
Learning to Solve Planning Problems Ef�ciently
by Means of Genetic Programming

Ricardo Aler aler@inf.uc3m.es
Department of Computer Science, Universidad Carlos III de Madrid, 28911 Leganés,
Madrid, Spain

Daniel Borrajo dborrajo@ia.uc3m.es
Department of Computer Science, Universidad Carlos III de Madrid, 28911 Leganés,
Madrid, Spain

Pedro Isasi dborrajo@ia.uc3m.es
Department of Computer Science, Universidad Carlos III de Madrid, 28911 Leganés,
Madrid, Spain

Abstract
Declarative problem solving, such as planning, poses interesting challenges for Genetic
Programming (GP). There have been recent attempts to apply GP to planning that �t
two approaches: (a) using GP to search in plan space or (b) to evolve a planner. In
this article, we propose to evolve only the heuristics to make a particular planner more
ef�cient. This approach is more feasible than (b) because it does not have to build a
planner from scratch but can take advantage of already existing planning systems. It
is also more ef�cient than (a) because once the heuristics have been evolved, they can
be used to solve a whole class of different planning problems in a planning domain,
instead of running GP for every new planning problem. Empirical results show that
our approach (EVOCK) is able to evolve heuristics in two planning domains (the blocks
world and the logistics domain) that improve PRODIGY4.0 performance. Additionally,
we experiment with a new genetic operator – Instance-Based Crossover – that is able to
use traces of the base planner as raw genetic material to be injected into the evolving
population.

Keywords
Genetic planning, genetic programming, evolving heuristics, planning, search.

1 Introduction

AI Planners aim to achieve a set of goals, starting from an initial state, by using oper-
ators that represent the available actions of a task domain. Traditional approaches use
domain-independent planners for generating plans (Bonet and Geffner, 1999; Blum and
Furst, 1995; Penberthy and Weld, 1992; Veloso et al., 1995). Some recent approaches to
planning use Genetic Programming (GP). The genetic planning approach was started
by Koza, who evolved a planner that solved a very speci�c set of problems in the blocks
world domain (Koza, 1989, 1992). The ways GP can be applied to planning can be sum-
marized as follows:1

1We follow a classi�cation proposed by Spector (1994). We have added another item to the classi�cation
where our own work is included.

1

Referencia bibliográfica
Published in:Evolutionary Computation, 9, 4 (2001), 387-420

To evolve a plan. In this context, a plan can be seen as a program that changes the
initial state of a planning problem (given as input) into the desired or goal state.
Considered as a program, it can be evolved by GP.

To evolve a planning program for a particular domain. The planner should be,
in principle, able to solve a set or a pre-de�ned subset of the problems in the do-
main. Taking this idea to the extreme, a truly domain-independent planner could
be evolved, although this would require a daunting computer effort and seems
currently unfeasible.

To evolve heuristics to improve the ef�ciency of an already existing planner, which
is able to solve planning problems on its own, but in a very inef�cient way.

We will now analyze each alternative in depth.

1.1 Evolving Plans

Handley (1994) used GP to evolve plans for a speci�c subset of problems in the blocks
world domain. Muslea (1997) generalized, extended, and formalized this idea for his
SINERGY system and showed how any STRIPS-like planning problem could be trans-
lated into an equivalent GP problem. He tested it successfully in several domains of-
fering better performance than UCPOP (Penberthy and Weld, 1992) in dif�cult prob-
lems. Westerberg and Levine (2000) followed a similar approach and also reported
good results. An important advantage of this approach is its �exibility: planning op-
erators need not be coded using the STRIPS formalism; they can be arbitrary state-
transforming programs. This is also its main drawback, as they cannot use the under-
lying logical representation of the operators to reason about the world. For instance,
the �tness function relies on a continuous measure of closeness between the goals and
the current state of the world. If no such measure can be speci�ed, the �tness function
will be of little help to GP. This is the case of the “switch goal” mentioned by Handley
(a switch can be on or off, but not “close to on”).

Also, we believe that this kind of genetic planner would be easily deceived by
simplistic �tness functions where closeness measures give a false idea of the actual
distance to the desired goal. Consider for instance a robot moving in a labyrinth (the
Euclidean distance to the goal position is very misleading) or the classical 8-puzzle.
Some deliberative planning approaches based on search (McDermott, 1999; Bonet and
Geffner, 1999) have to build complex heuristic functions from the domain information
so that good distance estimations to the goal can be made. This shows that the problem
is not a trivial one.

A more important problem is that search has to be done every time a problem
needs to be solved. As GP is a weak search method and planning is NP-hard (Bylander,
1994), it is not expected that this approach will perform well on very big problems. It
is possible though, that the crossover operator is a good heuristic way to explore the
space of plans in some domains, although we do not know of any explicit empirical
support for this.

1.2 Evolving Domain-Dependent Planners

Koza was the �rst to follow this approach by evolving a planner that solved a very
speci�c subset of problems in the blocks world domain (Koza, 1992). Spector built a
better system that was able to achieve a range of goal conditions from a range of initial
conditions (Spector, 1994). However, only problems with three and four blocks were

2

tested. It seems that evolving a full-blown planner is a hard task. On the other hand,
this approach solves a problem the previous one had, because its �tness function eval-
uates many different �tness cases (i.e., planning problems). Therefore, even if all the
information we can get from a single �tness case is 1 or 0 (goal solved or not solved),
the �tness function can still have a wide range of values to rank a population of indi-
viduals (i.e., solves 3 out of 300 �tness cases, 100 of them, etc.).
So, many �tness cases may be able to compensate for poor closeness measures. Also,
once a planner for a domain has been learned, only a small amount of search should
be necessary to solve particular problems in the domain, as opposed to the previous
approach. For instance, it is well known that in the classical blocks world domain, no
search is required for solving problems of any arbitrary size: all the planner has to do
is to move all the blocks to the table and then build the desired towers. Of course, �nd-
ing optimum paths is another matter altogether (Gupta and Nau, 1992), although there
are simple algorithms that can �nd near-optimal plans in the blocks world (Slaney and
Thiebaux, 2001).

1.3 Evolving Planning Heuristics

This is the approach that is described in this article (Aler et al., 1998a; Aler et al.,
1998b), which has been implemented in a system called EVOCK (Evolving Control
Knowledge). Instead of evolving the whole domain-dependent planner, we start with
a domain-independent planner. Domain-independent planning is known to be inef�-
cient because of the unguided search it has to carry out. However, domain-dependent
heuristics can be supplied to the planner, so that it makes informed decisions during
search (i.e., to prune the search graph).

In this work, we have used GP for evolving such heuristics. We believe that
this task should be easier for GP because classical planners are not brute force prob-
lem solvers but include powerful domain-independent heuristics (such as means-ends
analysis). Therefore, GP has to do only part of the work. Besides, GP can indirectly use
the reasoning abilities of such planners, which the plan evolvers cannot do. In prac-
tice, this approach is like the “evolving the planner” approach, but only a smaller part
of the planner needs to be evolved – the heuristics. Therefore, besides (allegedly) be-
ing an easier problem for GP, it enjoys the advantages of the previous approach: once
a domain-dependent planning system has been found, obtaining plans for individual
problems in that domain should be computationally less expensive than carrying out
the whole search process anew for every planning problem, as the plan evolvers must
do. The basic intuition here is that problems of different size in a domain can use the
same heuristics. For instance, solving a 50-block problem in the blocks world should
need about the same heuristics than solving a 49-block problem. In particular, this is
useful for solving large problems in the domain, where a pure search process will get
bogged down. In previous experiments, for example, it has been shown that simple
heuristics scale well in certain domains (Borrajo and Veloso, 1997).

In the GP context, a heuristic is best viewed as follows. Let us suppose that we
already have a program that could bene�t from advice given by a function at some
points in its execution. For instance, if is a planner that mindlessly searches the state
space by applying planning operators forward, then could call to get some advice
about which operator to apply next, instead of applying one at random. ’s input is
(part of) the internal state of . If is the forward planner mentioned before, would
bene�t from having as inputs the current planning situation, the desired goal(s), and
some additional information about the internal state of (e.g., what planning situa-

3

tions or nodes have already been explored). At this point, standard GP could already
be applied to the problem of evolving . Conceptually, it is no different than evolv-
ing a function for a wall-following robot or a program for the Santa Fe trail. However,
instead of evaluating directly, has to be evaluated instead. In the GP jargon,

is a wrapper around . In our work, we have utilized a planning system called
PRODIGY4.0 (Veloso et al., 1995), which is much more sophisticated than the random-
walk planner mentioned above and allows writing heuristics declaratively.

Additionally, evolving heuristics has a characteristic that might be exploited. Com-
plete domain-independent planners can solve any solvable planning problem, given
enough time. Therefore, �tness cases (i.e., training planning problems) can be pre-
solved before being supplied to GP for learning. This preprocessing can be useful
for extracting some information about the �tness cases that can be used in different
ways. For instance, we can know how much memory or how long it takes the domain-
independent planner to solve the �tness case. This can be used in the �tness function to
compare the performance of an individual to the base planner performance. However,
pre-processing the �tness problems offers a more interesting opportunity for evolving
heuristics. Once a �tness case has been solved, all the steps and decisions the plan-
ner followed when solving it (i.e., the trace) are available. By analyzing this trace, the
advice that the planner would have bene�ted from for solving this problem can be
obtained. Of course, this advice is useful only for this particular �tness case, but it
could be used by the GP engine as a starting point to build more general heuristics.
In this paper, we study a way to inject such “raw advice” into a GP system, without
modifying the GP algorithm substantially. We use the standard crossover operator for
this purpose, but the second parent individual is taken from a non-evolving popula-
tion that contains raw advice heuristics. We call this operator the instance-based operator
(IBC), because it uses instances previously acquired after analyzing several planning
traces.2

2 Evolving Planning Heuristics for PRODIGY4.0

As explained before, the goal of this article is to evolve heuristics for programs
that can use them. In particular, our framework can be used for those programs that
contain decision or backtracking points. For instance, programs that carry out search in a
state-space are very representative of the latter de�nition.

In a decision point, a program must choose one alternative from a set of them
before continuing its execution. Usually, has little or no information about which
alternative is preferable. Depending on the problem, if makes the wrong decision,
it might never �nd a solution. A decision point can also be a backtracking point. This
means that if made the wrong decision at this point, it will eventually backtrack to it
so that another alternative can be tried. In that case, would have saved time if it had
made the right decision from the start. Heuristics can help such programs in different
ways. For this paper, we de�ne a heuristic as a function that can help a program
to �nd solutions and/or improve ef�ciency. More formally, if a program can choose
from a set of alternatives at decision point , a heuristic function can be de�ned
for that point as:

, where represents the set of possible internal states of the program

However, a heuristic function need not return a single decision, but a set of them:
2In Aler et al. (1998a), we referred to it as a knowledge-based operator, because in a general sense, it uses

knowledge previously acquired by another learning tool.

