
Learning to See by Moving

Pulkit Agrawal

UC Berkeley

pulkitag@eecs.berkeley.edu

João Carreira

UC Berkeley

carreira@eecs.berkeley.edu

Jitendra Malik

UC Berkeley

malik@eecs.berkeley.edu

Abstract

The current dominant paradigm for feature learning in
computer vision relies on training neural networks for the
task of object recognition using millions of hand labelled
images. Is it also possible to learn features for a diverse set
of visual tasks using any other form of supervision? In bi-
ology, living organisms developed the ability of visual per-
ception for the purpose of moving and acting in the world.
Drawing inspiration from this observation, in this work we
investigated if the awareness of egomotion (i.e. self motion)
can be used as a supervisory signal for feature learning. As
opposed to the knowledge of class labels, information about
egomotion is freely available to mobile agents. We found
that using the same number of training images, features
learnt using egomotion as supervision compare favourably
to features learnt using class-label as supervision on the
tasks of scene recognition, object recognition, visual odom-
etry and keypoint matching.

”We must perceive in order to move, but we must also

move in order to perceive”

J.J Gibson

1. Introduction

Recent advances in computer vision have shown that vi-

sual features learnt by neural networks trained for the task

of object recognition using more than a million labelled im-

ages are useful for many computer vision tasks like seman-

tic segmentation, object detection and action classification

[18, 10, 1, 33]. However, object recognition is one among

many tasks for which vision is used. For example, humans

use visual perception for recognizing objects, understand-

ing spatial layouts of scenes and performing actions such

as moving around in the world. Is there something special

about the task of object recognition or is it the case that use-

ful visual representations can be learnt through other modes

of supervision? Clearly, biological agents perform complex

visual tasks and it is unlikely that they require external su-

pervision in form of millions of labelled examples. Unla-

belled visual data is freely available and in theory this data

can be used to learn useful visual representations. However,

until now unsupervised learning approaches [4, 22, 29, 32]

have not yet delivered on their promise and are nowhere to

be seen in current applications on complex real world im-

agery.

Biological agents use perceptual systems for obtaining

sensory information about their environment that enables

them to act and accomplish their goals [13, 9]. Both biolog-

ical and robotic agents employ their motor system for exe-

cuting actions in their environment. Is it also possible that

these agents can use their own motor system as a source of

supervision for learning useful perceptual representations?

Motor theories of perception have a long history [13, 9],

but there has been little work in formulating computational

models of perception that make use of motor information.

In this work we focus on visual perception and present a

model based on egomotion (i.e. self motion) for learning

useful visual representations. When we say useful visual

representations [34], we mean representations that possess

the following two characteristics - (1) ability to perform

multiple visual tasks and (2) ability of performing new vi-

sual tasks by learning from only a few labeled examples

provided by an extrinsic teacher.

Mobile agents are naturally aware of their egomotion

(i.e. self-motion) through their own motor system. In other

words, knowledge of egomotion is “freely” available. For

example, the vestibular system provides the sense of orien-

tation in many mammals. In humans and other animals, the

brain has access to information about eye movements and

the actions performed by the animal [9]. A mobile robotic

agent can estimate its egomotion either from the motor com-

mands it issues to move or from odometry sensors such as

gyroscopes and accelerometers mounted on the agent itself.

We propose that useful visual representations can be

learnt by performing the simple task of correlating visual

stimuli with egomotion. A mobile agent can be treated like

a camera moving in the world and thus the knowledge of

egomotion is similar to the knowledge of camera motion.

Using this insight, we pose the problem of correlating vi-

sual stimuli with egomotion as the problem of predicting

the camera transformation from the consequent pairs of im-
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ages that the agent receives while it moves. Intuitively, the

task of predicting camera transformation between two im-

ages should force the agent to learn features that are adept

at identifying visual elements that are present in both the

images (i.e. visual correspondence). In the past, features

such as SIFT, that were hand engineered for finding corre-

spondences were also found to be very useful for tasks such

as object recognition [23, 19]. This suggests that egomotion

based learning can also result in features that are useful for

such tasks.

