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Abstract

We introduce a new approach for comparing re-

inforcement learning policies, using Wasserstein

distances (WDs) in a newly defined latent behav-

ioral space. We show that by utilizing the dual for-

mulation of the WD, we can learn score functions

over policy behaviors that can in turn be used to

lead policy optimization towards (or away from)

(un)desired behaviors. Combined with smoothed

WDs, the dual formulation allows us to devise

efficient algorithms that take stochastic gradient

descent steps through WD regularizers. We incor-

porate these regularizers into two novel on-policy

algorithms, Behavior-Guided Policy Gradient and

Behavior-Guided Evolution Strategies, which we

demonstrate can outperform existing methods in

a variety of challenging environments. We also

provide an open source demo1.

1. Introduction

One of the key challenges in reinforcement learning (RL)

is to efficiently incorporate the behaviors of learned poli-

cies into optimization algorithms (Lee & Popovic, 2010;

Meyerson et al., 2016; Conti et al., 2018). The fundamental

question we aim to shed light on in this paper is:

What is the right measure of similarity between two policies

acting on the same underlying MDP and how can we devise

algorithms to leverage this information for RL?

In simple terms, the main thesis motivating the methods we
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propose is that:

Two policies may perform similar actions at a local level

but result in very different global behaviors.

We propose to define behaviors via so-called Behavioral

Policy Embeddings (henceforth referred to as Policy Em-

beddings), which can be both on policy and off policy.

On policy embeddings are achieved via what we call Be-

havioral Embeddings Maps (BEMs) - functions mapping

trajectories of a policy into a latent behavioral space repre-

senting trajectories in a compact way. We define the policy

embedding as the pushforward distributions over trajectory

embeddings as a result of applying a BEM to the policy’s

trajectories. Importantly, two policies with distinct distribu-

tions over trajectories may result in the same probabilistic

embedding. Off policy embeddings in contrast correspond

to state and policy evaluation pairs resulting of evaluating

the policy on states sampled from a probing state distribu-

tion that can be chosen independently from the policy.

Both embedding mechanisms result in probabilistic Policy

Embeddings, which allow us to identify a policy with a

distribution with support on an embedding space. Policy

Embeddings provide us a way to rigorously define dissimi-

larity between policies. We do this by equipping them with

metrics defined on the manifold of probability measures,

namely a class of Wasserstein distances (WDs, (Villani,

2008)). There are several reasons for choosing WDs:

• Flexibility. We can use any cost function between embed-

dings of trajectories, allowing the distance between policy

embeddings to arise organically from an interpretable

distance between embedding points.

• Non-injective BEMs. Different trajectories may be

mapped to the same embedding point (for example in

the case of the last-state embedding). This precludes the

use of likelihood-based distances such as the KL diver-

gence (Kullback & Leibler, 1951), which we discuss in

Section 6.

• Behavioral Test Functions. Solving the dual formula-

tion of the WD objective yields a pair of test functions

over the space of embeddings, used to score trajectories

or state policy pairs (see: Sec. 5.2).

https://github.com/behaviorguidedRL/BGRL
https://github.com/behaviorguidedRL/BGRL
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The Behavioral Test Functions, underpin all our algorithms,

directing optimization towards desired behaviors. To learn

them, it suffices to define the embedding type and BEM (if

required) and the cost function between points in the result-

ing behavioral manifold. To mitigate the computational bur-

den of computing WDs, we rely on their entropy-regularized

formulations. This allows us to update the learned test func-

tions in a computationally efficient manner via stochastic

gradient descent (SGD) on a Reproducing Kernel Hilbert

Space (RKHS). We develop a novel method for stochastic

optimal transport based on random feature maps (Rahimi

& Recht, 2008) to produce compact and memory-efficient

representations of learned behavioral test functions. Fi-

nally, having laid the groundwork for comparing policies

via behavior-driven trajectory or state-policy pairs scores,

we address our core question by introducing two new on-

policy RL algorithms:

• Behavior Guided Policy Gradients (BGPG): We pro-

pose to replace the KL-based trust region from (Schulman

et al., 2015) with a WD-based in the behavior space.

• Behavior Guided Evolution Strategies (BGES): BGES

improves on Novelty Search (Conti et al., 2018) by jointly

optimizing for reward and novelty using the WD in the

behavior space.

We also demonstrate a way to harness our methodology for

imitation and repulsion learning (Section 5.2), showing the

universality of the proposed techniques.

2. Motivating Behavior-Guided

Reinforcement Learning

Throughout this paper we prompt the reader to think of

a policy as a distribution over its behaviors, induced by

the policy’s (possibly stochastic) map from state to actions

and the unknown environment dynamics. We care about

summarizing (or embedding) behaviors into succinct rep-

resentations that can be compared with each other (via a

cost/metric). These comparisons arise naturally when an-

swering questions such as: Has a given trajectory achieved

a certain level of reward? Has it visited a certain part of the

state space? We think of these summaries or embeddings

as characterizing the behavior of the trajectory or relevant

state policy-pairs. We formalize these notions in Section 3.