4

, where represents the set of all subsets from ()

In the latter case, would make more ef�cient if for many .
There are other de�nitions for that could be used. For instance, a heuristic function
could return an ordered set. Also, heuristics can have other purposes besides improv-
ing performance, like improving the quality of a solution, which might depend on de-
cisions made at certain decision points. But as this article focuses on the
kind of heuristics, we will not make the formalism more complex than necessary.

It is not dif�cult to pose the problem of evolving such heuristics in a GP setting.
For instance:

Individuals: programs that represent a heuristic for a decision point . They
take as input (i.e., terminals) features that characterize the internal state of a
program and return a decision (or a subset of them) from .

Fitness cases: several problems appropriate for . For instance, if the goal is to
solve a Rubik cube, different starting points could be provided. If the goal is to
solve blocks world problems, different problems made of pairs of initial situations
and goals could be provided.

Fitness function: if the goal is to solve as many problems as possible, the �tness
function could evaluate individuals by counting how many �tness cases are solved
when is helped by the individual. If the goal is to improve the ef�ciency of ,
then the time/space required to solve the �tness cases could be measured. Multi-
objective �tness functions could try to achieve both goals at the same time.

The aim of this paper is to evolve heuristics for a planning program called
PRODIGY4.0. PRODIGY4.0 is a STRIPS-based, domain-independent planning system
that carries out bidirectional search in a state space. PRODIGY4.0 inputs are a descrip-
tion of the domain and a planning problem , where is the initial situation and
is the goal to be solved. A domain description has two main components:

a taxonomy of objects in the domain. For instance, in a logistics transportation
domain (Veloso, 1994), there can be carriers, locations, and packages. In turn, there
can be several types of carriers (ships, planes, trucks, etc.) as well as several types
of locations (airports, post-of�ces, ports, etc.).

a list of schema operators for the domain. They are described using the
STRIPS syntax, although PDL4.0 (PRODIGY4.0 Description Language) allows for
more complex logical expressions that involve quanti�ers. For instance, in a lo-
gistics transportation domain, there could be operators for loading a plane, for
unloading it, for moving it to a different location, etc. Schema operators can con-
tain free variables. An schema operator whose free variables have been
bound by a binding is called a grounded operator and will be represented as .

PRODIGY4.0 output is a plan. Formally, a plan is a sequence of grounded planning
operators that transforms into another state where the goal

is ful�lled:
True

In PRODIGY4.0, states , goals , and operators are represented using extended-
STRIPS. We refer readers to Fikes and Nilsson (1971) for details about STRIPS and

5

backward or forward

select relevant operators

select bindings

select goals

BackwardForward

operatoroperator

bindingbinding

goalgoal1 g

Backward Forward

1 b

1 o

Forward Backward

Figure 1: Tree of decisions generated by PRODIGY4.0 when searching for a solution to
a problem.

Veloso et al. (1995) for details about PDL4.0, the extended-STRIPS language used by
PRODIGY4.0. Here, only a summary will be given. States are represented by means
of a list of logical literals. For instance, in the well-known domain blocks world,

on-table clear indicates that block is clear and on the table. Goals are
represented likewise. For instance, the previous two literals could be interpreted as
requiring that the goal state must ful�ll two subgoals: that must be on the table and
that must be clear. Operator schemas are represented by means of rules. The left
hand side contains the (pre)conditions under which the operator can be applied. The
right hand side contains the literals that should be added/removed from the current
state to make up the new state.

The PRODIGY4.0 algorithm has been extensively described and formalized in Fink
and Veloso (1996). The whole algorithm can be seen in Figure 2. Here, we will describe
the algorithm in terms of its decision/backtracking points3 because it is at those points
where heuristics can be used to improve search performance, which is the concern of
this paper. PRODIGY4.0 decision points are depicted in Figure 1. There are four of them:
backward-or-forward , select-goals, select-relevant-operators, and select-bindings. It
can be seen that every decision point can be represented as a branching point in a tree.
Figure 2 also shows PRODIGY4.0 decision points embedded in PRODIGY4.0 algorithm.
They are boldfaced and enclosed within the function Choose-from that chooses in
sequence from a set of possible decisions.

As mentioned before, PRODIGY4.0 performs bidirectional search. This means that
at any moment, PRODIGY4.0 can decide to carry out search from either the current
state (forward search) or from the current goal (backward search). This is the �rst
PRODIGY4.0 decision point, named backward-or-forward in Figure 1.

If backward search is selected, PRODIGY4.0 follows the means-ends heuristic: an
operator is considered for backward search if it can achieve at least one of the goals in

3All PRODIGY4.0 decision points are also backtracking points.

6

Function Prodigy4.0 ()

is the current state of the problem
is the current set of goals to be achieved
is the initial set of goals to be achieved
contains the operator schemas of the planning domain
is a goal of
is an operator schema ()
is a substitution (bindings) of the variables of an operator

is the operator grounded with bindings
is the set of grounded operators chosen during backward search (initially)
contains the goals chosen during backward search (initially)
is the set of applicable operators for forward search (a subset of)

contains the relevant internal state of the planner
is the plan, initially

is the search tree

While AND search tree not exhausted
If Choose-from(backward-or-forward())=Backward
Then Choose-from(select-goals())

Choose-from(select-relevant-operators())

Choose-from(select-bindings())

preconditions

Else preconditions

Choose-from(select-applicable-operators())

apply()

concatenate()
If there is a reason to suspend the current search path
Then backtrack.

the planning search tree.
Return plan and

Figure 2: PRODIGY4.0 planning algorithm.

. That is, if , then is considered when its right hand side adds
at least one of the . PRODIGY4.0 chooses an by following a three step process,
which corresponds to three different decision points:

1. A goal to be achieved is selected from (select-goals decision point).

2. An operator schema that uni�es with is selected from . is also par-
tially grounded at this point by unifying its right hand side with (select-

relevant-operator decision point).

3. If some of the variables of are still free, a fully grounded operator is selected
(select-bindings decision point).

Once an has been selected, it is added to the list that contains all the
grounded operators that have been selected during backward search. Also, the cur-
rent goal is recomputed by obtaining all the preconditions of the grounded operators
in , adding the initial goals, and removing those goals that are already true in or that
had already been chosen to be solved during backward search (the latter are stored in
set). More speci�cally:

preconditions

7

(control-rule select-operators-unstack

(if (and (target-goal (on <x> <y>))

(target-goal (on <y> <z>))))

(then select goal (on <y> <z>))))

Figure 3: Example of a control rule for selecting the right goal.

Then, if the current state does not ful�ll the goal yet, PRODIGY4.0 algorithm
goes back to the �rst decision point.

For instance, if there were two goals to be achieved (clear B), (on B A) , the
planner might select one of them (like (clear B)). Then, in order to achieve (clear

B), the planner can select the operator unstack(<x>,<y>) , which makes the robot
arm pick block <x> from block <y> and clears block <y>. Variable <y> must be neces-
sarily bound to B, but a binding has to be chosen for variable <x>. The planner might
choose <x>=C. This would complete the three-step process for selecting an , which
in this case is unstack(C,B).

If forward search is selected, PRODIGY4.0 has to decide which one of the grounded
operators that can be applied to will actually be applied. PRODIGY4.0 follows the
means-ends heuristic: only those operators that can achieve a goal are considered.
Those operators have already been stored in , the set of grounded operators selected
during backward search to achieve some of the pending goals. But not all of them are
actually applicable, so PRODIGY4.0 computes the set , whose preconditions
are true in . Then, it selects one of them and applies it to the current state . Select-
ing which operator to apply could also be a decision point, as several operators could
be applicable. However, the version of PRODIGY4.0 used in this article carries out
this step by using domain-independent heuristics (embedded in the function Choose-

from(select-applicable-operators (i)) of Figure 2) that cannot be changed by
control knowledge. Thus, we have not used this decision point for this article.

Therefore, there are four heuristic functions to be learned:

backward-or-forward backward forward , where is the set of possible
internal states of PRODIGY4.0

select-goal , where contains the list of currently pending goals

select-relevant-operator , where is the goal that was selected and
is the set of all operators that add a literal that can be uni�ed with goal

select-bindings , where is the operator schema that was selected
to achieve goal and is the set of possible bindings for operator schema
when it is used to solve goal

The four functions return a set of possible decisions, that will be tried in sequence
by the function Choose-from (see Figure 2) after every backtracking. However, the
order in which they are tried is determined by PRODIGY4.0, not by the heuristics them-
selves.4

4 PRODIGY4.0 heuristics can also return ordered sets of decisions, but they have not been used in this
paper. Some examples of those heuristics can be seen in Aler et al. (2001).

8

(control-rule select-operators-unstack

(if (and (current-goal (holding <object1>))

(true-in-state (on <object1> <object2>))))

(then select operator unstack))

Figure 4: Example of a control rule for selecting the unstack operator.

PRODIGY4.0 provides a language to program heuristics by means of control rules.
Each rule has a left hand side and a right hand side. In the left hand side, conditions
under which the heuristic should be applied are described. Those conditions refer to
the internal state of PRODIGY4.0 (). PRODIGY4.0 internal state is made of the
current state , the current pending goals , the selected goal , the selected operator

, the list of grounded operators chosen during backward search , and the list of
applicable grounded operators in the current state . In short, the internal state is

.5 PRODIGY4.0 internal state can be accessed via prede�ned functions
called meta-predicates. Although PRODIGY4.0 provides some standard meta-predicates,
additional ones can be de�ned by the user if necessary.

The right hand side of a control rule contains the decision that must be made under
the conditions of the left hand side. A control rule is actually a template that could have
free variables. If this is the case, PRODIGY4.0 grounds the control rule in all possible
ways, and therefore, a single control rule can return a list of possible decisions.

Figure 3 shows an example of a control rule for the blocks world domain. This
control rule says that if there are two pending goals of the form (on <x> <y>) and
(on <y> <z>), then the latter should be preferred to the former, since it is better to
work on the bottom of a tower. If contains many on goals, the variables of this control
rule can be bound in many different ways. Each grounding of the control rule will give
different advice (the goal to be selected). Therefore, as explained before, the result of
a heuristic containing this single rule can be a set of goals to be selected (i.e., a set of
alternative decisions).

Figure 4 shows another example of a control rule for the blocks world domain.
This control rule says that if PRODIGY4.0 is working on trying to hold an object

object1 , and this object is on top of another one object2 in the current state
, then PRODIGY4.0 should select the operator UNSTACK and reject the rest of operators

that could achieve the same goal. In terms of search, this means that those successor
nodes that use other operators than UNSTACK should be pruned.