In order to test our hypothesis of feature learning using

egomotion, we trained multilayer neural networks to predict

the camera transformation between pairs of images. As a

proof of concept, we first demonstrate the usefulness of our

approach on the MNIST dataset [21]. We show that features

learnt using our method outperform previous approaches of

unsupervised feature learning when class-label supervision

is available only for a limited number of examples (section

3.4) Next, we evaluated the efficacy of our approach on real

world imagery. For this purpose, we used image and odom-

etry data recorded from a car moving through urban scenes,

made available as part of the KITTI [12] and the San Fran-

cisco (SF) city [7] datasets. This data mimics the scenario

of a robotic agent moving around in the world. The qual-

ity of features learnt from this data were evaluated on four

tasks (1) Scene recognition on SUN [37] (section 5.1), (2)

Visual odometery (section 5.4), (3) Keypoint matching (sec-

tion 5.3) and (4) Object recognition on Imagenet [31] (sec-

tion 5.2).

Our results show that for the same amount of training

data, features learnt using egomotion as supervision com-

pare favorably to features learnt using class-label as super-

vision. We also show that egomotion based pretraining out-

performs a previous approach based on slow feature analy-

sis for unsupervised learning from videos [36, 14, 25]. To

the best of our knowledge, this work provides the first effec-

tive demonstration of learning visual representations from

non-visual access to egomotion information in real world

setting.

The rest of this paper is organized as following: In sec-

tion 2 we discuss the related work, in section 3, 4, 5 we

present the method, dataset details and we conclude with

the discussion in section 6.

2. Related Work

Past work in unsupervised learning has been domi-

nated by approaches that pose feature learning as the prob-

lem of discovering compact and rich representations of

images that are also sufficient to reconstruct the images

[6, 3, 22, 32, 27, 30]. Another line of work has focused on

learning features that are invariant to transformations either

from video [36, 14, 25] or from images [11, 29]. [24] per-

form feature learning by modeling spatial transformations

using boltzmann machines, but donot evaluate the quality

of learnt features.

Despite a lot of work in unsupervised learning (see [4]

for a review), a method that works on complex real world

imagery is yet to be developed. An alternative to unsuper-

vised learning is to learn features using intrinsic reward sig-

nals that are freely available to a system (i.e self-supervised

learning). For instance, [15] used intrinsic reward signals

available to a robot for learning features that predict path

traversability, while [28] trained neural networks for driv-

ing vehicles directly from visual input.

In this work we propose to use non-visual access to ego-

motion information as a form of self-supervision for visual

feature learning. Unlike any other previous work, we show

that our method works on real world imagery. Closest to our

method is the the work of transforming auto-encoders [16]

that used egomotion to reconstruct the transformed image

from an input source image. This work was purely con-

ceptual in nature and the quality of learned features was not

evaluated. In contrast, our method uses egomotion as super-

vision by predicting the transformation between two images

using a siamese-like network model [8].

Our method can also be seen as an instance of feature

learning from videos. [36, 14, 25] perform feature learn-

ing from videos by imposing the constraint that tempo-

rally close frames should have similar feature representa-

tions (i.e. slow feature analysis) without accounting for ei-

ther the camera motion or the motion of objects in the scene.

In many settings the camera motion dominates the motion

content of the video. Our key observation is that knowl-

edge of camera motion (i.e. egomotion) is freely available

to mobile agents and can be used as a powerful source of

self-supervision.

3. A Simple Model of Motion-based Learning

We model the visual system of the agent with a Con-

volutional Neural Network (CNN, [20]). The agent opti-

mizes its visual representations (i.e. updating the weights

of the CNN) by minimizing the error between the egomo-

tion information (i.e. camera transformation) obtained from

its motor system and egomotion predicted using its visual

inputs only. Performing this task is equivalent to train-

ing a CNN with two streams (i.e. Siamese Style CNN or

SCNN[8]) that takes two images as inputs and predicts the

egomotion that the agent underwent as it moved between

the two spatial locations from which the two images were

obtained. In order to learn useful visual representations, the

agent continuously performs this task as it moves around in

its environment.