We show that by identifying policies with the embedding

distributions that result of applying the embedding function

(summary) to their trajectories, and combining this with the

provided cost metric, we can induce a topology over the

space of policies given by the Wasserstein distance over

their embedding distributions. The methods we propose can

be thought of as ways to leverage this “behavior” geometry

for a variety of downstream applications such as policy

optimization and imitation learning.

This topology emerges naturally from the sole definition of

an embedding map (behavioral summary) and a cost func-

tion. Crucially these choices occur in the semantic space

of behaviors as opposed to parameters or visitation frequen-

cies2. One of the advantages of choosing a Wasserstein

geometry is that non-surjective trajectory embedding maps

are allowed. This is not possible with a KL induced one (in

non-surjective cases, computing the likelihood ratios in the

KL definition is in general intractable). In Sections 4 and

5 we show that in order to get a handle on this geometry,

we can use the dual formulation of the Wasserstein distance

to learn functions (Behavioral Test Functions) that can pro-

vide scores on trajectories which then can be added to the

reward signal (in policy optimization) or used as a reward

(in Imitation Learning).

In summary, by defining an embedding map of trajectories

into a behavior embedding space equipped with a metric3,

our framework allows us to learn “reward” signals (Behav-

ioral Test Functions) that can serve to steer policy search

algorithms through the “behavior geometry” either in con-

junction with a task specific reward (policy optimization) or

on their own (e.g. Imitation Learning). We develop versions

of on policy RL algorithms which we call Behavior Guided

Policy Gradient (BGPG) and Behavior Guided Evolution

Strategies (BGES) that enhance their baseline versions by

the use of learned Behavioral Test Functions. Our experi-

ments in Section 7 show this modification is useful. We also

provide a simple example for repulsion learning and Imi-

tation Learning, where we only need access to an expert’s

embedding. Our framework also has obvious applications

to safety, learning policies that avoid undesirable behaviors.

A final important note is that in this work we only con-

sider simple heuristics for the embeddings, as used in the

existing literature. For BGES, these embeddings are those

typically used in Quality Diversity algorithms (Pugh et al.,

2016), while for BGPG we reinterpret the action distribution

currently used in KL-based trust regions (Schulman et al.,

2017; 2015). We emphasize the focus of this paper is on

introducing the framework to score these behaviors to guide

policy optimization.

3. Defining Behavior in Reinforcement

Learning

A Markov Decision Process (MDP) is a tuple (S,A,P,R).
Here S and A stand for the sets of states and actions re-

spectively, such that for s, s0 2 S and a 2 A: P(s0|a, s)
is the probability that the system/agent transitions from s

2If we choose an appropriate embedding map our framework
handles visitation frequencies as well.

3The embedding space can be discrete or continuous and the
metric need not be smooth, and can be for example a simple
discrete {0, 1} valued criterion
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to s0 given action a and R(s0, a, s) is a reward obtained

by an agent transitioning from s to s0 via a. A policy

⇡✓ : S ! A is a (possibly randomized) mapping (pa-

rameterized by ✓ 2 R
d) from S to A. Let Γ = {⌧ =

s0, a0, r0, · · · sH , aH , rH s.t. si 2 S, ai 2 A, ri 2 R} be

the set of possible trajectories enriched by sequences of par-

tial rewards under some policy ⇡. The undiscounted reward

function R : Γ ! R (which expectation is to be maxi-

mized by optimizing ✓) satisfies R(⌧) =
PH

i=0 ri, where

ri = R(si+1, ai, si).

3.1. Behavioral Embeddings

In this work we identify a policy with what we call a Policy

Embedding. We focus on two types of Policy Embeddings

both of which are probabilistic in nature, on policy and off

policy embeddings, the first being trajectory based and the

second ones state-based.

3.1.1. ON POLICY EMBEDDINGS

We start with a Behavioral Embedding Map (BEM), Φ :
Γ ! E , mapping trajectories to embeddings (Fig. 1), where

E can be seen as a behavioral manifold. On Policy Embed-

dings can be for example: a) State-Based, such as the final

state Φ1(⌧) = sH b) Action-based: such as the concatena-

tion of actions Φ4(⌧) = [a0, ..., aH ] or c) Reward-based:

the total reward Φ5(⌧) =
PH

t=0 rt, reward-to-go vector

Φ6(⌧) =
PH

t=0 rt

⇣Pt

i=0 ei

⌘
(where ei 2 R

H+1 is a one-

hot vector corresponding to i with dimension index from 0
to H). Importantly, the mapping does not need to be surjec-

tive, as we see on the example of the final state embedding.

Figure 1: Behavioral Embedding Maps (BEMs) map trajectories
to points in the behavior embedding space E . Two trajectories may
map to the same point in E .

Given a policy ⇡, we let P⇡ denote the distribution induced

over the space of trajectories Γ and by P
Φ

⇡ the corresponding

pushforward distribution on E induced by Φ. We call PΦ

⇡

the policy embeddings of a policy ⇡. A policy ⇡ can be fully

characterized by the distribution P⇡ (see: Fig. 1).

