the Benchmark set

Instance Heuristic Empirical P̂RWS

POPT Theoretical PRWS

POPT

biella1 fracdiving 1.09 122.79
rail507 veclendiving 1.09 18.36
qiu guideddiving 1.01 5.32
biella1 intshifting 1.00 3.57

Table 1: Sample results from empirical evaluation of RWS.

of MIPLIB2010 [Koch et al., 2011]. Table 1 shows the empir-
ical competitive ratio of the RWS algorithm and the theoreti-
cal one, computed as in Theorem 1, for four sample instance-
heuristic pairs. The optimal offline primal integral POPT is
computed via dynamic programming in hindsight. The re-
sults of Table 1 show that the empirical performance of RWS
is much better than the theory suggests. However, we do be-
lieve that the bound is tight up to an arbitrarily small constant.

3.3 Competitive Ratio under a Faulty Oracle

Any practical oracle, such as one designed with ML, will not
be perfect. A faulty oracle is one that makes a mistake at a
node with some probability. We distinguish two types of mis-
takes: false positives and false negatives. Assume that the
oracle incurs a false positive at a node with probability δ, i.e.
the oracle states that H will find an incumbent at a node N
when H does not, and a false negative with probability β,
i.e. the oracle states that H will not find an incumbent at N
when H does. When δ > 0, β = 0, the bound from Theo-
rem 1 also holds for the competitive ratio w.r.t. the expected

primal integral, i.e.
E[PRWS]

POPT
≤ 1 + tH

tLP
. The randomness

is with respect to the nodes at which the false positives oc-
cur. Unfortunately, when β > 0, bounding the competitive
ratio becomes much trickier: if H finds an optimal solution
at N which cannot be found at any other node by either H or
LP relaxation solves, and a false negative occurs at N , then
PRWS = tmax, the maximum possible value. As such, we
believe that any such bound when β > 0 will be very loose.
However, there may be suitable assumptions under which the
bound is not as loose, and we consider this issue to be inter-
esting for future research.

4 Learning a Success Oracle for Heuristics

In the previous section, we showed that despite its simplicity,
the RWS rule provides theoretical guarantees under a simpli-
fied setting. However, in order to turn RWS into an opera-
tional policy, we must design a success oracle. Combining
the designed oracle with RWS provides an online procedure
for deciding when to run a heuristic during tree search. Re-
call that our aim is to dynamically decide whether to run the
heuristic at a given node, based on the instance characteris-
tics, node characteristics and state of the search. As such, we
will design the oracle by learning a binary classifier which
predicts whether heuristic H will find an incumbent solution
at node N . The features used to describe node N will incor-
porate information about the instance, the node and the state
of the search, as desired.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

662

4.1 Realistic Data Collection
We now describe our method for collecting data on the heuris-
tic’s success across different instances. This aspect of oracle
design warrants special attention, given the interplay between
incumbent finding and tree search. More specifically, one has
to make sure that the node data collected for heuristic H for
training is similar to the node data to be encountered when
using H’s oracle, online, on a new problem instance.

Let H be the set of primal heuristics used during tree
search, H ∈ H a given heuristic, and H̄ = H − H . We
are given a set of MIP instances, Itrain, which can be used
to collect data on H . A dataset DH

I is obtained for each in-
stance I ∈ Itrain, and the final training dataset for heuristic
H is obtained by concatenating instance datasets together into
DH

train =
⋃

I∈Itrain
DH

I .
We now consider data collection at the individual instance

level. Let I ∈ Itrain be a MIP instance for which we want to
collect data for heuristic H . We will run H at every node N
of the search tree, and collect the binary classification label
value, yNH ∈ {0, 1}, and the feature vector xN ∈ Rd. The la-
bel yNH takes a value of 1 if H finds an incumbent at node N ,
and 0 otherwise. The key observation here is that the value
of yNH depends on z∗N , the objective function value of the in-
cumbent when node N is considered. In turn, the value of z∗N
depends on the progress in the search up to N . If H is run
at every node, then any incumbent that H finds affects the
value yN

′

H for all nodes N ′ that come after N . This interplay
between the incumbents found by H and the data being col-
lected for H is problematic, as the labels yNH in the training
dataset assume that the oracle is perfect, i.e. H is run anytime
it can find an incumbent. In practice, however, the oracle is a
binary classifier that is unlikely to be perfect, meaning that it
will not always run H , even when H can find an incumbent.