Within this framework, the goal of GP is to automatically learn the four heuristic
functions (select-goal, select-relevant-operator , select-bindings , and
backward-or-forward). These can be coded as control rules for selecting goals, op-
erators, bindings, and to determine whether PRODIGY4.0 should search forward or
backward, respectively.6 Therefore, every GP individual is a list of control rules. There
are still many details to address before GP can be applied to this problem in practice.
These will be described in Section 4.

5Here, only the part of the internal state that heuristics actually use will be considered.
6Besides rules for selecting, PRODIGY4.0 permits rules for preferring and rejecting, although they will not

be used in this article. See Aler et al. (2001) for details.

9

n2

n3

dc

dd

n4

n5

de

n6

db

n7

n8

dh

n11

n12

n10

n9

d

dg

df

da
n1

dk

dj

di

n2

n3

n4

n6

n7

n1

n1

dc

dd

de

db

df

dg

da

...

Instance Based Population

THEN

THEN

THEN

THEN

THEN

THEN

THEN

IF

IF

IF

IF

IF

IF

IF

(a) (b) (c)

Figure 5: Analyzing the trace tree. (a) Whole trace tree (solution paths in thick lines).
(b) Trace tree pruned by HAMLET. (c) Population made of the instances extracted from
the pruned tree.

3 The Instance-Based Crossover (IBC) Operator

As mentioned in Section 1, it is possible to automatically obtain traces from
PRODIGY4.0 (and from other programs with decision/backtracking points). In
PRODIGY4.0, the nodes in the trace contain the internal state of the program
at any time, and the branches represent the decisions the algorithm actually made. By
analyzing these traces, it is possible to determine when the algorithm made a right de-
cision that led directly to the solution, and when it did not and had to backtrack. From
this information, a heuristic function could be written so that, if the algorithm was
confronted with exactly the same problem, then it would make the correct decision. Of
course, these heuristics are too speci�c to be of any use. The challenge here is to use
them to bias GP so that it will �nd better solutions with less effort without changing
the basic GP algorithm. Here, we propose the following three step process:

1. Analyze the traces and generate speci�c heuristics from the traces

2. Create a population – the instance-based population (IB population) – whose indi-
viduals are the speci�c heuristics generated in step 1

3. Use the crossover operator to inject individuals from the IB population (or parts of
them) into the evolving population

Once a �tness case (a planning problem) has been supplied to PRODIGY4.0 , and
PRODIGY4.0 has solved it, a trace (a search tree) is available for analysis. Analysis is
meant to determine when PRODIGY4.0 made the right decision, the one that led to a
success node in a leaf of the trace tree. This is achieved by marking those nodes in the
path to a goal node from the root of the tree.

Figure 5(a) shows these marked paths with a thick line. It is possible that two or
more different paths lead to a solution, like Figure 5(a) shows (thick lines). In some
cases it would be better to prefer one to the other. For instance, as every path corre-

10

(if

(and (CURRENT-GOAL (HOLDING D))

(TRUE-IN-STATE (ARM-EMPTY))

(TRUE-IN-STATE (CLEAR C))

(TRUE-IN-STATE (CLEAR D))

(TRUE-IN-STATE (ON C B))

(TRUE-IN-STATE (ON D A))

(TRUE-IN-STATE (ON-TABLE B))

(TRUE-IN-STATE (ON-TABLE A))

(SOME-CANDIDATE-GOALS NIL)

)

(SELECT OPERATORS UNSTACK))

Figure 6: Example of a control rule for selecting the unstack operator.

sponds to a plan, and plans can be measured with quality metrics,7 some paths might
be preferred to others. At the end, only the best paths will be left on the tree to learn
from. In this case, only two of the three possible solution paths have been considered,
as Figure 5(b) shows.

When the “good” paths have been selected, as in Figure 5(b), it is possible to gen-
erate heuristics valid for that trace tree. For instance, if is a node in one of those
paths, is the next one along the path, and is a decision that was made by planner
to get from to , then one could learn that . Of course, is a correct
decision, because only the correct decisions are left in the pruned trace tree. There is
an algorithm called HAMLET (Borrajo and Veloso, 1997) that already performs the se-
lection of correct paths described here. Therefore, instead of reprogramming the whole
algorithm, we have taken HAMLET sub-product and converted it to EVOCK internal
format. HAMLET selects those paths corresponding to the shortest plans, in terms of
number of operators in the plan. A newer version of HAMLET is able to select paths
according to arbitrary quality measures, but we have not used it here (Borrajo et al.,
2001).

These generated heuristics can be represented in exactly the same way as control
rules, like the one in Figure 6. This means that they can be converted to GP individ-
uals and crossed over with other individuals. They could possibly be used in many
different ways. In this article, they are stored in a non-evolving population, and the
standard crossover operator can be used to inject those individuals, or parts of them,
into the evolving population as illustrated in Figure 7. This is achieved by using an
individual from the evolving population as �rst parent for crossover and an individual
from the non-evolving population as second parent. The latter can be done because
both the members of the evolving population and the ones in the IB population are GP
individuals. The root of the offspring always comes from the evolving parent. Initially,
it was expected that injecting parts of these individuals into the main population could
be useful, because it would add useful code that could be crossed over and mutated by
the genetic operators. Whether this is true or not will be empirically tested in Section 5.

In this article, only heuristics that follow the solution path have been used to �ll
the IBC non-evolving population. However, heuristics to avoid walking away from
the solution path might also be useful. For instance, in Figure 5, node might leave

7Quality metrics measure properties of a plan. The most common one is the number of operators in the
plan (i.e., the length of the plan). But other properties like execution time, economical cost of executing the
plan, etc. can be measured (Pérez and Carbonell, 1994; Borrajo et al., 2001).

11

Evolving
Population

Crossover

Instance
Based

Population

Instance Based

Figure 7: Instance-based crossover between the evolving population and a population
containing speci�c heuristic individuals.

Planning
Domain

(set of control rules)

Prodigy

Generator
Problem Planning Problems

EvoCK

Performance
Individual

Best Individual

Individual,
Problems, and
Search Parameters

Figure 8: EVOCK relations with other systems.

the right path if decision is made. Therefore, individuals including such speci�c
heuristics could be included in the non-evolving population. However, we have not
used such rejection heuristics in this paper.

The main weakness of the IBC operator is that in order to use it, the planner must
be able to solve many planning problems on its own (without heuristics). This is possi-
ble only if these planning problems are easy enough. So, there is a hidden assumption
here: speci�c heuristics obtained by solving simple problems must suf�ce for the IBC
to work.

4 EVOCK

EVOCK is the GP-based tool that implements the ideas described in previous sections.
It searches the space of PRODIGY4.0 planning heuristics, and it is able to use the IBC.
As the IBC is optional, from now on, we will refer to the system as IBC-EVOCK when
the IBC is used and autonomous-EVOCK when it is not. There are some details about
EVOCK that will be discussed next. Subsection 4.1 describes EVOCK relations with
other systems. Subsections 4.2 and 4.3 discuss how EVOCK individuals are generated
and genetically modi�ed, respectively. Subsection 4.4 describes the �tness function.

4.1 EVOCK Architecture

Figure 8 shows how EVOCK is related to two other important external systems: the
base planner (PRODIGY4.0) and the random problem generator.

EVOCK receives the �tness cases (the training planning problems) from a gener-
ator that is able to create planning problems at random. Currently, this generator has

12

to be designed for each planning domain. The link between it and EVOCK is off-line:
a human decides what kind of problems should be generated for training and test-
ing, which are subsequently stored in a �le to be read by EVOCK. PRODIGY4.0 is used
by EVOCK to evaluate individuals. Individuals are heuristics for planning, and more
speci�cally, each individual is a list of control rules. The interface between EVOCK and
PRODIGY4.0 has two parts:

The EVOCK PRODIGY4.0 communication: EVOCK sends PRODIGY4.0 an in-
dividual to be evaluated, and the planning problem it should be evaluated with.
EVOCK also imposes a time limit and can specify to PRODIGY4.0 other search pa-
rameters.

The PRODIGY4.0 EVOCK communication: PRODIGY4.0 returns to EVOCK in-
formation about whether it was able to solve the problem by using the individual
as guiding heuristics, how long it took, and the number of nodes that were ex-
panded. This information is used by EVOCK to compute the �tness of the individ-
ual.

This architecture is quite �exible in the sense that PRODIGY4.0 could be substi-
tuted quite easily by another planner with similar inputs and outputs. The most im-
portant requirement for the base planner is that it can use heuristics and that they can
be loaded into the system easily. Unfortunately, not all planners comply with this re-
quirement (this is one important reason that led us to choose PRODIGY4.0), but there
are some that do. For instance, we believe that EVOCK could be applied to current
implementations of planners like UCPOP. EVOCK is quite independent of the syntax
used to de�ne the heuristics (which is planner-dependent) because it uses a grammar
to constrain the individuals that can be changed by hand for new planners (this gram-
mar is explained in Subsection 4.2). However, this grammar is partially built from the
domain description, which is written using PRODIGY4.0 domain description language
(PDL4.0). Other planners describe domains differently, so this part would have to be
reprogrammed so that EVOCK can be applied to other planners.8

4.2 EVOCK Individuals

EVOCK individuals are sets of control rules, represented in an internal language very
close to the actual PRODIGY4.0 control rules. It is typical in GP to assume operational
closure (Koza, 1992). However, in our case, PRODIGY4.0 forces a quite restricted syn-
tax. If heuristics are not syntactically correct, then the planner will fail. In this paper,
we have used constrained structures (Koza, 1992) (also similar to strongly typed struc-
tures (Montana, 1995)). In order to work with these structures, three aspects must be
considered: only valid structures must be created; crossover points must be of the same
type; and mutation operators must take into account the type of the mutation point. We
have achieved these three points by using a special purpose grammar. This grammar
has production rules that follow the structure . The
grammar is partly domain dependent and is automatically built by EVOCK from the
domain description. Table 1 shows the grammar that would be built for the blocks
world domain.

The grammar is used to create S-expressions, which are the internal language
to represent individuals. For instance, the fourth rule of Table 1 speci�es that the

8However, PDL4.0 is very similar to PDDL, which is used by several modern planners, so the reprogram-
ming effort would not be too great.

13

Table 1: Grammar for generating syntactically correct sets of control rules in the blocks
world.

