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Abstract

Abstract

This thesis explores the idea of learning eflicie nt strategies for solving problems by searching for

MUcro-operatars. A macro-operator, or macro for short, is Simply a sCquencC of operators chosen

from the primitive operators of a problem. The technique is particularly useful for problems with

nton-serializable subgoals, such as Rubik's Cube, for which other weak methods fail. Both a problem-

solving program and a learning program are described in detail. The performance of these programs

is analyzed in terms of the number of macroS required to solve all problem instances, the length of

the resulting solutions (expressed as the number of primitive moves), and the amount of time

necessary to learn the macros. in addition, a theory of why the method works, and a characterization

of dhe range of problems for which it is useful are presented. The theory introduces a new type of

problem structure called operator decomposability. Finally, it is concluded that the macro technique

is a valuable addition to the class of weak methods, that macro-operators constitute an interesting and

important representation of knowledge, and that searching for macros may be a useful general

learning paradigm.
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Introduction and Thesis Summary 1

Chapter 1

Introduction and Thesis Summary

This thesis explores the idea of learning efficient strategies for solving problems by scarching tor

macro-operators. A macro-operator, or macro for short, is simply a sequence of operators chosen

from dhc primitive operators of a problem. The technique is particularly useful for problems with

non-serializable subgoals, such as Rubik's Cube, for which other weak methods fail. Both a problem-

solving program and a learning program are described in detail. The performance of these programs

is analyzed in terms of the number of macros required to solve all problem instances, the length of

the resudting solutions (expressed as the number of primitive moves), and the amount of time

necessary to learn the macros. In addition, a theory of why the method works, and a characterization

of the range of problems for which it is useful are presented. The theory introduces a new type of

problem structure called operator decomposability. Finally, it is concluded that the macro technique

is a valuable addition to the class of weak methods, that macro-operators constitute an interesting and

important representation of knowledge, and that searching for macros may be a useful general

learning paradigm.

1.1. Introduction

One view of die die field of artificial intelligence is that it is the study of weak methods [Newell 69].

A weak method is a general problem solving strategy that can be used when not enough knowledge

about a problem is available to employ a more powerful solution technique. The virtue of the weak

methods is the fact that they only require a small amount of knowledge about a problem and hence

are extremely general. The set of weak methods includes generate-and-test, heuristic search, hill-

climbing, and means-ends analysis. With the exception of generate and test, most of these techniques

rely on a heuristic evaluation function which is used to estimate the distance to the goal. For some

problems, however, no such evaluation function is known. "ihis suggests that such problems do not

have sufficient structure to employ any technique more efficient than brute-force search to solve a
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particular instance of the problem.

Consider, howcvcr, a situation where we are not interested in solving just one instance of the

problem, but rather are concerned with being able to solve many problem instances. In that case, it

may be advantageous to learn a general strategy for solving any instance of the problem, and then

apply it to each problem instance. This allows the computational cost of the learning stage to be

amortized over all the problem instances. Such an approach will only bC useful if there is some

structure to the collection of problem instances such that the fixed cost of learning a single strategy

plus the marginal cost of appl.ing it to each problem instance is less than the cost of solving each

instance from scratch.

In other words, even though a given instance of a problem does not have sufficient struoture to

allow an efficient solution, a collection of problem instances may have some common structure that

allows the whole set to be solved with much less work than the sum of solving each instance

individually. This suggests thc existence of weak methods for learning, as opposed to problem

solving, based on such structure. This thesis explores one such weak method of learning, that of

searching for macro-operators.

1.2. Thesis Summary

This section presents a short summary of each of the remaining chapters of the thesis.

1.2.1. Chapter 2: The Need for a New Problem Solving Method

Chapter 2 demonstrates that there exist problems that have efficient solution strategies that cannot

be explained by any of the current stock of weak methods, and presents a 2x2x2 version of Rubik's

Cube as an example. The goal state of this problem is naturally described as a conjunction of a set of

subgoals. It is observed that all known algorithms for this problem require that previously satisfied

subgoals be violated later in the solution path. Such a set of subgoals is referred to as non-serializable.

However, the standard technique for solving problems with subgoals, means-ends analysis, does not

allow non-serializable subgoals. Furthermore, we present empirical evidence that several natural

heuristic evaluation functions for the simplified Rubik's Cube provide no useful estimate of distance

to the goal, suggesting that heuristic search is of no use in solving the problem. Hence, Rubik's Cube

cannot be solved by any of these techniques.

1Tbe terms "problem" and "problem space" in this thesis refer to a set of state!.. "tollection of operators that connect

them. A "problem instance" is a problem with a specified pair of initial and goal states.
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1.2.2. Chapter 3: Previous Work

Other work related to this research is reviewed in Chapter 3. Frnst and Goldstein wrote one of the

first programs that learned efficient strategies flor solving problems, by learning differences for the

General Problem Solving program of Newell and Simon. Non-scrializable subgoals were studied

extensively in the context of the blocks world by Sussman, Saccrdoti, Warren, "Fate, Manna and

Waldinger. and others. Macro-operators were first learned and used by the STRIPS problem solver

and later by die REFI.ECT system of Dawson and Siklossy. Banerji suggested the use of macros to

deal with the non-serializable subgoals of the Rubik's Cube and thc Fifteen Puzzle. Finally, Sims

and others showed how to organize sets of macros to solve permutation puzzles, of which Rubik's

Cube is an example, and demonstrated one way the macros could be learned.

1.2.3. Chapter 4: The Macro Problem Solver

Chapter 4 describes the Macro Problem Solver, an extension of the General Problem Solver to

include macro-operators. The basic idea of the method is to apply macros that may temporarily

violate previously satisfied subgoals within their application, but that restore all previous subgoals to

their satisfied states by the end of the macro, and satisfy an additional subgoal as well. The macros

are stored in a two dimensional table, called a macro table, in which each column of the table contains

the macros necessary to satisfy a particular subgoal. The subgoals are solved one at a time, by

applying a single macro from each column of the table. The Macro Problem Solver generates very

efficient solutions to several classical problems, some of which cannot be handled by other weak

methods. The examples include Rubik's Cube, the Eight and Fifteen Puzzles, dhe Think-a-Dot

problem, and the Towers of Hanoi problem.

1.2.4. Chapter 5: Learning Macro-Operators

The question of how macros are learned or acquired is the subject of Chapter 5. The simplest

technique is breadth-first search. However, by using a technique related to bidirectional search, the

depth of the search can be cut in half. Finally, existing macros can be composed to find macros that

are beyond the search limits. These techniques are sufficient for learning the necessary set of macros

for the example problems. In addition, a design for a general Macro Learning Program is presented.

The design clearly separates the problem-dependent components of the method from the problem-

independent features. A key property of the learning program is that all the macros necessary to

solve any problem instance are found in a single search from the goal state.
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1.2.5. Chapter 6: The Theory of Macro Problem Solving

Chapter 6 explains the theory of macro problem solving and characterii.es the range of problems

for which it is effective. The theory is presentcd in two parts: a special case in which a state is

represented by a vector of state variables, and the general theory that encompasses arbitrary state

representations. A necessary and sufficient condition for the success of the metod is a new type of

problem structure called operator decomposabiliiy. A totally decomposable operator is one that may

affect more than one state variable, but whose effect can be decomposed into its effect on each state

variable independently. The degree of operator decomposability in a problem constrains the ordering

of the subgoals, ranging from complete freedom in the case of Rubik's Cube, to a total ordering for

the lowers of Hanoi problem. In addition, further generalizations of the method are presenteu. Fo.

example, we show that in some cases, efficient solution strategies can be learned based on randomly

generated subgoals!

1.2.6. Chapter 7: Performance Analysis

An analysis of the performance of the problem solving and learning programs is presented in

Chapter 7. The performance measures include the number of macros that must be stored for a given

problem. the amount of time required to learn the macros, and the length of solutions generated in

terms of number of primitive moves, both in the worst case and the average case. The first result is

that the total number of macros is the sum of the number of macros in each column whereas the

number of states in the space is the product of these values. The total learning time for the macros is

shown to be of the same order as the amount of time required to find a solution to a single problem

instance without the macros. Finally, if there are N subgoals to a problem, the solution length

generated by the Macro Problem Solver is less than or equal to N times the optimal solution length,

in the worst case. In addition, an average case analysis of solution length is found to agree with

experimental results for the 2x2x2 Rubik's Cube. Furthermore, for the Eight Puzzle and the full

3x3x3 Rubik's Cube, the solution lengths generated by the Macro Problem Solver are close to or

shorter than those of an average human problem solver. An important feature of this analysis is that

each performance parameter is expressed in terms of a corresponding measure of problem dificulty,

rather than problem size. For example, the worst-case solution length is expressed in terms of the

optimal solution length.
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1.2.7. Chapter 8: Reflections and Further Work

Several observations and directions f'or future research are presented in Chapter 8. First, the

selection of subgoals and their ordering are two paramctcrs of the Macro I.carning Program whose

automatic generation requires further research. Next, we show that the Macro Problem Solver can be

combined effectively with other problem solving methods such as operator subgoaling, macro

generalization, and problem decomposition. to solve problems that no single technique could solve

alone. In addition, we argue that given an ordered set of subgoals for a problem. the difficulty of the

problem is related to the maximum distance between two successive subgoals, in terms of number of

primitive moves. Next, we propose that macro-operators arc an important representation for

knowledge, based on a brief look at the domains of theorem proving and computer programming,

and a detailed examination of the domain of road navigation. Finally, an exploration of the utility of

macros in arbitrary problem spaces suggests that searching for macro-operators may be a fairly

general learning paradigm.

1.2.8. Chapter 9: Conclusions

Chapter 9 presents the conclusions of the thesis. [hey include the finding that the macro learning

and problem solving techniques constitute a valuable addition to the collection of weak methods, the

idea that macro-operators are an important representation for knowledge, and the suggestion that

searching for macros may be a useful paradigm for learning.
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Chapter 2

The Need for a New Problem Solving Method

The purpose of this chapter is to demonstrate that the existing collection of weak methods is

incomplete. There exists a problem, namely Rubik's Cube, that cannot be solved efficiently by any

of the current stock of weak methods. Yet, people can solve it, and even learn to solve it, quite

efficiently. Hence, another method must underly the solution of this problem. In addition, we will

argue that for other reasons as well, Rubik's Cube is an excellent domain for studying problem

solving and learning.

2.1. Problem Description: 2x2x2 Rubik's Cube

Figure 2-1 bhows a 2x2x2 version of the celebrated Rubik's Cube, invented by Erno Rubik in 1975.

The puzzle is a cube that is cut by three planes, one normal to each axis. separating it into eight

subcubes, referred to as cubies2. The four cubies on either side of each cutting plane can be rotated in

either direction with respect to the other four cubics. Note that these rotations, called twists, can be

made along each of the three axes. The twists can be 90 degrees in either direction or 180 degrees.

Figure 2-1: 2x2x2 Rubik's Cube

2The terminology used here is standard in the literature of Rubik's Cube (Frey 821.
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FAch of the cubies has three sides facing out, called ] k'elets, each a different color. In the goal state

of the puzzIC, the four facclets on each side of the cube arc all the same color, making six different

colors in all, one "or each side of the cube. The cube is initialized by performing an arbitrary scrie of

twists to mix thc colors on each side. l'he problem then is to so/ve the cube, or find a sequence of

twists that will restore the cube to the goal state, i.e. each side showing a single color.

The 2x2x2 cube is a simpler version of Rubik's original CUbe. The original is a 3x3x3 cube with two

planes of rotation cutting each axis (see Figure 2-2). The 2x2x2 cube is a subproblcm of the 3x3x3

cube: it is isomorphic to a restriction of the full cube in which only the eight cubies on the corners are

considered. In other words, if one ignores the interior edge and center cubies of the 3x3x3 cube, then

the problem reduces to the 2x2x2 cube. Both problems will be considered in this thesis.

Figure 2-2: 3x3x3 Rubik's Cube

2.2. Rubik's Cube as a Domain for Problem Solving and Learning

Research

There are several reasons why Rubik's Cube is an excellent domain for research on problem

solving and particularly on learning problem solving strategies.

First, note that there are two levels of tasks associated with the cube. One is the task of given a

particular initial configuration, find a sequence of twists that will restore it to the goal state. This is

the problem solving task. The other is the learning task of acquiring a strategy that will solve the

cube from any initial state. The reason for this distinction is that the puzzle is really a collection of a

very large number of problem instances, one for each possible initial state3 .

3The term "solution" is used to refer to a sequence of primitive moves that maps a particular initial state to a particular goal
state. The term "strategy" refers to an algorithm that will generate a solution to any problem instance.
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An obvious reason for studying Rubik's cube is that tile problem is well structured yet very

difficult. Since the states and operators are clearly specified and easily represented, one can easily

construct a problem space for the problem. That the problem is gcnuinely difflicult is attested to by

the phenomenally large number of people who have unsuccessfully worked on scrambled cubes. The

published strategies to the problem are all fairly complex in the sense that it is considered a

significant achievement to learn one of them. Furthermore, die problen of discovering a strategy is

even more difficult. Most people who try it never succeed, and those who do succeed typically

require several weeks to several months of effortL

Not only does it take a long time to learn a strategy, but progress toward it is incremental and

observable. Many problems arc difficult and require a long time to solve, but the solution, once

dikcovercd, becomes apnarert instantaneously. In Rubik's Cube, progress toward a strategy occurs

throughout the learning process and can be measured in terms of the number of cubies that can be

correctly positioned relative to the goal state. In addition, it is usually clear what pieces of knowledge

are being acquired during the learning. These features of the problem make it an ideal domain for

studying the learning of problem solving strategies.

Finally, the most compelling reason for studying Rubik's Cube is the fact that it cannot be solved

efficiently by any of the current stock of weak methods. After describing a problem space for the

2x2x2 cube, evidence supporting this claim will be presented.

2.3. Problem Space

This section presents a problem space for the 2x2x2 cube by describing a data stnicture to represent

a state or configuration of the cube, and giving a procedural implementation of each of the primitive

operators of the puzzle. In general, the task of going from a problem description to a representation

of the problem is complex, and if done cleverly can result in a vast reduction in problem solving

effort. In this case, however, the representation is based on relatively straightforward observations

and does not significantly reduce the difficulty of the problem.

2.3.1. State Representation

The primary issue in generating a problem space for any problem is designing a data structure to

represent a state of the problem. Perhaps the most obvious state representation would be to list in

some order the colors that appear on each facelet of the cube. However, the choice of a facelet as a

primitive results in an inefficient representation. The reason is that the facelets arc physically
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constrained to occur in fixed groups o" LilrCe by vi rtuc of being attached to partictlar :ubies, which

move as units. Incorporating this constraint directly in the reprCsentation gives rise to a more

efficient representation.

fly choosing a cubic as the primitive of the representation, we are led to represent a cube

configuration as a permutation of the cuies among the different positions, or cubicles, that the cubics

can occupy. In addition, a particular cubic can exist in die same position but with its colors twisted in

any of direc different orientations, one corresponding to each facelet of the cubic. The three

orientations will be labelled 0, 1, and 2. The orientation is determined by examining the unique

facelet of each cubic that faces either up or down in the goal state of the cubic. Its orientation is the

number of 120 degree clockwise rotations of the cubic about an axis from the center of the cube

through the corner of the cubic which would map the tIp or down facelet from the top or bottom side

of the cube to its current position.

Thus, each cubic must be represented by both its position and its orientation. This suggests an

eight element array of cubics. where each element encodes both the position and the orientation of

the cubie. Note that there also exists a dual representation. where each element corresponds to a

cubicle and the value encodes the cubic that occupies it along with its orientation. 1lowever, de

former will be used throughout.

For economy, we do not want to consider states that differ only by a simple rotation of the entire

cube as different. This is accomplished by defining a canonical orientation of the cube. A canonical

orientation is obtained by picking a particular cubic and fixing its position and orientation. Each

operator can then be viewed as a twist followed by a rotation of the entire cube to restore the fixed

cubic to its canonical position and orientation. Another way of looking at this is that since each twist

rotates half the cubies with respect to the other half, either half can be viewed as fixed and the other

half as rotating. When all three planes of rotation are considered, a single cubic can be considered as

permanently fixed. In either case, the effect is that only seven cubics are movable, and only three

faces can be twisted, without loss of generality.

The cubics have three letter names which represent the three planes which intersect at the goal

position of the cubic. The planes are labelled Up, Down, Left, Right, Front, and Back. Hence, the

complete set of cubies is [ULF, ULB, URF, URB, DLF, DLB, DRF, DRB}, with DLB being the

fixed cubie.
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2.3.2. Operator Implementation

Given a rcpresenta ion of the state ot thc cubC, an implementation of the twists or operators of the

cube arc easily derived. Each individual operator is represented by an array of 21 elements, one for

each possible combination of seven cubicles and three orientations for a cubic. The value of a

particular element encodes the position and orientation that a cubic would be mapped to by that

operator, given that it was in the position and orientation that corresponds to the array clement. In

other words, the operator array serves as a mapping function from the previous values of the cubics

to the values resulting from the operator application. To apply an operator, the values ofeach of the

seven cubics must be mapped to their new values. Note that cubics occupying cubicles that arc

unaffected by a particular operator will remain unchanged. There is a separate operator array for each

individual operator. Since there are three faces to be twisted, and each face can be twisted 90 degrees

clockwise, 90 degrees counterclockwise, or 180 degrees, there arc nine primitive operators in all.

They are labelled by the first letter of the plane that they rotate. By convention, a 90 degree clockwise

twist of a plane is represented simply by the first letter of the plane, a 90 degree counterclockwise

twist is indicated by the letter followed by a minus sign, and a 180 degree twist by the letter followed

by a 2. The complete set of primitive moves for the 2x2x2 cube is thus

[U, U-, U2, R, R-, R2. F, F-, F2}.

Table 2-1 shows the effect of each operator on the positions of cubies, while Table 2-2 shows the

effect of the operators on the orientation of the cubies. Note that twists of the Up face leave

orientation invariant. Similarly, 180 degree twists do not effect orientation. The effect of the

remaining operators on orientation depends on the initial position of the cubic.

OPERATOR EFFECT

U URF>ULF, ULF>ULB, ULB>URB, URB>URF

U2 URF>ULB, ULF>URB, ULB>URF, URB>ULF

U- URF>URB. ULF>URF, ULB>ULF, URB>ULB

R URF>URB, URB>DRB, DRF>URF, DRB>DRF

R2 URF>DRB, URB>DRF, DRF>URB, DRB>URF

R- URF>DRF, URB>URF, DRF>DRB, DRB>URB

F URF>DRF, ULF>URF, OLF>ULF, DRF>DLF
F2 URF>DLF, ULF>DRF, DLF>URF, DRF>ULF

F- URF>ULF. ULF>DLF, DLF>DRF, DRF>URF

Table 2-1: Effect of operators on positions ofcubies for 2x2x2 Rubik's Cube
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OPERATOR INITIAL POSITION EFFECT

R URE or DRB 0>1, 1>2, 2>0

R URB or DRF 0>2, 1>0, 2>1

R- URF or DRB 0>1, >2, 2>0

R- URB or DRF 0>2, 1>0, 2>1

F URF or DLF 0>2, >0, 2>1

F ULF or DRF 0>1, >2, 2>0

F- URF or DLF 0>2, >0, 2>1

F- ULF or DRF 0>i, 1>2, 2>0

Table 2-2: I-ffcct ofoperators on orientation ofcubies for 2x2x2 RLibik's Cube

2.4. Brute Force Search

Gin a problem space for Rubik's Cube, we could solve it using brute force search. We would

expect a breadth-first search to look at about half the states in thc space, on the average, before

finding a solution.

The 2x2x2 cube has 3.674.160 distinct states. ['his number comes from the product of 7!, for the

permutations of the cubic positions, with 3, for the orientations of the cubies. This value is then

divided by three because the total state space is composed of three different, disconnected

components. Thus, brute force search is impractical for a human, but is quite practical for a

computer.

However, when we consider the 3x3x3 Rubik's Cube, the number of states grows to approximately

4*1019. Even at a million twists per second, it would take a computer an average of 700,000 years to

solve the cube with brute force search. Hence, another technique must be used.

2.5. Means-Ends Analysis

Note that the goal state of Rubik's Cube is naturally expressed as a conjunction of subgoals such as

"get the colors on each face to match", or "get each cubie to its correct position and orientation." This

suggests setting tip a sequence of subgols and using means-ends analysis to solve them one at a time.

The General Problem Solving (GPS) program of Newell and Simon [Newell 72] implements means-

ends analysis, in conjunction with with other problem solving techniques such as operator

subgoaling. A necessary condition for its applicability is that there exist a set of subgoals and an

ordering among them. such that once a subgoal is satisfied, it need never be violated in order to

satisfy the remaining subgoals [Ernst 691. A set of subgoals with this property is called serializable.
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ULnfirttnately, Rubik's Cube does not satisfy this condition. A few m11 !tes of experimentation

with the cube reveals the aspect of the problem that makes it so difficult and frustrating. In particular,

onCe some of the cubics are put into place, in general they must be "messed up" in order to position

the remaining cubies correctly. All of the published solutions to the problem, of' which there are

many. share this feature of violating previously solved subgoals, at least temporarily, in order to solve

additional subgoals.

To be precise, there are several technical qualifications that must be attached to the claim that

Rubik's Cube does not satisfy the applicability condition for GPS. One is that for the degenerate case

where we assume only a single subgoal which is the main goal, the condition is \,aCuoLiusly satisfied:

once this subgoal is satisfied, it need not be violated in order to satisfy the main goal. Unfortunately.

this formulation makes no contribution to the solution of the problem.

A more interesting caveat is that there exists a relatively long sequence of subgoals that do satisfy

the GPS condition. First, we partition the complete set of states into the set of states that are a

minimum of one move from the goal, the states that are a niinimrnu of two moves from the goal,

three moves. etc. The subgoals are then of the form, "move from the current state to a state which is

one move closer to the goal." These stbgoals are well defined and can be solved sequentially without

ever violating a previous subgoal. The difficulty is that we don't have any method for computing

these sets other than brute force search, and even if we could compute them, we don't have any more

economical representation of them than an exhaustive table.

Hence, we must modify our claim to say that means-ends analysis, in its current form, offers no

practical benefit for solving Rubik's Cube.

2.6. Heuristic Search

Fvcn though we do not have a set of serializable subgoals, there may be a heuristic evaluation

function that. though not guaranteed to vary monotonically toward the goal, may nevertheless offer a

useful estimate of problem solving progress. A heuristic evaluation function is a function that is

relatively cheap to compute from a given state, and that provides an estimate of the distance from

that state to the goal. Most of the weak methods except for generate and test (which provides no

problem solving power) rely on such a function, either explicitly or implicitly. For example, the

evaluation function is the essence of simple heuristic search. Hill-climbing requires an evaluation

function that, in addition, must be monotonic. If we view the number of subgoals remaining to be

satisfied as an evaluation function, then even means-ends analysis uses an evaluation function, which

must be monotonic as well.
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The :asefu lncss ofan evaluation funciion is directly cL ated to its accu lacy in esi mating the distance

to the goal. In an efort to find a iuseful heuristic for RIubik's Cube. sevcral plausil31e candidates were

tested experimentally to deermine their accuracy. lhC surprising results were that 1oC of the

heuristics tested produced values that had any correlation at all with distance tfrom the goal!

The basic idea of the experiment is to compute the average distance from the goal state for all the

states that produce a particular aluc of a given evaluation function. lhe 2x2x2 Rubik's Cube was

used to allow every state of the problem space to be evaluated. The first step of the experiment was to

conduct a breadth-first search of the cntire space, generating a table which lists the minimum

distance of each state to the goal state. The maximum distance of any state from the goal is 11 moves,

and the a,,erage distance over all states is 8.76 moves.