To deal with this complication, we devise a data collection
procedure that is more likely to result in realistic datasets.
First, for any heuristic H for which data is to be collected,
H is run in “stealth” mode: any new incumbent that H
finds does not replace the current incumbent. This measure
is equivalent to not running H at all from the branch-and-
bound perspective, while still obtaining useful data for H .
Second, all other heuristics H ′ ∈ H̄ are run using their de-
fault solver frequencies, which simulates actual MIP solving,
where many heuristics are interacting together.

4.2 Designing Node Features
So far, we have discussed collecting data that is realistic w.r.t.
the target label. We now discuss the choice of features used
to describe a given node N . We use a d-dimensional feature
vector, xN ∈ Rd, with d = 49, consisting of the features
listed in Table 2. Global features describe the current state
of the search using gap-related metrics. The (optimality) gap
is defined as the relative difference between the global up-
per bound (i.e. the objective value of the best incumbent so
far) and the global lower bound (i.e. the best possible objec-
tive value, due to LP relaxations). Node LP features use the
solution of the LP relaxation at a node N to obtain certain
indicative metrics. For instance, the feature “Num. of Active
Constraints / Num. of Constraints” can be indicative of how

Global Features (4)

Optimality gap
Infinite gap?
Root LP value / Global Lower Bound
Root LP value / Global Upper Bound

Depth Features (2)

Node Depth / Max. Depth in Tree
Node Depth / Max. Possible Depth

Node LP Features (8)

Sum of variables’ LP solution fractionalities / Num. of Fractional Variables
Num. of Fractional Variable / Num. of Integer Variables
Num. Variables Roundable Up (Down) / Num. of Integer Variables (x2)
Num. of Active Constraints / Num. of Constraints
Node is root?
Root LP value / Node LP value
Root LP value / Node Estimate

Scoring Features for Fractional Variables (35)

Number of Up Locks (x5) – Number of Down Locks (x5)
Normalized Objective Coefficient (x5)
Objective Gain (x5)
Distance to root LP solution (x5)
Vector Length (x5)
Pseudocost score (x5)

Table 2: List of the 49 features used. “Scoring features for fractional
variables” are five statistics (mean, min., max., median, standard
deviation) for each of seven metrics over fractional variables.

sensitive the LP is to the fixing of additional variables, which
is important for diving heuristics (an active constraint is one
that is satisfied with equality at the LP solution). Scoring
Features for Fractional Variables are inspired by the scor-
ing functions that various diving heuristics use to select the
next variable to fix. Details on the definitions of these func-
tions are given in section 1.4.2 of [Hendel, 2011]. Essentially,
for a given scoring function f : fractional variables → R,
we compute the value of f for each fractional variable in the
node’s LP solution, compute statistics over the f values, and
use those as features.

One trait of our features is that they are naturally scaled,
i.e. each feature is appropriately divided by a scaling fac-
tor that depends only on the MIP instance (e.g. number of
variables or constraints) or the node itself (e.g. number of
fractional variables). Having appropriately scaled features is
important for the convergence of many learning algorithms.
However, that is not the only reason for emphasizing this as-
pect of our feature design. In fact, scaling is important in our
setting because training data comes from multiple instances,
each with its own dimensions, structure, etc. As such, the
standard approach of scaling/normalizing data for training is
not enough here: the scaling factors may not be directly ap-
plicable to a new instance’s data. We have carefully crafted
the features such that they can be scaled appropriately online,
using only local information from the node and the instance.