Additionally, we require E to be equipped with a metric

(or cost function) C : E ⇥ E ! R. Given two trajectories

⌧1, ⌧2 in Γ, C(Φ(⌧1),Φ(⌧2)) measures how different these

trajectories are in the behavior space. We note that some

embeddings are only for the tabular case (|S|, |A| < 1)

while others are universal.

3.1.2. OFF POLICY EMBEDDINGS

Let PS be some “probe” distribution over states S and ⇡

be a policy. We define P
ΦS

⇡ to be the distribution of pairs

(s,⇡(s)) for s ⇠ PS . We identify E with the product space

S ⇥ ∆A (where ∆A denotes the set of distributions over

A) endowed with an appropriate metric C : E ⇥ E ! R.In

our experiments we identify C with the l2 norm over E and

PS with a mechanism that samples states from a buffer of

visited states. We only add an S to the notation for PΦS

⇡

when distinguishing from on-policy embeddings is needed.

This definition allows the “probing” distribution PS to be off

policy, independent of the policy at hand. If C is a norm and

PS has mass only in user-relevant areas of the state space, a

WD of zero between two policies (whose embeddings use

the same probing distribution) implies they behave equally

where the user cares. Our off Policy Embeddings are of the

form (s,⇡(s)) but other choices are valid.

4. Wasserstein Distance & Optimal Transport

Problem

Let µ, ⌫ be (Radon) probability measures over domains

X ✓ R
m,Y ✓ R

n and let C : X ⇥ Y ! R be a cost

function. For � > 0, a smoothed Wasserstein Distance is

defined as:

WD�(µ, ⌫) := min
⇡2Π(µ,⌫)

Z

X⇥Y

C(x,y)d⇡(x,y)+Σ, (1)

where Σ = �KL(⇡|⇠), Π(µ, ⌫) is the space of couplings

(joint distributions) over X ⇥ Y with marginal distribu-

tions µ and ⌫, KL(·|·) denotes the KL divergence between

distributions ⇡ and ⇠ with support X ⇥ Y defined as:

KL(⇡|⇠) =
R
X⇥Y

⇣
log

⇣
d⇡
d⇠
(x,y)

⌘⌘
d⇡(x,y) and ⇠ is a

reference measure over X ⇥ Y . When the cost is an `p dis-

tance and � = 0, WD� is also known as the Earth mover’s

distance and the corresponding optimization problem is

known as the optimal transport problem (OTP).

4.1. Wasserstein Distance: Dual Formulation

We will use smoothed WDs to derive efficient regularizers

for RL algorithms. To arrive at this goal, we first need to

consider the dual form of Equation 1. Under the subspace

topology (Bourbaki, 1966) for X and Y , let C(X ) and C(Y)
denote the space of continuous functions over X and Y
respectively. The choice of the subspace topology ensures

our discussion encompasses the discrete case.

Let C : X ⇥ Y ! R be a cost function, interpreted as the

“ground cost” to move a unit of mass from x to y. Define

I as the function outputting values of its input predicates.

Using Fenchel duality, we can obtain the following dual

formulation of the problem in Eq. 1:

WD�(µ, ⌫) = max
�µ2C(X ),�ν2C(Y)

Ψ(�µ,�⌫), (2)
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where Ψ(�µ,�⌫) =
R
X
�µ(x)dµ(x) �

R
Y
�⌫(y)d⌫(y) �

EC(�µ,�⌫) and the damping term EC(�µ,�⌫) equals:

EC(�µ,�⌫) = I(� > 0)

Z

X⇥Y

⇢(x,y)d⇠(x,y)+I(� = 0)I(A)

(3)

for ⇢(x,y) = � exp(
�µ(x)��ν(y)�C(x,y)

�
) and A =

[(�µ,�⌫) 2 {(u, v) s.t. 8(x,y) 2 X ⇥ Y : u(x)� v(y) 
C(x,y)}].

We will set the damping distribution d⇠(x,y) / 1 for dis-

crete domains and d⇠(x,y) = dµ(x)d⌫(y) otherwise.

If �⇤
µ,�

⇤
⌫ are the functions achieving the maximum in Eq. 2,

and � is sufficiently small then WD�(µ, ⌫) ⇡ Eµ

⇥
�⇤
µ(x)

⇤
�

E⌫ [�
⇤
⌫(y)], with equality when � = 0. When for example

� = 0, X = Y , and C(x, x) = 0 for all x 2 X , it is

easy to see �⇤
µ(x) = �⇤

⌫(x) = �⇤(x) for all x 2 X . In

this case the difference between Eµ [�
⇤(x)] and Eµ [�

⇤(y)]
equals the WD. In other words, the function �⇤ gives higher

scores to regions of the space X where µ has more mass.

This observation is key to the success of our algorithms in

guiding optimization towards desired behaviors.

4.2. Computing �⇤
µ and �⇤

⌫

We combine several techniques to make the optimization of

objective from Eq. 2 tractable. First, we replace X and Y
with the functions from a RKHS corresponding to univer-

sal kernels (Micchelli et al., 2006). This is justified since

those function classes are dense in the set of continuous

functions of their ambient spaces. In this paper we choose

the RBF kernel and approximate it using random Fourier

feature maps (Rahimi & Recht, 2008) to increase efficiency.