In this work we use the pretraining-finetuning paradigm

for evaluating the utility of learnt features. Pretraining is the

process of optimizing the weights of a randomly initialized

CNN for an auxiliary task that is not the same as the target
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Figure 1: Exploring the utility of egomotion as supervision for learning useful visual features. A mobile agent equipped

with visual sensors receives a sequence of images as inputs while it moves in its environment. The movement of the agent

is equivalent to the movement of a camera. In this work, egomotion based learning is posed as the problem of predicting

camera transformation from image pairs. The top and bottom rows of the figure show some sample image pairs from the SF

and KITTI datasets that were used for feature learning.

task. Finetuning is the process of modifying the weights of

a pretrained CNN for the given target task. Our experiments

compare the utility of features learnt using egomotion based

pretraining against class-label based and slow-feature based

pretraining on multiple target tasks.

3.1. Two Stream Architecture

Each stream of the CNN independently computes fea-

tures for one image. Both streams share the same ar-

chitecture and the same set of weights and consequently

perform the same set of operations for computing fea-

tures. The individual streams have been called as Base-

CNN (BCNN). Features from two BCNNs are concatenated

and passed downstream into another CNN called as the Top-

CNN (TCNN) (see figure 2). TCNN is responsible for using

the BCNN features to predict the camera transformation be-

tween the input pair of images. After pretraining, the TCNN

is removed and a single BCNN is used as a standard CNN

for feature computation for the target task.

3.2. Shorthand for CNN architectures

The abbreviations Ck, Fk, P, D, Op refer to a convolu-

tional(C) layer with k filters, a fully-connected(F) layer with

k filters, pooling(P), dropout(D) and the output(Op) lay-

ers respectively. We used ReLU non-linearity after every

convolutional/fully-connected layer, except for the output

layer. The dropout layer was always used with dropout of

0.5. The output layer was a fully connected layer with num-

ber of units equal to the number of desired outputs. As an

example of our notation, C96-P-F500-D refers to a network

with 96 filters in the convolution layer followed by ReLU

non-linearity, a pooling layer, a fully-connected layer with

L1
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a
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L2 Lk

F1 F2

Base-CNN Stream-1

Base-CNN  Stream-2 Top-CNN

Figure 2: Description of the method for feature learning.

Visual features are learnt by training a Siamese style Con-

volutional Neural Network (SCNN, [8]) that takes as inputs

two images and predicts the transformation between the im-

ages (i.e. egomotion). Each stream of the SCNN (called

as Base-CNN or BCNN) computes features for one image.

The outputs of two BCNNs are concatenated and passed

as inputs to a second multilayer CNN called as the Top-

CNN (TCNN) (shown as layers F1, F2). The two BCNNs

have the same architecture and share weights. After feature

learning, TCNN is discarded and a single BCNN stream is

used as a standard CNN for extracting features for perform-

ing target tasks like scene recognition.

500 unit, ReLU non-linearity and a dropout layer. We used

[17] for training all our models.
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3.3. Slow Feature Analysis (SFA) Baseline

Slow Feature Analysis (SFA) is a method for feature

learning based on the principle that useful features change

slowly in time. We used the following contrastive loss

formulation of SFA [8, 25],

L(xt1
, xt2

,W ) =

{

D(xt1
, xt2

) if |t1 − t2| ≤ T

1−max
(

0,m−D(xt1
, xt2

)
)

if |t1 − t2| > T
(1)

where, L is the loss, xt1
, xt2

refer to feature representa-

tions of frames observed at times t1, t2 respectively, W are

the parameters that specify the feature extraction process, D

is a measure of distance with parameter, m is a predefined

margin and T is a predefined time threshold for determining

whether the two frames are temporally close or not. In this

work, xt are features computed using a CNN with weights

W and D was chosen to be the L2 distance. SFA pretrain-

ing was performed using two stream architectures that took

pairs of images as inputs and produced outputs xt1
, xt2

as

outputs from the two streams respectively.

3.4. Proof of Concept using MNIST

On MNIST, egomotion was emulated by generating syn-

thetic data consisting of random transformation (transla-

tions and rotations) of digit images. From the training set of

60K images, digits were randomly sampled and then trans-

formed using two different sets of random transformations

to generate image pairs. CNNs were trained for predicting

the transformations between these image pairs.