LIST-ROOT-T (list RULE-T) (list RULE-T RULE-T) . . .
RULE-T (rule AND-T ACTION-T)
AND-T (and METAPRED-T) (and METAPRED-T METAPRED-T) . . .
METAPRED-T (true-in-state GOAL-T) (target-goal GOAL-T)

(current-goal GOAL-T) (some-candidate-goals LIST-OF-GOALS-T)
LIST-OF-GOALS-T (list-goalGOAL-T) (list-goalGOAL-T GOAL-T) . . .
ACTION-T (select-goal GOAL-T) (select-operator OP-T)

(select-bindings BINDINGS-T) sub-goal apply

OBJECT . . .
OP-T pickup put-down stack unstack

BINDINGS-T (pick-up-bOBJECT) (put-down-bOBJECT)
(stack-bOBJECT OBJECT) (unstack-bOBJECT OBJECT)

GOAL-T (clear OBJECT) (on-tableOBJECT)
(arm-empty) (holdingOBJECT) (on OBJECT OBJECT)

(list

(rule

(and

(current-goal (clear <a>))

(true-in-state (clear)))

(prefer-operato r unstack put-down)))

Figure 9: Example of EVOCK control rule.

METAPRED-T generative symbol can be expanded into four different alternatives. Each
alternative corresponds to a different meta-predicate. Notice also that every meta-
predicate has arguments that can be expanded further (they are represented by the
generative symbols in uppercase) and that they are of different types: GOAL-T and
LIST-OF-GOALS-T . This way, meta-predicates will always have the right type of ar-
guments.9

By applying the grammar recursively starting from the symbol LIST-ROOT-T, it
is possible to create correct new individuals. Figure 9 displays an example of EVOCK
control rule generated by the grammar.

It is also possible to create parts of individuals, as required by the mutation oper-
ator, by starting from any other generative symbols. The crossover operator also uses
the grammar. In order to cross over two individuals, a random point is selected in the
�rst parent. Let us suppose that the symbol at the random point is true-in-state .
Then, the generative symbol that generated the symbol at the random point is deter-
mined by means of the grammar (METAPRED-T , in this example). Finally, a random
crossover point containing a symbol generated by the same generative symbol is se-
lected in the second parent. Then, the two subtrees are exchanged, as is done in the
standard crossover operator. As the two of them have been generated by the same gen-
erative symbol, it is ensured that the resulting individual will be syntactically correct.

Additionally, individuals have to be protected before being sent to PRODIGY4.0 for
evaluation by adding some meta-predicates in the left hand side of the control rules of
the individuals. This is detailed in Table 2.

Finally, an additional protection is required. PRODIGY4.0 requires that after match-

9See Aler et al. (2001) for examples of different grammars that can be used by EVOCK for PRODIGY4.0.

14

Table 2: Additional protections required by the control rules.

Type of rule Protection
select goal A meta-predicate target-goal is added to

check that the goal to be selected in the right
hand side is actually one of the pending
goals.

select operator A meta-predicate appropriate-operator

is added to ensure that the operator that will
be selected by the control rule can achieve the
current goal.

select bindings A meta-predicate current-operator is
added to ensure that the variables in the bind-
ings to be selected by the rule are appropriate
for the operator chosen by PRODIGY4.0.

ing a control rule, all variables are bound. To ensure the no free variables restriction,
a meta-predicate type-of-object(variable , type) is added for every vari-
able in the control rule. This meta-predicate binds a variable in all possible
ways allowed by the type in case the variable is free. This requires that every vari-
able has an associated type. This is achieved by coding the type in the variable’s
name. For instance, the variable carrier-1 would require the meta-predicate
type-of-object(carrier-1 , carrier) to the control rule.

As explained in Section 2, control rules can access PRODIGY4.0 internal state by
using meta-predicates. In the present work, evolved individuals can only access the
current state , the current pending goals , and the currently selected goal . To
do this, the individuals use the following meta-predicates:

is accessed by meta-predicate true-in-state(literal) . It determines if the
literal uni�es with a literal of the current state or not.

is accessed by meta-predicate target-goal(literal) and
some-candidate-goals(literal1 , literal2,...). target-goal

tests whether the literal uni�es with one of the unachieved goals in .
some-candidate-goals determines if at least one of a list of literals uni�es
with an unachieved goal in .

(the goal that the planner has selected) is accessed by meta-predicate
current-goal(literal) . It indicates whether the literal uni�es with .

4.3 EVOCK Genetic Operators

The system uses the traditional GP operators (crossover and mutation), in addition to
the IBC operator. However, as every EVOCK individual is a list of rules, some specially
tailored genetic operators have been added. Some of them are similar to Koza’s archi-
tecture altering operators (Koza, 1995; Koza and Andre, 1995; Bennett III, 1996). These
additional genetic operators are:

Adding Crossover: this operator is able to add rules and conditions to an individ-
ual from another individual.

15

Growing Mutation: this operator can grow random rules and conditions to an
individual.

Chopping Off Mutation: it removes rules and conditions from individuals at ran-
dom points.

Join: It takes two different variables in a control rule and makes them the same
variable. For instance, if we have a control rule to pick up an object <obj1> when
some other conditions are true, our experience says that many of those other con-
ditions should refer to <obj1>. The join operator is a shortcut to create these
references.

Hierarchy Generalization: as explained previously, objects in PRODIGY4.0 are or-
ganized in a hierarchy or taxonomy. For instance, in a logistics transportation plan-
ning domain, there are trucks and planes, which are both de�ned as carriers. This
genetic operator would take a truck-typed variable in the left hand side of a rule
(like truck-1) and substitute all its instances by a carrier-typed variable (like

carrier-1-1). Thus, the control rule would become more general.

The related operators (i.e., disjoin and hierarchy specialization) are not included
in the operator set because we believe that join and hierarchy generalization are good
biases for EVOCK. In any case, the effects of disjoin and hierarchy specialization can be
achieved by means of the rest of the genetic operators.

4.4 Fitness Function

EVOCK �tness function evaluates every individual by loading its heuristics into
PRODIGY4.0 and running the planner with several �tness cases (the training planning
problems). There are many aspects of an individual that must be assessed. Therefore,
the �tness function contains several objectives or components. EVOCK uses tourna-
ment selection and evaluates individuals by means of a lexicographical ordering of the
�tness components (see for instance Koza et al. (1999)). This is also called a hierarchi-
cal �tness function. Pareto techniques could have been used, as in Langdon (1995), but
our current approach works quite well and does not require keeping the whole Pareto
front. EVOCK �tness function contains three main components in the following order:

1. Performance in �tness cases (to maximize). Its goal is to force EVOCK individuals
to solve as many �tness cases as ef�ciently as possible. It includes three subcom-
ponents that will be explained later in more detail.

2. Number of different variables (to minimize). It is computed as follows:

(a) Let be the control rules of individual .

(b) compute CV , where the CV function calculates the number of
different variables in a control rule.

(c) CV , where is the number of different variables for individ-
ual .

This �tness component is related to the same bias as the join operator.

3. Compacity/generality components (to maximize). This includes several other
components to encourage compacity and generality of the individuals. They will
be explained later.

16

The main �tness component (performance in �tness cases) is computed using three
sub-components:

: Number of problems solved more ef�ciently than PRODIGY4.0 alone (to
maximize). Ef�ciency in this case means fewer nodes expanded.

: Number of problems solved (to maximize).

: Number of nodes expanded (to minimize).

, , and deserve a longer explanation. The goal of EVOCK is to �nd indi-
viduals that solve as many problems as ef�ciently as possible. This is directly taken
care of by the and subcomponents.10 However, an additional �tness component

had to be added to solve the following problem.
In order to train EVOCK, many �tness cases (planning problems) are required.

Therefore, the timeout for each �tness case must be small. This implies that the �tness
cases must be easy to solve; otherwise, would almost always be zero. However,
PRODIGY4.0 is able to solve easy problems without heuristics. Therefore, a good strat-
egy for individuals to score well in is to do nothing at all and let the planner do
all the work. This is very easy to achieve, for instance, by means of control rules with
conditions that never match (like checking whether the planner is trying to achieve
two different goals at the same time, which is impossible). Individuals that do modify
the behavior of the planner are likely to be only partially correct and to solve fewer
problems than the planner without any heuristics. Therefore, individuals that do noth-
ing will be selected and those that modify the behavior of the planner will not, even
though some of the latter might be only partially wrong and might be corrected in the
long term. To change this undesirable behavior, we added a �rst component that
forced individuals to do something positive: solving problems using fewer nodes than
PRODIGY4.0. By means of this component, those individuals that do nothing would be
selected against, because they do not change the behavior of the planner.

However, there is a risk: there can be some individuals that solve some problems
expanding fewer nodes than PRODIGY4.0 alone (for instance,), but they
actually solve very few of the training problems (). This might happen, but
in the long term, it is expected that once cannot be improved further, will begin
to improve. Empirical examples of this behavior will be shown in Section 5.

The compacity/generality component also needs a longer explanation. It includes
�ve subcomponents, ordered as follows:

1. Number of true-in-state meta-predicates (to minimize). The more tests
on there are in a control rule, the less general it is, so this component should
be minimized. is computed as n-tis , where is the number of
control rules of individual , and n-tis calculates the number of true-in-state

meta-predicates in a control rule.

2. Number of arguments in some-candidate-goals meta-predicates (to
maximize). It happens that some-candidate-goals(goal1, goal2, . . .) is
equivalent to:

target-goal(goal1) target-goal (goal2) . . .
10It would have been better to use planner time instead of nodes expanded by PRODIGY4.0 to measure

ef�ciency. However, measured time depends slightly on external factors and makes experiments unrepro-
ducible.

17

Table 3: EVOCK tableau summarizing its main parameters.

Objective: Find a set of control rules that optimizes the
hierarchical �tness function de�ned previ-
ously

Architecture of the individual De�ned by a grammar, which depends on the
planning domain (see Table 1)

Terminal/Function set Terminal symbols of a grammar (see Table 1)
Fitness cases 188 (blocks world) 192 (logistics domain).

Types of training problems: (2,5), (2,4), (2,3),
(2,2), (1,5), (1,4), (1,3), (1,2)

Fitness A hierarchical function with three main com-
ponents (performance, number of different
variables, compacity/generality). It has been
de�ned previously.

Wrapper PRODIGY4.0
Parameters M=2 and M=300, Evaluations=100000
Selection method 2-tournament (M=2) and 5-tournament

(M=300)
Success predicate None

Therefore, increasing the number of arguments for some-candidate-goals

meta-predicates increases the generality of control rules (i.e., they can be ap-
plied to more situations). is computed as n-arg-scg , where
n-arg-scg computes the number of arguments in the some-candidate-goals

meta-predicates of control rule .

3. : Number of some-candidate-goals meta-predicates (to minimize). The
purpose of this component is to minimize the number of checkings on . is
computed as n-scg , where is the number of control rules of individual
, and n-scg calculates the number of some-candidate-goals meta-predicates

in a control rule.

4. : Number of control rules (to minimize). This component presses towards com-
pact descriptions of the heuristics, which are faster to evaluate.

5. : Size in nodes (to minimize). This component prefers individuals with fewer
nodes.