Consequently, the functions � learned by our algorithms

have the following form: �(x) = (p�)>�(x), where � is

a random feature map with m standing for the number of

random features and p� 2 R
m. For the RBF kernel, � is

defined as follows: �(z) = 1p
m
cos(Gz + b) for z 2 R

d,

where G 2 R
m⇥d is a Gaussian with iid entries taken from

N (0, 1), b 2 R
m with iid bis such that bi ⇠ Unif[0, 2⇡]

and the cos function acts elementwise.

Figure 2: Two policies ⇡1 (green) and ⇡2 (blue) whose BEMs
map trajectories to points in the real line.

Henceforth, when we refer to optimization over �, we mean

optimizing over corresponding dual vectors p� associated

with �. We can solve for the optimal dual functions by

Algorithm 1 Random Features Wasserstein SGD

Input: kernels , ` over X ,Y respectively with correspond-

ing random feature maps �,�`, smoothing parameter �,

gradient step size ↵, number of optimization rounds M ,

initial dual vectors p
µ
0 ,p

⌫
0 .

for t = 0, · · · ,M do
1. Sample (xt, yt) ⇠ µ

N
⌫.

2. Update:
�
p

µ
t

pν
t

�
using Equation 4.

Return: p
µ
M ,p⌫

M .

running Stochastic Gradient Descent (SGD) over the dual

objective in Eq. 2. Algorithm 1 is the random features

equivalent of Algorithm 3 in (Genevay et al., 2016). Given
input kernels , ` and a fresh sample (xt, yt) ⇠ µ

N
⌫ the

SGD step w.r.t. the current iterates p
µ
t�1,p

⌫
t�1 satisfies:

F (p1,p2, x, y) = exp

✓
(p1)

>�(x)� (p2)
>�`(x)� C(x, y)

�

◆

 
p
µ
t+1

p
⌫
t+1

!
=

 
p
µ
t

p
⌫
t

!
+ (1� F (pµ

t ,p
⌫
t , xt, yt)) vt, (4)

where vt = ↵p
t
(�(xt),��`(yt))

>. An explanation

and proof of these formulae is in Lemma C.2 in the Ap-
pendix. If p

µ
⇤ ,p

⌫
⇤ are the optimal dual vectors, p⇤ =

(pµ
⇤ ,p

⌫
⇤)

>, (x1, y1), · · · , (xk, yk)
i.i.d
⇠ µ

N
⌫, v

,`
i =

(�(xi),��`(yi))
> for all i, and Ê denotes the empirical

expectation over the k samples {(xi, yi)}
k
i=1, Algorithm 1

can be used to get an estimator of WD�(µ, ⌫) as:

dWD�(µ, ⌫) = Ê


hp⇤,v

,`
i i �

F (pµ
⇤ ,p

⌫
⇤ , xi, yi)

�

�
(5)

5. Behavior-Guided Reinforcement Learning

We explain now how to get practical algorithms based on the

presented methods. Denote by ⇡✓ a policy parameterized

by ✓ 2 R
d. The goal of policy optimization algorithms is to

find a policy maximizing, as a function of the policy param-

eters, the expected total reward L(✓) := E⌧⇠Pπθ
[R(⌧)].

5.1. Behavioral Test Functions

If C : E ⇥ E ! R is a cost function defined over behavior
space E , and ⇡1,⇡2 are two policies, then in the case of
On-Policy Embeddings:

WD�(P
Φ

⇡1
,P

Φ

⇡2
) ⇡ E

⌧⇠Pπ1

[�⇤

1(Φ(⌧))]� E
⌧⇠Pπ2

[�⇤

2(Φ(⌧))] ,

where �⇤
1,�

⇤
2 are the optimal dual functions. The maps

s1 := �⇤
1 � Φ : Γ ! R and s2 := �⇤

2 � Φ : Γ ! R define
score functions over the space of trajectories. If � is close to
zero, the score function si gives higher scores to trajectories
from ⇡i whose behavioral embedding is common under ⇡i

but rarely appears under ⇡j for j 6= i (Fig. 2). In the case
of Off-Policy Embeddings:

WD�(P
ΦS

⇡1
,P

Φ
0

S
⇡2

) ⇡ E
S⇠PS

[�⇤

1(S,⇡1(S))]� E
S⇠P

0

S

[�⇤

2(S,⇡2(S))] ,
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where �⇤
1,�

⇤
2 are maps from state policy pairs (S,⇡1(S))

to scores, and PS ,P
0
S are probing distributions.

5.2. Repulsion and Imitation Learning

To illustrate the intuition behind behavioral test functions

and on policy embeddings, we introduce an algorithm for

multi-policy repulsion learning based on our framework.

Algorithm 2 maintains two policies ⇡a and ⇡b.

Algorithm 2 Behvaior-Guided Repulsion Learning

Input: �, ⌘ > 0, M 2 N

Initialize: Initial stochastic policies ⇡a
0 ,⇡

b
0 , parametrized

by ✓a0 , ✓
b
0 respectively, Behavioral Test Functions �a

1 ,�
b
2

for t = 1, . . . , T do

1. Collect {⌧ai }
M
i=1 ⇠ P⇡a

t�1
and {⌧bi }

M
i=1 ⇠ P⇡b

t�1

.