3.4.1 MNIST Data

For egomotion based pretraining, relative translation be-

tween the digits was constrained to be an integer value in

the range [-3, 3] and relative rotation θ was constrained to

lie within the range [-30◦, 30◦]. The prediction of transfor-

mation was posed as a classification task with three sepa-

rate soft-max losses (one each for translation along X, Y

axes and the rotation about Z-axis). SCNN was trained

to minimize the sum of these three losses. Translations

along X, Y were separately binned into seven uniformly

spaced bins each. The rotations were binned into bins of

size 3◦each resulting into a total of 20 bins (or classes). For

SFA based pretraining, image pairs with relative translation

in the range [-1, 1] and relative rotation within [-3◦, 3◦]

were considered to be temporally close to each other (see

equation 1). A total of 5 million image pairs were used for

both pretraining procedures.

3.4.2 MNIST Network Architectures

We experimented with multiple BCNN architectures and

chose the optimal architecture for each pretraining method

separately. For egmotion based pretraining, the two BCNN

streams were concatenated using the TCNN: F1000-D-Op.

Pretraining was performed for 40K iterations (i.e. 5M ex-

amples) using an initial learning rate of 0.01 which was re-

duced by a factor of 2 after every 10K iterations.

The following architecture was used for finetuning:

BCNN-F500-D-Op. In order to evaluate the quality of

BCNN features, the learning rate of all layers in the BCNN

were set to 0 during finetuning for digit classification. Fine-

tuning was performed for 4K iterations (which is equivalent

to training for 50 epochs for the 10K labelled training ex-

amples) with a constant learning rate of 0.01.

3.4.3 MNIST Results

The BCNN features were evaluated by computing the er-

ror rates on the task of digit classification using 100, 300,

1K and 10K class-labelled examples for training. These

sets were constructed by randomly sampling digits from the

standard training set of 60K digits. For this part of the ex-

periment, the original digit images were used (i.e. without

any transformations or data augmentation). The standard

test set of 10K digits was used for evaluation and error rates

averaged across 3 runs are reported in table 1.

The BCNN architecture: C96-P-C256-P, was found to

be optimal for egomotion and SFA based pretraining and

also for training from scratch (i.e. random weight initial-

ization). Results for other architectures are provided in the

supplementary material. For SFA based pretraining, we ex-

perimented with multiple values of the margin m and found

that m = 10, 100 led to the best performance. Our method

outperforms convolutional deep belief networks [22], a pre-

vious approach based on learning features invariant to trans-

formations [29] and SFA based pretraining.

4. Learning Visual Features From Egomotion

in Natural Environments

We used two main sources of real world data for feature

learning: the KITTI and SF datasets, which were collected

using cameras and odometry sensors mounted on a car driv-

ing through urban scenes. Details about the data, the exper-

imental procedure, the network architectures and the results

are provided in sections 4.1, 4.2, 4.3 and 5 respectively.

4.1. KITTI Dataset

The KITTI dataset provided odometry and image data

recorded during 11 short trips of variable length made by

a car moving through urban landscapes. The total number

of frames in the entire dataset was 23,201. Out of 11, 9
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Method # examples for finetuning

100 300 1000 10000

Autoencoder [17] 24.1 12.2 7.7 4.8

Ranzato et al. [29] - 7.18 3.21 0.85

Lee et al. [22] - - 2.62 -

Train from Scratch 20.1 8.3 4.5 1.6

SFA (m=10) 11.2 6.4 3.5 2.1

SFA (m=100) 11.9 6.4 4.8 4.7

Egomotion (ours) 8.7 3.6 2.0 0.9

Table 1: Comparison of various pretraining methods on

MNIST reveals that egomotion based pretraining outper-

forms many previous approaches for unsupervised learning.

The performance is reported as the error rate.

sequences were used for training and 2 for validation. The

total number of images in the training set was 20,501.