5 Experimental Results
To evaluate the proposed framework, we modify the open-
source MIP solver SCIP 3.2.1 [Gamrath et al., 2016]; CPLEX
12.6.1 [IBM, 2014] is used as SCIP’s LP solver. Machine

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

663

learning experiments use scikit-learn [Pedregosa et al., 2011].
All experiments were run on a cluster of four 64-core ma-
chines with AMD 2.4 GHz processors and 264 GB RAM.

5.1 Oracle Learning
Heuristics. As a first phase, we learn a binary classifier that
predicts incumbent success. We consider a set of ten heuris-
tics implemented in SCIP, listed in the first column of Table 3.
The ten heuristics were selected out of the 43 implemented in
SCIP after excluding heuristics that are disabled by default
(17), require a feasible solution (4), are too cheap (8), are for
non-linear programs (3), or are for special constraints (1).
ML Setup. For a given heuristic H and a dataset
DH

train =
⋃

I∈Itrain
DH

I collected from a set of training in-
stances Itrain, we use logistic regression (LR) to learn a bi-
nary classification model, wH ∈ Rd. The regularization pa-
rameter of LR is kept at a default of 1. Data points with label
yNH = 1 are heavily weighted in the LR loss function to ac-
count for the extreme class imbalance we encounter [He and
Garcia, 2009], as can be seen in column “Success Rate” of
Table 3. The model wH is simply a weight vector for the
d = 49 node features described in Section 4.2, such that
the dot product 〈wH ,x

N 〉 between wH and nodeN ’s feature
vector xN gives an estimate of the probability that heuristic
H finds an incumbent atN . We have experimented with other
ML models that have more capacity (and hyper-parameters)
(SVM, gradient boosted trees), but have not observed any
benefit from such models in either classification performance
or learning/prediction time.
ML Results. We use leave-one-out cross-validation
(LOOCV) on a per-instance basis: for each test instance Itest,
a model is learned for a heuristic H using dataset DH

train,
whereDH

train does not include any data from Itest; the model
is then tested on Itest’s dataset, DH

Itest
.

Table 3 shows LOOCV results using 83 instances of the
“Benchmark” set from MIPLIB2010 [Koch et al., 2011], for
which data was collected by running SCIP for 2 hours at most,
per instance. First, observe that the datasets at hand are ex-
tremely imbalanced. For instance, the success rate (i.e. the
fraction of nodes in the collected dataset for which the heuris-
tic succeeds in finding an incumbent) of the coefdiving heuris-
tic is 0.000192: only 1 in 5, 000 runs result in an incumbent.
As such, the “Precision” of an ML success oracle must be bet-
ter than random prediction (which succeeds with rate equal
to the success rate). For each of the ten heuristics, Table 3
shows the average precision, recall and AUC-ROC, over in-
stance datasets with at least one positive label data point (oth-
erwise, these metrics are undefined). Fortunately, the average
precision of the learned models is orders of magnitude better
than the success rate: for coefdiving, the ML model is more
than 100 times more precise in classifying incumbents than at
random. Additionally, the recall of the models is satisfactory,
with most incumbents being detected for most heuristics.

Despite the heterogeneous nature of the instances, our
framework is able to learn oracle success models that are sig-
nificantly better than random guessing, despite extreme class
imbalance. Next, we study the impact of using the learned
oracles, in conjunction with the RWS rule, on the solver’s
primal performance.

5.2 MIP Solving
Setup. While the ML results for the success oracles are posi-
tive, they are only of practical use if they can improve the per-
formance of a state-of-the-art MIP solver w.r.t. primal met-
rics such as the primal integral. We use the learned oracles in
conjunction with the Run-When-Successful rule to guide the
decisions as to whether each of the ten heuristics of Table 3
should be run at each node. Specifically, for a given instance,
the ten heuristics’ models are loaded, and used to compute
the probability of success of a heuristic given a node’s feature
vector. For other heuristics without ML oracles, we use their
default settings in SCIP.