Finally, we use a steady-state GP with a generational gap of 1 and tournament
selection for both selection and replacement. We experimented with two population
sizes: 2 and 300. A 2-population with a 2-tournament is roughly equivalent to hill
climbing, and it was initially used as a baseline to compare results with larger popu-
lations. It turned out that hill climbing was best for the domains we have used. All
genetic operators described in Subsection 4.3 have the same probability of being ap-
plied. EVOCK main parameters are summarized in Table 3.

18

5 Empirical Study

The aim of this section is to provide an empirical evaluation of EVOCK. The �rst subsec-
tion describes the experimental setup. The second one evaluates the heuristics obtained
by EVOCK. The third subsection discusses the learning curves.

5.1 Experimental Setup

The main purpose of this study is to determine how well a GP-based system can
perform when applied to �nding good planning heuristics. Second, the effects of
the IBC will be shown and analyzed. For that purpose, four different experimental
con�gurations have been studied: autonomous-EVOCK, autonomous-EVOCK (300),
IBC-EVOCK , and IBC-EVOCK (300). Autonomous-EVOCK is a 2-population pure GP
(no IBC is used), whereas IBC-EVOCK uses the IBC operator instead of the standard
and growing mutation operators. When a population larger than 2 is used, the size of
this population is shown between parentheses (300 in this case). 2-tournaments were
used for 2-populations and 5-tournaments for 300-populations. No crossover opera-
tors, except the IBC, were used with 2-populations for obvious reasons.

Both con�gurations have been trained and evaluated in two planning domains:
the blocks world and the logistics transportation domain. Both of these domains have
been extensively used in planning research. The blocks world is a simple domain,
but classical planners �nd it dif�cult to solve, especially when problems include many
blocks. The logistics domain is a more complicated domain based on a real problem
where packages have to be delivered to different places in different cities using different
carriers (planes and trucks, in this case). For both domains, we use the de�nition that
comes in the PRODIGY4.0 distribution.11

Both autonomous-EVOCK and IBC-EVOCK were trained with 188 and 192 �tness
cases from the blocks world and the logistics domain, respectively. Both sets of �tness
cases contain the following kind of problems: (2,5), (2,4), (2,3), (2,2), (1,5), (1,4), (1,3),
(1,2), where the �rst number represents the number of goals and the second the number
of objects (blocks in the blocks world and packages in the logistics domain).

In the blocks world, (#n,#g) problems are obtained by �rst generating two random
blocks world states and with #n blocks and then translating them into STRIPS
format (a list of literals). is the initial state of the problem. To build the goal , #g
literals are chosen from and they are shuf�ed. The result is a random problem
in the blocks world.

In the logistics domain, (#n,#g) problems depend mainly on the parameter #n,
which is the number of packages. Every problem has #n packages, #n airplanes, and
#n cities. Every city has an airport, a post-of�ce, and a truck. As in the blocks world,
two states and are generated. In both of them, the truck of a city can be either
at the airport or at the post-of�ce (this is randomly determined). The #n airplanes are
randomly distributed between the #n airports. Finally, the #n packages are randomly
distributed between the #n airports, the #n post-of�ces, the #n airplanes, and the #n
trucks. Both states and are converted into STRIPS format. A random problem in
the logistics domain is a pair , where is obtained from by choosing #g literals
and shuf�ing them.

IBC-EVOCK requires an IB population. Therefore, solutions to 400 additional
planning problems were processed by HAMLET, and these speci�c heuristics extracted

11The standard PRODIGY4.0 distribution can be obtained from the project homepage at
http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/project/prodigy/Web/prodigy-home html.

19

Table 4: Distribution of testing problems for the blocks world.

Blocks world
Goals # Objects # Problems % Problems

50 50 16 4%
20 50 48 12%
20 20 48 12%
10 50 48 12%
10 20 48 12%
10 15 48 12%
5 50 40 10%
5 20 40 10%
5 15 40 10%
5 10 40 10%

by HAMLET were converted to IBC-EVOCK format and stored in the non-evolving
population. Both systems ran for 100000 evaluations, an evaluation being a call to
PRODIGY4.0 to evaluate a single �tness case (i.e., a planning problem). Each con�g-
uration was run 58 times starting with different random seeds. After every GP-run,
the best individual was obtained and evaluated with a mixture of easy, dif�cult, and
very dif�cult problems (up to 50 goals and 50 blocks/packages) to determine whether
the obtained heuristics are general and scale well. There were 416 testing problems
in the blocks world and 348 in the logistics domain. Tables 4 and 5 show how the test
problems are distributed. Testing problems have the same pro�le as learning problems.

The time limit for testing a problem is calculated with Equation 1:

�oor
#goals

seconds (1)

where #goals is the number of goals in the testing planning problem. A time limit is
necessary so that testing is done in a reasonable time. In any case, we have observed
that this time limit is more than enough for individuals to show their worth. Testing
was carried out on a 400MHz Pentium II with 256MB RAM.

5.2 Test Results

The GP runs for autonomous-EVOCK and IBC-EVOCK are summarized in Figure 10.
This �gure displays a cumulative frequency graph. It shows the frequency with which
an experimental setup yields a set of control rules (y-axis) that is able to solve a cer-
tain percentage of the testing problems (x-axis). For instance, point (0.4, 0.3) on Fig-
ure 10(a) means that if we run autonomous-EVOCK 100 times, about 40 of them are
expected to �nd an individual that solves at least 30% of the testing problems. Re-
sults for PRODIGY4.0 alone (i.e., with no heuristics) are also provided for comparison
purposes (the dashed vertical line in Figure 10).

The �rst result is that autonomous-EVOCK is able to obtain individuals that solve
a high percentage of the testing problems in both domains. In these particular runs,
the maximum is 80% in the blocks world and almost 100% in the logistics domain.
Also, the individuals found are very compact and fast to evaluate (3 rules in both the
blocks world and the logistics domain). In addition, autonomous-EVOCK best individ-
uals are able to solve very dif�cult problems. In the blocks world, the best individual
solves 5 (out of 16) of the 50 goal/50 object testcases. In the logistics domain, the best
individual solves 37 (out of 48) of the 50 goal/50 package testcases. Tables 6 and 7

20

Table 5: Distribution of testing problems for the logistics domain.

Logistics
Goals # Objects # Problems % Problems

50 50 48 14%
20 50 30 9%
20 20 30 9%
10 50 15 4%
10 20 15 4%
10 15 15 4%
10 10 15 4%
5 50 12 3%
5 20 12 3%
5 15 12 3%
5 10 12 3%
5 5 12 3%
2 50 10 3%
2 20 10 3%
2 15 10 3%
2 10 10 3%
2 5 10 3%
2 2 10 3%
1 50 10 3%
1 20 10 3%
1 15 10 3%
1 10 10 3%
1 5 10 3%
1 2 10 3%

show a complete breakdown of the results for the blocks world and the logistics do-
main, respectively. PRODIGY4.0 is unable to solve any of the dif�cult problems within
the same time limit. Therefore the heuristics evolved by autonomous-EVOCK are very
good when compared to the base planner. This is also true of other planners. The hard-
est instances of problems in the blocks world (50 goals and 50 objects) were tested with
GRAPHPLAN (Blum and Furst, 1995) and UCPOP.12 None of them managed to solve
any of the problems within the 100 seconds time limit. We did so to show that solving
“hard” planning problems is dif�cult for different planners.

Figure 10 also shows results for the IBC operator. Results for the blocks world
differ from those of the logistics domain. In the blocks world, autonomous-EVOCK
and IBC-EVOCK are both able to obtain individuals that solve 80% of the problems.
Unfortunately, the IBC does not seem to be able to supply good genetic material to
reach better individuals than autonomous-EVOCK. The actual effect of the IBC is to
bias IBC-EVOCK towards a local minima at about 51%. For this value, IBC-EVOCK
does better than autonomous-EVOCK but gives no improvement for individuals that
solve more than 51% of the problems (i.e., IBC-EVOCK �nds 51% individuals more fre-
quently: 0.44 vs. 0.25, but better individuals are more frequently found by autonomous-
EVOCK). However, the IBC operator does improve the learning rate in this domain,
as should be expected when some knowledge is injected into the population, as will
be shown in Subection 5.4. Results for both con�gurations with the larger population

12We have used the Lisp implementations of the University of Washington. UCPOP can be
found at http://www.cs.washington.edu/ai/ucpop.html, and sensory GRAPHPLAN can be found at
http://www.cs.washington.edu/ai/sgp.html.

21

0 0.2 0.4 0.6 0.8 1

Proportion of problems solved

0

0.2

0.4

0.6

0.8

1
C

u
m

u
la

ti
v

e
 f

re
q

u
e

n
c

y

AutonomousEvoCK
BCEvoCK
Prodigy
AutonomousEvoCK (300)
BCEvoCK (300)

0 0.2 0.4 0.6 0.8 1

Proportion of problems solved

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

 f
re

q
u

e
n

c
y

AutonomousEvoCK
IBCEvoCK
Prodigy
IBC4EvoCK
AutonomousEvoCK (300)
IBCEvoCK (300)

(a) (b)

Figure 10: Frequency of GP-runs (y-axis) that are able to solve a proportion x of prob-
lems (x-axis) or more. (a) Results for the blocks world. (b) Results for the logistics
domain.

(300) are also shown (thick lines). It can be seen that larger populations seem to perform
slightly worse than the simple hill-climbing approach.

In the logistics domain, testing results for the IBC-EVOCK are very bad. Almost
none of the individuals is able to improve PRODIGY4.0! When the IB population for
the logistics domain was examined, it was found out that the control rules stored there
had many more conditions than in the blocks world. Also, it seemed that autonomous-
EVOCK spent most of its time pruning useless condition branches from the individuals.
Those branches had previously been injected by the IBC. It was hypothesized that as
it seems successful individuals in this domain are simple, IBC-EVOCK found it very
dif�cult to pro�tably use the genetic material of the IB population. Therefore, it was
decided to prune them randomly to a manageable size (not more than 4 conditions)
before being used by the IBC. Results are labelled in Figure 10(b) as IBC4-EVOCK.
Results are much better, but they do not go as far as autonomous-EVOCK. Results
for autonomous-EVOCK (300) and IBC-EVOCK (300) are also shown. It is noticeable
that autonomous-EVOCK (300) does much worse than autonomous-EVOCK. However,
IBC-EVOCK (300) does better than its small-size relative IBC-EVOCK. This is reason-
able, because IBC-EVOCK has 300 initial random individuals that can be recombined
and pruned and does not depend so much on the IBC to generate new good individu-
als. On the other hand, IBC-EVOCK only has 2 initial random individuals and the IBC
operator. Everytime the IBC is used, big chunks are added to the current individual.
Then, the IBC-EVOCK spends most of its time pruning the resulting individual. This
effect will be shown in Subection 5.4.