The odometry data was used to compute the camera

transformation between pairs of images recorded from the

car. The direction in which the camera pointed was assumed

to be the Z axis and the image plane was taken to be the XY

plane. X-axis and Y-axis refer to horizontal and vertical

directions in the image plane. As significant camera trans-

formations in the KITTI data were either due to translations

along the Z/X axis or rotation about the Y axis, only these

three dimensions were used to express the camera trans-

formation. The task of predicting the transformation be-

tween pair of images was posed as a classification problem.

The three dimensions of camera transformation were indi-

vidually binned into 20 uniformly spaced bins each. The

training image pairs were selected from frames that were at

most ±7 frames apart to ensure that images in any given

pair would have a reasonable overlap. For SFA based pre-

training, pairs of frames that were separated by atmost ±7
frames were considered to be temporally close to each other.

The SCNN was trained to predict camera transformation

from pairs of 227× 227 pixel sized image regions extracted

from images of overall size 370 × 1226 pixels. For each

image pair, the coordinates for cropping image regions were

randomly chosen. Figure 1 illustrates typical image crops.

4.2. SF Dataset

SF dataset provides camera transformation between ≈
136K pairs of images (constructed from a set of 17,357

unique images). This dataset was constructed using Google

StreetView [7]. ≈ 130K image pairs were used for training

and ≈ 6K pairs for validation.

Just like KITTI, the task of predicting camera trans-

formation was posed as a classification problem. Unlike

KITTI, significant camera transformation was found along

all six dimensions of transformation (i.e. the 3 euler angles

(a) KITTI-Net (b) SF-Net

Figure 3: Visualization of layer 1 filters learnt by egomotion

based pretraining on (a) KITTI and (b) SF datasets. A large

majority of layer-1 filters are color detectors and some of

them are edge detectors. This is expected as color is a useful

cue for determining correspondences between image pairs.

and the 3 translations). Since, it is unreasonable to expect

that visual features can be used to infer big camera trans-

formations, rotations between [-30◦, 30◦] were binned into

10 uniformly spaced bins and two extra bins were used for

rotations larger and smaller than 30◦and -30◦respectively.

The three translations were individually binned into 10 uni-

formly spaced bins each. Images were resized to a size of

360 × 480 and image regions of size 227 × 227 were used

for training the SCNN.

4.3. Network Architecture

BCNN closely followed the architecture of first five

AlexNet layers [18]: C96-P-C256-P-C384-C384-C256-P.

TCNN architecture was: C256-C128-F500-D-Op. The con-

volutional filters in the TCNN were of spatial size 3×3. The

networks were trained for 60K iterations with a batch size

of 128. The initial learning rate was set to 0.001 and was

reduced by a factor of two after every 20K iterations.

We term the networks pretrained using egomotion on

KITTI and SF datasets as KITTI-Net and SF-Net respec-

tively. The net pretrained on KITTI with SFA is called

KITTI-SFA-Net. Figure 3 shows the layer-1 filters of

KITTI-Net and SF-Net. A large majority of layer-1 filters

are color detectors, while some of them are edge detectors.

As color is a useful cue for determining correspondences

between closeby frames of a video sequence, learning of

color detectors as layer-1 filters is not surprising. The frac-

tion of filters that detect edges is higher for the SF-Net. This

is not surprising either, because higher fraction of images in

the SF dataset contain structured objects like buildings and

cars.

5. Evaluating Motion-based Learning

For evaluating the merits of the proposed approach, fea-

tures learned using egomotion based supervision were com-

pared against features learned using class-label and SFA

based supervision on the challenging tasks of scene recogni-

tion, intra-class keypoint matching and visual odometry and
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object recognition. The ultimate goal of feature learning is

to find features that can generalize from only a few super-

vised examples on a new task. Therefore it makes sense to

evaluate the quality of features when only a few labelled ex-

amples for the target task are provided. Consequently, the

scene and object recognition experiments were performed

in the setting when only 1-20 labelled examples per class

were available for finetuning.

The KITTI-Net and SF-Net (examples of models trained

using egomotion based supervision) were trained using only

only ≈ 20K unique images. To make a fair comparison

with class-label based supervision, a model with AlexNet

architecture was trained using only 20K images taken from

the training set of ILSVRC12 challenge (i.e. 20 examples

per class). This model has been referred to as AlexNet-20K.