We compare our approach, referred to as ML, with the
solver’s default policy, DEF. For each of the 83 MIPLIB2010
“Benchmark” set instances, we run every policy with 5 dif-
ferent random permutations of the rows and columns of the
instance; each instance-permutation pair is considered as a
separate instance. This measure is a standard one for com-
putational MIP studies, as it helps to control for the inherent
“performance variability” in solvers – see [Lodi and Tramon-
tani, 2013; Achterberg and Wunderling, 2013] for details.
MIP Results. Table 4 (left) summarizes the results. Table 4
(left) shows that our framework, ML, results in a reduction
of 6% in the primal integral. Similarly, the time to the first
and best incumbents are both improved by 22% and 1%, re-
spectively. This is despite having an extremely heterogeneous
set of training and testing instances. Our method makes bet-
ter use of the heuristics it controls, as shown by the second
set of rows in Table 4 (left): fewer calls are made to the ten
heuristics, yet more incumbents are found by them on aver-
age, compared to DEF. Most notably, the success rate of ML-
controlled heuristics is 1.79 times larger than that of DEF,
and the number of incumbents found per second is 1.52 times
larger. These figures, over a large set of benchmark instances,
support our hypothesis: dynamic decision-making for heuris-
tics using the proposed framework improves the primal per-
formance of an optimized state-of-the-art solver.

5.3 Generalized Independent Set Problem
The experiments presented so far are on a heterogeneous set
of MIP instances. However, in many real-world settings, one
solves the same homogeneous family of problems, where in-
stances differ only slightly in the number of constraints or
variables, while maintaining the same overall combinatorial
structure. To assess the effectiveness of our framework on a
homogeneous instance set, we perform the same oracle learn-
ing and MIP solving experiments on instances of the Gen-
eralized Independent Set Problem (GISP) [Hochbaum and
Pathria, 1997; Colombi et al., 2016].

Recently, it has been shown that the GISP requires special-
ized techniques to obtain good feasible solutions [Colombi
et al., 2016], which motivated our choice of this problem.
Given a graphG(V,E), a subset of removable edgesE′ ⊆ E,
revenues for each vertex and costs for each removable edge,
GISP asks to select a subset of the vertices and a subset of
removable edges that maximize the profit, i.e. the difference
between selected vertex revenues and removable edge costs.
No edge should exist between any two selected vertices u and
v, i.e. (u, v) /∈ E, or (u, v) ∈ E′ and (u, v) is removed.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

664

Heuristic Num. Instances Num. Data Points Success Rate
Precision Recall AUC-ROC

Mean +/- Std. Median Mean +/- Std. Median Mean +/- Std. Median

coefdiving 44 2,635,296 0.0002 0.0264 +/- 0.0784 0.001 0.6552 +/- 0.3872 0.876 0.8543 +/- 0.1400 0.896
distributiondiving 51 2,721,704 0.0004 0.0255 +/- 0.0604 0.001 0.6715 +/- 0.3667 0.903 0.8075 +/- 0.1884 0.831
fracdiving 37 2,721,288 0.0001 0.0044 +/- 0.0093 0.001 0.6466 +/- 0.3810 0.688 0.7953 +/- 0.2184 0.878
intshifting 9 1,652,684 0.0001 0.1213 +/- 0.2291 0.001 0.4018 +/- 0.4347 0.177 0.8644 +/- 0.0823 0.865
linesearchdiving 34 2,552,685 0.0001 0.0170 +/- 0.0690 0.001 0.6794 +/- 0.3919 0.889 0.8187 +/- 0.1343 0.819
objpscostdiving 10 10,329 0.0127 0.3539 +/- 0.3814 0.131 0.5514 +/- 0.3769 0.486 0.8712 +/- 0.2247 0.996
pscostdiving 57 2,531,343 0.0007 0.0206 +/- 0.0430 0.002 0.6082 +/- 0.3636 0.716 0.7176 +/- 0.2359 0.773
rootsoldiving 6 6,047 0.0026 0.0990 +/- 0.1826 0 0.3333 +/- 0.4714 0 0.9599 +/- 0.0569 0.986
veclendiving 38 2,785,210 0.0002 0.0255 +/- 0.0687 0.003 0.7953 +/- 0.2799 0.936 0.7929 +/- 0.1923 0.829

Table 3: Leave-one-out cross-validation accuracy results for logistic regression on 10 primal heuristics in SCIP on MIPLIB2010 Benchmark.
“AUC-ROC” is the area under the “receiver operating characteristic” curve. “Precision” is the fraction of points from the positive class out of
all points classified as positive. “Recall” is the fraction of points from the positive class that are classified as positive. For both precision and
recall, the results are using a threshold of 0.5 on the predicted probabilities.