In order to determine how signi�cant the curves of Figure 10 are, we have used
an approximate randomization test (Cohen, 1995). A non-parametric test has been

22

Table 6: Breakdown of the number of testing problems solved in the blocks world by
autonomous-E VOCK according to the number of goals and of objects/packages.

Goals # Objects PRODIGY4.0 autonomous-EVOCK
50 50 0% 31%
20 50 8% 71%
20 20 10% 65%
10 50 21% 83%
10 20 25% 75%
10 15 40% 77%
5 50 18% 88%
5 20 20% 92%
5 15 42% 95%
5 10 65% 95%

Table 7: Breakdown of the number of testing problems solved in the logistics domain
by autonomous-EVOCK according to the number of goals and of objects/packages.

Goals # Objects PRODIGY4.0 autonomous-EVOCK
50 50 0% 77%
20 50 3% 97%
20 20 7% 100%
10 50 13% 100%
10 20 20% 100%
10 15 20% 100%
10 10 7% 100%
5 50 42% 100%
5 20 58% 100%
5 15 42% 100%
5 10 25% 100%
5 5 33% 100%

used because no assumptions need to be made about the distribution properties, as a
t-test requires. It works as follows. and are the cumulative frequency
curves of Figure 10 for con�gurations and , respectively (could be autonomous-
EVOCK and could be autonomous-EVOCK (300), for instance). is a set containing
one item for every A-con�guration GP-run, each item being the frequency of test prob-
lems solved by the best individual of that GP-run. Likewise for . We want to know
whether the difference at is signi�cant. For in-
stance, if assuming that both and have been drawn from the same underlying
distribution, the probability of obtaining such difference is large, then that difference
could not be considered signi�cant. On the contrary, if the probability is very small
(in our case, less or equal to 0.01), the hypothesis that the difference has been obtained
by mere chance, is rejected. In order to do this, new sets and are obtained by
sampling from , and is calculated. If this process is it-
erated many times (for many ’s, 100 in our case), a sample made of the ’s can
be obtained. Then, is sorted and the critic value that bounds the lowest 1% of

is determined. If the actual difference is smaller or equal to , then
the probability of obtaining such a small difference by mere chance is smaller than 0.01,

23

0 0.2 0.4 0.6 0.8 1

Proportion of problems solved

0

0.2

0.4

0.6

0.8

1
C

u
m

u
la

ti
v

e
 f

re
q

u
e

n
c

y

EvoCK (join)
EvoCK (no join)

0 0.5 1

Proportion of problems solved

0

0.5

1

C
u

m
u

la
ti

v
e

 f
re

q
u

e
n

c
y

EvoCK (hierarchy generalization, join)
EvoCK (no hierarchy generalization, no join)
EvoCK (no hierarchy generalization, join)

(a) (b)

Figure 11: The effects of the Join and Hierarchy Generalization operators in (a) the
blocks world and (b) the logistics domain.

and that hypothesis is rejected.
Applying the previous framework, we �nd that the differences between

autonomous-E VOCK and autonomous-EVOCK (300) in the blocks world (see Fig-
ure 10(a)) are not too signi�cant, which is what is actually observed in the �gure. Ac-
cording to the randomization test, there are only signi�cant differences in small ranges
at (0.22-0.25).13 With respect to the IBC in the blocks world, the randomization test con-
�rms that the large differences observed in Figure 10(a) between autonomous-EVOCK
and IBC-EVOCK are also signi�cant. (More speci�cally, differences in the range (0.51-
0.62), except in small subranges (range (0.52-0.53), and points 0.59 and 0.61).)

In the logistics domain, only the differences between autonomous-EVOCK and
IBC4-EVOCK were checked for signi�cance (see Figure 10(b)). The randomization test
shows that differences are signi�cant in the ranges (0.22-0.36) and (0.52-0.82). Again,
the test con�rms what is observed in the �gure.

5.3 The Join and Hierarchy Generalization Operators

In this section, we analyze the effects of two non-standard EVOCK genetic operators
(Join and Hierarchy Generalization (HG)). In the blocks world, there is no hierarchy of
objects, therefore only two con�gurations were tested: EVOCK with Join and EVOCK
without Join. Results are summarized in Figure 11(a). In the logistics domain, these two
con�gurations were tested and compared to the standard one (Join, HG). Results are
summarized in Figure 11(b). The randomization test shows that there are no signi�cant
differences between curves at the 1% level. Therefore, the intuitions underlying those
operators have no noticeable positive or negative effect in the chosen domains.

13Those ranges are approximate, as the minimum step between different ’s is 0.02.

24

0 1 e +0 5 2 e+ 0 5 3 e +0 5
N u m b er o f E va lu a tion s

0

0 1

0 2

0 3

0 4
Fr

eq
ue

nc
y

of
 P

ro
bl

em
s

So
lv

ed
 E

ffi
ci

en
tly

E vo lu tion o f E fficiency (C 1)
B locks w orld

A u ton o m o us E vo C K
IB C E vo C K
A u ton o m o us E vo C K (3 0 0)
IB C E vo C K (30 0)

0 1 e +0 5 2 e+ 0 5 3 e +0 5
N u m b er o f E va lu a tion s

0

0 1

0 2

0 3

0 4

Fr
eq

ue
nc

y
of

 P
ro

bl
em

s
So

lv
ed

 E
ffi

ci
en

tly

E vo lu tion o f E fficiency (C 1)
L o g is tics d om a in

A uto n o m o u s E vo C K
IB C E vo C K
A uto n o m o u s E vo C K (3 0 0)
IB C E vo C K (3 0 0)
IB C 4 E vo C K

(a) (b)

0 1 e +0 5 2 e+ 0 5 3 e +0 5
N u m b er o f E va lu a tion s

0 7

0 8

0 9

1

Fr
eq

ue
nc

y
of

 P
ro

bl
em

s
So

lv
ed

E vo lu tion o f P ro b lem s S o lved (C 2)
B locks w orld

A u to nom o u s E vo C K
IB C E vo C K
A u to nom o u s E vo C K (30 0)
IB C E vo C K (3 00)

0 1 e +0 5 2 e+ 0 5 3 e +0 5
N u m b er o f E va lu a tion s

0 7

0 8

0 9

1

Fr
eq

ue
nc

y
of

 P
ro

bl
em

s
So

lv
ed

E vo lu tion o f P ro b lem s S o lved (C 2)
L o g is tics d om a in

A u to n om o u s E voC K
IB C E vo C K
A u to n om o u s E voC K (3 00)
IB C E vo C K (3 0 0)
IB C 4 E voC K

(c) (d)

Figure 12: Evolution of components ((a) blocks world, (b) logistics domain) and
((c) blocks world, (d) logistics domain). Large plots are averages, small plots are

standard deviations.

25

5.4 Learning Curves

The purpose of this section is twofold. First, it shows how the hierarchical �tness func-
tion behaves in both domains. Second, the effects of the IBC are assessed by analyzing
the evolution of the learning curves. The number of evaluations has been extended
from 100000 to 300000 to have a better view of the learning curves. The large plots
of Figure 12 show the average best-of-generation14 evolution of the �rst and sec-
ond components of the �tness function. The evolution of the standard deviation is
also displayed in the small plots beneath the average plots in the same �gure. is
the number of problems solved expanding fewer nodes than PRODIGY4.0, and is
the total number of problems solved. Let us analyze the evolution of and for
the blocks world (see Figures 12(a) and (c)). increases monotonically, whereas
decreases initially but tends to recover later on. This is what was expected in Subsec-
tion 5.2. The 300-population con�gurations (thick lines) evolve more slowly than their
2-population counterparts (thin lines), although the �nal result is quite close. This can
be seen more clearly in Figure 12(c). This behavior occurs in the logistics domain as
well (see Figures 12(b) and (d)). With respect to the evolution of the standard deviation
(small plots in Figure 12), there are no large differences for autonomous-EVOCK (2 and
300) con�gurations in both the blocks world and the logistics domain.

Figure 12 displays the effects of the IBC during learning as well. In the blocks
world, Figures 12(a) and (c) show that the IBC improves the learning rate of and

when compared to autonomous-EVOCK, for both population sizes (2 and 300). In
the logistics domain (Figures 12(b) and (d)), this effect is less noticeable in and non-
existent in : goes downhill and never actually recovers. This effect is even larger
for the 300-population con�guration. One possible cause of this poor performance
was that the left hand side of the individuals of the IB population had many meta-
predicates, some of which were probably irrelevant and the system spent too much
time pruning them. To solve this problem, individuals from the IB population were
truncated to four conditions maximum as explained before. Curves for this truncated
con�guration are also displayed in Figures 12(b) and (d), again under the name of IBC4-
EVOCK. It signi�cantly improves the learning rate for and slightly for , but it is
still worse than autonomous-EVOCK for , which helps to explain why IBC4-EVOCK
does worse than autonomous-EVOCK with the testing problems. With respect to the
evolution of the standard deviations, the IBC con�gurations seem to keep the search
more focused in the blocks world (Figures 12(a) and (c)), but the opposite happens in
the logistics domain (Figures 12(b) and (d)).

Figure 13 sheds some light on the IBC inner workings. It displays the evolution
of the number of rules (). The �rst noticeable effect is that grows more slowly
for IBC-EVOCK than for autonomous-EVOCK. There is a strong bias to decrease the
size of the individuals. Therefore, if we consider only the hill climbing con�gurations,
the only reason for GP to add new rules is because they improve one or more of the
most important components (and). Otherwise, the number of rules either keeps
stable or decreases. That grows slowly for IBC-EVOCK means that control rules in
the IB population are frequently not useful (i.e., they do not improve or). The
same phenomenon can be observed in the logistics domain (see Figure 13(b)). However,
once the individuals are pre-truncated (IBC4-EVOCK), GP is able to add useful rules
frequently. This somewhat con�rms the hypothesis that the individuals in the logistics
domain IB population contain too many meta-predicates in their left hand side, making

14That is, the evolution of the best-of-generation individuals averaged for all GP-runs.

26

0 1e+05 2e+05 3e+05
Number of Evaluations

1

2

3

4

5
N

um
be

r
of

 R
ul

es

Evolution of Number of Rules (G4)
Blocks world

Autonomous EvoCK
IBC EvoCK
Autonomous EvoCK (300)
IBC EvoCK (300)

0 1e+05 2e+05 3e+05
Number of Evaluations

0

2

4

6

8

N
um

be
r

of
 R

ul
es

Evolution of Number of Rules (G4)
Logistics domain

Autonomous EvoCK
IBC EvoCK
Autonomous EvoCK (300)
IBC EvoCK (300)
IBC4 EvoCK

(a) (b)

Figure 13: Evolution of component ((a) blocks world, (b) logistics domain). Large
plots are averages, small plots are standard deviations.

it almost impossible to add new rules into the evolving population.