In addition, some experiments presented in this work also

make comparison with AlexNet models trained with 100K

and 1M images that have been named as AlexNet-100K and

AlexNet-1M respectively.

5.1. Evaluation on Scene Recognition

SUN dataset consisting of 397 indoor/outdoor scene cat-

egories was used for evaluating scene recognition perfor-

mance. This dataset provides 10 standard splits of 5 and 20

training images per class and a standard test set of 50 im-

ages per class. Due to time limitation of running 10 runs of

the experiment, we evaluated the performance using only 3

train/test splits.

For evaluating the utility of CNN features produced by

different layers, separate linear (SoftMax) classifiers were

trained on features produced by individual CNN layers

(i.e. BCNN layers of KITTI-Net, KITTI-SFA-Net and SF-

Net). Table 2 reports recognition accuracy (averaged over

3 train/test splits) for various networks considered in this

study. KITTI-Net outperforms SF-Net and is comparable

to AlexNet-20K. This indicates that given a fixed budget

of pretraining images, egomotion based supervision learns

features that are almost as good as the features using class-

based supervision on the task of scene recognition. The per-

formance of features computed by layers 1-3 (abbreviated

as L1, L2, L3 in table 2) of the KITTI-SFA-Net and KITTI-

Net is comparable, whereas layer 4, 5 features of KITTI-Net

significantly outperform layer 4, 5 features of KITTI-SFA-

Net. This indicates that egomotion based pretraining results

into learning of higher-level features, while SFA based pre-

training results into learning of lower-level features only.

The KITTI-Net outperforms GIST[26], which was

specifically developed for scene classification, but is out-

performed by Dense SIFT with spatial pyramid matching

(SPM) kernel [19]. The KITTI-Net was trained using lim-

ited visual data (≈ 20Kframes) containing visual imagery

of limited diversity. The KITTI data mainly contains images

of roads, buildings, cars, few pedestrians, trees and some

Method 1 5 10 20

AlexNet-Scratch 1.1 3.1 5.9 14.1

KITTI-SFA-Net (Slowness) 1.5 3.9 6.1 14.9

KITTI-Net (Egomotion) 2.3 5.1 8.6 15.8

Table 3: Top-5 accuracy on the task of object recognition

on the ILSVRC-12 validation set. AlexNet-Scratch refers

to a net with AlexNet architecture initialized with randomly

weights. The weights of KITTI-Net and KITTI-SFA-Net

were learned using egomotion based and SFA based su-

pervision on the KITTI dataset respectively. All the net-

works were finetuned using 1, 5, 10, 20 examples per class.

The KITTI-Net clearly outperforms AlexNet-Scratch and

KITTI-SFA-Net.

vegetation. It is in fact surprising that a network trained on

data with such little diversity is competitive on classifying

indoor and outdoor scenes with the AlexNet-20K that was

trained on a much more diverse set of images. We believe

that with more diverse training data for egomotion based

learning, the performance of learnt features will be better

than currently reported numbers.

The KITTI-Net outperformed the SF-Net except for the

performance of layer 1 (L1). As it was possible to extract a

larger number of image region pairs from the KITTI dataset

as compared to the SF dataset (see section 4.1, 4.2), the

result that KITTI-Net outperforms SF-Net is not surprising.

Because KITTI-Net was found to be superior to the SF-Net

in this experiment, the KITTI-Net was used for all other

experiments described in this paper.

5.2. Evaluation on Object Recognition

If egomotion based pretraining learns useful features for

object recognition, then a net initialized with KITTI-Net

weights should outperform a net initialized with random

weights on the task of object recognition. For testing this,

we trained CNNs using 1, 5, 10 and 20 images per class

from the ILSVRC-2012 challenge. As this dataset contains

1000 classes, the total number of training examples avail-

able for training for these networks were 1K, 5K, 10K and

20K respectively. All layers of KITTI-Net, KITTI-SFA-Net

and AlexNet-Scratch (i.e. CNN with random weight initial-

ization) were finetuned for image classification.