MIPLIB – Num. Instances = 280 DEF ML ML/DEF

Primal integral 95.65 89.65 0.94
Time to first incumbent 34.23 26.60 0.78
Time to best incumbent 746.95 738.71 0.99

Total calls (ML heurs.) 755.19 514.77 0.68
Total time (ML heurs.) 124.38 101.88 0.82
Num. incumbents (ML heurs.) 1.85 2.45 1.33
Success Rate (ML heurs.) 0.00036 0.00064 1.79
Num. incs. per heur. sec. (ML heurs.) 0.00565 0.00860 1.52

Num. Instances Solved 170 172 1.01
Total time (BnB) 3,966.47 4,119.67 1.04
Total nodes (BnB) 27,458.77 27,904.43 1.02
Primal-dual integral 34,390.33 35,329.91 1.03

GISP – Num. Instances = 120 DEF ML ML/DEF

Primal integral 2,621.79 1,038.58 0.40
Time to first incumbent 0.19 0.19 1.00
Time to best incumbent 5,601.44 2,166.98 0.39

Total calls (ML heurs.) 49.37 63.59 1.29
Total time (ML heurs.) 194.42 610.64 3.14
Num. incumbents (ML heurs.) 1.48 2.69 1.82
Success Rate (ML heurs.) 0.02566 0.03710 1.45
Num. incs. per heur. sec. (ML heurs.) 0.00501 0.00319 0.64

Num. Instances Solved (% Gap) 0 (201.95) 0 (181.35) N/A (0.90)
Total time (BnB) 7,200.00 7,200.00 1.00
Total nodes (BnB) 619.19 476.94 0.77
Primal-dual integral 520,674.41 454,162.12 0.87

Table 4: Summary of results on the MIPLIB2010 Benchmark set with 5 random permutations per instance (Left), and the GISP test set
(Right); tmax = 7, 200. For MIPLIB2010, instances requiring less than 10 minutes for either DEF or ML are excluded as too easy. Values
shown are aggregates over instances: geometric means are used for all but Num. Instances Solved (count), Num. incumbents, Success rate
and Num. incs. per heur. sec. (arithmetic means). For GISP, the Primal integral uses the best upper bound rather than the optimal solution.

We use the twelve graphs from the 1993 DIMACS Chal-
lenge [Johnson and Trick, 1996], also used in [Colombi et
al., 2016]. Six instances 1 are held out for data collection
and training, and six others 2 for MIP testing. The graphs are
dense, with training graphs having 125 – 300 nodes and 6963
– 20864 edges, testing graphs having 250 – 400 nodes and
21928 – 71819 edges. For each of the twelve graphs, we gen-
erate 20 GISP instances by randomizing the set of removable
edges, as in [Colombi et al., 2016]: each edge is in the set
E′ with probability α. We use α = 0.75, each node has rev-
enue 100 and each removable edge has cost 1, a configuration
shown to be difficult w.r.t. finding feasible solutions (SET2-
A in [Colombi et al., 2016]). Note that, even for the same
graph, its 20 instances have a different number of variables
for removable edges and different constraints.

We collect data for eight diving heuristics (the heuristics
listed in Table 3 except feaspump and intshifting, which SCIP
did not run), and learn corresponding oracles. Then, we test
the oracles on the 120 test instances that were not seen dur-
ing learning. The primal integral requires an optimal or best
integer solution, for which we use the best solution found by
multi-threaded CPLEX 12.6.1 after 10 hours of solving. The
results are shown in Table 4 (right).