5.5 Discussion

The empirical study of the two previous subsections suggests the following remarks.
First, EVOCK seems a very promising approach to planning. Results in two domains
(blocks world and the logistics domain) are good: some compact heuristics are evolved
that improve PRODIGY4.0 performance.

The second result concerns the IBC. Results are different for the two domains
tested. In the blocks world, the IBC improves the learning rate of the GP-runs, but does
not generate heuristics better than the ones produced by the non-IBC con�guration. In
fact, the best individuals are generated more frequently by the non-IBC con�guration.
It seems that the IBC leads the GP evolution to a local minimum. In the logistics do-
main, results by the IBC are very bad. The analysis of the learning curves suggests that
the individuals in the IB population are too large because the logistics domain is more
complex and requires many more predicates to describe the current planning situation
(e.g., it is necessary to use predicates for the position of each one of the trucks, the
planes, and the packages). Figure 14 shows such a highly complex individual.

If such individuals are pre-truncated before being used by the IBC, results im-

27

(control-rule r2
(if (and (current-goal (at-obj ob1 a2))

(prior-goal ((at-obj ob1 a2)))
(true-in-state (same-city a2 po2))
(true-in-state (same-city po2 a2))
(true-in-state (same-city a1 po1))
(true-in-state (same-city po1 a1))
(true-in-state (same-city a0 po0))
(true-in-state (same-city po0 a0))
(true-in-state (loc-at a2 c2))
(true-in-state (loc-at po2 c2))
(true-in-state (loc-at a1 c1))
(true-in-state (loc-at po1 c1))
(true-in-state (loc-at a0 c0))
(true-in-state (loc-at po0 c0))
(true-in-state (part-of tr2 c2))
(true-in-state (part-of tr1 c1))
(true-in-state (part-of tr0 c0))
(true-in-state (at-truck tr2 a2))
(true-in-state (at-truck tr1 po1))
(true-in-state (at-truck tr0 a0))
(true-in-state (inside-truck ob0 tr1))
(true-in-state (inside-truck ob1 tr0))
(true-in-state (inside-truck ob2 tr1))
(true-in-state (at-airplane pl0 a2))
(true-in-state (at-airplane pl1 a0))
(some-candidate-goals nil)

(then select operators unload-truck))))

Figure 14: Logistics individual in the IB population.

prove, but the non-IBC con�guration is still better. Some other experiments were car-
ried out, including one where the IBC was used only 25% of times and rules were
truncated to only two true-in-state meta-predicates. No noticeable improvement
was observed. Of course, it might happen that if the GP parameters are �ne-tuned and
the planning domain is suitable, the IBC could be a successful operator. However, the
IBC, as it stands, it is not the general and simple operator we were after. Yet, the IBC
shows some positive effects (improved learning rate in the blocks world) that are worth
investigating. Currently, we believe that a more clever preprocessing of the individuals
in the IB population – probably involving other machine learning techniques – could
be the key to successfully using the IBC.

6 Related Work

In addition to the GP approaches mentioned in Section 1, there are several machine
learning approaches that learn planning heuristics. The basic approaches use anal-
ogy (Kambhampati, 1989; Veloso and Carbonell, 1993), Explanation Based Learning
(EBL) (Katukam and Kambhampati, 1994; Minton and Zweben, 1993; Kambhampati,
1999), and induction (Leckie and Zukerman, 1998). Some approaches combine EBL
and induction, like HAMLET (Borrajo and Veloso, 1997); or EBL and Inductive Logic
Programming, like SCOPE (Estlin and Mooney, 1997; Estlin, 1998). None of them use
a GP-based approach like the one we have used in this article.

In this work, we use a grammar both to generate the initial random population and
to check individuals for syntactic correctness. Whigham (1996) also uses grammars,
although the representation is different. Whigham’s individuals are the actual parse
trees, whose non-leaf nodes contain the generative terms of the grammar. That is, only

28

the leaves of the tree represent the actual individual. The rest of the nodes are the gram-
mar generative nodes used to generate the individual. This has the advantage that in
order to cross two individuals, the system only has to check that both crossing points
are the same generative node, whereas in EVOCK’s case, nodes have to be looked up
in the grammar to determine whether they have been generated by the same genera-
tive symbol, and therefore can be used as crossover points. But Whigham’s approach
requires that the actual individuals are built before each evaluation, whereas EVOCK
does not need to. Another difference with his work is that EVOCK’s grammar is built
on-the-�y for each different planning domain. There are several other researchers that
take advantage of the �exibility of the grammar approach and use them for different
purposes. For instance, Freeman (1998) uses grammars to obtain linear encodings for
GP. Wong and Leung (1995, 1997) provide a very complete framework for using gram-
mars with GP. They can be used to evolve programs in any language or for data mining.
Their grammar approach has many more features than the ones that EVOCK requires.

We are not aware of other work where new material is obtained by a non-GP al-
gorithm and injected into the population via the crossover operator, like the IBC. How-
ever, there is some work where such material is injected by seeding the initial popula-
tion: Aler et al. (1998b) (the seed is obtained by HAMLET) and Langdon and Nordin
(2000) (the seed is obtained by C4.5 (Quinlan, 1993)). Most of the work deals with in-
jecting material coming from previous generations or previous GP-runs. For instance,
during a GP-run, GLiB (Angeline and Pollack, 1992) can inject back previously stored
parameterized subtrees to increase diversity. Louis and Zhang (1999) use worthy in-
dividuals obtained during past runs of genetic algorithms to build a case-based (CB)
population. This is later used to both seed future initial populations and replace bad
individuals during future GA-runs. In their work to evolve a Robocup team, Andre
and Teller (1999) inject non-optimal basic subroutines as ADF’s (automaticall de�ned
functions) in the initial population. Finally, O’Reilly and Oppacher (1995) hybridize GP
and hill climbing. During the hill-climbing phase, the current solution is crossed over
with individuals randomly selected from the GP population or drawn from a pool of
�ttest individuals, with good results.

O’Reilly has studied the impact of using hill-climbing and simulated annealing on
GP hierarchical variable length representations and concluded that they are feasible
to solve typical GP problems (O’Reilly and Oppacher, 1994, 1996). Their work is very
relevant, as our most successful experimental con�gurations resorted to a hill-climbing
strategy and outperformed the population-based one.

7 Conclusions and Future Work

The main contribution of this article is to show that GP, when suitably adapted, can
be used for evolving heuristics for planning. This approach is more feasible and ef-
�cient than current GP approaches to planning. It is more feasible than using GP to
build a planner because it does not have to build a planner from scratch but can take
advantage of the base planner, which can itself use powerful heuristics. It is more ef�-
cient than using GP to search plan space because once the heuristics have been learned,
they can be used to solve a whole class of different planning problems in a planning
domain, instead of running GP for every new planning problem. The basic intuition
here is that problems of different size in a domain can use the same heuristics. For
instance, solving a 50-block problem in the blocks world should need approximately
the same heuristics as solving a 49-block problem. And perhaps these heuristics can be
useful for much larger problems as well. We have adapted GP to heuristic learning by

29

adding new operators that are more appropriate to work with heuristics represented
as sets of control rules. The resulting system – EVOCK – obtains good results in two
widely used planning domains: the blocks world and the logistics domain. In these
two domains, PRODIGY4.0 cannot solve a reasonable number of problems, speci�cally
those with many goals and objects. We show how this behavior can be improved with
a GP approach. The problems we are solving in testing time are hard enough that other
modern planners, like UCPOP and GRAPHPLAN, cannot solve them either.

Additionally, we have experimented with a new genetic operator – the Instance-
Based Crossover (IBC) – that is able to use traces of the base planner as raw genetic
material to be injected to the evolving population. This is achieved by initially solving
some planning problems, obtaining the traces the planning system provides, analyzing
these traces to produce heuristics that could help to solve similar problems, and con-
verting them to GP individuals. The IBC is unable to improve testing results and gets
worse results in the logistics domains. However, some of its positive effects (improved
learning rate in the blocks world) are interesting enough to deserve further investiga-
tion. However, the IBC, as it stands, it is not the general and simple operator we were
after. Currently, we believe that a more sophisticated preprocessing of the individuals
in the IB population – probably involving other machine learning techniques – could
be the key to successful use of the IBC. Also, some more clever mechanism to decide
when and in what proportion IB individuals should be injected into the population is
needed.

One of the chief dif�culties in using our system is the large number of �tness cases
needed to evolve heuristics. In order to evaluate each individual with each �tness case,
a call to the planner PRODIGY4.0 must be made. It would be useful if EvoCK could de-
termine which �tness cases are more appropriate at different stages in the evolutionary
process. We believe that co-evolution techniques (Berlanga, 2000) and dynamic training
subset selection policies (Gathercole and Ross, 1994) could be used for that purpose.

In this article, we have used a multi-objective technique known as a hierarchical
�tness function. This forced us to add an additional �tness component to measure ef�-
ciency so that the system would �nd useful new rules. However, optimizing this �rst
component might lead the system to fall into local minima for the second component
and never recover. In the experiments we have carried out, this behavior only occurs
with some of the IBC con�gurations in one of the domains. Perhaps using Pareto opti-
mization techniques, where selection of the actual best individual is deferred until the
end of the run, could be used to solve this problem. However, maintaining the Pareto
front would require more computer resources. Therefore, we will try to reduce �tness
evaluation effort before attempting to use Pareto techniques.

Finally, although we have focused on STRIPS-planning, we would like to extend
our approach to evolving heuristics for other search problems. Actually, GP itself can
be considered as a search process. For instance, many of the problems addressed by
the GP community belong to the symbolic regression variety. This kind of problem
can be reformulated as a search in the space of regression programs. Search is what
GP does, but in a generic search scenario, the search operators need not be (only) the
genetic operators. The goal of such search is to �nd a regression program that mini-
mizes error in a prede�ned set of training cases. Now, many such symbolic regression
problems can be varied from simpler problems to more dif�cult problems, just like in
the blocks world, problem dif�culty can go from 3 blocks to 50 blocks. Actually, all of
the problems described in Koza (1994) are of this kind. Problems like even-parity, the
bumblebee, etc. are rather classes of problems of different dif�culties. It may be possi-

30

ble to learn heuristics using the simpler problems as �tness cases that could be used to
guide the search through program space to solve tougher problems, which is what we
have done in this article to solve planning problems. For instance, heuristics learned
to �nd programs like even-parity-3 and -4 might be useful to �nd programs for even-
parity-10. Of course, �nding generic programs is more dif�cult than �nding plans, and
unfortunately, there are no powerful planners for �nding even-parity-x programs.

References

Aler, R., Borrajo, D., and Isasi, P. (1998a). Evolving heuristics for planning. Lecture Notes in Com-
puter Science, 1447:745–754.