The results of the experiment presented in table 3

show that egomotion based supervision (KITTI-Net) clearly

outperforms SFA based supervision(KITTI-SFA-Net) and

AlexNet-Scratch. As expected, the improvement offered by

motion-based pretraining is larger when the number of ex-

amples provided for the target task are fewer. These result

show that egomotion based pretraining learns features use-

ful for object recognition.
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Method Pretrain Supervision #Pretrain #Finetune L1 L2 L3 L4 L5 L6 #Finetune L1 L2 L3 L4 L5 L6

AlexNet-1M
Class-Label

1M 5 5.3 10.5 12.1 12.5 18.0 23.6 20 11.8 22.2 25.0 26.8 33.3 37.6

AlexNet-20K 20K 5 4.9 6.3 6.6 6.3 6.6 6.7 20 8.7 12.6 12.4 11.9 12.5 12.4

KITTI-SFA-Net Slowness 20.5K 5 4.5 5.7 6.2 3.4 0.5 - 20 8.2 11.2 12.0 7.3 1.1 -

SF-Net
Egomotion

18K 5 4.4 5.2 4.9 5.1 4.7 - 20 8.6 11.6 10.9 10.4 9.1 -

KITTI-Net 20.5K 5 4.3 6.0 5.9 5.8 6.4 - 20 7.9 12.2 12.1 11.7 12.4 -

GIST [37] Human - 5 6.2 20 11.6

SPM [37] Human - 5 8.4 20 16.0

Table 2: Comparing the accuracy of neural networks pre-trained using motion-based and class-label based supervision for

the task of scene recognition on the SUN dataset. The performance of layers 1-6 (labelled as L1-L6) of these networks was

evaluated after finetuning the network using 5/20 images per class from the SUN dataset. The performance of the KITTI-Net

(i.e. motion-based pretraining) fares favorably with a network pretrained on Imagenet (i.e. class-based pretraining) with the

same number of pretraining images (i.e. 20K).

5.3. Evaluation on Intra­Class Keypoint Matching

Identifying the same keypoint of an object across differ-

ent instances of the same object class is an important visual

task. Visual features learned using egomotion, SFA and

class-label based supervision were evaluated for this task

using keypoint annotations on the PASCAL dataset [5].

Keypoint matching was computed in the following way:

First, ground-truth object bounding boxes (GT-BBOX)

from PASCAL-VOC2012 dataset were extracted and re-

sized (while preserving the aspect ratio) to ensure that the

smaller side of the boxes was of length 227 pixels. Next,

feature maps from layers 2-5 of various CNNs were com-

puted for every GT-BBOX. The keypoint matching score

was computed between all pairs of GT-BBOX belonging to

the same object class. For given pair of GT-BBOX, the fea-

tures associated with keypoints in the first image were used

to predict the location of the same keypoints in the second

image. The normalized pixel distance between the actual

and predicted keypoint locations was taken as the error in

keypoint matching. More details about this procedure have

been provided in the supp. materials.

It is natural to expect that accuracy of keypoint matching

would depend on the camera transformation between the

two viewpoints of the object(i.e. viewpoint distance). In

order to make a holistic evaluation of the utility of features

learnt by different pretraining methods on this task, match-

ing error was computed as a function of viewpoint distance

[35]. Figure 4 reports the matching error averaged across

all keypoints, all pairs of GT-BBOX and all classes using

features extracted from layers conv-3 and conv-4.

KITTI-Net trained only with 20K unique frames was

superior to AlexNet-20K and AlexNet-100K and inferior

only to AlexNet-1M. A net with AlexNet architecture ini-

tialized with random weights (AlexNet-Rand), surprisingly

performed better than AlexNet-20K. One possible expla-

nation for this observation is that with only 20K exam-

Method Translation Acc. Rotation Acc.