A dramatic improvement in the primal integral can be ob-
served, with ML costing only 0.4 of DEF. This improvement

1C125.9,keller4,brock200 2,p hat300-1,gen200 p0.9 55,hamming8-4
2p hat300-2, C250.9, p hat300-3, brock400 2, MANN a27, gen400 p0.9 75

can be largely attributed to the reduction in the time to best in-
cumbent, also down to 0.39 of DEF: ML needs around 1 hour
less than DEF to find its best incumbent, over a time cutoff of
2 hours. As for the quality of the best incumbent, ML finds a
better one than DEF in 93 of 120 of the instances (77%). For
all 120 instances, ML has a better primal integral than DEF.

The larger reduction in the primal integral of GISP in-
stances, as compared to the MIPLIB2010 Benchmark set, is
consistent with the intuition that learning on homogeneous
instances is easier than on heterogeneous ones. Note that the
GISP training instances had fewer variables and constraints
due to the smaller graphs, yet the classifiers were very effec-
tive on the larger test instances, indicating that generalization
on homogeneous instance sets is possible.

6 Conclusions and Future Work
We have shown that intelligent decision-making for heuristics
can boost the performance of a state-of-the-art optimization
solver, even on instances for which the solver is already fine-
tuned by experts. To our knowledge, this work represents the
first systematic attempt at optimizing the use of heuristics in
tree search. This work lays the ground for fruitful future ex-
tensions, such as more refined rules that take into account the
running time of the heuristics and the amount of time remain-
ing for the solver, approaches for more effective scheduling
of heuristics within a node, and online learning of good rules.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

665

References
[Abraham et al., 2007] David J Abraham, Avrim Blum, and Tuo-

mas Sandholm. Clearing algorithms for barter exchange markets:
Enabling nationwide kidney exchanges. In Proceedings of the 8th
ACM conference on Electronic commerce, pages 295–304. ACM,
2007.

[Achterberg and Wunderling, 2013] Tobias Achterberg and Roland
Wunderling. Mixed Integer Programming: Analyzing 12 Years of
Progress. In Michael Jünger and Gerhard Reinelt, editors, Facets
of Combinatorial Optimization. Springer, 2013.

[Achterberg et al., 2012] Tobias Achterberg, Timo Berthold, and
Gregor Hendel. Rounding and propagation heuristics for mixed
integer programming. In Operations Research Proceedings 2011,
pages 71–76. Springer, 2012.

[Albers, 2003] Susanne Albers. Online algorithms: a survey. Math-
ematical Programming, 97(1-2):3–26, 2003.

[Andrychowicz et al., 2016] Marcin Andrychowicz, Misha Denil,
Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
and Nando de Freitas. Learning to learn by gradient descent by
gradient descent. In Advances in Neural Information Processing
Systems, pages 3981–3989, 2016.

[Barnhart et al., 1998] Cynthia Barnhart, Natashia L Boland,
Lloyd W Clarke, Ellis L Johnson, George L Nemhauser, and
Rajesh G Shenoi. Flight string models for aircraft fleeting and
routing. Transportation science, 32(3):208–220, 1998.

[Berthold, 2006] Timo Berthold. Primal Heuristics for Mixed In-
teger Programs. Master’s thesis, Technische Universität Berlin,
2006.

[Colombi et al., 2016] Marco Colombi, Renata Mansini, and Mar-
tin Savelsbergh. The generalized independent set problem: Poly-
hedral analysis and solution approaches. European Journal of
Operational Research, 2016.

[Dilkina and Gomes, 2010] Bistra Dilkina and Carla P Gomes.
Solving connected subgraph problems in wildlife conservation.
In International Conference on Integration of Artificial Intelli-
gence (AI) and Operations Research (OR) Techniques in Con-
straint Programming, pages 102–116. Springer, 2010.

[Gamrath et al., 2016] Gerald Gamrath, Tobias Fischer, Tristan
Gally, Ambros M. Gleixner, Gregor Hendel, Thorsten Koch,
Stephen J. Maher, Matthias Miltenberger, Benjamin Müller,
Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Sebastian
Schenker, Robert Schwarz, Felipe Serrano, Yuji Shinano, Stefan
Vigerske, Dieter Weninger, Michael Winkler, Jonas T. Witt, and
Jakob Witzig. The SCIP Optimization Suite 3.2. Technical Re-
port 15-60, ZIB, Takustr.7, 14195 Berlin, 2016.