The next step was to identify plausible evalifation functions, which resulted in four fairly obvious

ones. The fi-st heuristic function is simply the number of cubics that are in their goal positions and

orientations. Considering position and orientation independently, the second function awards one

point for a cubic in its goal position, one point for a cubic in its goal orientation, and two points for

both. Reasoning that the position of a cubic relative to its neighbors in the goal state is more

important than absolute position, the next heuristic counts the number of pairs of adjacent cubies

that aic in the correct position and orientation relative to each other. without regard to their global

position or orientation. Taking into account the distance of a cubie from its goal position, the final

evaluation function determines the minimum number of moves required to correctly position and

orient each cubic independently, and sums these values over all the cubies.

The results of the experiments are presented as a set of graphs, one for each evaluation function

(see Figures 2-3 through 2-6). In each case, the x-axis of the graph corresponds to the different values

produced by the function. The y-axis of the graph corresponds to the actual distance from the goal

state. Each data point gives the average distance from the goal state for the set of states which

produce a particular value of the evaluation function.

'The results show that in general, the average distance from the goal of a set of states sharing a

particular heuristic value is within 10% of 8.76, the aN, ragc for the entire state space. This result holds

across almostall values of all the evaluation functions. The only significant deviation from this norm

is that the states whose evaluations are closest to that of the goal state are in fact further from the goal

than the average state! However, none of the evaluation functions identify a set of states that are

even a single move closer to the goal state, on the average.
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This implies that none of the above heuristics are of any direct use in solving the 2x2x2 Rubik's

Cube. AttempIs to use these heuristics to reduce the amount of search required for the 3x3x3 cube

were un1su1cccssftIl as well. Since these heuristics were the best we could come up with, we may

conclude that if there does exist a useful heuristic, its form is probably quitc complex, the limiting

case being the heuristic of moving one step closer to the goal. Furthermore, none of the literature on

the cube suggests any other evaluation functions. All this evidence suggests that hcuristic evaluation

functions are not in fict used to solve this problem.

2.7. Conclusion

Rubik's Cube is an example of a problem that cannot be solved efficiently by any of our current

problem solving methods, including means-ends analysis and heuristic search, yet can be solved

efficiently by people. Hence, another method must be involved. [he elucidation and analysis of that

method is the subject of this dissertation..
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Chapter 3

Previous Work

'[his chapter reviews previous work that has contributed to or is related to dic development of the

Macro Problem Solver. It includes work on changing representations in problem solving, GPS and

the work of Ernst and Goldstein on learning differences, research on non-scrializable subgoals in the

context of the blocks world, de development of dhe idea of macro-operators, the ideas of Bancrji for

using macros to deal with non-scrializable subgoals, and work on permutation groups.

3.1. Change of Representation

The present work originated in attempts to understand the process of changing representations in

problem solving [Korf80. The reason for changing the representation of a problem is to find a more

efficient strategy for solving the problem. The goal of this research was to take a given representation

for a problem, and automatically construct a new representation in which problem solving is more

efficient. It was found that two types of representation changes that produce large efficiency gains

arc the identilication of useful differences or subgoals in the space, and the addition of macro-

operators to the set of primitive operators. In these contexts, the problem of automatically deriving

improved representations becomes one of learning good differences or of acquiring usefu macros.

3.2. Learning Differences for GPS

Included in the work of Ernst and Goldstein on "Mechanical discovery of classes of problem

solving strategies" [Ernst 82] is an approach to learning subgoals. Ernst and Goldstein investigated

two different types of problem solving strategies: the General Problem Solver of Newell and

Simon [Newell 721, and strategies for playing two-person games similar to Nim. We will restrict our

attention to the GPS component of their work.

As described in the previous chapter, GPS solves a problem by using an ordered set of differences

and removing them one at a time, such that the main goal can be reached without reintroducing a
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previously removed difference. The origin;,] version of GPS required that the differences and their

ordering be provided by the user in the form of a difference table. The contribution of Ernst and

Goldstein was to show that thcsc difference tables could be discovered automatically for a range of

problems for which good differences are known, effectively learning an efficient strategy for the

problem within the GPS paradigm.

An important featurc of Ernst and Goldstein's program is that it is able to construct complex,

non-obvious differences for problems. For example. consider the Fools Disk problem

(see Figure 3-1) which consists of four concentric disks with eight numbers evenly spaced around

each disk. Each of the disks can be rotated independently, and the goal state of the problem is one in

which each of the eight radial rows of four numbers sum to 12. The obvious subgoals of getting the

radii to sum to 12 one at a time are not serializable, regardless of their ordering. Hence, Goldstein's

program constructs a more complex series of three subgoals: first get the sixteen numbers on the

horizontal and vertical radii to sum to 48, which implies that the sum of the diagonal radii also must

sum to 48, then get each of the four diameters to sum to 24, and then finally get each radius to sum to

12. In order to make these subgoals serializable, after the first subgoal is achieved, only 90 degree

rotations of the disks are allowed, since these moves leave invariant the total sum of the horizontal

and vertical radii. Similarly, after the second subgoal is achieved, only 180 degree rotations are

considered, since these moves leave the sums of the diameters invariant. Thus, these subgoals are

both serializable and effective for solving the problem. It is interesting to note that if the problem is

formulated with only 45 degree rotations as primitive operators, then the 90 and 180 degree rotations

in this strategy become macro-operators.

The development of the Macro Problem Solver owes several intellectual debts to GPS and to Ernst

and Goldstein's work. Its structure borrows heavily from that of GPS, to the extent that the Macro

Problem Solver is actually a generalization of GPS to include macro-operators in addition to

primitive operators. In addition, the work of Ernst and Goldstein provided the paradigm of learning

by the discovery of parameters to a particular problem solving method, a paradigm that is followed in

the learning of macros. Finally, the observation that the Eight Puzzle was not included as one of

Ernst and Goldstein's examples, and the conclusion that no good set of GPS differences existed for

that problem, provided the original motivation for investigating the class of problems for which GPS

is not applicable. In fact, the one problem that Ernst and Goldstein's program was unsuccessful in

finding good differences for, the Think-A-Dot problem, is included as one of the Macro Problem

Solver examples in the next chapter.
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3 3
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Figure 3-2: Fool's Iisk problem

3.3. Non-Serializable Subgoals

The problem of non-serializable subgoals was studied in the context of the blocks world by a

number of researchers in the early 1970s. Sussman's HACKER program [Sussman 751 deals with

problems of building stacks of blocks represented by sets of conjunctive subgoals of the form

(On X Y), where X and Y are blocks. There are two operators that can be applied: (Cleartop X),

which removes all blocks from the top of block X, and (Puton X Y), which places block X directly on

top of block Y, assuming both their tops are clear. HACKER works by initially assuming that the

subgoals can be achieved independently and then explicitly invoking a set of "debugging"

mechanisms to deal with interactions between the subgoals. For example, given a sequence of

subgoals that cannot be solved sequentially, the simplest approach is to try to reorder the subgoals

into a sequence that can be sequentially solved.

However, there exist blocks-world problems that cannot be solved sequentially by any ordering of

the subgoals. For example, the well-known "Sussman Anomaly" [Sussman 75], illustrated in Figure

3-2, in olves transforming the situation (On C A) to the situation (On A B) and (On B C).

Attempting to solve the subgoals in either order results in a state in which the second subgoal cannot

be solved without violating the first.



22 .earning to Solve Problems by Searching tot Macro-Operators
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Figure 3-2: Sussman Anomaly

Sussman's HACKER can solve this problem only by running in an anomalous mode in which

subgoals are not protected. Furthermore, the result is a non-optimal solution such as: (Cleartop A),

(Puton A B). (Cleartop B), (Puton B C), and (Puton A B), whereas an optimal solution is:

(Cleartop A), (Puton 13 C), and (Puton A B).

Shortly after Sussman's work, Warren, 'Fate, and Waldinger all arrived at essentially the same

technique for generating optimal plans for such problems. Warren [Warren 741 noted that the key to

the optimal solution to the Sussman Anomaly is that the action that solves the second subgoal occurs

between the two actions that solve the first subgoal. Tate's system [Fate 751 potentially reorders all the

subgoals generated to solve a problem, including subgoals to satisfy operator preconditions, as

opposed to just the top level subgoals. Waldingcr [Waldinger 81], working in the domain of program

synthesis, generates a plan to solve one subgoal and then insert actions within the body of the plan to

solve successive subgoals without violating previous subgoals. Sacerdoti [Sacerdoti 751 generalizes

these approaches to represent a plan as a partial order of actions and uses the principle of least

commitment to avoid problems caused by arbitrary ordering of the actions.

There are several limitations to this body of work in dealing with non-serializable subgoals. One is

that most of these systems, with the exception of that of Manna and Waldinger, simply reorder the

primitive actions necessary to achieve each of the subgoals independently, without the capability of

adding new actions to deal directly with subgoal interactions [Sacerdoti 751. A second limitation is
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that these techniques only work on prohlcms for which independence of subgoals is a good first

approximation [Sussman 75]. Finally, we note that the subgoal interaction in the blocks world is not

an inherent property of the domain but rathcr al artifact of the particular subgoals chosen to

decompose a goal. In particular, if we simply add a subgoal of the form (On X Tablc) where X is the

bottom-most block of a stack, then all the block stacking problems could be solved by GPS simply by

first putting the bottom block on the table, then the next higher block, and so on until thc top block is

placed on top of the stack. For these reasons, it seems unlikely that thcse mcthods would be powerful

enough to deal with the complexity ofsubgoal interactions manifested by Rubik's Cube.

3.4. Macro-Operators

The idea of composing a sequence of primitive operators and viewing the sequence as a single

operator goes back as least as far as Saul Amarel's 1968 paper on representations for the Missionaries

and Cannibals problem (Amarel 681. He notes that the introduction of macros drastically rcdUt-kxs ate

effective size of the search space, resulting in a solution with practically no search. He also notes the

analogy between macros in a problem space and well-chosen leImmas in a mathematical system.

The first implmentation of this idea is the use of MACROPS [Fikcs 72] in the STRIPS problem

solver. The main contributions of this wcrk with respect to macros are the powerful mechanisms for

generalizing macros. In particular, macros can be parameterized by replacing constant arguments

with variables, and are stored in a form that allows arbitrary subsequences of a macro to be applied.

There are several features of the work on MACROPS that distinguish it from the research reported

here. The most important is that MACROPS are not used to overcome the problems of non-

serializable subgoals but rather to improve the efficiency of the STR IPS problem solver in a domain

for which there exists a good set of GPS differences. The robot problem solving domain of STRIPS

consists of a robot and a set of boxes distributed among a collection of connected rooms, and poses

problems of moving boxes between rooms. Like the blocks world, an effective set of ordered subgoals

can be set up for these problems. For example, first move the robot to the room containing the box to

be moved, then move the box to its destination, and finally move the robot to its final destination. In

fact, by using such a set of serializable subgoals, the LAWALY sy,;tem of Siklossy and

Druessi [Siklossy 731 was able to solve the same problems more than an order of magnitude faster

than STRIPS with MACROPS. The fact that STRIPS with MACROPS performs so inefficiently in

this simple domain suggests that the system is not powerful enough to handle more complex

domains.
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A second iiriitation of S FR IS with NIACROPS is that it does not generate a complete set of

macros. MACROPS are generated by using the solutions to particular problems posed to the system,

and serve to reduce but not eliminate the amount of search rCquired on future problems. The

questions of what problems to use in a training scquencC, and how much search is still requircd to

solve problems chosen from some population given a set of .MACROPS, are difficult and left

unanswered. By contrast, the Macro Problem Solver works from a complete set of macros that

eliminate search entirely.

The idea of separating a learning stage for acquiring macros from the problem solving phase is

implemented in the RI-F[.FCI' system of Dawson and Siklossy [Dawson 77]. Their system has t

preprocessing stage where macro-operators, called BIGOPS, are generated by comparing the

postconditions of each primitive operator with the preconditions of all possible successor operators,

creating a two-operator macro whenever they match. This results in a relatively small set of macros

which are independent of any particular problems to be solved. Unfortunately, this approach is

limited to very short macros or to operator sets where the preconditions severely constrain the

possible operator sequences.

3.5. Macros and Non-Serializable Subgoals

The fact that macro-operators can be used to overcome the problem of non-serializable subgoals

was first suggested by Banerji [l3ancrji 83]. He points out that both Rubik's Cube and the Fifteen

Puzzle cannot be solved by a straightforward application of OPS, but that an extension of GPS to

include macros would be able to solve these problems. For example, in both the Eight and Fifteen

Puzzles, when the next to last tile in a row is correctly placed, in general it must be moved in order to

place the last tile in that row, hence violating a previously satisfied subgoal. 1,anerji suggests that at a

given stage of a strategy, the macros that are useful are ones that leave all previously satisfied subgoals

intact while satisfying an additional subgoal as well. lie also notes that within the body of a macro, a

previous subgoal may be violated, but by the end of the macro, the subgoal must be restored.

Banerji's work was independent of and concurrent with this research.
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3.6. Permutation Groups

Given that macros may be useful for solving problems with non-serializable subgoals, the issue of

exactly what macros are necessary and how to uze them in an efficient strategy must be addressed. A

solution to this problem is suggested by the work of Sims [Sims 70] on computational problems of

permutation groups. The goal of that research, and related work by others, is to be able to represent a

permutation group compactly so that questions such as the order of the group and membership in the

group can be answered efficiently.

A permutation group of degree n is a subset, not necessarily proper, of all permutations of n

elements which is closed under the operation of composition. For example, consider Rubik's Cube

and define two macro-operators to be equivalent if and only if both macros have the same eff.ect on

all states. Then, since each macro permutes the positions and orientations of the cubies, and any

macro can be composed with any other to yield another macro, the collection of equivalence classes

of macros for Rubik's Cube form a permutation group. The representation for permutation groups

proposed by Sims is an nxn matrix of permutations. Table 3-1 shows an example of such a matrix for

the permutation group on 5 elements. All the permutations in thc ilh column of the matrix leave the

first i- 1 elements of the permutation invariant. The permutation in the J/ row of the ill column

maps the jh element to the ith position.

1 2 3 4 5

1 (1 2 3 4 5)

2 (2 1 3 4 5) (1 2 3 4 5)

3 (3 1 2 4 5) (1 3 2 4 5) (1 2 3 4 5)

4 (4 1 2 3 5) (1 4 2 3 5) (1 2 4 3 5) (1 2 3 4 5)

5 (5 1 2 3 4) (1 5 2 3 4) (1 2 5 3 4) (1 2 3 5 4) (1 2 3 4 5)

Table 3-1: Permutation matrix for permutation group on 5 elements.

Sims also addresses the issue of how to compute these permutations, given a set of generators of the

group, or primitive permutations. The technique relies on the observation that if permutation A

leaves the first i- I elements invariant and maps the 1h element to the ith position, and permutation B

has the same property, then A composed with the inverse of B will leave the first i elements invariant.

Using this fact, Sims implemented an algorithm to fill in the permutation table. Furst, Hopcroft and

Luks [Furst 801 later showed that the complexity of a similar algorithm is a polynomial of order n6
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where u is the number of elenicnts permuted. K nuth 4 reduced this upper otound to iIt logn. and

Jerrun [Jerruin 821 further reduced it to ,5 for a slightly different rcpreseritation.

As we will see in tie next chapter, replacing the permutations in such a table with corresponding

sequences of primitivc operator.s gi~es rise to an effective strategy for solving permutation problems.

There are two limitations, however, to this work from the point of vie, of general problem solving.

One is that it refers only to permutation groups and Must be extended to apply to a broader class of

problems. For example. even though the states of the Fight Puzzle are permltations of the tiles, the

operator sequtenccs of the problem do not fon a group because arbitrary operator sequences cannot

be composed. The reason is that the position of the blank at the end of the first sequence must match

the position of tie blank required at the start of the second. Similarly, preconditions on the operators

in ie Towers of Hanoi problem preclude the composition of arbitrary operator sequences. In the

case of the Think-a-Dot problem, there are no operator preconditions. and the problem does form a

permutation group, but only in the sense that the operators permute the states of the problem. The

Sims representation is worthless for this problem since the size of the table is 0(n2 ) where n is the

number of elements being permuted. Thus, the representation is only useful when the number of

elements to be permuted is small relative to the number of states in the problem space.

The second limitation of this work is that the technique used to fill in tie permutation table results

in extremely inefficient solutions, relative to human strategies, in terms of number of primitive

moves. In general, the permutations in a particular column of the table are produced by composing

two permutations from the previous column. If we replace permutations by macros, this doubles the

length of the macros in each successive column. Thus, some macros may be as long as 2" primitive

moves long, where a is the number of elements permuted. In the case of the 3x3x3 Rubik's Cube,

macros can be as long as 217 primitive moves.

While various group identities could be applied to reduce the lengths of de macros, the applk.ation

of these identities is heuristic in nature and hence is not guaranteed to yield optimal macros.

Following a different approach, l)riscoll and Furst [Driscoll S3 have shown that for permutation

groups whose generators are composed of cycles of bounded degree, solution lengths are 0(n2 ).

However. their algorithm would also generate inefficient solutions, relative to human strategies, due

to the large constant factors involved.5

4personal communication from Donald Knuth to Eugene Luks, May 1981.

5personal communication with James Driscoll.



Prev ious Work 27

3.7. Conclusion

In conclusion, we find that many of the 11.111i ideas in this thesis can be (b uid in One form or

another in thc literature Of prbllCm Solving. lhc basic structure Of' the problem solver colies from

GPS, the idea of learning by discovering paramcters to a problemi solving incth)d was developed by

-rnst and Goldstein, the study of non-scrializ/able subgoals w\as pioneercd in thc blocks-world, the

usc of macro-operators datcs from SIRIPS, lBanerji independently discovcred thc application of

macros to non-scrializable su1bgoals, and the structure of' macro Libles is borrowed from work on

permutation groups. Thc novel conti ibutions of this thesis are the combination of thcse ideas into a

fairly general problem solving and learning method, and a preciseC theory of the applicability and

performance of the technique.
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Chapter 4

The Macro Problem Solver

This chapter describes the operation of the Macro Problem Solvcr and gives several examples of its

use. Briefly, the problem solver achieves an ordered set of subgoals one at a time by applying macros

that solve the next subgoal while leaving previously solved subgoals intact, even though they may be

temporarily violated during the application of the macro. We describe a problem representation, the

structure of the table of macros, and the problem solving algorithm. The issue of how the macros are

learned will be deferred to the following chapter. The collection of examples includes the Eight and

Fifteen Puzzles, Rubik's Cube, the Think-A-Dot problem, and the Towers of Hanoi problem. For

simplicity of exposition, the Eight Puzzle will be used as the primary example.

The Fight Puzzle (see Figure 4- 1) has been studied extensively in the artificial intelligence

literature [Schofield 67, Gaschnig 79, Ericsson 761 and provides one of the simplest examples of the

operation of the Macro Problem Solver. It consists of a three by three frame which contains eight

numbered square tiles. One of the squares of the frame is empty: this is referred to as the blank tile or

blank. Any of the tiles horizontally or vertically adjacent to the blank can be moved into the blank

position. The problem is to take an arbitrary initial configuration of the tiles and to transform it into a

goal state, such as that shown in the figure, by sliding the tiles one at a time.

1 2 3

8 4

7 6 5

Figure 4-I: Eight Puzzle goal state
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4.1. The State-Vector Representation

We begin with an abstract representation of our exainpIC problems. A state of a problem is

specificd by the xalues of a vector of state variables. lanerji [Bancrji 831 argues that this

representation is natural and very general. For example. the state \ariablcs for the Fight Puzzle are

the nine different tiles of the puzzle, including t-c blank, and the values are the positions occupied by

each tile in a particular state. For Rtibik's Cube, the variables are the different cubies, and the values

encode both the positions of the cubics and their orientation. In the case of the l'owers of Hanoi. the

variables are the disks, and the values arc the pegs that the disks are on. [or each problem, a single

goal state is specified by assigning particular \'alLIes to the state variables, called their goal values.

Note that a dual representation exists for these problems, and may in fact seem more intuitive to

the reader. For example, in the Eight Puzzle the variables could correspond to the positions and the

values could represent the tiles which occupy the positions. The two representations arc equivalent,

but we will deal with the former. ''he reason is that the macro problem solving technique is sensitive

to the representation of the problem and in general will not work in the dual representation, as will

be discussed in Chapter 6.

4.2. The Macro Table

Table 4-1 shows a macro table for the- Eight Puzzle, corresponding to the goal state in Figure 4-1.

'he columns correspond to the tiles and the rows correspond to the tile positions. 1'he labels of the

positions coincide with the numbers of the tiles that occupy them in the goal state. The elements of

the table arc macros, which are sequences of primitive moves. A primitive move is represented by the

first letter of Right, Left, Up, or Down, and is the direction that a tile is moved. This notation is

unambiguous since only one tile, excluding the blank, can be moved in each direction from any given

state.

The differences or subgoals used to solve the problem are the obvious ones of placing the tiles in

their correct positions one at a time, or in other words, mapping the state variables to their goal values

sequentially. The first thing that must be decided is the solution order, or the order in which the tiles

are to be positioned. The constraints on solution orders will be discussed in detail in Chapter 6, and

algorithms for selecting solution orders will be considered in Chapter 8. Roughly, the constraint is

that the applicability and the effect of any operator on any state variable must be a function only of

that state variable and previous state variables in the solution order. The only constraint on the

solution order for the Eight Puzzle is that the blank be positioned first.
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rILES

0 1 2 3 4 G 6

0

1 UL

P 2 U RDLU

0

S 3 UR DLURROLU DLUR

I

T 4 R LDRURDI U LDRU RDLLURIDRUL
I

0 5 DR UI.DRURDLDRUL LURDLDRU LDRLILURDDI.UR LURD

N

S 6 D UROLDRUL ULDORU URDDLULORRUL ULOR RDLLUURDOLDRRUL

7 DL RULDORJL DRUULDRDLU RULDRDLULDRRUL URDLULDR ULDRURDLLURD URDL

8 L DRUL RULLDORU RDLULDRRUL RULLDR ULDRRULDLURD RULD

The total number of non-identity macros is 35.

The average case solution length is.39.78 moves.

Table 4-1: Macro table for the Eight Puzzle

The columns of the tablc correspond to the state variables of the problem, which arc the different

tiles of the puzzle. in solution order from left to right. Each column contains the macros necessary to

map its corresponding state variable to its goal value, without disturbing the values of the state

variables that precede it in the solution order. The rows of the macro table correspond to the

different possible values of the state variables, hi our case the different possible positions of the tiles.

For each tile and for each different position of the tile, there is a different macro that will move it to

its goal position while leaving all the previously positioned tiles in their goal positions, independently

of the positions of the remaining tiles in the solution order. More exactly, if the first i- I state

variables equal their respective goal values, then the macro in column i and row j of the macro table

will map, die value of the ' h State variable in the solution order from the value corresponding to row j

to its goal value, while leaving invariant the values of the first i- I state variables in the solution

order. For example, the macro in column 3 and row 6, URDI)iUI.I)1RUI,, when applied to a state

in which the blank and tiles 1 and 2 are in their goal positions, will map tle 3 (or any other) tile to the

goal position for the 3 tile, while leaving the blank, 1, and 2 tiles in their goal positions.

Note that in each column, one of the rows corresponds to the goal value of the corresponding state

variable. Since nothing needs to be done to a state variable that already equals its goal value, we
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adopt the Convention that these elements of the table contain the identity macro, which has zero

length and no effect on the state of the problem. Notice also that the macro table for the Fight Pulek

has a lower triangular form. This is due to the fact that for this problem, no two state variables may

have thmesMc vkalue, or in other words, no two tiles can occupy the same position. Thus, as more of

the tiles are placed in their goal positions, there arc fewer positions that the remaining tiles can

occupy. Finally, note that the Fight Puzzle macro table ends with the 6 tile instead of the 8 ti'e. 'This

is because Once the first six tiles are in their goal positions, the remaining two tiles metst also be

correctly positioned, or the problem cannot be solved.