2. Form R̃c(⌧1, ⌧2) for c 2 {a,b} using Equation 6.

3. For c 2 {a,b} and (⌧1, ⌧2) ⇠ {⌧ai }
M
i=1 ⇥ {⌧bi }

M
i=1

use REINFORCE (Williams, 1992) to perform update:

✓ct = ✓ct�1 + ⌘r✓R̃c(⌧1, ⌧2)

5. Update �a
1 ,�

b
2 with {⌧ai , ⌧

b
i }

M
i=1 via Algorithm 1.

Each policy is optimized by taking a policy gradient step (us-

ing the REINFORCE gradient estimator (Williams, 1992))

to optimize surrogate rewards R̃a and R̃b.

(a) ⇡a

0 (b) ⇡b

0 (c) �a & ��b, t = 0

(d) ⇡a

22 (e) ⇡b

22 (f) �a & ��b, t = 22

(g) ⇡a

118 (h) ⇡b

118 (i) �a & ��b, t = 118

Figure 3: a) and b) Initial state of policies ⇡a,⇡b and Test func-
tions �a,�b. d)-i) Policy evolution and Test Functions.

These combine the signal from the task’s reward function R
and the repulsion score encoded by the input BEM Φ and

behavioral test functions �a and �b:

R̃c(⌧a, ⌧b) = R(⌧c)+�dWD�(P
Φ

⇡a ,PΦ

⇡a), c 2 {a,b} (6)

We test Algorithm 2 on an environment consisting of a par-

ticle that needs to reach one of two goals on the plane. Poli-

cies output a velocity vector and stochasticity is achieved by

adding Gaussian noise to it. The embedding Φ maps trajec-

tories ⌧ to their mean displacement along the x�axis. Fig.

3 shows how the policies’ behavior evolves throughout opti-

mization and how the Test Functions guide the optimization

by favouring the two policies to be far apart. The experiment

details are in the Appendix (Section B.4). A related guided

trajectory scoring approach to imitation learning is explored

in Appendix B.3.

5.3. Algorithms

We propose to solve a WD-regularized objective to tackle

behavior-guided policy optimization. All of our algorithms

hinge on trying to maximize an objective of the form:

F (✓) = L(✓) + �WD�(P
Φ

⇡θ
,PΦ

b ), (7)

where PΦ

b is a base distribution4 over behavioral embeddings

(possibly dependent on ✓) and � 2 R could be positive or

negative. Although the base distribution P
Φ

b could be arbi-

trary, our algorithms will instantiate P
Φ

b = 1
|S| [⇡02S P

Φ

⇡0

for some family of policies S (possibly satisfying |S| = 1)

we want the optimization to attract to / repel from.

In order to compute approximate gradients for F , we rely

on the dual formulation of the WD. After substituting the

composition maps resulting from Eq. 5.1 into Eq. 7, we

obtain, for on-policy embeddings:

F (✓) ⇡ E⌧⇠Pπθ
[R(⌧) + �s1(⌧)]��E�⇠P

Φ

b

[�⇤
2(�)] , (8)

where s1 : Γ ! R equals s1 = �⇤
1 � Φ, the Behavioral Test

Function of policy ⇡✓ and �⇤
2 is the optimal dual function

of embedding distribution P
Φ

b . Consequently r✓F (✓) ⇡
r✓E⌧⇠Pπθ

[R(⌧) + �s1(⌧)]. We learn a score function s1
over trajectories that can guide our optimization by favoring

those trajectories that show desired global behaviors. For

off-policy embeddings, with state probing distributions PS

and P
b
S the analogous to Equation 9 is:

F (✓) ⇡ E⌧⇠Pπθ
[R(⌧)] + �E(S,⇡θ(S))⇠P

ΦS [�⇤
1(S,⇡✓(S))]

� �E
(S,⇡b(S))⇠P

ΦS

b

[�⇤
2(S,⇡b(S))] , (9)

Consequently, if PΦS

b is independent from ✓:

r✓F (✓) ⇡ r✓E⌧⇠Pπθ
[R(⌧)]+�Es⇠PS

[r✓�
⇤
1(s,⇡✓(s))] .

Eq. 8 and 9 are approximations to the true objective from

Eq. 7 whenever � > 0. In practice, the entropy regulariza-

tion requires a damping term EC(�
⇤
1,�

⇤
2) as defined in Equa-

tion 3. If ⇠(PΦ

⇡θ
,PΦ

b ) is the damping joint distribution of

4Possibly using off policy embeddings.
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choice and ⇢(�1,�2) = � exp
⇣

�πθ
(�1)��b(�2)�C(�1,�2)

�

⌘

(for off policy embeddings � is a state policy pair (S,⇡(S))),
the damping term equals: E�1,�2⇠⇠(PΦ

πθ
,PΦ

b
) [⇢(�1,�2)].