[He and Garcia, 2009] Haibo He and Edwardo A Garcia. Learn-
ing from imbalanced data. IEEE Transactions on knowledge and
data engineering, 21(9):1263–1284, 2009.

[Hendel, 2011] Gregor Hendel. New rounding and propagation
heuristics for mixed integer programming, 2011.

[Hochbaum and Pathria, 1997] Dorit S Hochbaum and Anu
Pathria. Forest harvesting and minimum cuts: a new approach
to handling spatial constraints. Forest Science, 43(4):544–554,
1997.

[Hutter et al., 2009] Frank Hutter, Holger H Hoos, Kevin Leyton-
Brown, and Thomas Stützle. ParamILS: an automatic algorithm
configuration framework. JAIR, 36(1):267–306, 2009.

[IBM, 2014] IBM. CPLEX User’s Manual, Version 12.6.1, 2014.

[Johnson and Trick, 1996] David S Johnson and Michael A Trick.
Cliques, coloring, and satisfiability: second DIMACS implemen-
tation challenge, October 11-13, 1993, volume 26. American
Mathematical Soc., 1996.

[Khalil et al., 2016] Elias Boutros Khalil, Pierre Le Bodic,
Le Song, George L Nemhauser, and Bistra N Dilkina. Learn-
ing to branch in mixed integer programming. In AAAI, pages
724–731, 2016.

[Koch et al., 2011] Thorsten Koch, Tobias Achterberg, Erling An-
dersen, Oliver Bastert, Timo Berthold, Robert E Bixby, Emi-
lie Danna, Gerald Gamrath, Ambros M Gleixner, Stefan Heinz,
et al. MIPLIB 2010. Mathematical Programming Computation,
3(2):103–163, 2011.

[Kruber et al., 2016] Markus Kruber, Marco E Lübbecke, and Axel
Parmentier. Learning when to use a decomposition. 2016.

[Lee et al., 1999] Eva K Lee, Richard J Gallagher, David Silvern,
Cheng-Shie Wuu, and Marco Zaider. Treatment planning for
brachytherapy: an integer programming model, two computa-
tional approaches and experiments with permanent prostate im-
plant planning. Physics in Medicine and Biology, 44(1):145,
1999.

[Lodi and Tramontani, 2013] Andrea Lodi and Andrea Tramontani.
Performance variability in mixed-integer programming. Tutori-
als in Operations Research: Theory Driven by Influential Appli-
cations, pages 1–12, 2013.

[Nemhauser and Trick, 1998] George L Nemhauser and Michael A
Trick. Scheduling a major college basketball conference. Oper-
ations Research, 46(1):1–8, 1998.

[Papageorgiou et al., 2014] Dimitri J Papageorgiou, George L
Nemhauser, Joel Sokol, Myun-Seok Cheon, and Ahmet B Keha.
MIRPLib – A library of maritime inventory routing problem in-
stances: Survey, core model, and benchmark results. European
Journal of Operational Research, 235(2):350–366, 2014.

[Pedregosa et al., 2011] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[Sabharwal et al., 2012] Ashish Sabharwal, Horst Samulowitz, and
Chandra Reddy. Guiding combinatorial optimization with uct.
In International Conference on Integration of Artificial Intelli-
gence (AI) and Operations Research (OR) Techniques in Con-
straint Programming, pages 356–361. Springer, 2012.

[Samulowitz and Memisevic, 2007] Horst Samulowitz and Roland
Memisevic. Learning to solve QBF. In AAAI, 2007.

[Zhang and Dietterich, 1995] Wei Zhang and Thomas G Dietterich.
A reinforcement learning approach to job-shop scheduling. In
IJCAI, volume 95, pages 1114–1120. Citeseer, 1995.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

666