4.3. The Problem Solving Algorithm

The algorithm employed by the Macro Problem Solver will be described with the aid of the

example in Figure 4-2. State a is an arbitrary initial state for the problem. The first step in the

solution is to ascertain the position of the blank, which is located in the 5 position in state a. This

value is used as a row index into the 0 column of the macro table and the corresponding macro, DR,

is applied. The effect of the macro is to move the blank to the center position, its goal location. Next,

the location of the I tile in state b is ascertained, position 2 in our example, this value is used as a row

index into column I of the macro table, and the corresponding macro is applied. The effect of this

macro is to move the I tile to its goal position, while leaving the blank at its goal position. Note that

during the application of" the second macro the blank is moved, but by the end of the macro

application, the blank is restored to the center position. Similarly, the position of the 2 tile in state c

is used to select a macro from column 2 that will map the 2 tile to its goal position while leaving the

blank and 1 tiles in their goal positions. Note that in state d, the 3 tile happens to be in its goal

position already and hence the identity macro is applied, as is the case for tile 4 in state e. In general,

for i from I to n, ifj is the value of variable i in the solution order, apply the macro in column i and

row j, and then repeat the process for the remaining variables. Note that the value of variable i above

refers to its value at the ith stage of the solution process, and not to its value in the initial state.

This solution algorithm will map any solvable initial state to the given goal state. The algorithm is

deterministic, i.e. it involves no search, and hence is very efficient, running in time proportional to

the n'mmber of primitive operators that are applied in the solution. It derives its power from the

knowledge about the problem that is contained in the macros.

Unfortunately, the actual macro table is dependent on the particular goal state that is chosen. The

algorithm can be simply extended, however, to allow mapping from any initial state to any goal state.
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1 col 0 Q 113 col 1 1 8 col 2 1 col 3

8 1 J row 5 a ± row 2 row 7 row 3

DR RDLU 1 DRUULDRDLU 5-ow7

a b c d

1 2 3 col 4 1 2 3 col5 123 col 6 1

6 4 row 4 6 4 row 7 7 4 row 7 8
51 75 ,3 7 ULDRURDLLURD 6 8 5 URDL 7 65

e f g h

Figure 4-2: Examplc of solution of Eight Puzzle by the Macro Problem Solver

The idea is to ru-st find a iolution from the initial state to the goal state for which the macro table was

generated. then find a solution from the desired goal state to the goal state of the macro table, and

finally compose the fir',t solution with the inverse of the second solution. The inverse of a sequence

of primitive operators is obtained by rep~acing each operator with its inverse and reversing the order

of the operators. Hence, if each of our primitive operators has a primitive inverse, we can use the

Macro Problem Solver to map from any initial state to any goal state with a penalty of approximately

doubling the solution length.

4.4. Additional Examples

This section presents several additional examples of macro tables for the Macro Problem Solver.

They include the Fifteen Puzzle, Rubik's Cube, the Think-A-Dot problem, and the 'l'owers of Hanoi

problem.

4.4.1. Fifteen Puzzle

Since the size of the state space for the Eight Puzzle is fairly smali (181,440 states), a macro table for

the Fifteen Puzzle was also generated to show the power of the technique in larger domains (about

ten trillion states). These macros are listed in Table 4-2, and the corresponding goal state for the

problem is shown in Figure 4-3. While this example provides no new insights into the operation of

the Macro Problem Solver, it does present additional problems to the learning program as we will see

in the following chapter.



34 I.earning to Solve II ollerfs by Searching For Macro-OperatorS

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 4-3: Fifteen PuZZIC goal state

4.4.2. Rubik's Cube

For reasons already mentioned, Rubik's Cube was tie primary vehicle for the development of the

.Macro Problem Solver. The state variables for this problcm are die individual cubics. and tie values

encode both the positions and die orientations of the cubies. The subgoals are to position and orient

the cubies correctly one at a time. Table 4-3 shows a macro table for the 2x2x2 cube.

Table 4-4 shows a macro table for the 3x3x3 Rubik's Cube. In addition to the eight corner cubies,

there are twelve edge cubies, which have only two exposed facelets. The edge cubies are named by

the planes of their two facclets in their goal positions. 'The complete set is {UL, UR, UF, UB, DL,

)R. DF, DB, LF, 1.13, RF, RBZ}. An edge cubic can have two different orientations, labelled 0 and 1.

The orientation of an edge cubic is the even-odd parity of the number of 90 degree rotations it has

undergone, starting from the goal state. The moves of the 3x3x3 cube are represented identically to

those of die 2x2x2 cube except that the Down, Left, and Back planes can be rotated as well.

4.4.3. Think-a-Dot

The Think-a-Dot problem is a commercially available toy which involves dropping marbles

through gated channels and observing the effects on the gates. Figure 4-4 is a schematic diagram of

the device. There are three input channels at the top, labelled A, B, and C, into which marbles can be

dropped. When a marble is dropped in, it falls through a set of channels governed by eight numbered

gates. Each gate has two states, Left and Right. When a marble encounters a gate, it goes left or right

depending on the current state of the gate and then flips the gate to the opposite state. A state of the

machine is specified by giving the states of each of the gates. The problem is to get from an arbitrary

initial state to some goal state, such as all gates pointing Left.
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TILE POSITION MACRO

0 1 UUULLL

o 2 UUULL

0o UUUL
0 4 UUU

o 5 UULLL
o 9 ULLL

o 13 LLL
0 6 UULL

o 7 UUL

o 8 UU

0 10 ULL
0 14 LL
o 11 UL
o 12 U

0 15 L

1 2 IJDRRRDLUUULL
1 3 DDRRDLURRDLUUULL
1 4 DDRDLURRDLURROLUUULL
1 5 IJDDRRRUUULLL
1 9 DDRRRULOORUUULLL
1 13 ORRRULODRULDORUUULLL
1 6 ORRROLL1RUUULLL

1 7 DRRDLORURDLUUULL
1 8 DROLDRURDLURRDLUUULL

1 10 OORRURIJLDRUUIJLLL
1 14 DRRULDDRURDLDRUIJULLL
1 11 RRDLDRUROLDRUUULLL

1 12 RDLDRURDLDRUROLUUULL
1 15 DRURIJLDRUIIDLDRUUULLL

2 3 OORRDLUUUL
2 4 OORDLURROLUUUL
2 5 DDRRRUL-LDDRUUULL
2 9 DRRRDLULDDRUUULL
2 13 RRRDLULDDRULDDRUUULL
2 6 DDfJRRUUULL
2 7 ORROLDRUUULL
2 8 DRDLDRUROLUUUL

2 10 DDRRULODRUUULL
2 14 DRRULDDRULDDRUUULL
2 11 DDRUROLDRUUULL

2 12 RDLDRUROLDRUUULL
2 15 DRULDORURDLDRUUULL

Table 4-2: Macro table for the Fifteen Puzzle
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3 4 DDRDLUUU

3 5 DDRRROLULDRRUUULLL

3 9 DRRRDLULDRUL-LDDRUUUL

3 13 RRRDLULDRDLULLJORUUUL

3 6 DDRRULL)DRUU!.

3 7 DDDRUUUL

3 8 DRDLDRUUUL

3 10 DRRDLULDDRUUUL

3 14 PRDLULDDRULDDRUUUL

3 11 IDRULDDRUUUL

3 12 RDDLURDLDRUUUL

3 15 DRULODRULDDRUUUL

4 5 DDRRRULLORDLULDRRUUULL

4 9 ORRRDLULDOLULDRRUUULL

4 13 RRRDLULDROL-LDRUULORDLUUU

4 6 DDRRDLULDRRUUULL

4 7 DRRDDLULDRRUUULL

4 8 DDDRULURDDLUUU

4 10 DDDRUURDLULDRDLUUU.

4 14 RRDLULDDDRUULDROLUUU

4 11 DDDRUULODILDUUU

4 12 ROLDDRUULIJRDLUUU

4 15 ORULDODRUULDRDLUUU

5 9 DDRRRUULI.L

5 13 DRRRULDDRUULLL

5 6 DRRRDLUULL

5 7 DRRDLURROLUULL

5 8 DOLURRDLURROLUULL

5 10 RRRDLDRUULLL

5 14 DRRURDLDRUULLL

5 11 RRDLDRURDLUULL

5 12 RDLORURDLURRDLUULL

5 15 DRURDLDRURDLUULL

9 13 DRRRULLL

9 6 DRROL-UURRDLULL

9 7 DRDRULURRDLULL

9 8 DULUHRDLURRDLULL

9 10 RRRDLULL

9 14 ORRURDLULL

9 11 RRDLURRDLULL

9 12 RDLURRDLURRDLULL

9 15 DRURDLURROLULL

Table 4-2, continued
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13 6 RRRDLUDLUURDRULLL
13 7 DRDRUURIDLLURDRULLL
13 8 DDRULURRRDLLIJRDRULLL

13 10 DRRURDLLURDRULLL
13 i4 RRRDLULORdRiLLL

13 11 RRRDLLURDRU-LL
13 12 RDLURRROLLURORULLL

13 15 DRRURDLULDRIRULLL

6 7 DRRDLUUL

6 8 ORDLtJRfDLUUL

6 10 DDRRUULL

6 14 DRRULDDRUULL

6 11 RRDLDRUULL

6 12 PDLDRURDLUUL
6 15 ORURDLDRUULL

7 8 DRDLUU

7 10 DRRULLDDRUUL

7 14 RRDLULDZMUuL

7 11 DDRUUL

7 12 RDLDRUUL

7 15 DRULDDIOUUL

8 10 DRRDLULDRRUULL

8 14 DOkUURDLULDRDLUU

8 11 RRDOLUt.DRRUULL

8 12 DDRULURDDLUU

8 15 [DRUULDRDLUU

10 14 DRRULL

10 11 RROLUL

10 12 ROLURROLUL

10 15 DRURIJLUL

14 11 ORUROLLURDRULL

14 12 RRDLLURDRULL

14 15 RROLULDRRULL

11 12 RIJLU

11 15 DRUL

The total number of non-identity macros is 119.
The average case solution length is 139.40 moves.

Table 4-2, concluded
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CUBIE POSITION ORIENTATION MACRO

DLF DLF 1 F U- F2

DLF OLF 2 F2 U F-
O'-F ORB 0 R2 F2

OLF ORB 1 R F
DLF ORB 2 R2 U F-

DLF DRF 0 R U F-

OLF DRF 1 R F2

OLF ORF 2 F
DLF ULB 0 U2 F2

OLF ULB 1 U R- F2

DLF ULB 2 U- F-

OLF ULF 0 U- F2
DLF ULF 1 U2 R- F2
OLF ULF 2 F-

DLF URB 0 U F2

OLF URB 1 R- F2

DLF URB 2 U2 F-

DLF URF 0 F 2
OLF URF 1 R- F

DLF IJRF 2 U F-

ORB ORB 1 R2 U- R

ORB ORB 2 R- U R2
ORB ORF 0 R2 U R2

ORB ORF 1 R

ORB DRF 2 R U- R

ORB ULB 0 U2 R2
ORB ULD 1 U R
ORB ULB 2 U2 R U R2
ORB ULF 0 U- R2
ORB ULF 1 U2 R
ORB ULF 2 F R2 F-

ORB URB 0 U R2

ORB URB 1 R

ORB URB 2 R- U- R
ORB URF 0 R2

ORB URF 1 U- R
ORB URF 2 R U R2

T'able 4-3: Macro table for Llhc 2x2x2 Ruibik's Cuibe
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DRF DRF 1 R F R2 F- U R-
DRF DRF 2 R U- F R2 F- R-
DRF ULB 0 R F- U F R2
DRF ULB 1 F- U2 F
DRF ULB 2 R U2 R-

DRF ULF 0 R- U2 R U2 R
ORF ULF 1 U- R U R-

DRF ULF 2 R U- R-
DRF URB 0 F U2 F- U2 F-
DRF URB 1 F-U. F
ORE URB 2 U2 R U- R-
DRF URF 0 R F R2 F- R-

DRF URF 1 R U R-
ORF URF 2 F- U- F

ULB ULB 1 U- R2 U2 R- U2 R2
ULB ULB 2 R2 U2 R U2 R2 U
ULB ULF 0 U
ULB ULF 1 R2 U2 R- U2 R2

ULB ULF 2 F2 U2 F- U2 F2
ULB URB 0 U-
ULB URB 1 R2 U2 R U2 R2
ULB URB 2 F2 U2 F U2 F2

ULS URF 0 U2
ULB URF 1 U R2 U2 R- U2 R2
ULE3 URF 2 R2 U2 R U2 R2 U-

ULF ULF 1 F R- F- U- R- U R
ULF ULF 2 R- U- R U F R F-
ULF URB .0 U F R U R- U- F-
ULF URB 1 U- F- R U F U F- R-
ULF URB 2 F U R U- R- F- U-
ULF URF 0 R- F R U F U- F-
ULF URF 1 R F U- F-U- R-F U
ULF URF 2 F U F-U- R- F- R

URB URB 1 R U2 F2 R- F- U F- U R- U
URB URB 2 U- R U- F U- F R F2 U2 R-

URB URF 0 U- R- U R- F2 R F- R-F2 R2
URB URF 1 R- F- U2 F- R U R- F U2 R U-
URB URF 2 U2 F2U- F-U F2 U-R U- R-

The total number of non-identity macros is 75.
The average case solution length is 27.00 moves.

Table 4-3, concluded
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CUBIE POSITION ORIENTATION MACRO

UF UL 0 L F
UF UL I U-
UF 'JB 0 U2
UF UB 1 B L U-
UF UR 0 R- F-
UF UR 1 U
UF UF 1 F- L- U-
UF LF 0 L- U -
UF L F 1 F
UF LB 0 L U-
UF LB8 1 L2 F
UJF RB 0 R - U

UF RB 1 R2 F-
UF R F 0 R U
UF R F 1 F-
UF DL 0 L- F
UF DL 1 L2 U-
UF DB 0 D2 F2

UF 08 1 B- LU-
UF DR 0 R F-
UF DR 1 R2 U
U F OF 0 F 2
UF DF 1 F L- U-

ULF ULF 1 L D- L2
ULF ULF 2 L2 D L-

ULF ULB 0 B D L-

ULF ULB 2 L

ULF ULB 1 B L2

ULF URB 0 B2 L2

ULF URB 1 B L

ULF URB 2 R2 0- L-

ULF URF 0 R2 0 L2

ULF URF 2 R2 D2 L-

ULF URF 1 R- D- L-

ULF DLF 0 D- L2

ULF DLF 2 L

UI.F DLF 1 02 B3- L2

ULF DLB 0 L2

ULF OLB 1 B3- L

ULF DLB 2 0 L-

ULF ORB 0 0 L2

ULF ORB 2 02 L-

ULF ORB 1 13- L2

ULF DRF 0 02 L2

ULF ORF 1 D 8- L2

ULF DRF 2 0- L-

Table 4-4: Macro tabic for thc 3x3x3 Rubik's Cube
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UL UL 1 F2 U- F- L- F-
Ut UB 0 F B L F-
UL UB I F2 U- F2
UL UR 0 F2 U2 F2
UL UR 1 F U F- L-
Ut LF 0 U L2 B- L2 U-
UL LF 1 U L- U L U-
Ut LB 0 F2 B- U- F2
UL LB 1 F L F-
Ut RB 0 L- U B U-

UL RB 1 L 02 B2 L
UL RF 0 F- U F
UL RF 1 F2 L- F2

UL DL 0 F L2 F-
Ut OL 1 L- U- F U
UL DB 0 U 13-U- L

UL OB 1 F2 B2 U- F2
UL DR 0 F R2 B U2
UL DR 1 R F- U F
Ut OF 0 F L- F-

Ut OF I F2 U F2

LF UB 0 U- L U
LF UB 1 U2 F- U2
LF UR 0 U F- U-
LF UR 1 U2 L U2
LF LF 1 U2 L.- U- F- U-
LF LB 0 U2 L2 U2

LF LB 1 B- U-L. U
LF RB 0 U R2 F2 U-
LF RB 1 B U- LU
LF RF 0 U F2 U-

LF RF 1 R U F- U-
LF DL 0 U D F U-
LF DL 1 U2 L- U2
LF OB 0 U20D L- U2
LF OB 1 U 02 F U-

LF DR 0 U 0- F U-
LF DR 1 U R F2 U-
LF OF 0 U2 0- L- U2

LF OF 1 U F U-

Table 4-4, contined
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ULB ULB 2 B2 D B-

ULB ULB I B 0- B2

ULB URB 0 R D B-

ULB URB 1 R B2

ULB URB 2 B

ULB URF 0 R2 B2

ULB URF 2 R2 D B-

ULB URF I R B

ULB DLF 0 D2 B2

ULB DLF 2 D- B-

ULB OLF 1 0 R- B2

ULB DLB 0 0- B2

ULB DLB I D2 R- B2

ULB DLB 2 B-

ULB DRB 0 B2

ULB DRB 2 D B-

ULB DRB 1 R- B

ULB DRF 0 D B2

ULB DRF I R- B2

ULB DRF 2 D2 8-

UB UB 1 L B2 L2 D L B-

UB UR 0 L R B L-

UB UR I B2 R2 D R2 B2

UB LB 0 U- F L F- U

UB LB 1 U R U- 0 B-

UB RB 0 R2 B- U R U-

UB RB 1 L 13 L-

UB RF 0 B- U R U-

UB RF 1 B D2 R2 B

UB DL 0 L. B- L-

UB DL 1 0- L B2 L-

IJB D8 0 L B2 L-

UB DB 1 0 L B- L-

UB DR 0 U R- U- B

UB DR 1 D L B2 L

UB DF 0 D2 L B2 L-

UB DF 1 0- L B- L-

Table 4-4, continued
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LB UR 0 U- B U
LB UR 1 R U- 132 U

LB LB 1 U- B L-O0 L U

LB RB 0 U- B2 U

LB RB I R- U- B U

LB RF 0 R2 U-B2 U
LB RF 1 R U- B U
LB OL 0 U-D- B- U

LB DL 1 B2 02 R- 02 B2

LB DB 0 U2 L-OD L U2
LB DB 1 U- B- U
LB DR 0 U- D B- U

LB OR 1 R- U- B2 U
LB DF (1 L- B- 0- B L

LB OF 1 U-D2 B- U

URF URB 0 R2 0 R2
URF URB I R

URF URB 2 R 0- R

URF URF 2 R- D R2
URF URF I R2 0- R

URF DLF 0 02 R2

URF DLF 2 02 F D- F-

URF OLF 1 0 R

URF OLD 0 0- R2

URF OLB 1 02 R

URF DLB 2 F 02 F-

URF ORB 0 R2

URF ORB 2 F 0- F-

URF ORB 1 D- R

URF ORF 0 D R2

URF ORF 1 P

URF DRF 2 R-D- R

UR UR 1 F- R2F2 D-F- R

UR RB o R D- R- F- R F

UR RB 1 F- R- F

UR RF 0 U L- F- L U-

UR RF 1 R2D- R- F 0- F-

UR OL 0 02 F- R2 F

UR DL 1 D F- R F

UR OB 0 02 F- R F

UR OB 1 0- F- R2 F

UR OR 0 F- R2 F

UR OR 1 D- F- R F

UR OF 0 F- R F

UR OF 1 0 F- R2 F

Trable 4-4, continued



44 ILearning to Sodve Problems by Searching tor MN1cro-Operators

URB URB 1 B- D L- D2 L B

URB URB 2 B- L- D2 L D- B

IJRB DLF 0 R F- R F R2

URB DLF 2 R D2 R-

URB DLF 1 B- D2 B

URB DLB 0 D- R2 D R2 D- R2

URB OLD 1 D B- D2 B

URB OLB 2 R D- R-

URB DRB 0 R2 D R2 D- R2

URB ORB 2 B- D- B

URB ORB 1 R D R-

URB DRF 0 D R2 D R2 0- R2

URB DRF 1 B- D B

URB DRF 2 D2 R D- R-

RF RB 0 R2 D2 R2 D2 R2

RF RB 1 R- F- R- F D R

RF RF I F- D- L- U- R2 F R U L

RF DL 0 R- D R D F D- F-
RF DL 1 R2 D2 R- D2 R2

RF DB 0 D R2 D2 R- D2 R2

RF DB 1 B2 R2 D2 B- D2 R2 B2

RF DR 0 R- D2 R 02 F D F-

RF DR 1 R2 D2 R D2 R2

RF OF 0 D- R2 02 R- D2 R2

RF OF 1 B2 R2 D2 B D2 R2 B2

RB RB 1 R2 D2 B R2 B- D2 R- D R-

RB DL 0 R D R- D- B- 0- B

RB DL 1 R- D2 F- R2 F D2 R

RB DB 0 B- D2 B D2 R D -R-

RB DB 1 B 02 L B L- 02 B-

RB DR 0 R D2 R- D2 B- D- B

RB DR 1 B D2 L B- L- D2 B-

RB OF 0 8- D B D R D- R-

RB OF 1 B D2 L 82 L- 02 B-

OF DL 0 F D L D- L- F-

OF DL 1 D

OF DB 0 D2

OF OB 1 B D R D- R- B-

OF DR 0 R F D F- D- R-

OF DR 1 D-

OF OF 1 R D F D- F- R- D-

DL DL 1 L- F- D- F D L D-

DL DOB 0 L 0 B D- B- L-

DL OB I R- B- D- B 0 R

DL DR 0 R- D2 R D R- D R

DL DR 1 R- D- B- D B R

Table 4-4, continucd
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08 08 1 R- D- R2F- R- F2D-F-0D2
DB DR o D B R D R-D- B- L 0 8 0-B- L-
OB DR 1 D R D R- D R D2 R-

DLF DLF 2 R- D- R D- R- 02 R L D L- D L 02 L-
OLF DLF 1 L D2 L- D-L D-L- R- D2R D R-D R
DLF DLB 0 L B L- F L B- L- F-

*DLF DLB 1 L- F- R F L F- R- F
DLF DLB 2 F L2 F R2 F- L2 F R2 F2

DLF ORB 0 L2 132 L F L- 82 L F- L

DLF ORB 2 F L F- R F L- F- R-
DLF ORB 1 F- R F L- F- R- F L
DLF DRF 0 F- R- F L- F- R F L
OLF DRF 1 L D2 L U L-b2 L U- L2
DLF DRF 2 F L B L- F- L B- L-

OLD DLB 1 0-80-0 F 0- B D L B L- F- L B- L-
OLB DLB 2 L B L- F L B- L- D- B3- D F- D- B D
OLB ORB o F L- F- R F L F- R-
DLB ORB 2 L B2 L F2 L- B2L F2 L2
OLD ORB 1 R-D0 L D- R 0 L-D0-
OLD ORF 0 L2 F2 L- 82 L F2 L- 82 L-
DLB DRF 1 R F L- F- R- F L F-
DLB DRF 2 0 L D- R-D0 L-0- R

ORB ORB 2 L- D- L D- L- D2L R D R-D0 R 02 R-
ORB [JRB 1 R 02 R-D- R D- R-L- D2L 0 L- D L

The total number of non-identity macros is 238.
The average case solution length is 86.38 moves.

Table 4-4, concluded
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A 8 C

I I I
1 2 3

4 5

6 7 8

Figure 4-4: Think-a-Dot machine

This problem is included as an example for a number of reasons. First, it is a problem for which

Goldstein's program was unable to find a good set of differences. For example, the subgoals of

mapping one gate at a time to its goal value are not serializable. Secondly, it differs from the previous

two examples in that its states do not correspond to permutations of objects. Finally, the primitive

operators of Think-a-Dot do not have inverses, even though if there exists a path from one state to

another, then there always exists an inverse path. The reason is that given a primitive operator, there

is no single (macro)operator which inverts the effect of the primitive operator on every state.