Gradients r✓ through EC can be derived using a similar

logic as the gradients above. When the embedding space

E is not discrete and P
Φ

b = P
Φ

⇡ for some policy ⇡, we let

⇠(PΦ

⇡θ
,PΦ

b ) = P
Φ

⇡θ

N
P
Φ

⇡ , otherwise ⇠(PΦ

⇡θ
,PΦ

b ) =
1

|E|2 1, a

uniform distribution over E ⇥ E .

All of our methods perform a version of alternating SGD

optimization: we take certain number of SGD steps over the

internal dual Wasserstein objective, followed by more SGD

steps over the outer objective having fixed the test functions.

We consider two approaches to optimizing this objective.

Behavior-Guided Policy Gradient (BGPG) explores in the

action space as in policy gradient methods (Schulman et al.,

2015; 2017), while Behavior-Guided Evolution Strategies

(BGES) considers a black-box optimization problem as in

Evolution Strategies (ES, (Salimans et al., 2017)).

5.4. Behavior-Guided Policy Gradient (BGPG)

Here we present the Behavior-Guided Policy Gradient

(BGPG) algorithm (Alg. 3). Specifically, we maintain a

stochastic policy ⇡✓ and compute policy gradients as in prior

work (Schulman et al., 2015).

Algorithm 3 Behavior-Guided Policy Gradient

Input: Initialize stochastic policy ⇡0 parametrized by ✓0,

� < 0, ⌘ > 0, M 2 N

for t = 1, . . . , T do
1. Run ⇡t�1 in the environment to get advantage values

A⇡t�1(s, a) and trajectories {⌧
(t)
i }Mi=1

2. Update policy and test functions via several alternat-

ing policy gradient steps over F (✓).
3. Use samples from P⇡t�1

N
P⇡θ

and Algorithm

1 to update �1,�2 and take SGA step ✓t = ✓t�1 +
⌘r̂✓F̂ (✓t�1)

For on-policy embeddings the objective function F (✓) takes
the form:

F (✓) = E
⌧1,⌧2⇠Pπt�1

N
Pπθ

h
R̂(⌧1, ⌧2)

i
, (10)

where R̂(⌧1, ⌧2) =
P

A⇡t�1(si, ai)
⇡θ(ai|si)

⇡t�1(ai|si)
+

dWD�(P
Φ

⇡t�1
,PΦ

⇡θ
). To optimize the Wasserstein dis-

tance we use Algorithm 1. Importantly, stochastic gradients

of F (✓) can be approximated by samples from ⇡✓. In

its simplest form, the gradient r̂✓F̂ can be computed by

the vanilla policy gradient over the advantage component

and using the REINFORCE estimator through the com-

ponents involving Test Functions acting on trajectories

from P⇡θ
. For off-policy embeddings, r̂✓F̂ can be

computed by sampling from the product of the state

probing distributions. Gradients through the differen-

tiable test functions can be computed by the chain rule:

r✓�(S,⇡✓(S)) = (r��(�))
>r✓� for � = (S,⇡✓(S)).

BGPG can be thought of as a variant of Trust Region Pol-

icy Optimization with a Wasserstein penalty. As opposed

to vanilla TRPO, the optimization path of BGPG flows

through policy parameter space while encouraging it to

follow a smooth trajectory through the geometry of the be-

havioral manifold. We proceed to show that given the right

embedding and cost function, we can prove a monotonic

improvement theorem for BGPG, showing that our methods

satisfy at least similar guarantees as TRPO.

Furthermore, Let V (⇡) be the expected reward of policy

⇡ and ⇢⇡(s) = E⌧⇠Pπ

hPT

t=0 1(st = s)
i

be the visitation

measure.

Two distinct policies ⇡ and ⇡̃ can be related via the

equation (see: (Sutton et al., 1998)) V (⇡̃) = V (⇡) +R
S
⇢⇡̃(s)

�R
A
⇡̃(a|s)A⇡(s, a)da

�
ds and the linear approx-

imations to V around ⇡ via: L(⇡̃) = V (⇡) +R
S
⇢⇡(s)

�R
A
⇡̃(a|s)A⇡(s, a)da

�
ds (see: (Kakade & Lang-

ford, 2002)). Let S be a finite set. Consider the follow-

ing embedding Φ
s : Γ ! R

|S| defined by (Φ(⌧))s =PT

t=0 1(st = s) and related cost function defined as:

C(v,w) = kv � wk1. Then WD0(P
Φ

s

⇡̃ ,PΦ
s

⇡ ) is re-

lated to visitation frequencies since WD0(P
Φ

s

⇡̃ ,PΦ
s

⇡ ) �P
s2S |⇢⇡(s) � ⇢⇡̃(s)|. These observations enable us to

prove an analogue of Theorem 1 from (Schulman et al.,

2015) (see Section C.2 for the proof), namely:

Theorem 5.1. If WD0(P
Φ

s

⇡̃ ,PΦ
s

⇡ )  � and ✏ =
maxs,a |A

⇡(s, a)|, then V (⇡̃) � L(✓̃)� �✏.

As in (Schulman et al., 2015), Theorem 5.1 implies a policy

improvement guarantee for BGPG.