Aler, R., Borrajo, D., and Isasi, P. (1998b). Genetic programming and deductive-inductive learn-
ing: A multistrategy approach. In Shavlik, J., editor, Proceedings of the Fifteenth International
Conference on Machine Learning, pages 10–18, Morgan Kaufmann, San Francisco, California.

Aler, R., Borrajo, D., and Isasi, P. (2001). Grammars for learning control knowledge with gp. In
Greenwood, G., editor, Proceedings of the Conference on Evolutionary Computation, pages 1220–
1227, IEEE Press, Piscataway, New Jersey.

Andre, D. and Teller, A. (1999). Evolving Team Darwin United. Lecture Notes in Computer Science,
1604:346–351.

Angeline, P. J. and Pollack, J. B. (1992). The evolutionary induction of subroutines. In Proceedings
of the Fourteenth Annual Conference of the Cognitive Science Society, pages 236–241, Lawrence
Erlbaum, Hillsdale, New Jersey.

Bennett III, F. H. (1996). Automatic creation of an ef�cient multi-agent architecture using ge-
netic programming with architecture-altering operations. In Koza, J. R. et al., editors, Ge-
netic Programming 1996: Proceedings of the First Annual Conference, pages 30–38, MIT Press,
Cambridge, Massachusetts.

Berlanga, A. (2000). Dinámica evolutiva/involutiva para la obtención de soluciones generales en com-
putación evolutiva (Evolutive/Involutive Dynamics for obtaining general solutions in evolution-
ary computing). Ph.D. thesis, Computer Science, Universidad Carlos III de Madrid, Madrid,
Spain.

Blum, A. L. and Furst, M. L. (1995). Fast planning through planning graph analysis. In Mellish,
C. S., editor, Proceedings of the Fourteenth International Joint Conference on Arti�cial Intelligence,
pages 1636–1642, Morgan Kaufmann, San Francisco, California.

Bonet, B. and Geffner, H. (1999). Planning as heuristic search: New results. Lecture Notes in Com-
puter Science, 1809:360–372.

Borrajo, D. and Veloso, M. (1997). Lazy incremental learning of control knowledge for ef�ciently
obtaining quality plans. AI Review Journal. Special Issue on Lazy Learning, 11(1-5):371–405.

Borrajo, D., Vegas, S., and Veloso, M. (2001). Quality-based learning for planning. In Working
notes of the International Joint Conference on Arti�cial Intelligence Workshop on Planning with
Resources, pages 9–17, IJCAI Press.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning. Arti�cial
Intelligence, 69(1-2):165–204.

Cohen, P. R. (1995). Empirical Methods for Arti�cial Intelligence. Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts.

Estlin, T. A. (1998). Using Multi-Strategy Learning to Improve Planning Ef�ciency and Quality. Ph.D.
thesis, Department of Computer Sciences, University of Texas, Austin, Texas.

31

Estlin, T. A. and Mooney, R. J. (1997). Learning to improve both ef�ciency and quality of planning.
In Proceedings of the Fifteenth International Joint Conference on Arti�cial Intelligence, pages 1227–
1233, Morgan Kaufmann, San Francisco, California.

Fikes, R. and Nilsson, N. (1971). A new approach to the application of theorem proving to prob-
lem solving. Arti�cial Intelligence, 2:189–208.

Fink, E. and Veloso, M. (1996). Formalizing the PRODIGY planning algorithm. In Ghallab, M. and
Milani, A., editors, New Directions in AI Planning, pages 261–272. IOS Press, Amsterdam, The
Netherlands.

Freeman, J. J. (1998). A linear representation for GP using context free grammars. In Koza, J. R.
et al., editors, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages
72–77, Morgan Kaufmann, San Francisco, California.

Gathercole, C. and Ross, P. (1994). Some training subset selection methods for supervised learn-
ing in genetic programming. Lecture Notes in Computer Science, 866:312–321.

Gupta, N. and Nau, D. (1992). On the complexity of blocks-world planning. Arti�cial Intelligence,
56:223–254.

Handley, S. G. (1994). The automatic generations of plans for a mobile robot via genetic program-
ming with automatically de�ned functions. In Kinnear, K. E., editor, Advances in Genetic
Programming, chapter 18, pages 391–407. MIT Press, Cambridge, Massachusetts.

Kambhampati, S. (1989). Flexible Reuse and Modi�cation in Hierarchical Planning: A Validation Struc-
ture Based Approach. Ph.D. thesis, Computer Vision Laboratory, Center for Automation Re-
search, University of Maryland, College Park, Maryland.

Kambhampati, S. (1999). Improving Graphplan’s search with EBL & DDB techniques. In Dean, T.,
editor, Proceedings of the International Joint Conference on Arti�cial Intelligence, pages 982–987,
Morgan Kaufmann, San Francisco, California.

Katukam, S. and Kambhampati, S. (1994). Learning explanation-based search control rules for
partial order planning. In Proceedings of the Twelfth National Conference on Arti�cial Intelligence,
pages 582–587, AAAI Press, Menlo Park, California.

Koza, J. R. (1989). Hierarchical genetic algorithms operating on populations of computer pro-
grams. In Sridharan, N. S., editor, Proceedings of the Eleventh International Joint Conference on
Arti�cial Intelligence, volume 1, pages 768–774. Morgan Kaufmann, San Francisco, Califor-
nia.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, Massachusetts.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press,
Cambridge Massachusetts.

Koza, J. R. (1995). Evolving the architecture of a multi-part program in genetic programming us-
ing architecture-altering operations. In McDonnell, J. R., Reynolds, R. G., and Fogel, D. B.,
editors, Evolutionary Programming IV Proceedings of the Fourth Annual Conference on Evolution-
ary Programming, pages 695–717, MIT Press, Cambridge, Massachusetts.

Koza, J. R. and Andre, D. (1995). Evolution of both the architecture and the sequence of work-
performing steps of a computer program using genetic programming with architecture-
altering operations. In Siegel, E. V. and Koza, J. R., editors, Working Notes for the AAAI Sym-
posium on Genetic Programming, pages 50–60, AAAI press, Menlo Park, California.

Koza, J. R. et al. (1999). Genetic Programming III. Morgan Kaufmann, San Francisco, California.

Langdon, W. B. (1995). Pareto, population partitioning, price and genetic programming. Research
Note RN/95/29, University College London, London, UK.

32

Langdon, W. B. and Nordin, J. P. (2000). Seeding GP populations. Lecture Notes in Computer Sci-
ence, 1802:304–315.

Leckie, C. and Zukerman, I. (1998). Inductive learning of search control rules for planning. Arti-
�cial Intelligence, 1(2):63–98.

Louis, S. J. and Zhang, Y. (1999). A sequential similarity metric for case injected genetic algo-
rithms applied to TSPs. In Banzhaf, W. et al., editors, Proceedings of the Genetic and Evolu-
tionary Computation Conference, volume 1, pages 377–384, Morgan Kaufmann, San Francisco,
California.

McDermott, D. (1999). Using regression-match graphs to control search in planning. Arti�cial
Intelligence, 109:1–361.

Minton, S. and Zweben, M. (1993). Learning, planning and scheduling: An overview. In Minton,
S., editor, Machine Learning Methods for Planning, chapter 8. Morgan Kaufmann, San Fran-
cisco, California.

Montana, D. J. (1995). Strongly typed genetic programming. Evolutionary Computation, 3(2):199–
230.

Muslea, I. (1997). SINERGY: A linear planner based on genetic programming. In Steel, S., edi-
tor, Recent Advances in AI Planning. Fourth European Conference on Planning, number 1348 in
Lecture Notes in Arti�cial Intelligence, pages 312–324, Springer-Verlag, Berlin, Germany.

O’Reilly, U.-M. and Oppacher, F. (1994). Program search with a hierarchical variable length rep-
resentation: Genetic programming, simulated annealing and hill climbing. Technical Report
94-04-021, Santa Fe Institute, Santa Fe, New Mexico.

O’Reilly, U.-M. and Oppacher, F. (1995). Hybridized crossover-based search techniques for pro-
gram discovery. Technical Report 95-02-007, Santa Fe Institute, Santa Fe, New Mexico.

O’Reilly, U.-M. and Oppacher, F. (1996). A comparative analysis of GP. In Angeline, P. J. and
Kinnear, K. E., editors, Advances in Genetic Programming 2, chapter 2, pages 23–44. MIT Press,
Cambridge, Massachusetts.

Penberthy, J. S. and Weld, D. S. (1992). UCPOP: A sound, complete, partial order planner for
ADL. In Nebel, B., Rich, C., and Swartout, W., editor, Proceedings of the Third International
Conference on Principles of Knowledge Representation and Reasoning, pages 103–114, Morgan
Kaufmann, San Francisco, California.

Pérez, M. A. and Carbonell, J. G. (1994). Control knowledge to improve plan quality. In Ham-
mond, K. J., editor, Proceedings of the Second International Conference on Arti�cial Intelligence
Planning Systems, pages 323–328, AAAI Press, Menlo Park, California.

Quinlan, R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, Califor-
nia.

Slaney, J. and Thiebaux, S. (2001). Blocks world revisited. Arti�cial Intelligence, 125:119–153.

Spector, L. (1994). Genetic programming and AI planning systems. In Proceedings of Twelfth Na-
tional Conference on Arti�cial Intelligence, pages 1329–1334, MIT Press, Cambridge, Mas-
sachusetts.

Veloso, M. (1994). Planning and Learning by Analogical Reasoning. Springer Verlag, Berlin, Ger-
many.

Veloso, M. M. and Carbonell, J. G. (1993). Derivational analogy in PRODIGY: Automating case
acquisition, storage, and utilization. Machine Learning, 10(3):249–278.

Veloso, M. et al. (1995). Integrating planning and learning: The PRODIGY architecture. Journal of
Experimental and Theoretical AI, 7:81–120.

33

R. Aler, D. Borrajo, and P. Isasi

Westerberg, C. H. and Levine, J. (2000). Genplan: Combining genetic programming and plan-
ning. In Proceedings of Nineteenth Workshop of the UK Planning and Scheduling Special Interest
Group, pages 270–281.

Whigham, P. A. (1996). Search bias, language bias, and genetic programming. In Koza, J. R. et al.,
editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 230–237,
MIT Press, Cambridge, Massachusetts.

Wong, M. L. and Leung, K. S. (1995). Combining genetic programming and inductive logic pro-
gramming using logic grammars. In 1995 IEEE Conference on Evolutionary Computation, vol-
ume 2, pages 733–736, IEEE Press, Piscataway, New Jersey.

Wong, M. L. and Leung, K. S. (1997). Evolutionary program induction directed by logic gram-
mars. Evolutionary Computation, 5(2):143–180.

420 Evolutionary Computation Volume 9, Number 434