The state variables of the problem are the individual gates, and the values are Right and Left. The

primitive operators are A, B, and C, corresponding to dropping a marble in each of the input gates.

Table 4-5 shows a macro table for the Think-a-Dot problem where the goal state is all gates pointing

Left. Note that there are only two possible values for each state variable and hence only two macros

in each column, one of which is the identity macro. 'The last gate in the macro table is gate 7 since

once the first seven gates are set, the state of the last gate is determined, due to a situation similar to

that of the Eight Puzzle.
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GATES

1 2 3 4 5 6 7

Right A B C AA CC AAAA CCCC

Left

Table 4-5: Macro table for the Think-a-l)ot machine

4.4.4. Towers of Hanoi

Thc well-known Towers of Hanoi problem (see Figure 4-5) c:lisists of three pegs and a set of

different size disks stacked on tde pegs in decreasing order of size. The standard task is to transfer all

the disks from one peg to another subject to the constraints that only one disk may be moved at a

time and that a larger disk may never be placed on top of a smaller disk. Note that while the standard

treatment of the problem is only concerned with solving the problem from a particular initial state,

namely all the disks stacked on one peg, we will address the issue of transferring all the disks to a goal

peg from any legal initial state. A legal state is one where no disk is on top of a smaller disk on the

same peg.

Figure 4-5: Towers of H-anoi problem

In contrast to the previous examples, this problem is easily solved by OPS, and Goldstein's

program was able to find the correct differenices. In fact, it is often viewed as the classic GPS

problem, yet is included here for several reasons. One is that it demonstrates that the Macro Problem

Solver is not restricted to problems that OPS cannot handle but rather overlaps GPS in its coverage

of problems. Another reason is that the Towers of Hanoi is such a well-known problem in artificial

intelligence that its treatment by the Macro Problem Solver allows comparison of our method with

other problem solving paradigms.
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Table 4-6 shows a macro table for the thrce-disk Towers of" lanoi problem, where th0 goal peg is

peg C. A similar tablc can be built for any numbcr of disks. The state variables arc the disks,

numbered I through 3 in increasing order of size. Thc values arC thc differcnt pegs the disks could be

on, namely A, 13, and C. There are six primitive movcs in the problem space, one corresponding to

each possible ordered pair of source peg and destination peg. Since only the top disk on a peg can be

moved, this is an unambiguous representation of the operators. The complete set is thus

{AB, AC, BA, BC, CA, C11}. The .,olItion order is to position the disks in increasing order of size.

Note that this is exactly the opposite of the ordering of subgoals for the GPS solution to the problem,

but does correspond to the order in which the disks are first moved in the GPS solution.

DISKS
1 2 3

P A AC CB AC BC CA CB AB AC BA BC AC

E

G B BC CA BC AC CB CA BA BC AB AC BC

S
C

Table 4-6: Macro table for the three disk Towers of Hanoi pioblem

The solution that results from this macro table is in general not the most efficient solution to the

problem in terms of number of primitive moves. Unfortunately, this is a gencra'a characteristic of the

Macro Problem Solver. In this case, cach macro stacks up the disks on the goal peg, and hence the

next macro must move them to create a larger stack on the goal peg. In Chapter 8 we will discuss the

isSue of more efficient macro tables for this problem.

4.5. Conclusions

Tihe knowledge necessary to efficiently solve a certain class of problems can be represented by

macro-operator sequences. The key property of thesc macros is that they leave all previously satisfied

subgoals invariant while solving an additional subgoal as well. The macros can be organized into a

two-dimensional macro table such that a problem solving program can solve any instance of the

problem with no search. The result is an expert problem solving system for a given problem.

The method has been illustrated by a number of example problems, including the Eight and

Fifteen Puzzles, the 2x2x2 and 3x3x3 Rubik's Cubes, the Think-a-Dot problem, and the Towers of

Hanoi problem. These problems were chosen for their diversity and each one in fact represents an

entire class of problems for which the Macro Problem Solver is equally effective. For example,

Rubik's Cubes are only two of a large class of puzzles that involve twisting various geometric solids,



The Maicro Problem Solver 49

sliding tile pu/zles may have arbitrary geuoctries including one where cubes with orientation are

rolled into the blank position, the Towers of I lanoi Problem becomes even ml1ore interesting with a

largcr numbcr of pegs, and thc llhink-a-I)ot problem can be generalized to any dircctcd acyclic

graph.
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Chapter 5

Learning Macro Operators

While ihc previous chapter described the operation of the Macro Problem Sol~cr once it has a

complete iracro table, this chapter is concerned with the problem of how the macros are acquired.

This is the learning component of the paradigm. The basic technique that will be used is to search

the space of macro-operators. Each macro generated is inserted into the macro table in its correct slot.

unless a shorter macro already occupies that slot. We first address the problem of where to place a

given macro in the macro table. We then consider three different methods for generating macros.

One is a simple breadth-first search through the space of primitive operator sequences. "he second is

a variation of bi-directional search. The list is the macro composition technique of Sims [Sims 70]. In

addition, some techniques for the efficient use of memory are described to enable the search to

proceed as far as possible. Finally, the design of a problem-independent macro learning program is

presented by separating the problem-dependent components from the domain-independent ones.

5.1. Assigning Macros to the Macro Table

In general, the macros that make up the macro table all have the property that they leave an initial

sequence of the state variables invariant if they equal their goal values, and map the next state

variable to its goal value, independent of the values of the remaining variables in the solution order.

In addition, the table should be filled with the shortest macros that a..cornplish each subgoal. This

section is concerned with the problem of determining the correct location in die macro table of a

given macro.

5.1.1. Selecting the Column

In order to determine the column in the macro table in which an arbitrary macro belongs, we

introduce the notion of the invariance of a macro. Given a particular goal state, a solution order, and

a macro-operator, we define the invariance of the macro as follows: The macro is applied to the goal

state of the problem and the resulting state is compared with the goal state. The invariance of the
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macro is the number of consccutive state variables of the resulting state that equal their

corresponding goal values. The sequence starts with the first statc variable in the Solution order and

continues until a mismatch is found. In other words, if the first State variable of" the resulting state

does not equal its goal value, the invariance of the macro is ,cro: if the first variable in the solution

order equals its goal value but the second does not, the invariance of the macro is one, and in general

if the first i state variables in the solution order cqual their goal valucs but the i+ IIt does not, then

the invariance of the macro is i. For example, if the goal state of the Fight Puzzle is represented by

tie vector [1 1 2 3 4 5 6 7 81, the solution order is (1 t 2 3 4 5 6 7 8). and the suite resulting from the

application of some particular macro to the goal state is [B 1 2 3 6 5 7 4 81, then the invariance of the

macro is four, because the first four tiles (including the blank) in the solution order are in their goal

positions and the fifth is not

The invariance of a macro gives the longest initial subsequence of state variables in the solution

order that are left invariant by the application of the macro to the goal state. Hence, the invariance of

a macro determines its column in the macro table.

5.1.2. Selecting the Row

In addition to the column, we must also determine the proper row for a macro in order to include it

in the macro table. A macro in column i and row j of the macro table, when applied to a state in

which the first i variables in the solution order have their goal values and in which the i+ 1
s' variable

has the value corresponding to row j, results in a state in which the first i+ 1 variables have their goal

values. Hence, the row in the table of a macro with invariance i is the row that corresponds to the

value of the i+ Ist state variable that the macro maps to the goal value.

In general, determining the row of a macro requires computing the inverse of the macro. For some

problems, however, including Think-a-Dot, Rubik's Cube, and the Eight Puzzle, the row of a macro

can be determined directly from the macro itself. We will first describe the general technique, and

then show how the row can be obtained without inverses.

First, note that if a macro has invariance i, then its inverse will also have invariance i, where the

inverse is obtained by reversing the order of the operators and replacing each with its inverse

operator. The reason is that the original macro maps the first i variables from their goal values back

to their goal values and hence the inverse must do the same. Second, if the i+ I- t state variable has

the value corresponding to row j after the application of the inverse macro to the goal state, then the

correct row of the original macro in the macro table is . Tuc rcascr is that thz ;,c:e macro maps
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the value of tile i± Ist variable from its goal value te that corresponding to j. and hence the original

macro would map the value corresponding to J back to the goal value. Ihus, given a macro with

invariance i, we place it in the table at column i, and at the row which corresponds to the value of the

i+ 1I
s variable in the solution order when the inverse macro is applied to the goal state.

With the Towers of Hlanoi problem, however, there is no guarantee that a macro that is applicable

to the goal state will necessarily be useful from any other states. For example, if the goal peg is peg C,

then the single oper,,to C.X does not belong in the macro table at all because it doesn't move any disk

to the goal peg. In that case, the inverse macro, which does rrove a disk to the goal peg, is inserted in

the macro table.

We now turn our attention to the direct method of determining the row of a macro without

computing the inverse macro. For example, in the Eight Puzzle, the row of a macro with invariance i

can be determined by applying the macro to the goal state, and then linding the tile that is mapped to

the i+ 1 position, or in other words, the state variable with value i+ 1. For Rubik's Cube, the row of

a macro with invariance i is found by applying the macro to thc goal state, and then finding the cubic

that is mapped to the i+ 1
st cubicle. However, this only gives the position component of the row

value. The orientation component is obtained by taking the inverse of the orientation of the same

cubic. In other words, we combine the cubic in the i+ 1st position with the inverse of its orientation.

The two possible orientations of edge cubies are inverses of each other, while for the corner cubies

the original orientation is its own inverse and clockwise and counterclockwise orientations are

inverses of each other. In the case of the Think-A-Dot problem, the row simply corresponds to the

value of the next variable in the solution order after the invariant component. Since there are only

two values, this is just the first non-goal value. If the macro changed it from goal to non-goal, then

applying it again will flip it back to the goal value.

5.2. Breadth-First Search

Given the above techniques for placing a macro in its correct place in the macro table, what is still

required for the learning program is a method of generating macros. Since we are interested in the

shortest possible macros for each slot in the table, we first adopt a brute-force, breadth-first search

from the goal state. Thus, the first macro placed in each empty slot in the table is guaranteed to be a

minimal length macro for that slot.

It is important to realize that a single search from the goal state will find all the macros in the table,
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and thaI a separate search for each colunin or even each entry is not reqtuired. We are not searching

for particular states but rather for particular operaftor sequences. For problems like Rubik's Cube that

have no preconditions on the operators, a single search will encounter all possible operator sequences

up to the length of tihe search depth. and hence will find ill macros up to that length. F or problems

with operator preconditions, such as the Towers ofI lanoi. recall that we are only interested in macros

that map some initial subsequence of the state variables in the solution order to their goal values.

Hence, by searching from the complete goal state and using the inverses of the operator sequences

gencrated. we will find all the macros in a single search.

One problem with this learning algorithm is knowing when to terminate it. We cannot simply run it

until all the slots in the macro table are filled because some Slots may remain permanently empty. For

example, the last two columns of the Eight Puzzle macro table can never be filled, due to the property

of the puIzle that only even permutations of the tiles can be reached from a given state, and hence the

positions of the last two tiles are determined once the positions of the remaining tiles are known.

Both Rtihik's Cube and the Think-A-l)ot problems have similar properties. In general, discovering

these properties is very difficult. Hence. we have a situation of not knowing when we know enough to

solve every instance of the problem.

There are several solutions to this difficulty. One is simply to run the learning program until its

computational resources, in most cases memory, are exhausted. Another is the heuristic of

terminating the search if one or two additional plies fail to produce any new macros. The best

solution6 involves interleaving the learning program with the problem solving program as co-routines

and only running the learning program when a new macro is needed to solve some particular

problem instance.

Brute-force breadth-first search is sufficient to solve the Eight Puzz.Ic. the Towers of Hanoi, and the

Think-A-Dot problems. For problems as large as the Fifteen Puzzle and the Rubik's Cubes, however,

a more sophisticated technique is required.

6suggcstcd by Jon Bentley
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5.3. Partial-Match, 6i-Directional Search

If we assume that cach primitive operator has an inverse primitive operator, thus ruling out the

rhink-A-I)ot example. then we can find macros considerably more efficiently thani by brutc-force,

breadth-first search. Consider a macro that leaves i state variables invariant. When applied to the

goal state, the values of these state variables are mapped from their goal values, through a succession

of intermediate values, and finally back to their goal values again. Now consider splitting in half the

sequence of primitive operators that make Ip the macro. The first half maps the i state variables from

their goal values to a sequence of values (vjV', ..... V), and the second half maps these values back to

their goal values. Thus, the inverse of the second half of the macro will map the goal values of these

variables to this same set of values ( "I2 ..... vi). This suggests that, given two different macros that

map the same initial subsequence of i state variables, according to the solution order, from their goal

values to an identical set of intermediate values, composing one of the macros with the inverse of the

other will yield a macro with invariance i. Thus, macros can be found by storing the intermediate

values of die state variables for each macro when applied to the goal state and comparing them with

the corresponding values for each new macro generated, looking for matches among initial

subsequences of variables according to the solution order.

Note that once a match is found, two macros can be generated, depending o'n which of the two

matching submacros is inverted. The two macros are inverses of each other. Hence, each of these

macros must have the same invariance, but in general the rows of the macro table to which they

belong may be different. Furthermore, by using the inverse method for determining the row of a

macro, the correct row for each of the macros can easily be determined from the other. Note that this

is not a heuristic method but is in fact guaranteed to find all minimal length macros, since every

macro can be split into two parts as described.

This scheme is closely related to bi-directional search, first analyzed by Pohl [Pohl 71]. They have in

common searching for a path from both ends simultaneously, looking for a match between states

generated from opposite directions, and then composing the path fromi one direction with the inverse

of the path from the other direction. There are, however, two important differences between this

technique and bi-directional search. One is that in this case the initial and goal states are the same

state, namely the goal state, and hence only one search is necessary instead of two. The second

difference is that, since we are looking for macros that leave only some subset of the state variables

invariant, we only require a partial match of the state variables rather than a total match.

The computational advantage of this scheme is tremendous. In order to find a macro of length d,
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insteod of searching to depth d. we need only search to depth rd/2 1. Since the cUmLputationl time for

a breadth-first scarch is proportionil to b, where b is the branching factor ind d is the depth of the

search. this reduces thc computation time from b" to b,1/2 , essentially halving die cxponent, assuming

the matching can be done efficiently.

If each new state must be individually compared to each existing state, a hi-directional search

requires as much time as a uni-dircctional search, with most of the time taken tip doing the

coMparisons. Thus, the performance claimed above can only be achieved if a new -;tatc can be

compared to all the existing states in constant time.

I-ortunately, hashing the states based on the values of the state variables will achieve this

performance. To find a macro with invariance i, a match among the First i state variables must be

made, which implies that the hash function may not depend on any other state variables. Trhe reason

is that including another variable in the hash function in which the two states do not match may

result in their being mapped to different parts of the hash table. This presents a problem in that,

whilc searching for macros with low invariance, there is very little infonnation that can be used by a

hash function to separate the states in the table. On the other hand, when searching for macros with

greater invariance, an effective hash function is essential for tolerable performance of the search

algorithm.

In order to resolve this difficulty, we make use of the fact that macros with low invariance are

relkatively common while macros with high invariance are much rarer. Thus, in a breadth-first,

bi-directional search, the macros to fill the low invariance columns of the macro table will be found

fairly early, and subsequent effort can be focused on macros with greater invariance, allowing a more

effective hashing function to be used. The search algorithm works by maintaining an invariance

threshold which at ary given point in the search is the minimum invariance for which all the

elements in the corresponding column of the macro table have not yet been Filled. At the end of each

ply of the search, if the invariance threshold has increased, then all the states in the hash table are

rehashed ising a more discriminating hash function constructed by incorporating the additional state

variable(s) corresponding to the columns tkat were fillcd since the last ply, and the search continues.

This allows the low invariance macros to be found and also permits an effective hash function to be

used for searching for the high invariance macros, which occupies most of the search.

An alternative scheme for comparing the generated states efficiently uses a search tree instead of a

hash table. As each state is generated, it is stored in a tree wtcre each level of the tree corresponds to
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a different state variable and different nodes at the same level correspond to different possible values

for that state variable. The ordering of levels of the tree from top to bottom corresponds to the

solution order of the state variables from first to last. "hus, cach node of the tree corresponds to an

assignment of values to an initial subscquCncC of statC variables in the solution order.

A state is inserted in the tree by filtering it down from the root node to the last existing node which

corresponds to a previously generated state. A new node is creatCd at the next level of the tree and the

macro which generated the new state is stored at the new node. Since the states are generated

breadth-first, this Cnsures that with each existing node is stored a shortest macro which maps the goal

stare to the initial sub,equence of values corresponding to the node. When a new state reaches the

last previously existing node it matches in the tree, a macro is created as before.

The expected number of probes to compare a new state to the existing suites for the hashing

scheme is constant, assuming the hash table remains partly emi'.y [Knuth 731. For the search tree, the

expected number of comparisons is linear in the number 6: state variables. The partial-match,

bi-directional search algorithm is sufficient to find all the macros for the Fifteen Puzzle and the 2x2x2

Rubik's Cube. The limitation of this algorithm, as for any bi-directional search, is the amount of

memory available for storing states.

5.4. Macro Composition

Finding all the macros up to length nine for the 3xJx3 Rubik's Cube macro table requires about

100,000 words of memory. This still leaves seven empty slots, out of 238, in the table. These

remaining slots can be filled using the macro composition technique employed by Sims [Sims 701.

If we compose two macros with invariance i, the result will also be a macro with invariance at

least i, but in general a different macro. If, in addition, when the macros are applied to the goal state

the two i+ 1-' variables take on the same values, but not necessarily the goal values, then if we

compose either macro with the inverse o f the other macro, the result will be a macro with invariance

at least i+ 1. This is actually just a special case of the more general technique described in the

previous section, specialized in the sense that not only are the first i variables constrained to match,

but they must equal the goal values as well.

The advantage of this technique is that it allows us to find macros with high invariance with very

little computation,, by using macros with high invariance that have already been found. The

disadvantage of the technique is that a macro found by this method will not in general be the shortest
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nlacro for the corresponding slot in the m racro table. II Cact. thCIc is SotI psychologicail iplaisibility

to this method tor finding macros in that many htimal cube ,olvers. particularly novices, use

compositions ol shorter inacros to complete die final Stages ill heir solution strategies.

The macro Colnposition technique is effective in finding the remaining seven macros for Rubik's

Cube that are beyond the range o)f the bi-directional search. Most of these macros are fourteen moves

long whereas macros twelve moves long exist for these slots in the table. [he complete learning

program for the 3x3x3 Rubik's Cube runs for less than 15 minutes of CPU time on a VAX/ 11-780

and uses about 200K words of memory.

Note that macro composition could be used to Find all the macros for Rubik's Cube, starting with

only the primitive operators of the problem. However, as pointed out in section 3.6, the resulting

strategy would be extremely inefficient in terms of number of primitive moves. T['he combination of

bi-directional search and macro composition amounts to a tradcoff between lerning time and space

vs. solution efficiency. An alternative approach to the computational limitations of bi-directional

search, that of decomposing the problem, will be presented in section 8.2.3.

5.5. Efficient Use of Memory

Since the amount of available memory is what limits tie search for macros, memory must be used

as efficiendy as possible. In particular, we would like to minimize the amount of memory required for

each entry in the hash table. There are two pieces of information to be stored with each hash table

entry: a description of the state, in order to match the state variables, and the macro which led to the

state, in order to construct the macros that result from a match. In the following discussion, we

assume that our memory is divided into words of w bits. Typical values for w arc 32 and 36 bits.

In general, the macro component of a hash table entry can be encoded in a single word. The

intuitive reason for this is that the number of different macros we will be able to store will be far less

than 2w. If we represent our primitive operators by the integers zero through k inclusive, then a

sequence of primitive operators can be packed into a word, without loss of information, by storing

the equivalent integer in base k+ 1. For example, a Think-a-Dot macro such as [A B C A] would be

encoded in the integer 0.33 + 1.32 + 2.3t + 1.30 = 161 .

In order to pack every macro into a single word, we must be careful to encode the primitive

operators so that the number of operators is close to the effective branching factor of the space.

Otherwise, if preconditions and redundant operations eliminate, most operator sequences, then we
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may be able to search to tie depth of longer macros than can be CnCodCd ill a single word. For

example, if the primitive operators of'the l:ight Pu//lc are represetd by ordered pairs of source and

destination positions, we get 24 different operators. However, we can unambiguously represent tie

primitive operators by giving the direction a tile is to be moved: left, right, up, or down. This is still

somewhat redundant since the average branching factor of the space is only 1.67 (see section 7.3).

How much memory is required for the state description component of a hash table entry? If there

are s distinct states in the space, then the number of words required to encode a state is (log s)/w.

']'he macro together with the goal state, however, completely determine the resulting state. Hence,

there is no need to store the sUIte in the hash table at all. Instead. each time a new state must be

compared with the existing hash table entry, the existing state can be regenerated by unpacking the

macro and applying it to the goal state.

While die above argument shows that in principle we only need othe word of memory per hash

table entry, in practice the constant regeneration of states requires a great deal of computation time.

A more time-efficient strategy, at the expense of doubling the ,pace requirement, is to use an

additional word per hash table entry to represent as much of the state as can be encoded in a single

word. As in the case of a macro. if v is the number of different possible values for a state variable,

then the vzilucs of w/log v state variables can be stored in a single word as an integer base v. Only if a

new state matches an 2xisting entry in these state variables, as well as hashing to the same value, does

the entire state have to be regenerated from the macro.

Since much of the information about the values of the state variables used in the hash function is

reflected in the location of an entry in the hash table, the variables stored in the additional word

should be chosen to be different from those used in the hash function Both these sets of state

variables must be chosen from the first t state variables in the solution order, where t is the current

invariance threshold of the macro search.

5.6. Design of a Problem-Independent Macro Learning Program

In this section we sketch a design for a macro learning program that is independent of any

particular problem domain. This is accomplished by separating die components of the learning

program into those that depend on the problem domain and those that are problem-independent,

while striving to minimize the problem-dependent components of the system. First the problem-

dependent components will be presented followed by the problem-independent ones. We assume

throughout that a state is represented by the values of a vector of state variables and that each

primitive operator has an inverse primitive operator.
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5.6.1. Problem-Dependent Components

Perhaps the most obvious problem-dependent component is the actual goal state itself. Recall that

the entire macio table is dependent on the selection Ota particular gtai sLe. In additon, a cOmpttcr

model of the problem must be provided, most conveniently ill the form of an ;perator appliCation

function and a legal move generator. 'The operator application function takes a state and a primitive

operator as arguments ind returns the state that results from applying the primitive operator to the

given state. The legal move generator takes a current state and the last operator that was applied to

reach that state as arguments and returns the set of primitive operators that generate new states,

taking into account any preconditions on the operators. While the last operator applied is not strictly

necessary as an argument to this function, it allows the legal move generator to exclude redundant

moves such as the inverse of the last operator.

Another important problem-dependent component of the macro learning program is the solution

order, or the sequence in which the state variables are to be mapped to their goal values. The

constraints on the solution order will be considered in Chapter 6, and heuristics tr choosing a

solution order that results in efficient solutions will be discussed in Chapter 8.

In order to pack macros into a word efficiently, the total number of primitive operators must be

known. In addition, in order to construct a macro once a match between state variables is found, the

inverses of each of the primitive operators must be provided. Furthermore, the dimensions of the

macro table are determined by the number of state variables and the number of different values they

can assume.