5.5. Behavior Guided Evolution Strategies (BGES)

ES takes a black-box optimization approach to RL, by con-

sidering a rollout of a policy, parameterized by ✓ as a black-

box function F . This approach has gained in popularity

recently (Salimans et al., 2017; Mania et al., 2018; Choro-

manski et al., 2019). If we take this approach to optimizing

the objective in Eq. 7, the result is a black-box optimiza-

tion algorithm which seeks to maximize the reward and

simultaneously maximizes or minimizes the difference in

behavior from the base embedding distribution P
Φ

b . We call

it Behavior-Guided Evolution Strategies (BGES) algorithm

(see: Alg. 4).

When � > 0, and we take P
Φ

b = P
Φ

⇡t�1
, BGES resembles

the NSR-ES algorithm from (Conti et al., 2018), an instan-

tiation of novelty search (Lehman & Stanley, 2008). The

positive weight on the WD-term enforces newly constructed

policies to be behaviorally different from the previous ones

while the R�term drives the optimization to maximize the



Learning to Score Behaviors for Guided Policy Optimization

reward. The key difference in our approach is the proba-

bilistic embedding map, with WD rather than Euclidean

distance. We show in Section 7.2 that BGES outperforms

NSR-ES for challenging exploration tasks.

Algorithm 4 Behavior-Guided Evolution Strategies

Input: learning rate ⌘, noise standard deviation �, iterations

T , BEM Φ, � (> 0 for repulsion, < 0 for imitation).

Initialize: Initial policy ⇡0 parametrized by ✓0, Behavioral

Test Functions �1,�2. Evaluate policy ⇡0 to return trajec-

tory ⌧0
for t = 1, . . . , T � 1 do

1. Sample ✏1, · · · , ✏n independently from N (0, I).
2. Evaluate policies {⇡k

t }
n
k=1 parameterized by {✓t +

�✏k}
n
k=1, get rewards Rk and trajectories ⌧k for all k.

3. Update �1 and �2 using Algorithm 1.

4. Approximate dWD�(PΦ

⇡k
t

,PΦ

⇡t
) plugging in �1,�2

into Eq. 5 for each perturbed policy ⇡k

5. Update Policy: ✓t+1 = ✓t + ⌘rESF , where:

rESF =
1

�

nX

k=1

[(1� �)(Rk �Rt) + �dWD�(P
Φ

⇡k
t
,P

Φ

⇡t
)]✏k

6. Related Work

Our work is related to research in multiple areas in neu-

roevolution and machine learning:

Behavior Characterizations: The idea of directly opti-

mizing for behavioral diversity was introduced by (Lehman

& Stanley, 2008) and (Lehman, 2012), who proposed to

search directly for novelty, rather than simply assuming it

would naturally arise in the process of optimizing an ob-

jective function. This approach has been applied to deep

RL (Conti et al., 2018) and meta-learning (Gajewski et al.,

2019). In all of this work, the policy is represented via a

behavioral characterization (BC), which requires domain

knowledge. In our setting, we move from deterministic BCs

to stochastic behavioral embeddings, thus requiring the use

of metrics capable of comparing probabilistic distributions.

Distance Metrics: WDs have been used in many applica-

tions in machine learning where guarantees based on distri-

butional similarity are required (Jiang et al., 2019; Arjovsky

et al., 2017). We make use of WDs in our setting for a vari-

ety of reasons. First and foremost, the dual formulation of

the WD allows us to recover Behavioral Test Functions, pro-

viding us with behavior-driven trajectory scores. In contrast

to KL divergences, WDs are sensitive to user-defined costs

between pairs of samples instead of relying only on likeli-

hood ratios. Furthermore, as opposed to KL divergences,

it is possible to take SGD steps using entropy-regularized

Wasserstein objectives. Computing an estimator of the KL

divergence is hard without a density model. Since in our

framework multiple unknown trajectories may map to the

same behavioral embedding, the likelihood ratio between

two embedding distributions may be ill-defined.

WDs for RL: We are not the first to propose using WDs

in RL. (Zhang et al., 2018) have recently introduced Wasser-

stein Gradient Flows (WGFs), which casts policy optimiza-

tion as gradient descent flow on the manifold of correspond-

ing probability measures, where geodesic lengths are given

as second-order WDs. We note that computing WGFs is

a nontrivial task. In (Zhang et al., 2018) this is done via

particle approximation methods, which we show in Sec-

tion 7 is substantially slower than our methods. The WD

has also been employed to replace KL terms in standard

Trust Region Policy Optimization (Richemond & Magin-

nis, 2017). This is a very special case of our more generic

framework (cf. Section 5.3). In (Richemond & Maginnis,

2017) it is suggested to solve the corresponding RL prob-

lems via Fokker-Planck equations and diffusion processes,

yet no empirical evidence of the feasibility of this approach

is provided. We propose general practical algorithms and

provide extensive empirical evaluation.