δX δY δZ δθ1 δθ2 δθ3
SF-Net 40.2 58.2 38.4 45.0 44.8 40.5

KITTI-Net 43.4 57.9 40.2 48.4 44.0 41.0

AlexNet-1M 41.8 58.0 39.0 46.0 44.5 40.5

Table 4: Comparing the accuracy of various pretraining

methods on the task of visual odometry.

ples, features learnt by AlexNet-20K only capture coarse

global appearance of objects and are therefore poor at key-

point matching. SIFT has been hand engineered for find-

ing correspondences across images and performs as well

as the best AlexNet-1M features for this task (i.e. conv-4

features). KITTI-Net also significantly outperforms KITTI-

SFA-Net. These results indicate that features learnt by ego-

motion based pretraining are superior to SFA and class-

label based pretraining for the task of keypoint matching.

5.4. Evaluation on Visual Odometry

Visual odometry is the task of estimating the camera

transformation between image pairs. All layers of KITTI-

Net and AlexNet-1M were finetuned for 25K iterations us-

ing the training set of SF dataset on the task of visual odom-

etry (see section 4.2 for task description). The performance

of various CNNs was evaluated on the validation set of SF

dataset and the results are reported in table 4.

Performance of KITTI-Net was either superior or com-

parable to AlexNet-1M on this task. As the evaluation was

made on the SF dataset itself, it was not surprising that on

some metrics SF-Net outperformed KITTI-Net. The results

of this experiment indicate that egomotion based feature

learning is superior to class-label based feature learning on

the task of visual odometry.
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Figure 4: Intra-class keypoint matching error as a function of viewpoint distance averaged over 20 PASCAL objects using

features from layers conv3 (left) and conv4 (right) of various CNNs used in this work. Please see the text for more details.

6. Discussion

In this work, we have shown that egomotion is a useful

source of intrinsic supervision for visual feature learning in

mobile agents. In contrast to class labels, knowledge of ego-

motion is ”freely” available. On MNIST, egomotion-based

feature learning outperforms many previous unsupervised

methods of feature learning. Given the same budget of pre-

training images, on task of scene recognition, egomotion-

based learning performs almost as well as class-label-based

learning. Further, egomotion based features outperform fea-

tures learnt by a CNN trained using class-label supervision

on two orders of magnitude more data (AlexNet-1M) on the

task of visual odometry and one order of magnitude more

data on the task of intra-class keypoint matching. In ad-

dition to demonstrating the utility of egomotion based su-

pervision, these results also suggest that features learnt by

class-label based supervision are not optimal for all visual

tasks. This means that future work should look at what

kinds of pretraining are useful for what tasks.

One potential criticism of our work is that we have

trained and evaluated high capacity deep models on rela-

tively little data (e.g. only 20K unique images available on

the KITTI dataset). In theory, we could have learnt bet-

ter features by downsizing the networks. For example, in

our experiments with MNIST we found that pretraining a

2-layer network instead of 3-layer results in better perfor-

mance (table 1). In this work, we have made a conscious

choice of using standard deep models because the main

goal of this work was not to explore novel feature extrac-

tion architectures but to investigate the value of egmotion

for learning visual representations on architectures known

to perform well on practical applications. Future research

focused on exploring architectures that are better suited for

egomotion based learning can only make a stronger case

for this line of work. While egomotion is freely available

to mobile agents, there are currently no publicly available

datasets as large as Imagenet. Consequently, we were un-

able to evaluate the utility of egomotion based supervision

across the full spectrum of training set sizes. In appendix B

of the supplementary materials we have provided a prelimi-

nary study of the performance of egomotion based supervi-

sion with varying amount of pretraining data.

In this work, we chose to first pretrain our models using

a base task (i.e. egomotion) and then finetune these mod-

els for target tasks. An equally interesting setting is that

of online learning where the agent has continuous access

to intrinsic supervision (such as egomotion) and occasional

explicit access to extrinsic teacher signal (such as the class

labels). We believe that such a training procedure is likely

to result in learning of better features. Our intuition behind

this is that seeing different views of the same instance of an

object (say) car, may not be sufficient to learn that different

instances of the car class should be grouped together. The

occasional extrinsic signal about object labels may prove

useful for the agent to learn such concepts. Also, current

work makes use of passively collected egomotion data and

it would be interesting to investigate if it is possible to learn

better visual representations if the agent can actively decide

on how to explores its environment (i.e. active learning [2]).
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