A subtle but important piece of problem-dependent information is some means of determining the

number of slots in each column of the macro table which remain empty in the complete table. This is

necessary in order to allow the invariance threshold to increase to take advantage of more effective

hashing functions as the search progresses. For example, in a problem like the Fight Puzzle where the

states are permutations of a set of values, the learning program must know that if variable i has valuej

for its goal value, then row j of the macro table will be empty for all columns greater than i in the

solution order. Otherwise, the invariance threshold will never advance beyond the second column of

the macro table due to the empty slot, and the remainder of the search will be crippled by a hash

function based on only the first two state variables. In addition, such information is useful for

terminating the learning program when the macro table is completely filled.
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5.6.2. Problem-Independent Components

The remaining components of tie macro learning program are problem-independcnt. We briefly

discuss the major modules below.

First, a number of utility functions arc required. These include functions that pack and unpack

macros, mapping between sCquCnccs of primitive operators and their integer encodings. In addition,

there must be a macro application function that takcs a macro and a suite as arguments and returns

the state that results from the application of the macro to the given state. This function is problcm-

independent, bUt relies very heavily on die problem-dependcnt operator application function.

The hashing function is of critical importance to the performance of the learning program. As

mentioned ciier, the hash function is different for different levels of the search. Recall that the

number of state variables that can be encoded in a word is h= w/log v, where v is the number of

different state variable values. If the invariance threshold i is less than or equal to h, then the first t

staie variables in the solution order are used in the hash function. Onice the invariance threshold

exceeds h, then h state variables are chosen for the hash function, uniformly distributed from among

tie first I variables in the order.

The search function generates one ply of the search space per call and passes each state generated

one at a time to a state processing function. This function hashes the state and scans the hash table

for a state whose state descriptor word matches the given state, passing both states to a comparison

function for each match it finds. The comparison function regenerates the stored state and calls a

macro processing function if the match between the two states is greater than the invariance

Lireshold. This function generates the complete macro and its inverse, places them in their correct

slots in the macro table if those slots are empty, marks the slots full, and increases the invariance

threshold if an entire column is filled as a result. Finally, there is a main program that, in addition to

other initalization functions, places the primitive operators, or macros of length one, in their

respective slots in the macro table.
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5.7. Conclusions

We have presented a number of techniques for learning macros effectively. These include brute-

Rorce breadth-first search, a variation of bi-directional search that is only single-ended and requires

only a partial match of the states, and die macro composition technique of Sims. Since the

performance of the learning program is limited by the amount of available memory for a hash table,

it is shown that an entry in de table requires only one word of memory. Finally, a design for a

problem-independent macro learning program is presented by separating the problem-dependent

components from the problem-independent ones. The most important reslts of this chapter are that

all the macros in the table can be found in a single search fiom the goal state and diat filling the

macro table is feasible for problems of substantial size (e.g. the 3x3x3 Rubik's Cube).
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Chapter 6

The Theory of Macro Problem Solving

We have seen that macro problem solving works for a set of example prol)lems, and have

demonstrated tie learning of macro-operators. We now turn our attention to the question of why

these techniques work. The reason for addressing this issue is twofold: to understand the problem

structure it is based on, and to characterize the range of problems for which it is effective. The main

contribution of this chapter is to identify a property of problem spaces called operator

decomposability. Roughly, operator decomposability exists in a problem space to the extent that the

effect of an operator on a state can be decomposed into its effect on each individual component of the

state, independently of die other components of the state. It will be shown that operator

decomposability is a sufficient condition for the application of macro problem solving. In addition,

the technique will be generalized to admit arbitrary intermediate states.

The theory of macro problem solving will be presented in two parts. We will first address the

special case in which states are described by a vector of state variables and the subgoals are to achieve

the goal values of state variables. We will then consider the more general theoiy which admits any

type of state description and arbitrary subgoals. The theory will be presented in the order in which it

was discovered. The rationale for this is that the path of discovery is interesting in itself and is also

most likely to be the "path of least resistance" for the reader.

Given the representation of a problem as a vector of state variables, the behavior of the Macro

Problem Solver can be described as follows. The order of columns in the macro table implies an

ordering of the state variables. The macros in the first column are used to map the first state variable

from whatever value it has in the initial state to its goal value. The macros of the second column map

the second variable to its goal value and leave the first variable equal to its goal value. Similarly, each

61 , .hcr ,.m,,........ of macros are used to map the values of their corresponding state variables to

their goal values from whatever values they have at that stage of the solution process, while leaving all

the previous variables equal to their goal values.
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6.1. What is the Value of Non-Serializable Subgoals?

If we view die valucs Of the state Variables betwcen macro applications, the values of an initial

subsequenc of variables in the solution order will equal their goal values. At eich stage of the

solution, the length of this sequence increases by one. Howe er, if we observe these values in the

middle of a macro application, there is no guarantce that any of the variables will equal their goal

values. If we observe an entire solution sequence ignoring the boundaries between macros, then after

a variable achieves its goal value, in general its \aluc will later change to a new value, and this will

happen a number of' times bet'brc he final goil state is reached. Since a state variable does not

remain at its goal value once it is achieved, what is the purpose of achieving the goal value the First

time and each time thereafter except for the last?7

The relevance of the question becomes clear when we compare it with the corresponding question

for the situation where we have scrializable subgoals. In that case, the goal state is a conjunction of

subgoals and solving a particular subgoal represents progress toward the goal in the sense that the

number of remaining subgoals to be satisfied decreases. However, we cannot make the Irmc claim if

a subgoal is to be violated after it is achieved.

Even if it is subsequently Oio!ated, achieving a non-serializable subgoal may represent progress

because it moves us closer to the goal by the metric of minimum number of moves in the problem

space, which is often the case. lowever, the experiments reported in Chapter 2 show that at least for

the 2x2x2 Rubik's Cube, tie minimum number of moves to the goal state is independent of the

number of solved subgoals. Yet, the 2x2x2 cube is one of the examples for which the Macro Problem

Solver works. Hence, the question of the utility of these subgoals remains to be answered.

6.2. Macro Tables from Random Intermediate Goals

Since the particular subgoals we used to solve the 2x2x2 cube bear no relation to distance from the

final goal, we might ask whether an arbitrary set of subgoals might do just as well. Surprisingly, the

answer turns out to be yes!

Consider the macro table for solving the 2x2x2 Rubik's Cube shown in Table 6-1. Each set of

macros corresponds to a set of partially specified intermediate states (shown in Fable 6-2) generated

as follows: First, a random solution order was generated: (URF ULF ULB URB DLF DRF DRB).

7This question was raised by Allen Newell.
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CURIE POSITION ORIENTATION MACRO

URF DLF 0 F2 U F-

URF DLF 2 F U- F2
URF ORB 0 R2 U F-

URF ORB 1 R2 F2
URF ORB 2 R F
URF DRF 0 F
URF DRF 1 R U F-
URF DRF 2 R F2
URF ULB 0 U- F-
URF ULB 1 U2 F2
URF ULB 2 U R- F2

URF ULF 0 F-
URF ULF 1 U- F2
IJRF ULF 2 F U F-

URF URI3 0 U2 F-
URF URB 1 U F2
URF URB 2 R- F2

URF URF 0 U F-
URF URF 1 F2
URF URF 2 R- F

ULF ORB 0 U R- U R2 F-

ULF ORB 1 F
ULF ORB 2 U R2 U- R F-
IJLF DRF 0 U F U2 F2 R2
ULF DRF I U R2 U R2 F-

ULF DRF 2 R- F-
ULF ULB 0 U2 F R- F2
ULF ULB 1 F U2 R2
ULF ULB 2 U R F-
IJLF ULF 0 F R2 F2
ULF ULF 1 U- R2 F-
ULF ULF 2 U2 R F-

ULF URB 0 U F R- F2
ULF URB 1 U R2 F-
ULF URB 2 R F-
ULF URF 0 F R- F2
ULF URF 1 R2 F-
ULF URF 2 U- R F-

Table 6-1: MN/acro table for the 2x2x2 Rubik's Cubc based on random intermediate states



66 1 .extrnilig M Solve IProblenis by Scai-chi ng o kw %ic ro-Opcr-ators

ULB DLF 0 R- U F- U- F-
ULB DLF I R- F U2 F U
ULB DLF 2 R2 F- R

ULB ULB 0 U- R- U2F U

ULB ULt3 1 F R F- U R-

ULB ULB 2 F2 U2 R F- U

ULB ULF 0 R- U2 F U

ULB ULF 1 R- F- R- F- R

UL13 ULF 2 U- F R2 F- R-

ULB URB 0 U2 R- U2 F U

ULB URB I R U- F- U R2

ULB URB 2 R2 F2 R F

ULB URF 0 U R- U2 F U

ULB URF 1 F2 R- F2 R- F-

ULB URF 2 F R2 F- R-

URB DLF 0 R- U- F2 U2 F- U-

URB DLF 1 R2 U R- U- R F R-

liRB DLF 2 R F- R2 F2 R- U
URB DRF 0 U- F2 R2 U2 F- U2

URB DRF 1 F- R2 U2 F2 R- U2

URB DRF 2 R2 U R- F U- F R-

URI3 ULI3 0 R U- R F- R- F

UB ULB 1 R- U- F2 R U2 F- U-

URB ULB 2 R- F U- F U R-

URB URB 0 R- F R2 F U F- R

URB URB 1 R2 U2 R U2 R2U- R2

'JRB URB 2 R- U- F2 R- U2 F- U-

DLF DLF 0 U- R- F R2 U- F2U2

DLF DLF 1 F- U2 F- U2 R U- F- U-

DLF DLF 2 U- F- U F2 R F- R

DLF DRS 0 R- F R2 U2 F R- U-

DLF ORB 1 U F- R- U R- U2 R F2

DLF ORB 2 R2 U- F R- U- R2 F R U2

DLF URB 0 U2 F U F2 U FU R

DLF URB 1 F U2 F- R U2 R U-

DLF URB 2 R U2 R- U F2 U-R2 U-

DRF DRF 0 U F- U2 R F U2 F U

DRF ORF 1 F- U F2 R- F U- R2 F

DRF DRF 2 U2 R F-HR-U F U- R2F2 U2

OHF URB 0 F- R- F2 H F2 U- R- F U-

DRF URB 1 R- F2 R F2 U2 R U- F2 U

ORF URB 2 F- U2 R- U- R- F2 R- F2

Total number of non-identity macros is 80.

Average case solution length is 32.83 moves.

Table 6-1, concluded
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TARGET VALUES

URF ULF ULB URB DLF DRF ORB

I DLF 1
2 DRF 0 ORB 1
3 ORB 2 ULF 0 URF 0
4 URF 2 DRF 2 ULB 1 ULF 0
5 URF 0 ULF 1 ORB 2 ULB 2 DLF 2
6 URF 0 ULF 0 ULB 0 URB 0 OLF 0 DRF 0 ORB 0

'able 6-2: Randomly selected intermediate states for the 2x2x2 Rubik's Cube

Then, for the firs t intermediate statc, a random position and orientation (1)1 .F, 1) was chosen for the

first cubic (URI:). from the set of legal values. For the second stage, random positions and

orientations were chosen for both the first and second cubies. Similarly, random values are chosen

for the remaining intnerediate states. The final state is the actual goal state of the problem. The only

constraint on this process is that each partially specified state must correspond to at least one legal

state in the problem space. In particular, in this case each value must represent a different cubic from

all the other values at that stage.

The first group of macros in the table map the first cubic (URIF) to position l)l.F and orientation 1,

which is not its goal value, from each possible value it could have in the initial state. The second

group of macros map the second cubie (UI-F) to (l)RB, 1) which again is not its goal value. At the

same time, these macros all map (URF) from (DLF, 1) to (DRF, 0). The macros in the remaining

group behave similarly. Finally, the last group of macros in the zible maps the last intermediate state

to the goal state.

This table illustrates two important generalizations of the Macro Problem Solver. One is that the

iarget values of variables in the intermediate states need not be their goal values. 'he second is that

the target values of a particular variable need not be invariant over successive stages but may change

from stage to stage. The only requirements are that at each stage, the values of all previous variables

in the solution order must be known, and they must correspond to at least one legal state in the

problem space.

There ;s a penalty in learning time for allowing die value of a variable to change from one

intermediate state to another. For the "standard" macro table which uses goal values for the target

values, the entire table can be filled in with one search starting from the goal state. If we allow target

values to be different from the goal values, but still require them to remain constant from one

intermediate state to the next, then we can still fill in the table with a single search starting from the
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state specified by ,he set of tLget values. lhC goal state is then reached by including a single macro at

the end of tie table which maps the target state to the goal state. I lowever, if we allow the target

values to change from one intermediate state to the next, then we will in general need a separate

search for each column of the macro table, starting from the state speci fled by the target values at that

point. On the other hand, since the running time of the learning program is dominated by the depth

of the longest search, this does not increase the order of the running time.

What is the effect of allowing these extra degrees of freedom in the macro tables on the efficiency

of the resulting solutions, in terms of number of primitive moves? In general, constructing a table

from random intermediate states will result in a less efficient strategy, since random subgoals will not

move the problem closer to solution. I Howevcr, in the case of the 2x2x2 Rubik's Cube, the standard

subgoals do not converge oi the goal in terms of number of primitive moves. Hence. the strategy that

corresponds to the macro table built using random intermediate states ('Table 6-1), should be as

efficient, in terms of numbcm ol' primitive movcs, as the stractegy built from the standaid intermediate

states (Table 4-3). In fact, the average case solution length for the random intermediate states is 32.83

moves, while the standard subgoals result in an average case solution length of 27.00 moves. This

discrepancy is due to the fact that with the standard subgoals, at each stage of the solution there is a

small probability that the next subgoal will also be satisfied and hence no macro nced be applied.

However, with intermediate states which change from one stage to the next, a macro must be applied

at each stage. [his feature also shows up in the difference in the number of non-identity macros in

the two tables (75 vs. 80).

On the other hand, by taking advantage of this extra freedom and cleverly selecting target values,

slightly more efficient solutions than those resulting from goal target values can be achieved for some

problems, as will be shown in section 8.1.2.

Viewed in this light, the Macro Problem Solver appears to embody an extremely general method.

We simply randomly generate a set of intermediate states, subject to the constraint that each of the

partially specified intermediate states correspond to a legal state in the problem space. and then fill in

the macro table. However, we haven't yet placed any constraints on the problem in order to apply the

method.

If we restrict our set of subgoals to contain just the main goal, then the Macro Problem Solver in

fact becomes a universal method which amounts to simply precomputing and storing the solution to

every possible problem instance. However, the usefulness of the method depends on the number of
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macros Jcq uired. The reason it is an cffecivc techn1iotne Ior OLr examples is that ;I cry small number

of miacros are required, I,_lative to the si/e of the space. What : .ol)erties of a problem allow a very

efficicnt strategy tor a very large number of problem instances to be expressed with a very small

nulhlbCr of macros?

6.3. Operator Decomposability

When we examine the macro table for the 2x2x2 Rubik's Cube (Table -4-3), we notice that the first

column contains 21 entries, including the identity macro. There is one macro for each possible

combination of position and orientation that the first cubic in the S;olution order could occupy in the

initial state, or one macro for each possible value of the first state variable. Thus, the choice of what

macro to apply first depends only on the value of the first state variable. Another way of looking at

this is that for a given value of the first variable, the same macro will map it to its target value

regardless of the values of the remaining state variables.

In general, this property would not hold for an arbitrary problem. In fact, in the worst case, one

would need a different macro in the first column for each different initial state of the problem. If we

needed a different macro for each initial state for just the first stage of the solution, we may as well

store the macro which gives the complete solution. As mentioned abo\e. this reduces de method to

nothing more than pre-computing the solution to all possible problem instances and storing die

results.

Returning to our example, we notice that in the second column as well, we only need one macro for

each possible value of the second state variable. Again. this is due to the fact that its application is

independent of the values of all succeeding variables in the solution order. Note that the actual

macros themselves are very much dependent on the value of the first state variable. However, this

value is fixed by the pre-determined intermediate states. Similarly, for the remaining columns of die

table, the macros depend only on the previous state variables in the solution order and are

independent of the succeeding variables.

This property can be characterized by examining the definitions of the operators in terms of the

state variables. For Rubik's Cube, each operator will affect some subset of the cubies or state

variables, and leave the remaining state variables unchanged. However, the resulting position and

orientation of each cubic as a result of any twist is solely a function of that cubic's position and

orientation before the twist was applied, and independent of the positions and orientations of the

other cubies. We refer to this property as operator decomposability.
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The lol1lowijog sct ions W i rormal i ' Lis notion anld Sh ow thA operator decom posab ility is a

sufficiint conditionl tr Lhe CXistcnice of a noni-ti\ jal macro table. For simplicity. we restrict the

theor-y to theC case where the target values of the state variables are their1 goal vaIlues. It could easily hc

extended to encompass airbitrary target values.

6.3-1. General Definitions

We begin the fornial trecatirent W~it i-ccise det-iitions or what is meant by a problem, a prolem

instaince, a macro, anid a mnacro table. In general. capital letters Will he USed to denote sets. hold face

Will be uIsed for vectors anid vector Functions, anid normal face Will be used for scalars and scalar

funcetionls.

lDefinition 1: We define a problem P to be a triple (S, 0, g) where:

S is a set of states and each State S E S is a vct~or of state variables (s,.s ... s), where
the si are chosen from a set Of vaIlues V= 1 11 V1, ,.Vh11. Note that in general S C V,

lhe re V is the set of all ,,-cecment. vectors with elements chosen from V.

0 is a set .)C operators \ herc each Operator 0 E 0 is a total function from S to S. We will
write o(s) =t to denote the application of operator o to state s resulting In state t. In the
o% ent that there are preconditions on the operators. then V S E S and 0 E 0 s.t. s does nut
Satkfy- rjie precond itions of op( rator o, we adopt the conventioni that O(S)= S.

g is a particu-lar state called the goal state, represented by the vector (g,,g2 ,. .
Where each g, is called the goal valie of variable i.

iLcr S, be the set of all 1=~aes in which the First i- I state variables equal thiri ial valies
or

s ES1 iff S ES ani d V x, 1< :Sx*i-1, s-Y g 9

*Similarly, let S Ijbe thie subset of Sj in w-hich the il' state variable has value], or

S ES 1 iff s ESi and si,=j

Furthermnore, we restrict the Set of States Ofra problenm. to those that are solvable in the

sense that:

VS E S, ] a mrac ro i s. t. i n(s) = g.

D~efinition 2: A problem instance p is a pair (P, s,,,) of a problem P and a particular
initial state si,,

Defiition 3: A mnacro is a Finite sequence of operators (01.....k) chosen from 0,
where k O is the length of the sequence. We write ni(s)=t to denote the application of
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miacro in to state s. where t =ok(ok- ( (o,(s)) .).If k is tcro. in is (hec identity macro

I SuCh1 that V S E S, I(S) =S.

IDe~nition 4: A macro table is a set of' macros )VII, each denoted by

mi for I < i n ando JE F, 1h1r j r" , dcf1- ned aS follows:

If S,) = 0 then ni is undefined,

Otherwise. i jj -$ 0. then

V SES~j, 11j(S) ESj+ I

Note that ifj= g,. thcn iny 1, the identity mnacro.

We now addrcss the issue of operator dec,)rnposahility, starting with a special case called total

dccornposabdaity. The more general ease of serial dcccnposabiliiy will be covered in tie next section.

6.3.2. Total Decomposability

Ih'tinitioii 5: A function f[is totally decompunable ill there exists a corresponding scalar
fun1ction ffrom V to V suIch that

V SE S. f(S) = f(S1,S2,.  ) (flSj),flS,),.. fS)

Lcmi 6: A\ macro in is totally decomposable if each of the operators in it are totally
decomposable.

Proof: In order to prdve this result, it Suffices tO show that the composition of two

totally decomposable ftinctions is totally decomposable.

Assume that g and h are totally decomposable functions and that f is the composition of
g and h.TFhen

f(S) = 6(l1(S)) = (S1.S2 . S)) = g(h(SA),lhs,)).
(g (is).hs).g(Is))

where , and hi are the scalar functions which correspond to g and h, rcspectiely. Thus. f is

totally decomposable. C3

Decfinitionm 7: A problem P1 is totally decomposable if V o E 0, o is totally decomposable.

The following- theorem is the fundaimental result of this section.

ilicorein 8: If a problem is totally decomposable, then there exists a macro table for the
problem.

Proof: To prove the existence of a macro table NI. it must be shown that for each i and],
ijis either undefined or exists according to definition 4. Hence, V i for 1 5 i:S n

and j E V, either:

Case 1: Sj= 0 in which case m.is undefined, or
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Case 2: s7- 0 inI which case ] s ES1. Since all states are solvable by definition, th,:rc

exists a macro in s.t. i(s) = g. Recall that

VS E S.,=g, for O :S.i-I and si=j

Also, recall that g= (gt. .... g,). Since S S , il(s) =g, and in is tttall, decomposablc,

then

m(sY)=-m(gY)= g for 0_<3'<i- Lind m(si)=m(J)=gi

where in is die scalar function corresponding to in. l'his is true independent of the values

of s,, through sn. "herefore,

VsE Sy, nm(s.)=gy for Oy< i

lhus,

V ESij, mn(s)E Si+

Hence, ni is in0. 0

All of the operators of Rubik's Cube are totally decomposable. As a result, all macros for the cube

are totally decomposable as well. This explains why each column of the macro table need only have

enough entries for the different possible valIes of the corresponding state variable, and hence why

the total nuimbcr of macros is smn;:l relative to the size of the space.

6.3.3. Serial Decomposability

lhe small number of macros in the macro table is due to the fact that the effect of the macros is

independent of the succeeding variables in the solution order. However, independence of the

preceding variables in the soiution order is not necessary. since these values are known when the

macros are generated. This suggests that a weaker form of operator decomposability would still result

in the same number of macros. This is the case with de Eight Puzzle, the Think-a-Dot problem, and

the Towers of Hanoi problem.

In the Eight Puzle. die state variables correspond to the different tiles, including the blank. Each

of the four operators (Up, Down. Left, and Right) affect exactly two state variables, the tile they

move and the blank. While the effects on each of these two tiles are decomposable, the preconditions

of the operators are not. Note that while there ,re no preconditions on any operators for Rubik's

Cube, i.e. all operators are always applicable, the Eight Puzzle operators must satisfy the precondition

that the blank bc adjacent to the tile to be moved and in the direction it is to be moved. Thus,

whether or not an operator is applicable to a particular tile variable depends on whether the blank
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variable has the correct aluc. In order for an operator to be totally decomposable, the decomposition

must hold fi.r both the preconditions and the postcoiditions of the operator.

I low do wve cope with operators th.t arc. not totally decomposahle? One possibility is that for those

columns of the macro table preceding the one corresponding to the blank tile, we include a separate

macro for each possible combination of positions for the tile to be moved and thc blank. For those

stages following the positioning of the blank, we need only enough macros for the different positions

of the tile to be positioned next. 'lhe disadvantage of this approach is that the number of macros in

the columns that precede the blank in the solution order increases from order n to order /
2, where n

is the number of tiles.

The obvious solution to this problem is to pick the blank tile to be first in the solution order. Then,

in all succeeding stages the position of the blank will be known and hence the dependence on this

variable will not increase the number of macros. The net result of this weaker form of operator

decomposability is that it places a constraint on the possible solution orders that will result in a

minimum number of macros. The constraint is that the state variables must be ordered such that 1) at

each stage of the solution, the preconditions of each operator depend only on the current and

preceding state variables in the solution order, and 2) the effect of each operator on each state

variable depends only on that variable and preceding state variables in the solution order. If such an

ordering exists, we say that the operators exhibit serial decomposabiliy. In the case of the Fight

Puzzle. the constraint is simply that the blank must occur first in the solution order.

The following section is a formal treatment of serial decomposability. The presentation exactly

parallels that of total decomposability.

Dcfinition 9: A solution order is a permutation ?r of the state variables of a state vector.

Since we will never refer to more than one solution order at a time, without loss of
generality we will continue to refer to a state as a vector of state variables (sls 2 .. s)

with the assumption that the order of the subscripi. tu, responds to the order of die state

variables in the solution order under consideration.