Distributional RL Distributional RL (DRL, (Bellemare

et al., 2017)) expands on traditional off-policy methods

(Mnih et al., 2013) by attempting to learn a distribution of

the return from a given state, rather than just the expected

value. These approaches have impressive experimental re-

sults (Bellemare et al., 2017; Dabney et al., 2018), with a

growing body of theory (Rowland et al., 2018; Qu et al.,

2019; Bellemare et al., 2019; Rowland et al., 2019). Super-

ficially it may seem that learning a distribution of returns is

similar to our approach to PPEs, when the BEM is a distribu-

tion over rewards. Indeed, reward-driven embeddings used

in DRL can be thought of as special cases of the general

class of BEMs. We note two key differences: 1) DRL meth-

ods are off-policy whereas our BGES and BGPG algorithms

are on-policy, and 2) DRL is typically designed for discrete

domains, since Q-Learning with continuous action spaces is

generally much harder. Furthermore, we note that while the

WD is used in DRL, it is only for the convergence analysis

of the DRL algorithm (Bellemare et al., 2017).

7. Experiments

Here we seek to test whether our approach to RL translates

to performance gains by evaluating BGPG and BGES, ver-

sus their respective baselines for a range of tasks. For each

subsection we provide additional details in the Appendix.

7.1. Behavior-Guided Policy Gradient

Our key question is whether our techniques lead to outperfor-

mance for BGPG vs. baseline TRPO methods using KL di-

vergence, which are widely used in the reinforcement learn-

ing community. For the BEM, we use the concatenation-

of-actions, as used already in TRPO. We consider a variety

of challenging problems from the DeepMind Control Suite
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(Tassa et al., 2018) and Roboschool (RS). In Fig. 4 we

see that BGPG does indeed outperform KL-based TRPO

methods, with gains across all six environments. We also

confirm results from (Schulman et al., 2015) that a trust

region typically improves performance.

(a) HalfCheetah (b) Ant

(c) Hopper: Hop (d) Walker: Stand

(e) RS: HalfCheetah (f) RS: Walker2d

Figure 4: BGPG vs. TRPO: We compare BGPG and TRPO (KL
divergence) on several continuous control tasks. As a baseline we
also include results without a trust region (� = 0 in Algorithm 3).
Plots show the mean ± std across 5 random seeds.

Wall Clock Time: To illustrate computational benefits of

alternating optimization of WD in BGPG, we compare it to

the method introduced in (Zhang et al., 2018). In practice,

the WD across different state samples can be optimized in

a batched manner, details of which are in the Appendix. In

Table 7.1 we see that BGPG is substantially faster.

(Zhang et al., 2018) BGPG

Pendulum 3720 777

Hopper: Stand 26908 10817

Hopper: Hop 23542 12820

Walker: Stand 13497 4082

Table 1: Clock time (s) to achieve a normalized reward of 90% of
the best achieved. All experiments were run on the same CPU.

7.2. Behavior-Guided Evolution Strategies

Next we seek to evaluate the ability for BGES to use its

behavioral repulsion for exploration.

Deceptive Rewards A common challenge in RL is decep-

tive rewards. These arise since agents can only learn from

data gathered via experience in the environment. To test

BGES in this setting, we created two intentionally deceptive

environments. In both cases the agent is penalized at each

time step for its distance from a goal. The deception comes

from a barrier, which means initially positive rewards from

moving directly forward will lead to a suboptimal policy.

We consider two agents—a two-dimensional point and a

larger quadruped. Details are provided in the Appendix

(Section B). We compare with state-of-the-art on-policy

methods for exploration: NSR-ES (Conti et al., 2018),

which assumes the BEM is deterministic and uses the Eu-

clidean distance to compare policies, and NoisyNet-TRPO
(Fortunato et al., 2018). We used the reward-to-go and final

state BEMs for the quadruped and point respectively.

(a) Quadruped (b) Point

Figure 5: Deceptive Rewards. Plots show the mean ± std across
5 random seeds for two environments: Quadruped and Point.

Policies avoiding the wall correspond to rewards: R >

�5000 and R > �800 for the quadruped and point re-

spectively. In the prior case an agent needs to first learn how

to walk and the presence of the wall is enough to prohibit

vanilla ES from even learning forward locomotion. As we

see in Fig. 5, BGES is the only method that drives the agent

to the goal in both settings.

8. Conclusion and Future Work

In this paper we proposed a new paradigm for on-policy

learning in RL, where policies are embedded into expres-

sive latent behavioral spaces and the optimization is con-

ducted by utilizing the repelling/attraction signals in the

corresponding probabilistic distribution spaces. The use

of Wasserstein distances (WDs) guarantees flexibility in

choosing cost funtions between embedded policy trajecto-

ries, enables stochastic gradient steps through correspond-

ing regularized objectives (as opposed to KL divergence

methods) and provides an elegant method, via their dual

formulations, to quantify behaviorial difference of policies

through the behavioral test functions. Furthermore, the dual

formulations give rise to efficient algorithms optimizing RL

objectives regularized with WDs.

We also believe the presented methods shed new light on

several other challenging problems of modern RL, including:
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learning with safety guarantees (a repelling signal can be

used to enforce behaviors away from dangerous ones) or

anomaly detection for reinforcement learning agents (via

the above score functions). Finally, we are interested in

extending our method to the off policy setting.
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