Definition 10: A function f is seriaily decomposable with respect to a particular solution

order rr iff there exists a set of vector functions fi for 1 < i<5 n, where each f, is a function
from \' to V, and Vi is the set of i-ary vectors with components chosen from V, which
satisfy the following condition:

V SE S, f(s) = f(s1 ,s2. s2 ) = (fj(sj),' 2(sI ,sj. f,(s,s2 . s))

Lema II: A macro in is serially decomposable with respect to a solution order 7r if

each of the operators in it are serially decomposable with respect to 'f.

Proof: In order to prove this result, it suffices to show that the composition of two

serially decomposable functions with respect to a solution order , is also serially

decomposable with respect to 1r.
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Assu me that g and Ii are wcrially decomipoJalle rinction iS with respeCt to a Solution
order 7, and that f is the composition otfg and i. lhcn

n..................... 5......))))=th(s,),(s, .).... h,(s ,.

gih,(s)). ,4h(s), i,(ss,)) ............... . ..... g,,(h(s), (sls,) . h (sis ..... SO))

where gi and hi are the i-ary vector functions which correspond to g and h. respectively.
Hence f is serially decomposable with rcspect to 'r. El

I)einition 12: \ problem P is serially decomposable if there exists a solution order 77

such that V o E 0, o is serially decomposable with respect to 7T.

The following theorem subsumes the case of total decomposability and is the main theoretical

result of this thesis.

Theoren 13: If a problem is serially decomposable, then there exists a macro table for

the problem.

Proof: To prove the existence of a macro table N1, it must be shown that for each i and.,
nij is either Undefined or exists according to definition 4. Hence, V i,j for 1 i: n

and j E V, either:

Case 0: Si= 0 in which case ni is undefined, or

Case 2: S 3- 0 in which case _1 S E Sij. Since all states are solvable by definition, there
exists a macro in s.t. rn(s) = g. Recall that

V SESj, sy,=g,, for Oy5i-1. and si= j

Also, recall that g=(g1 ,g2 . gn). Since sESij, mn(s)=g, and m is serially decomposable,
then

ny(S,S ..... s.)=my(g,g2 ..... g,)=gy for 0<ySi-1
and nij(sj,s ..... ,si,)=mi(g,g2 .... gj-J) = gi

where in,. and ini are the y-ary and i-ary functions, respectively, corresponding to I. This

is true independent of the values of si+ through s. Therefore,

VsESj, i.(sps . s.. sy)= gy for O< y< i

Thus,

VsES, hi(s) E S+ 1

Hence, m is my. 0

Note that total decomposability is merely a special case of serial decomposability. It is introduced

prior to serial decomposability for pedagogical reasons. In the remainder of this thesis, the term serial

decomposability will be used in formal contexts to refer to the general case which includes total

decomposability. The term operator decomposability will always refer to the general case.



'The Ilheory of Macro Problem Solving 75

The l'hink-a-I)ot problem exhibits a much richer form of serial dccomposability that results in a

coniplex constraint on the solution order. Roughly, the effect of an opcrator on a particular gate can

depend on the values of the gates ;ibove it. This suggests that the solution order must include all the

gates at one horizontal level before any of the gates at the next lower level. More exactly, the effect of

an operator on a particular gate depends only on the values of all of its "ancestors", or those gatc.

from which there exists a directed path to the given gate. Thus, the constraint on the solution order is

that the ancestors, of any gate must occur prior to that gate in the order. The serial decomposability

structure of this problem is directly exhibited by the directed graph structure of the machine. Note

that the serial decomposability of this problem is based on the effects of the operators and not on

their preconditions. since there are no preconditions on the l'hink-a-I)ot operators.

An extreme case of serial decomposability occurs in the Towers of Hanoi problem. Recall that the

variables correspond to the disks and the values correspond to the pegs. There are six operators, one

for each possible ordered pair of source peg and destination peg. The applicability of each of the

operators to each of the disks depends upon the positions of all the smaller disks. In particular, no

smaller disk may be on the source or destination peg of the disk to be moved. This totally constrains

the solution order to be from smallcst disk to largest disk. We describe this as a boundary case since it

exhibits the maximum amount of dependence possible without increasing the number of macros.

Operator decomposability in a problem is not only a function of the problem, but depends on the

particular formulation of the problem in terms of state variables as well. For example, under the dual

representation of the Eight Puzzle, where state variables correspond to positions and values

correspond to tiles, the operators are not decomposable. The reason is that there is no ordering to the

positions such the effect of each of the operators on each of the positions can be expressed as a

function of only the previous positions in the order.

We conclude this section with the result that a macro table for a problem contains a solution to

every problem instance.

Definition 14: Given a macro table M, a macro sequence in, is a sequence of macros
from the table of the form

ms=(mIjl,m 2h2.... m nd)

Theorem 15: Given a problem P and a corresponding macro table M,

VsES, "m. in Ms.t. ms(s)=g

Proof: By the definition of a macro table,

Vi s' i5 n, VsESi, ] mij s.t. mi,(s)=sI+

Since
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VSES, .- S and S, 1=.g},

v scs, I ils z-(I 11 III 2J2 .. nj) s.t. m..(s)=g. 0]

6.4. The General Theory of Macro Problem Solving

In tile above discusSion we restricted our attention to problems whose states are described as

vectors of state variables, and for which the subgoals are to achieve goal values for the individual state

variables. We now consider a generalization of the theory which is independent of any particular

state description and which encompa5SCS arbitrary subgoals. This generalization is necessary because

there exist problems, such as the F:ool's Disk, for which good subgoals are known, but the subgoals

are more complex than simply achieving values for particular state variables. In fact, the most

efficient strategy known for Rubik's Cube is based on such a set of complex subgoals. This general

theory is built upon the theory of the General Problem Solver developed by Newell, Shaw, and

Simon.

In the classical GPS theory, a problem space consists of a set of states, with no further structure

imposed on the state descriptions. In addition, there are a set of differences or subgoals. If we restrict

our attention to the case of a single set of goal states, then each difference can be associated with the

set of states for which the corresponding subgoal is satisfied. Given an ordering to the subgoal sets, a

hierarchical structure of nested sets can be defined where each set is the intersection of all the

previous subgoals. The largest set in this structure is the set of initial states and the smallest is the set

of goal states. An additional restriction placed on problems to be solved by GPS is that it must be

possible to start anywhere in the problem space and proceed toward the goal set by moving into

smaller and smaller containing sets without ever having to move into a larger set from a smaller set.

We adopt this structure with one exception: we do not require the current state to always remain in

the current subgoal set or proceed into the next set. However, if we only observe the macro problem

solving process between macro applications, this restriction is observed. This is a consequence of the

fact ,.hat our method can be viewed as a generalization of GPS to include macros.

What additional structure do we have to place on this model to allow macro problem solving to be

effective? From the initial state we must be able to apply one of a limited number of macros in order

to achieve the first subgoal, or to move into the first subgoal set. Hence, the initial set, which is the

entire problem space, must be partitionable into a small number of subsets or blocks, such hat for

any state within a particular block, the single macro corresponding to that block can be applied to
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that state w ith Lhe result that the statc will be mapped into the next subgoal set. lhe number of hlocks

ot'the partition equals the number of macros in the First colum in of the iUcro) table. Similarly, the set

corresponding to the first subgoal mu:t be pa rtitionablC into a small number Of bl)ocks so that a single

macro will map any member of the same block into the next subgoal sWt. There must exist such a

partition for each subset of the problem space corresponding to a particular subgoal.

Note that the only restriction placed on these paritions is that the number of blocks they partition

a set into be small, relative to dhe sizc of the set. In particular, there is no requirement that the blocks

be of the same site or structure. Furthermore, partitions of differcnt subsets are not constrained to be

related in any way, structurally or otherwise.

The restricted form of our theory in terms of vectors of state variables is a special case of this more

gcneral formulation. The overall decomposition of the problem space into sets of subgoals is based on

the number of state variables whose values are known. The largest set is the entire space. The next

subgoal set contains all those states in which the first variable in the solution order is equal to tie

target value at that stage. The next subset consists of those statrcs for which the first two variables are

equal to their respective target values at the next stage, and similarly for the rest. The partition of

each subset is based on the different possible values of the next state variable at that stage. For

example, at the first stage, the entire space is partitioned into blocks such that for all the states in the

same block, the First state variable has the same value. The number of blocks equals the number of

possible values of the variable. Similarly, the partition of the next subset is based on the values of the

second state variable in the solution order, etc.

The advantage of the general theory over this special case is twofold: First, it is not constrained by

any particular structural description of a state in the problem space. Secondly, it allows the macro

technique to be used in combination with arbitrarily complex differences, such as those developed by

Goldstein's program and related techniques. In general, such differences or subgoals may be

expressed in terms of complicated functions of the state components.

6.5. Conclusions

We have presented a theory of the Macro Problem Solver that explains why the technique is

effective for the example problems and characterizes the range of problems for which it is useful. A

necessary and sufficient condition for the success of the method is that the primitive operators of the

problem space be decomposable. If the operators are totally decomposable, then any solution order

results in a small number of macros, while serially decomposable operators constrain the solution
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orders that result in a small ntnber of macros. In addition. M important ca erilization of the

Method is based on tie two observations that the target alteCs off the state variables need not be their

goal values, amd diat they need not reniiin constant Froi one stige to the next. Finally, a gcneral

theory of macro problem solking is pl-cscnted that applies to arbitrary state descriptions and

arbitrarily complex subgoals.
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Chapter 7

Performance Analysis

We have seen sevcral example problems for which thcl Macro Problem Solver is effective,

techniques for learning the macros have been presented, and a theory of why the method works has

been developed. We now turn our attention to an analysis of the per ormance of the method. The

goal of this exploration is to be able to characterize quantitatively how well macro problem solving

works.

7.1. Summary of Methodology and Results

There are three obvious criteria for gauging the performance of this method: the number of

macros riqtiired to fill the macro table, the amount of time necessary to learn the macros, and the

number of primitive moves required to solve an instance of the problem. We will analyze each of

these factors in turn.

Since the values of these quantities will depend on the problem, they must be expressed in terms of

some problem dependent-parameter. In traditional computational complexity theory, this parameter

is often the "size" of the problem, which roughly corresponds to the number of primitive components

of the problem. In our case, the number of state variables would correspond to the size of the

problem.

Our analysis, however, will not be based on the size of the problem but rather on different

measures of the "difficulty" of the problem. For example, the number of primitive moves required

for a solution will be expressed as a function of the optimal number of moves. There are two reasons

for this approach. One is that the analysis is tractable in this model and produces interesting results.

This is due to the fact that the performance of our method is more intimately related to the difficulty

of the problem than to the size of the problem. The second reason for adopting this approach is that it

allows realistic comparisons with other problem solving strategies for the same class of problems, and

with optimal solutions.
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Three main results will be presented:

" The number of macros is equal to the suM of the number of values for each of the state
variables, as compared with the number of states in the space which is tile produhct of the

number of values for each of the state variables.

" The total learning tine is of the same order as the time required to find a single solution

using conventional search techniques.

" The length of the solution is no greater than the optimal solution length times the number
ot state vdriailcs. In addition, an aieroge case analysis of solution length is presented that
correlates well with experimentally ohservcd values for the 2x2x2 Rubik's Cube.
Furthermore, for the Fight Puzzle and the 3x3x3 Rubik's Cube. the solution lengths are
approximately equal to or less than those of human strategies.

7.2. Number of Macros

The usefulness of the Macro Problem Solver is based on the fact that an efficient strategy for a very

large numbcr of problem instances can be implemented with a xer, small number of macros. Hence,

the actual number of macros required for a given micro table is of ob\ ious interest. [his is also a

m,,'agurC of the amount of knowledge required by the strategy, or .le amount of space that must be

used by the problem solving program.

7.2.1. Number of Macros Related to Size of Space

Wc begin vith sonic preliminary definitions and lemmas.

Definition 1: An operator o is applicable to a state s iff o(s) $(= s.

\ macro in = (0,02 .... Ok) is applicable to a state s iff

V i I _s i< k. o,(o,( ... (01(s)) ... )) : oj,( ... (of(s))...)

Definition 2: A function f is infoniation preserving iff

V s,t E S s.t. f is applicable to s and t, f(s) = f(t) implies s = t.

Lemma 3: A macro is information preserving if each of the operators in it are

information preserving.

Proof: In order to prove this result, it suffices to show that the composition of two
information preserving functions is information preserving.

Assume that g and h are information preserving functions and let gob be the
composition of g with h. By definition. VStES s.t. gob is applicable to s and t, h is
applicable to s and t, and g is appiicable to h(s) and h(t). Assume that

g(h(s)) = g(h(t))

Since g is information preserving and is applicable to h(s) and h(t),
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h(s)-- li1()

Similarly, since 1 is information preserving and is applicable to s and t,

s=t

Thus,

Vs,t ES, s.t. goh is applicablc to s and t. g(h(s))= g(h(t)) implies s=t

TherefOre, -oi is information prescrving. 0

l)efimition 4: A problem P is information preserving iff VoE . o is information

preserving.

Lemma 5: If f is a total information preserving function from a domain I) to a range R.
and l)q Rn = 0, then I RI 1)1 , where I RI is the cardinality of the set R.

Proof: Assume 1 R I < 11) . Since every element of I) must be mapped to some element
of R, then by the pigeon-hole principle,

-x,yE 1), x = y s.t. f(x) = l(y)

Furithermore, since I)n R= 0,

x,y ED s.t. f(x) xA f(y)=yAf(x)= f(y)Ax-TC-y

Rut this contradicts the assumption that f is information preserving. Hence,

I t>IDI. 0

Definition 6; A problem P is connected iff

V s,t E S, -3 a macro ni s.t. m(s) = t

Note that connectedness is a stronger property than solvability since it requires a path between

every pair of states as opposed to just a path from every state to the goal. The reader can easily verify

that all of our example problems are information preserving and connected. The following theorem is

the main result of this section.

Theorem 7: Given a problem P that is connected, serially decomposable, and
information preserving, then for all macro tables for P.

n

ISi 1I Ml where MI,={mijSij# }=0
1=1

Proof: The proof is by induction on n, the number of state variables in the problem.

Basis Step: Assume n= 1. Then IS I is the number of different possible values for the
single state variable. For each of these values, there exists a unique macro to map it to the
goal value, including the identity macro, and there are no other macros in the macro table.
Hence,

n

ISI = M1I= II IMil for n=1
1=1
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Intuuion SIe1): ASsurfle that the theorem is true for all problems with up to / staIc

\'ariables and consider problems with It+L state variabICs. Since the Sji sets are mutually

exclusive and collectively exhaustive,

Since 11 is connected,

VjAE V '.t. S1j: ,o ASk7, 0, JSEJ, tESlk, and IIEO*

s.t. m(s)=t

where 0' is the set of all finite sequences of operators from 0. Since P is serially

decoimposable,

VsES j, ,n(s)ESIk

Ifj= k. then

ISlkI = ISjl

Otherwisc. ifj-$ k, then

and since ni is information preserving,

Sincej and k are completely symmetric in the above argument, we can interchange them

to yield

ISjI > 5 ikSI and hence SI = ISikI

Therefore,

Vj,k s.t. S,J- 0 ASk- 0, jS40 = IS = ISig,

Since all of the S,1 sets are the same size,

SISlijl =X. I siI

where x is tie number of values ofj for hich Si =j(= 0. But that is just I Vj . Therefore,

ISI = ., E IS 1 SW I'=- IMI g,

However, Sg, is the set of states for which the first state variable equals its goal value

After mapping the first state variable to its goal value, the problem that remains is

isomorphic to a problem with one less state variable. Hence, by the inductive assumption,
n

IS 19 I = 171 IM I
i=2

Thus,
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-Si=INI H I-N I,1=I -I .Ni 0
i=2 i- I

In other words, tile total number of states in tile problem space is equal to the produc! of the

number of inacros in each column. This includes the identity macro in each column in the row

corresponding to the goal value of that variable. By comparison. the total number of macros is only

the suM of the number of macros in each column of the macro table. Thus, in general, the number of

macros will equal only a small fraction of the total number of states.

7.2.2. Minimizing the Number of Macros

What is the theoretical minimum number of macros required to solve a problem? Note that each

decomposition of the state into a set of state variables corresponds to a factoring of the total number

of states into factors which are the numbers of possible values for each variable, given that the values

of the previous variables in the solution order have been determined. The number of macros is the

sum of these factors. Hence we can restate the problem of finding the minimum number of macros as

the 'ollov, ing problem: given a fixed value, how can it be factored so that the sum of the factors is a

minimum?

Definition 8: A fiwtorization F of an integer n > 2 is a sequence of integers
k

......... f) s.t. V; 1 _<i<_k, f,_>2 and -fIf=n.
i=1

)efinition 9: Given an integer n 2. a minimal sum faclorizalion H = (hIh 2 .... h b) is a
factori/.ation of 1 such that for all factorizations F = (t,f2 .... fk) of i,

j ,k

i=1 i=1

Lemma 10:

Vx>2,y>_2, xy> ,c+y

Proof: Since x > 2 and y_> 2,

-a>0 s.t. x=2+a and ]b>o s.t. y=2-±b

xy=(2+a)(2+ b)=4± 2a+ 2b+ab

x+y=(2+a)+(2+b)=4+a+b

xy-(x+y)=a+ b+ab

Since a> 0 and b_ 0,
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a+ b+ abzO

xY-(x + y) >. O

xy,>x+y v1

'i'heorent I1: The printc factorization of a number is a minimal sLIm tctorizarion.

Proof: All factorizations of a number can be gcnerated by multiplyiNg pairs of" n',-rbers

starting from the prime factorization. Ilowever. by the above lemma, no such

multiplication an decrease the total sLIm. Ience. the prime factorization must be a

minimal sum factorization.

Unfortunately, while this achieves the theoretical minimum, there is no guarantee that a problem

can be dcconposed to this extent while still preserving operator decomposability. The above result

does imply, however, that whenever a state variable can be divided into two or more variables

without violating operator decomposability, the result will be a reduction in the total number of

macros (except for a variable with four values, which results in an equal number of macros). For

example, consider the 2x2x2 Rubik's Cube macro table in Table 4-3. Each state variable encodes both

the position and orientation of a particular cubic. However, the position and orientation information

for each cubic could be represented by two separate variables, provided that the position variable

precedes the orientation variable in the solution order for each cubic. This is because the effect of a

macro on the orientation of a cubic depends on the position of that cubic. In other words, while the

original formulation of the problem is totally decomposable, separating position and orientation into

two separate variables makes the problem only serially decomposable.

The resulting macro table is shown in Table 7-1. In this strategy, the position and orientation of

each cubic are satisfied in two separate stages. Note that while the original macro table contains 75

non-identity macros, by separating position and orientation into distinct variables, the number of

non-identity macros is reduced to 33.

7.3. Learning Time

In addition to the number of macros required to fill the macro table, the amount of time required

to learn the macros is an important performance parameter of the macro problem solving technique.

To address this issue, we assume that we have the computational resources to search to a sufficient

depth to find all the macros and hence the macro composition technique is not required. We also will

assume that each primitive operator has a primitive inverse. Recall that all the macros are acquired
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CURIE POSITION ORIENTATION MACRO

DLF ORB R2 F2

DLF DRF F

DLF ULB U- F-

DLF ULF F-

DLF URB U2 F-

DLF URF F2

OLF 1 F U- F2

DLF 2 F 2 U F-

ORB DRF R

ORB ULB U2 R2

ORB ULF U- R2

ORB URB R

DRB URF R2

ORB 1 R2 LI- R

ORB 2 R- U R2

DRF ULB -R U2 R-

ORF ULF R U- R-

ORF LURB F- U F

DRF URF R U R-

ORF 1 R F R2 F- U R-

ORF 2 R U- F R2 F- R-

ULB ULF U

ULB URB U-

ULB URF U2

ULB 1 U- R2U2 R-U2 R2

ULB 2 R2 U2 R U2 R2 U

ULF URB F U R U- R-F- U-

ULF URF F U F- U- R-F- R

ULF 1 F R- F-U- R-U R

ULF 2 R- U- R U F R F-

URB URF U2 F2 U-F-U F2 U-R U- R-

URB 1 R U2F2 R- F-U F-U R- U

URB 2 U- R U- F U- F R F2 U2 R-

Total number of non-identity macros is 33.

Average case solution length is 38.60 moves.

Table 7-1: Macro tablc for 2x2x2 RUbik's Cube separating position and orientation
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during a single search of the problein space staring it tile goal mLde. TIus, tlIC leain ilg time depends

primarily ol the bralching factor of the space and thC depth to whilh the search miut go. I he

eXCcutioin of the learning program is interleaved with that of the problem solcr so that Ohe learning

program only runs when a new macro is requiried. [i's ensulres that the leaining proglalll will only

search to a depth necessary to find all macros.

We bcgin with a set of defintions aimed at capturing the depth of search required to find all

macros.

Definition 12: The distat'e between two states as the shortest length macro that maps

one state to another, or

Vs,t ES s.t. -1in¢O E 'SA. mi(s)= t. d(s,t)= NIINI(inl)

ni(s) = I

where /(it) is the length of macro m which is the number of primitive operators in in.

Definition 13: [he dianiL'wr of a problem 11 is the maximum distance between any pair

of connected states, or

MX d(s,t)
SA E S

Definition 14: The radius ofa problem 11 with respect to the goal state g is the maxirnuni
distance to the goal state or

Dp= MAX d(s,g)
S ES

For most problems, including all of our examples, the radius of the problem for all goal states will

equal the diameter. However, the radius for some goal states could be less than the problem diameter

for somc problems.

Definition 15: A subgoal is a set of states. A given state is said to satisfy a subgoal iff it is
an element of the set. The particular subgoals we are concerned with here are the sets

Si for 1:_i5n+I

Recall that

S1=S and S,+ 1={g}

Definition 16: Given two subgoals S, and S,, the subgoal distance is the maximum

distance from any state in S1 to the closest state in S2, or

D(S,.S 2)= MAX MINd(s,t)
SES I tES 2

Definition 17: Given a sequence of subgoals (SIS 2 ... SnSnI,), the maximuln

subgoal distance Ds is

Ds= MAX D(SiSi+ 1)
15i:n

Given a set of subgoals, the maximum subgoal distance is a better measure of the "difficulty" of a
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problemn than the problem radius. In general. /). will bC less than Dp. A useful analogy here is that of

crossing a stream on stepping stones. The difficulty of the probhrn is related to the maximum

distance betwcen stepping stones and not the width of ic river.

We now formally define the inverse of an operator and the inversc of a macro.

Definition 18: The inverse of a function f is a function f- s.t.

Vs ES s.t. f is applicable to s. o-(o(s)) = s

l.emma 19: For any macro ni = (o0 ...... ), the macro ,n - =(Ok-ok-1.....- is

the inverse of In.

Proof: Instead of providing the details of a formal inductive proof, we will simply show

that g-of- is tie inverse of fog. By the definition of f-I ,

VSES s.t. f is applicable to s, f'(f(s))=s

substituting g(s) for s,

V SE S s.t. f is applicable to g(s), f- 1(f(g(s))) = g(s)

applying g-1 to both sides,

VS E S s.t. f is applicable to g(s), g-(F'!(f(g(s))))= g-(g(s))

By the definition of g- ' ,

V s E S s.t. f is applicable to g(s) and g is applicable to s,

9- 1 (f-'(fg(s)))) = S

Since the applicability of g to s and f to g(s) implies that fog is applicable to s, g-of-' is

the inverse of fog. 0

We now turn our attention to the branching factor of a problen.. -pace.

Definition 20: Given a state S E S, we define the branching factor b(s) as

Vs ES, b(s)= I{t s.t. tESAt#sA -oEO s.t. o(s)=t}j

Definition 21: Given a problem in which each operator has an inverse, the mnaximun

branching factor for a problem P is defined as

Bm='MAX lb(s)-1

sES

The one is subtracted to exclude the immediate ancestor of a given state in the branching

factor.

Definition 22: iven n problem in which ca,'h ,......~r is an inverse, we define the

average branching/actor as
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,= Z (b(s)- l)/ISI
SES

In other words, the average branching factor of a scarch space is the average nurnbei of states that

can be ,'nched by the application of a primitive operator from any given state in the spacC, Cxcluding

the given state and its immediate ancestor. The branching factor of a space can usually be

determined by examining the set of operators. [or example, if there are no preconditions on the

operators, as in Rubik's Cube, then tile branching factor is approxititatcly the numbcr of primitive

operators.

If there are preconditions, thcn we compute a weighted average of the number of operators

applicable for each set of preconditions, weighted by the probability of that set of conditions

occurring. For example, consider the Fight Puzilc. If the blank is in the center position, there are

rour applicable operators, one of which must be the inverse of the last operator applied. If the blank

is in a corner, there are two operators with one being the inverse of the last operator. Finally, if the

blank is in the middle of a side, three operators are applicable, one of which is the inverse of the last

operator. Ignoring the inverse of the last operator, and assuming that every position of the blank is

equally likely, te average branching factor of the space after the first move is

1/9.3+4/9-1+4/9-2= 15/9 or 1.67.

We continue our analysis with the defintion of an optimal macro table.

)efinition 23: An optinal macro lable for a problem P is a complete macro table M in
wA hich eachi macro is the shortest possible macro that could occupy that slot in the table.

Formally,

VmijEM, mEO*, if VsESij, m(s)ESi+j, then 1(m)_>/(m)

In order to simplify the complexity analysis of the learning task, we will analyze the tree-search

bi-dircctional search instead of the hashing scheme. While it is easier to analyze and its complexity is

of the same order as the hashing algorithm, the constant factors of this algorithm are larger and hence

it is less efficient. We repeat the statement of the algorithm below.

A breadth-first search of the problem space is performed starting fron the goal state. As each state

is generated, it is stored in a search tree where each level of the tree corresponds to a different state

variable and different nodes at the same level correspond to different possible values for that state

'ar, ,,bC. he ordering of levels of the tree from top to bottom corresponds to the solution order of

the state variables From first to )?st. This, each nod(- ,_." the tree corresponds to an assignment of

values to an initial subsequence of state variables in the solution order.
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A state is inserted in tile tree by filcring it down from the root node to the last existing node which

corresponds to a previously generated state. A new node is created at the next level of the tree and the

macro which generated the new state is stored at the new node. Since the states are generated

breadth-First, this ensures that with each existing node is stored a shortest macro which maps the goal

state to the initial subscqulCcc of values corresponding to the node.

When a new state reaches the last previously existing node while being inserted in the tree,

composite macro is created as follows. If i is the level in the tree, a is the existing macro, and 1 is the

new macro, then the macros aoh - ' and boa - ' are created. Since tile states that result from applying a

and h to the goal state match in the first i- 1 state variables, both thcse composite macros arc

guaranteed to leave the first i- 1 variables of the goal state invariant. To determine what value of the

il state variable would be mapped to the goal value, we apply the inverse of each of the these macros,

which is the other member of the pair, to the goal state and note the resulting value of the il' sutte

variable. If the corresponding entry of the macro table is empty, it is filled with the new macro.

Otherwise, the new macro is discarded.

The following theorem is the main result of this section.

'hcorem 24: Given a serially decomposable problem P for which each primitive
opcrator has an inverse primitive operator, an optimal macro table i for. P can be
generated in time O(nDslh,,1Ds/2), where n is the number of state variables, Bm is the
maximum branching factor of the space, and Ds is the maximum subgoal distance for the
solution order embodied'in the macro table N1.

Proof: For I - i< n, the optimal macro for mig is the identity macro. Optimal macros
which are only one move long can also be treated as special cases since there are at most

BM of them. For all other optimal macros my where j7= g, we can divide the sequence of
operators into two parts and label them a and b. Sinceaob=mU

Vx 1 <x_ i-1, axobh(gl,g2.... gx)=gx and aob,(g1 ,g.....gj-,j)=gj

Thus,

13V YE V, v=(v,v 2 . v) s.t. Vx 1 <x:5i-1,

bx (g,g 2,....gx)=vx and ax (vj,v2 .... v)=gx and

bh(g,g 2. ... g_,j)=v 1 and ai(v , v2. ... v)=gi

Since mi is an optimal macro, each operator must change each state it is applied to, or else
that operator could be removed from the macro to create a shorter macro with the same
effect. This together with the fact that each operator has an inverse implies that each

subsequence of m .has an inverse. In particular,
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-a- O E0S t. Vx lX 155i, ax-(91.92,...,0 VX

Thus,

V x 1 <_x < i- 1, 1X(g, g... g)= Vx=' (g,g 2 .... 91)

Thcrefore. each optimal macro rn can be decomposed into two parts which, when applied
to the goal suitc, generate states which match in their first i- I componcnts.

[:ullowing he ab,,c Acgumcnt in reverse order shows that the converse is also true:
Given two macros h and a-I which when applied to the goal state g .,eratc states which
match in the first i- I components. then aol) leaves the first i- I components of the goal
statc invariant. If the rcsulting value of the ilh state variable is) when the macro is applied
to the goal state, thcn the inverse macro will map j to gi. Since our problem is serially
decomposable,

VmEO", if ]sESij s.t. In(s)Si+1, then VSSij, m(s)ESi+ l

Hence, m = mij.

Dividing a macro as close to in half as possible minimizes the length of the longest part.
Thus. a scarch to depth [D/21 suffices to find all macros up to length D. Since the

subgoal distance D(S,S 2) is the maximum length macro required to map anj, clement of
S to some element of S2. and the maximum subgoal distance. D,, is the maximum of
these values for the sequence of subgoals in ih, .;olution order, 1) is equal to the longest
macro in an optimal macro table. Thus, the search must proceed to depth [D,/21. Since
8, is the maximum branching factor for any node except the root node, the total number
of nodes generated in the breadth-first search is O(BM Ds/2), since the branching f'actor of
the root node and the extra .5 generated by the ceiling function can buth be absorbed in
the constant coefficient.

Generating each state requires an operator to be applied which we assume requires
0(n) operations. Inserting a state into the search tree also requires 0(n) operations since
there are it levels to the tree. Creating the composite macros requires O(nDs) operations
since D./2 operators must be applied to compute the effect of the inverse of the macros
on the goal state to determine the correct row for the macros.

Thus, the total amount of time to generate an optimal macro table is

0(nDB,Ds/2) Q3

Note that in practice, the maximum branching factor Bm can usually be replaced by te average

branching factor B., The necessary condition is that after a short initial search, the expected

branching factor of a state be equal to the average branching factor.

How does this compare with the the running time of a standard problem solving program trying to

solve a particular instance of the problem? We assume the problem solver uses the same set of
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subgoals with the same ordering and can perfonm bi-directional search as well, but has no additional

knowledge about the problem. In other words, the problen solving program is given the same

information about the problem as the learning program. Using an ordinary search with subgoals, the

problcm solver performs a hi-directional search between thc initial state and the first subgoal, then

performs another bi-directional search between the first subgoal and the second sUbgoal, and

continues similarly until the final goal is reached. The running time of this algorithm is dominated by

the depth of the longest search, which is . I-ence. the total running time is O(nDmDVls/"2). The

learning program requires only a single search to depth Ds . ThIs. the runtime of the learning

program which learns an efficient strategy tbr solving all instances of" the l)roblem is of the same order

as that of a standard problem solving program, using the same knowledge, that solves just one

problem instance!

7.4. Solution Length

So far, we have considered the amount of knowledge required to solve our example problems and

the amount of time necessary to acquire that knowledge. We now turn our attention to the quality of

the resulting solutions. In particular, we will analyze the lengths of the solutions generated by dhe

macro problem solver in terms of the number of primitive moves. We will first consider the worst-

case solution length, then the average case based on a given macro table, and finally the expected

solution length independent of any particular macro table. In addition, typical solution lengths

generated by human problem solvers will be considered.

For problems such as Rubik's Cube and the Eight Puzzle, the problem radius, Dp, is only known

for versions of the problem small enough to allow exhaustive search of the entire state space. Thus,

optimal solution lengths have been determined experimentally for the 2x2x2 Rubik's Cube

(11 moves) and the Eight Puzzle (30 moves [Schofield 67]) but are not known for die 3x3x3 cube or

the Fifteen Puzzle. It follows that all known algorithms for these problems, other than exhaustive

search, may yield suboptimal solution paths. A lower bound on the problem radius is the depth in

the search tree, starting from the goal node and using the aver ,ge branching factor, at which the

number of nodes first exceeds the nmber of states in the problem space.

We' define solution length as follows.

Definition 25: Given a macro sequence m., we define the solution length as the total
number of primitive operators, or

Vms in M, 1(m)= l(mij,)
i=w

where/1(m) is the length of macro m.
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7.4.1. Worst Case Results

The goal of worst-case analysis is to determine thle maximunL solution length that could be

generated to solvc some problem instance.

Theorem 26: '1 he worst-casc solution length is equal to thc sum of die subgoal distances
for the given solution order, or

n
lN XI(ms)= D D(S i, S i+ 1)MAXIrn)

SES

Proof:
n

MAX /('Ils)= Z )IAX l(nlj)

SES i= n ij

Ilowever, by the definition of subgoal distance,

V i I < i_< n, ,MAX 1(1 1)= D(Si, Si+1 )
ij

Therefore,

MAXI (m5)= Z )(S,,Si;+) 0
sES i=1

Two weaker corollaries follow immediately from this result.

Corollary 27:

VsES, 10In )<5n'D

where D. is the maximum subgoal distance for the solution order.

Proof: From the above theorerfi, we know that

VsS, /(s)<5 D D(Si, Si+ 1)

i:=1

By the definition of D.,

Vi <_ nD(Si.Si.I)<5Ds

Thus,

D D(Si, Si",)-< D, D= n'D

i=1 1=1

Therefore,

VSES, l(ni) _< n .D, 0

Corollary 28:

Vs ES, l(rn)<_n.Dp

where Dp is the radius of the problem P with respect to the goal state g.

Proof: From the above corollary, we know that
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By the definition of DI,, D,< D,. Tlhus,

VSES, l(0n)./) j , C

Note that given an optimal macro table, the al,cro Problem Solver solutions are the optimal

solutions that pass through the givCn Set 01 subgoals. This is due to the fact that each rCI thC individual

macros arc optimal. I'he reason that these solotiions are not optimal in the global sense is that the

global optimal solution need not pass thro ugh the gien subgoals.

For the 2x2x2 Rubik's Cube, DS= D,= 1 moves. Since there are 6 non-empty columns of the

macro table, this produces a worst case bound of 66 moves. Summing the lengths of the longest

macros in each column for dic macro table in Table 4-3 reveals an actxal worst case SoloUion length of

38 moves. This is due to the fact that the maximum lcngth macro in each column except de last is

less than 11 moves long.

7.4.2. Experimental Average-Case Results

While the goal of worst-case analyses is to bound the longest possible solIt;on length, average case

analysis is concerned with the actual solution length for a particular problem, averaged over all

problem instances. In order to do an average case analysis, some assumption must be made about the

distribution of problem instances. We assume that all possible problem instances are equally likely.

l)efinition 29: Since we assume that all possible initial states are equally likely, we
define the average-case solution length LA to be the solution length for each particular

initial state averaged over all possible initial states, or

L.A I(m)/ I S

Lemma 30: Given a macro table for a problem P which is connected and information
preserving, there exists a bijection from S to M, where I is the set of macro sequences
frpm the macro table for P.

Proof: By theorem 7, we know that
n

ISI - 1IM l
j=1

Since

IMI = 71 1Nil, then ISI = IMI

By theorem 15 in chapter 6, there exists a total mapping from S to M. Since P is
information preserving and all the macros are applicable to their respective states,



94 I .carni ngtoSol veIlroblernshy Search iigtoi'l ac l-OperatOrS

VstES. (s) n (t) implies s=t

Hence. the mapping is one-to-one. IIrefor, the niapping is a bijecction. El

Theorem 31: Given a problem that is connected and information prcscr, ing, the

average csC solotion length is equal to the suM of the average macro length in each
column otf the macro table, or

Z., ()/I',I
i=1 JE V

Proof: By definition.

'1= ()/ I SI

Since there is a bijection from S to M,

E I(my)ISl= 1 (mS)/ISI

SES nE\

lfwe let xu be the number of times that i jappears in an clement ofM, then
'1

Ij l(in)/IS I = E i lm l

SinceM . is the set ,fall possible miacro Cquences,

Vijxu= 1"[IvlkI - li I.%lkl/tIlI = IsI/INI,I

Therefore,
n #n

.A Z S/ImI)X(l:(1,;)/ ISI) 1 (l n.,l' j 1
1=1 JEV t=1 jEV

For the 2x2x2 Ruhik's Cube macro table in Table 4-3. the average solution length is 27 moves. This

is signiricantly less than the 38 move worst-case solution length from the same table.

Note that this result depends on the particular solution order chosen for the macro table, as does

the worst-case result. In order to factor out this variable, average case solution lengths were computed

for 25 randomly generated solution orders for the 2x2x2 Rubik's Cube. These solution lengths were

then averaged and the result was 28.39 moves with a maximum variation from the smallest to the

largest of 9.8 percent.

7.4.3. Analytical Average-Case Results

Under certain assumptions. we can also predict analytically what the average case solution length

will be, independent of any particular solution order. 'Pie basic idea is that since the first subgoal

only constrains the value of the first state variable, there will be many states in the space that satisfy

the first subgoal and hence we would expect to have to examine only a small number of states before
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finding one. Simrlarl\, Si 1CC tile second subgoal Constrains the filrt two State ariahles ,We would

expect to look at a few mnore statCS in OrdCr to find one satist 'i rg this subgoal, and SY Ililarly fr1 the

third subgoal, etc.

lo make this idea precise, note that given the number o different values for the first state variable,

we can compute the probability that any givcn State will satisfy the first subgoal. 'I his gives us the

expected number of states that would have to be examined before finding such a state. Then, given

the number of new states that are generated at caich depth in the search, we can Compute the expected

depth of search required te find a st;atc satisfying the sul)goal. The same computation is then

repeated for the First two state variables, the first three, etc.

This analysis is based on the assumption that the states are randomly distributed throughout the

problem space, without any particular bias. For example, we assume that two states that match in all

but one state variable are no closer together in the space than any two random states. The data

reported in Table 2-3 'suggest that dis assumption is fairly accurate in the case of the 2x2x2 Rubik's

Cube.

We quantify this an;iysis in the definitions and theorem below.

Definition 32: [he average subgoal distance 0, (S, S._) is die average over all states in
S, of the distance to the closest state in Sj+ 1, or

O)A(Si'Si+ )= , IMIN d(s,t)/jSi[

sESi tcSi+i

Definition 33: A sequence of subgoals (S, S1 ..... S,+,) is uncorrelatedif

Vi 1 : i:n, DA(SiSi+)=DA(SSIj+)

or in other words, the states in successive subgoals are no closer together on the average
than any arbitrary states in the problem space.

Definition 34: The expected solution length for a problem P isDI k.P(k)

k=o

where k is a solution length. Dp is the radius of the problem. and IP(k) is the probability
that givcn an arbitrary problem instance, the macro sequence which solves it is of
length k.

Theorem 35: Given a problem P and a macro table based on an uncorrelated sequence
of subgoals, the expected solution length is

S d.((l - Pl)d- (1 - p. Nc+ Ld)

i=2 d=o

where Pi is the probability that a given state is an element of Si, Nd is the average number

of states that first occur at a distance d from any given state, and Ld is the average number
of states that occur at a distance less than d from any given state.
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Proof: FirsL note hat

Vi :Sit+ , /);= ISil/ISI

L.t ,(id(S,_) b)e the probability that given a state in Si-1, the closest state in Si is at

distance d. Since we assume that successive subgoals in the solution order arc

uncorrelated,

V i I <i5n1 4, Pid (S - = d(S)d= Pid

Thc probability of finding a state in S, at a distance d or less is one minus the probability

of not finding it, or
d

7" /l k ( - I )d - -Z k l( 1))ic)d+Ld
k=i

Similarly. the probability of finding a state in Si at a distance less than dis
d-i

/J',k = 1 - l -P,)Ld

k=1

Therefore. die probability of first finding a state in Si at distance exactly ( is the
probability of finding it at a distance dor less minus the probability of finding it a distance

less than d. or
d d- I

T' Pik Z Pk = 1
'd= (1 - IJ'd- (1I- J)d NIp 

1'd
k=I k=t

The expected length of 'he i- Ill macro in a macro scquence is the expected distance to

first reach a state in S, from a state in Si-1, or

(I- Pid
d=0

Therefore, the expected solution length is
ni-i D n+iD

i=2do i=

The result of dis computation for the 2x2x2 Rubik's Cube is an expected solution length of 28.73

moves, independent of any particular macro table or solution order. This is within 1.2 percent of the

experimental average solution length of 28.39 moves, computed by averaging the average solution

lengths for 25 different macro tables.

7.4.4. Comparison with Human Strategies

This section compares the average solution lengths generated by the Macro Problem Solver with

solution lengths produced by human strategies for the Eight Puzzle and the 3x3x3 Rubik's Cube. For

the Eight Puzzle, Ericsson (Ericsson 761 found that the average solution length generated by ten

human subjects on eight different problem instances was 38 moves. This is within 5% of the 39.78

move average case solution length computed from the macro table in Table 4-1. An informal survey
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of ten people who could solve Rubik's Cube resulted in an average solution length of 125 primitive

moves, where a i80 degree twist is counted as a single primitive move. This is significantly longer

than the 86.38 move average case solution length based on the macro table of Table 4-4. Thus, we

find that for these problems, solutions generated by the Macro Problem Solver are close to or

superior to those of humans in terms of number of primitive moves.

7.5. Conclusions

We have analyzed the performance of the macro problem solver along three different dimensions:

the number of macros, the learning time, and the length of solution. In each case, we compared the

performance measure to some measure of the "difficulty" of the problem, including number of states

in the space, time to search for a single solution, and optimum solution length, respectively. We

found that:

" Whereas the number of states is the product of the number of values for each state

variable, the number of macros is the sum of these same quantities.

" The learning time is of the same order as the time required to search for a single solution
using standard techniques.

" The solution lengths are less than or equal to the optimal solution length times the
number of state variables. In addition, we were able to predict analytically average case

solution lengths independent of solution order, and achieved very good agreement with
experimentally determined values in the case of the 2x2x2 Rubik's Cube. Furthermore,

for the Eight Puzzle and the 3x3x3 Rubik's Cube, we found that the average solution

length is, respcctively, very close to and less than the solution lengths generated by

human problem solvers.

Numerical values of these measures for the exampl.e problems are summarized in Table 7-2.
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PROBLEM Distp Dist Len a Len w  macros learn

Eight Puzzle 30 14 39.78 64 35 *

Fifteen Puzzle >42 24 139.40 214 119 :10

2x2x2 Rubik's Cube 11 11 27.00 38 75 :18

3x3x3 Rubik's Cube >17 12 86.38 134 238 14:28

Tower of Hanoi 7 3 7.33 11 6 *

(3 disks)

Think-a-Dot 9 4 7.50 i5 7 *

LEGEND

Distp problem radius or maximum distance to the goal state

Dist s  maximum distance between successive subgoals
Len a  average case solution length for the Macro Problem Solver
Lena worst case solution length for the Macro Problem Solver

macros number or non-identity macros in the macro table

learn the amount of time in seconds to learn tile macros using

bi-directional search

* represents less than one second

Table 7-2: ExperimentaJ performance measures for cxamplc problems
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Chapter 8

Reflections and Further Work

This chapter presents some rcflections on this work, and suggests some directions for further

research along these lines. Further work includes reducing solution lengths and learning time by

selection of solution orders and target valucs, and combining macro problem solving with other

problem solving methods such as operator subgoaling, macro generalization, and problem

decomposition. A measure of problem difficulty is proposed, based on the branching factor of the

problem space and the length of the largest gap between two successive subgoals. In addition,

macro-operators are viewed as a general representation for knowledge, taking examples from

theorem proving, computer programming, and road navigation. Finally, the use of macros for

representing knowledge in arbitrary problem spaces is considered, along with the notion of learning

by searching for macro-operators.

8.1. Reducing Solution Length and Learning Time

Two important parameters to the macro learning program are the solution order, or the sequence in

which the state variables are mapped to their target values, and the actual set of target values

themselves. For some problems, the choice of solution order and/or target values can have a large

impact on the efficiency of the resulting solution and learning time.

8.1.1. Solution Order Selection

As demonstrated in chapter 6, in order to generate a macro table with a minimum number of

macros, the solution order is constrained by the serial decomposability of the operators. More

precisely, the solution order must be such that the applicability and the effect of any operator on any

given state variable depends only on that state variable and previous ones in the solution order. For

some problems, such as the Towers of Hanoi, this condition totally constrains the solution order and

no further selection is possible. However, for other problems, such as Rubik's Cube, operator

decomposability places no constraints on the solution order and hence it must be selected by other
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mcans. Ior problerns such as tLe I'ight Pu.z/lc and lhink-a-I)ot. tLe solution order must be selected

within the constraints imposed by operator decompos.bility.

For the 2x2x2 Rubik's Cube. 25 different solution orders were randomly generated and the average

case solution length was computed for each of the resulting macro tables. Thc variation among thesc

solution lengths was less than ten percent, implying that for this problem the choice of solution order

has very little effect on the efficiency of the resulting solution. However, for problems such as the

Eight Puzzle this is not the case. Table 8-1 shows a macro table for the Fight Puzzle based on a

solution order that was deliberately chosen to result in an inefficient solution strategy. 'Fhe average

number of primitive moves required to solve an instance of the problem using this macro table is

58.06 as compared with the 39.78 moves required using the macro table in Table 4-1.

TILES

0 2 6 4

0

z U

P 6 0 URDOLU

0

S 4 R LDRU LIORD

I

T 8 L RDLU RULO ROLLURDRUL

I

0 1 UL DRUL nDLURULORUL LORRULDLUR OLURROLULDRU

S 5 OR LURDLDRU ULOR RULDLURRDL ULDRURDLLURD nDLUULDRUPDLLURDDRUL

3 UR OLUR LORULURDDLUR ROLULDRRUL OLURDRULLDRU RULDDLURROLULDRUURDL LDRUURDLULDRRULDOLUR

7 DL RULDROLU URDL LURRDLULDR ULDRRULDLURD RDLUULORRULDLURODRUL LORUUROLLURDRULDOLUR

The average case solution length is 58.06 moves.

Table 8-1: Inefficient macro table for the Eight Puzzle

For most problems. the solution order will have an effect on the efficiency of the resulting

solutions; the 2x2x2 Rubik's Cube is an anomaly in this respect. Unfortunately, one cannot predict

a priori what solution order will result in the most efficient solution strategy. Rather, heuristics must

be used to select a solution order which will result in a reasonably efficient strategy. Such a heuristic

was used to determine the solution order for the 3x3x3 Rubik's Cube macro table in Table 4-4.

The heuristic that was used is to select a solution order such that at any point in the order, if we
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assume tile previous state vrablcs are fixed and not allowed to change, the amount of freedom of

tie rcmaining state variables, or the mobility of the remaining problem components, is maximized.

[hc heuristic is applied as follows. lFirst, the binary matrix shown in ''bhle 8-2, using the Fight PuiilC

as an example. is constructed. Thc rows correspond to the positions Of the tiles and the columns

correspond to the primitive operators, rcpresentcd by the pair of positions they affect, ignoring the

direction of the move. The matrix contains a one in every element where the operator associated with

tile column affects the position associated with the row.

OPERATORS

1-2 1-8 2-3 2-B 3-4 4-B 4-5 5-6 6-B 6-7 7-8 8-B

B 0 0 0 1 0 1 0 0 1 0 0 1

1 1 1 0 0 0 0 0 0 0 0 0 0

P 2 1 0 1 1 0 0 0 0 0 0 0
0
S 3 0 0 1 0 1 0 0 0 0 0 0 0
I
T 4 0 0 0 0 1 1 1 0 0 0 0 0
I
0 5 0 0 0 0 0 0 1 1 0 0 0 0
N
S 0 0 0 0 0 0 0 0 1 1 1 0 0

7 0 0 0 0 0 0 0 0 0 1 1 0

1 0 0 0 0 1 0 0 0 0 0 1

Table 8-2: Operator-position incidence matrix for Eight Puzzle

Given this matrix, a solution order is generated by first selecting a position that is affected by a

minimum number of operators, in this case a corner position, and the tile which occupies that

position in the goal state becomes the first variable in the solution order. Next, all the columns

(operators) which affect that position are deleted from the matrix and again a position affected by the

minimum number of remaining operators is selected. Tics are resolved by selecting positions adjacent

to those already selected, and ties still remaining arc resolved arbitrarily. This process is continued

until the entire solution order is determined. In the case of the Eight Puzzle, one solution order

generated by this algorithm, depending on how the arbitrary choices are resolved, is

[B 12345678].

Note that this is not the only possible technique for generating solution orders. Another ideas is to

8suggested by Bruce Lucas
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determine the solution order dynamically during the macro learning ph:ise, based on the state

variables that arc left in ariant by the shortest macros. Further research is needed to evaluate thesc

and other methods with respect to the efficiency or the solution strategies they generate and the

efficiency of learning the macros.

8.1.2. Target Value Selection

In addition to solution order, another parameter of die Macro Problem Solver dat can effect

solution efficiency and learning time is the target values to which the state variables are mapped in

the intermediate states of the solution. As shown in chapter 6, these target values need not be the goal

values until the final macro is applied.

In fact, these extra degrees of freedom in the macro table allow us to construct slightly more

efficient strategies for some problems than those generated by using goal values as targets for the

intermediate states. Table 8-3 shows another macro table for the Eight Puzzle. This macro table is

based on intermediate target values (shown in table 8-4) that are different fl-om the goal values at

some points. For example, after the 1 tile has been placed in die upper left hand corner, if the 2 tile is

placed in its goal position next to it, in general it will have to be moved in order to get the 3 tile to its

position. A better strategy is to place die 2 tile in the 3 position. then the 3 tile can be placed below it,

and both tiles can be "rotated" into their goal positions. The same strategy is followed in the case of

the 4 and 5 tiles. Another technique is to leave the blank in the 4 position after the 2 and 3 tiles are

corrcctly placed. instead of returning it to the center. Similarly the blank is left in the 6 position after

the 4 and 5 tiles are placed. Both these techniques are incorporated into the macro table in Table 8-3,

with a consequent slight decrease in the average number of moves required for solution, from 39.78

to 39.14.

The reason the difference is so small is that whenever any target value changes from one subgoal to

the next, the chance of not having to apply any macro at that stage, is lost, and hence the average

solution length tends to increase. However, the point of this example is to demonstrate that goal

target values do not necessarily result in the most efficient solutions.

Another example is provided by the Towers of Hanoi problem. In Chapter 4 we found that using

goal values for the target values resulted in an inefficient solution strategy for this problem. The

macro table for the 3-disk problem in Table 4-6 requires 11 moves to solve the problem from the

standard initial state in which all disks are stacked on one peg, while the optimal strategy only

requires 7 moves. In fact, 11 moves is the worst case solution length for the macro table and 7.3

moves is the average case, while 7 moves is the worst case solution length for the optimal strategy.
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TILES

0 1 2 3 4 5 6

0 RULDR D

I UL

P 2 U RDLU LDRU DRUULLDRROLLU

0

S 3 UR DLURRDLU

T 4 R LDRURDLU DLUR DLU LDRRUULDRDILUUR

I

0 5 DR ULDRURDLDRUL LURDDLUR LURDDLU R

N

S 6 D URDLDRUL ULDRDLUR ULDRDLU URD LUR

7 DL RULDDRUL URDLULDROLUR URDLULDRDLU URRDLLURO URDLLUR RDL

8 L DRUL RDLULDRRUL RULLDRDLU RRULDLURD RULDLUR DRULD

The average case solution length is 39.14 moves.

Table 8-3: More efficient macro table for Fight Puzzle

TILES

012345678

0 0
1 01

SOLUTION 2 0 1 3
STAGE 3 4 1 2 3

4 01235
5 612345
6 0123456

Table 8-4: Taget values for Fight Puzzle macro table

By changing the target values, we can generate a macro table that produces the optimal solution for

any given initial state. For example, the macro table in Table 8-5 is based on the same goal state (all

disks on peg C) and the target pcg for the smallest disk in the first column is peg C, but the target

peg for the two smallest disks in the second column is peg B. This macro table produces the optimal

solution for the initial state where all disks are on peg A, but its average case and worst case solution

lengths are identical to those of the macro table in Table 4-6.

Can we build a macro table for the Towers of Hanoi tr.r.+!-m that produces the optimal solution

for all initial states? The answer is no, not with a small nur,,ber of macros. The reason is that the
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DISKS

1 2 3

P A AC AB CB AC BA BC AC

E

G B BC CB BC BA CA BC AB AC BC

S

C CA CB AB BA BC AC

Table 8-5: Macro table for three disk Towers of Hanoi problem

optimal target peg for a gi en disk depends oi the positions of all the larger di;ks. For example, in

order to move the largcst disk from its source peg to its destination pCg, thC second largest disk

should be targeted for tile "other" peg. that which is neither the source nor the destination peg of the

largest disk. Similarly, the optimal target for the next smallest disk depends on the source and

destination of the next larger disk, which depends on the next larger disk, etc. The problem is that the

positions of the larger disks are not known when the macros are generated because the solution order

constrains us to position the disks in order of increasing size.

In general, the selection of target values and their effect on overall solution efficiency is an area that

requires further study.

8.1.3. Simultanoous Subgoal Satisfactioni

One final technique for improving the efficiency of solutions generated by the Macro Problem

Solver is simultaneous subgoal satisfaction. In the examples so far, we have tried to decompose a

problem into as many subgoals as possible in order to minimize the number of macros and the depth

of search required to learn them. However, by solving two or more state variables simultaneously, the

number of moves required to solve them both will in general be less than the sum of the moves

necessary to solve each one individually. The penalty is that the number of macros required increases

sharply since the number of macros needed to solve two state variables simultaneously is the product

of the number needed to solve them individually. The limiting case of this technique is solving all the

state variables at once, in which case the number of macros equals the number of states in the space

and the solution lengths are globally optimal.
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8.2. Combining Macro Problem Solving with Other Methods

So far, the Macro Problcm Solver has been presented in isolation as a complete problem solving

method. I lowever, in rcality this medod is simplv anothcr addition to a collection of existing tools

for gencral problem solving. It is natural to ask how well this new tcchnique can be integrated or

combined with the existing stock of ideas to solve problems that no single method could solve alone.

In fact. the Macro Problem Solver can easily bc integrated with other problem solving techniques

such as operator subgoaling, macro gcnerali/ation, and problem decomposition.

8.2.1. Operator Subgoaling

The basic idea of operator subgoaling is that at a given state of a problem, if an operator which is

effective for achieving the next intermediate state in the problem is not applicable, then a subgoal is

set up to satisfy the preconditions of the operator. A classic example of operator subgoaling occurs in

the Towers of I-lanoi problem. If an intermediate goal is to move the largest disk from its current peg

to its goal peg but there are smaller disks on top of it, then it cannot be moved. The solution is to set

up a subgoal of clearing the top of the largest disk so that it can be moved.

1lancrji (Banerji 831 generalizcs the notion of operator subgoaling to include subgoals which make

an existing operator effiective for solving a subgoal rather than simply applicable. For example, in

Rubik's Cube, all operators are always applicable so there is no need for subgoals to establish the

preconditions of an operator. However, in general an operator will only be effective in solving a

subgoal under certain conditions. This gives 'ise to subgoals of establishing these cjjkctiveness

conditions.

Operator subgoaling can also be used with the Macro Problem Solver. As described so far, the

method requires a complete macro table such that at each point in the solution process, there exists a

separate macro which will map the next state variable to its target value from each possible value it

may have. However, a complete macro table is unnecessary.

Assume that the macro table is incomplete and hence there is an empty slot in the table which

corresponds to a legal value for that state variable at that stage of the solution. Thus, when we get to

that stage of the solution, if the corresponding state variable has the value corresponding to the empty

slot, we set up the subgoal of mapping the state variable to one of the values for which we have a

macro which will map it to its target value. This subgoal would be achieved by applying one of the

other macros in the same column of the table. The result is that the total number of macros that must
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be stored is reduced at the expense of a longer overall solution length, since two or more nacro

applications may be rcquircd to map a single state variable to its target value.

This is equivalent to the macro com1position techniquc except that it is applied at problcrn solving

time instead of leirning time. Human cube solvers, and particularly novices, make extensive use of

this technique since it drastically reduces the number of macros they must learn and remember.

8.2.2. Macro Generalization

,As described so far, a macro is a fixed sequence of explicitly named primiive operators which can

only fill a unique location in the macro table. However, another technique for reducing the number

of distinct macros that must be stored in the table is to generalize macros so that the same generalized

macro can be used in more than one slot in the macro table. This technique was used extensively in

the work on MACROPS for the STRIPS system [Fikes 72].

One way of generalizing a macro is to take advantage of symmetries of the problem. For example,

in Rubik's Cube, the macro (U2 R2 U2 R2 U2 R2) is very similar to the macro (F2 1)2 F2 )2 F2 D2),

and in fact to 22 other macros which consist of three repetitions of a 180 degree twist of one side

followed by a 180 degree twist of an adjacent side. This entire class of macros could be represented by

the parameterized macro M(xy)=(x2 y2 x2 y2 x2 )'2), where x and y are constrained to be adjacent

faces. Similarly. in macros for the Think-a-Dot and Towers of Hanoi problems, the actual names of

input channels and pegs, respectively, could be replaced with variables under appropriate conditions.

Another way of generalizing macros is suggested by the Eight and Fifteen Puzzles. If we relax the

assumption that the position of the blank tile must be fixed between macro applications, then the

same sequence of Left, Right. Up, and Down moves could be applied starting from different

positions of the blank, and hence widi different effects.

In fact, the extent to which Eight and Fifteen Puzzle macros can be generalized is suggested by the

fact that an expert strategy for these problems can be built from only two macros: one that moves a

single tile in any direction by repeatedly maneuvering the blank back in "front" of the tile, and

another macro that completes a row by rotating the last two tiles into position. However, a general

description of either of these macros would be relatively complex. For example, the macro for

moving a single tile must be able to use any side of the dile to move the blank back in front due to the

constraints of the boundaries and not moving previously positioned tiles. Similarly, the row

completion macro must work for both horizontal and vertical rows.
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8.2.3. Problem Decomposition

'[his work began with the observation that sonic problems Culld not be solved by satisfying a

sequence of subgoals one at a timc without ever violating a previously satisfied subgoal. Htowever,

there may be a set of subgoals such that once every subgoal in the set is satisfied, die rest of the

problem can be solved without %iolating any subgoal in the set. For example, in the Fight Puzzle,

once the top row is correctly positioned, then the remainder of the die prohlcrn can always be solved

without ever disturbing this completed row. Such a problem is called block decomposable.

This idea is known as problen deconiposition and is at the heart of the General Problem Solver.

The value of this technique is that once a set of subgoals is satisfied, all operators that violate any of

these subgoals are deleted from the set of primitive operators, and hence the branching factor for the

remainder of the search is reduced. '[he disadvantage is that the resulting solution may be less

efficient than a solution generated without protecting subgoals.

The way to combine this powerful problem decomposition method with de Macro Problem Solver

is first to divide die solution order into as many intervals as can be solved sequentially as sets of state

variables without violating previously solved sets. Then the macro learning program is used to

generate a macro table for each of the,;c subsequences 'trdiidually, but using only diosc primitive

operators that do not affect any of the previously solved subsequences. In other words, the problem is

first decomposcd as far as possible into sets of subgoals that are serializable, and then the Macro

Problem Solver is used to solve each set of subgoals independently. For example, a complete

decomposition of the Eight Puzzle could separate the tiles into the sets {1}, {2.3}, {4,5}. and {6,7,8}.

Similarly, a complete decomposition for the Think-a-Dot problem could separate the gates into the

sets {1}, {2,4,6}. and {3,5,7,8} [Banerji 801.

The fact that the combination of these two methods is significantly more powerful than either is

alone is demonstrated by the fill 3x3x3 Rubik's Cube. Recall from Chapter 5 that the bi-directional

search for cube macros left seven empty slots in the macro table when memory was exhausted. These

slots were filled by the macro composition technique, with the penalty that the resulting macros were

not the shortest macros fbr the job. However, by first solving a 2x2x2 subcube on the corner of the

full cube, the remainder of the cube can always be solved without ever disturbing the 2x2x2 subcubc,

even within a macro. In other words, the remainder of the cube can always he solved by twisting only

the remaining three faces.

The resulting macro table is shown in Table 8-6. The four movable cubics of the 2x2x2 subcube are



108 Learniug to Solve l'rohlcms by Searching 1or Macro-Operators

CUBIE POSITION ORIENTATION MACRO

UF UL 0 L F

.UF UL 1 U-

UF UB 0 U2

UF UB 1 B L U-

UF UR 0 R- F-

UF UR 1 U

UF UF 1 F- L- U-

UF LF 0 L- U-

UF LF 1 F

UF LB 0 L U-

UF LB I L2 F

UF RB 0 R- U

UF RB 1 R2 F-

UF RF 0 R U

UF RF 1 F-

UF DL 0 L- F

UF DL 1 L2 U-

UF DB 0 D2 F2

UF 0B I B- L U-

UF OR 0 R F-

UF DR 1 R2 U

UF DF 0 F2

UF OF 1 F L- U-

ULF ULF 1 L 0- L2

ULF ULF 2 L2 D L-

ULF ULB 0 B D L-

ULF ULB 2 L

ULF ULB 1 B L2

ULF URB 0 B2 L2

ULF URB I B L

ULF URB 2 R2 D- L-

ULF URF 0 R2 0 L2

ULF URF 2 R2 D2 L-

ULF URF 1 R- D- L-

ULF DLF 0 D- L2

ULF DLF 2 L-

ULF DLF 1 02 B- L2

ULF DLB 0 L2

ULF DLB I B- L

ULF DLB 2 D L-

ULF DRB 0 D L2

ULF ORB 2 D2 L-

ULF DRB 1 B- L2

ULF ORF 0 D2 L!

ULF DRF 1 D B- L2

ULF ORF 2 D- L-

Table 8-6: Macro Table for decomposed 3x3x3 Rubik's Cube
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lL UL 1 F2 U- F- L- F-

UL UB 0 F B L F-
UL UB 1 F2 U- F2

UL UR 0 F2 U2 F2
UL UR I F U F- L-

UL LF 0 U L2 B- L2 U-

UL LF 1 U L- U L U-

UL LB 0 F2 B- U- F2

UL LB I F L F-
UL RB 0 L- U B U-
UL RB I L D2 B2 L
UL RF 0 F- U F
UL RF 1 F2 L- F2
UL DL 0 F L2 F-
UL DL I L- U- F U

UL D8 0 U B- U- L

UL 08 I F2 B2 U- F2

UL DR 0 F R2 B U2
UL DR 1 R F- U F

UL OF 0 F L- F-

UL OF I F2 .U F2

LF UB 0 U- L U

LF UB I U2 F- U2

LF UR 0 U F- U-

LF UR 1 U2 L U2

LF LF 1 U2 L- U- F- U-

LF LB 0 U2 L2 U2

LF LB 1 B- U- L U

LF RB 0 U R2 F2 U-

LF RB 1 B U- L u

LF RF 0 U F2 U-

LF RF 1 R U F- U-

LF DL 0 U D F U-

LF DL 1 U2 L- U2

LF OB 0 U2 D L- U2

LF 08 1 U D2 F U-

LF DR 0 U D- F U-
LF OR I U R F2 U-

LF OF 0 U2 D- L- U2

LF OF 1 U F U-

Table 8-6, continued
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ULB ULB 2 B2 D B-

ULB ULB I 0 D- 62

ULB URB 0 R 0 B-

ULB URB I R B2

ULB URB 2 B

IJLB URF 0 R2 B2

ULB URF 2 R2 D B-

ULB URF I R B

ULB DLF 0 D2 B2

ULB DLF 2 D- B-

ULB OLF 1 D R- B2

ULB DLB 0 0- B2

ULB OLB 1 D2 R- B2

ULB DLO 2 B-

ULB ORB 0 B2

ULB ORB 2 0 B-

ULB ORB I R- B

ULB DRF 0 D B2

ULB DRF I R- B2

ULB ORF 2 02 B-

UB UB 1 B2 D- R- D2 B2 D- B-

UB UR 0 R- B D2 R2 B

UB UR 1 B2 R2 0 R2 B2

UB LB 0 B2 R D R B- D2 B-

UB LB 1 B- R2 B D2 B-

UB RB 0 R B D B- D- B-

UB RB 1 R2 6 D2 R2 B

UB RF 0 B2 R- D R B2

UB RF 1 B 02 R2 8

UB DL 0 D- B D- R D B2

UB DL 1 D- B- R2 D2 B-

UB Do 0 B- R2 D2 B-

UB 06 1 B D- R D B2

UB OR 0 R B 02 R2 B

UB DR I D B- R2 D2 B-

UB DF 0 D2.B- R2 02 B-

UB DF 1 B2 D B R- B

Table 8-6, continued
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LB UR 0 R- B2 R- B- D B-

LB UR 1 B D- B R B2
LB LB 1 B2 R- B2 R2 B 0 B-
LB RB 0 B2 D2 82 D2 B2
LB RB I R2 B2 R- 8- D B-

LB RF 0 82 D R2 D- B2
LB RF 1 B2 R- B- 0 B-
LB DL 0 82 0- B 0 82

LB DL 1 B2 D2 R- D2 B2

LB DB 0 D2 B2 D R- D- B2

LB DB I B2 D2 B- D2 B2
LB DR 0 R B2 R- B- D B-
LB DR 1 B- R- B R B

LB OF 0 B2 D R- D- B2

LB OF 1 B2 D2 B D2 B2

URF URB 0 R2 0 R2
URF URB 1 R-

URF URB 2 R 0- R
URF URF 2 R- D R2

URF URF 1 R2 D- R

URF DLF 0 D2 R2

URF DLF 2 D2 R D R2
IJRF DLF 1 D R

URF DLB 0 D- R2

URF DLB 1 D2 R

URF DLB 2 B R2 B-

URF ORB 0 R2

URF ORB 2 R D R2

URF DRB I D- R

URF DRF 0 0 R2

URF DRF 1 R

URF DRF 2 R- 0- R

UR UR 1 R B- R- D2 R D B R2

UR RB 0 R 02 R B- D- B R-

UR RB 1 R- D2 R- D2 R

UR RF 0 R- D R2 B R B- R2

UR RF 1 R B- D- R- D- R B

JR DL 0 R- 02 R D2 R

UR DL 1 R2 B- D- B R-

JR DB 0 D R2 B- D- B R-

UR DB 1 R- D- R D R

UR DR 0 R- D2 R2 02 R

UR DR 1 D2 R2 B- D- B R-

UR OF 0 D- R2 B- D- B R-

UR OF 1 R B- 0 B R2

rablc 8-6, continued
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URF3 URB I R B R2 B- D R-

URB URB 2 R D- B R2 B- R-

URB DLF 0 02 R B R2 B- R-

URB DLF 2 R D2 R-

URB DLF 1 B- D2 B

IJRB DLB 0 R B R B- 0 R-

URB DLB 1 D- R D R-

URB DLB 2 R D- R-

URB ORB 0 R B R2 B- R-

URB ORB 2 B- D- B

URB ORB 1 R D R-

URB DRF 0 D R B R2 B- R-

URB ORF 1 B- D B

URB DRF 2 D2 R 0- R-

RF RB 0 R2 D2 R2 D2 R2

RF RB I R D B R- B- R-

RF RF I R- B- R- D2 R D B D R2

RF DL 0 D R D2 B R- B- D2 R-

RF DL 1 R2 D2 R- D2 R2

RF DB 0 D R2 D2.R- D2 R2

RF DB 1 B R2 0 R2 D- R2 B-

RF DR 0 R- D2 B- D B D2 R

RF DR 1 R2 D2 R D2 R2

RF OF 0 D- R2 D2 R- D2 R2

RF OF 1 R D2 B R- B- D2 R-

RB RB 1 R2 02 8 R2 B- D2 R- D R-

RB DL 0 R D R- D- B- D- B

RB DL I D B- D B 0 R D- R-
RB OB 0 B-. D2 B D2 R D R-

RB DB 1 D R D- R- B R- B- R

RB DR 0 R D2 R- D2 8- D- B

RB DR 1 0- B- D B D R D- R-

RB OF 0 B- D B 0 R D- R-
RB OF 1 D- R D- R- B R- B- R

OF DL 0 R- 8- D- B D R D-

OF DL 1 D

OF DB 0 D2

OF DB 1 B D R D- R- B-

OF DR 0 D B D R D- R- B-

DDF OR 1 D-
OF OF 1 B R D R- D- B- D2

DL DL 1 D2 R- B- D- B D R D

DL 0B 0 B D R D- R- B- D-

DL DB 1 R- B- D-B 0D R

DL DR 0 R- D2 R D R- D R

DL DR 1 R- D- B- D B R

Table 8-6, continued
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DB DB 1 0 B- D- B2 R- B- R2 D- R- D
OB DR 0 R D R D- R- 02 D- 8 D- B- D2 B D-

DB DR 1 D R D R- D R D2 R-

DLF DLF 2 D B R- D R D B- R- D B D B- R D
DLF DLF 1 D- R- B D- B- D- R B D- R- D- R B- D-

DLF DLB 0 D- R- D- R B R- D R D- B- D2
DLF DLB 1 R- D- R B R- D R D- B- D

DLF DLB 2 R B R- D2 R 6- R- B 02 B-

DLF ORB 0 B D2 B- R B R- D2 R B- R-

DLF DRB 2 D R- D- B D B- R B D- B-
DLF DRB 1 D- B D R- D- R B- R- D R

DLF DRF 0 D B D R- D- R B- R- D R D?

DLF DRF I R- B D2 8- R B R- D2 R B-

DLF ORF 2 B D B- R- B D- B- D R 0-

DLB DLB 1 D R D- B D2 B- R- D2 R D- B D B- D2 R-
DLB DLB 2 R D2 B D- B- D R- 02 R B D2 B- D R- D-

DLB DRB 0 R- D- B D B- R B D- B- D
DLB DRB 2 D R B R- D2 R B- R- B 02 B- D-

DLB ORB I D R- D- R B R- D R D- B-
DLB DRF 0 D B D2 B- R B R- D2 R B- R- D-

DLB DRF 1 0- B D B- R- 0 0- 6- D R

DLB DRF 2 B D- B- D R- D- B D B- R

ORB DRB 2 D R2 D- B- R2 B R- D R D- R2 B- R B R-

ORB DRB 1 R B- R- B R2 D R- 0- R B- R2 B D R2 D-

The total number of non-identity macros is 238.

The average case solution length is 95.31 moves.

Table 8-6, concludcd
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solved using twists of all six faces while the remaining sixteen cubits are solved by twisting only the

three faces which do not affect the 2x2x2 subCube. Note that somc of the macros are fifteen moves

long. This extra depth of search is made possible by the reduced branching factor which results from

removing thC primitive operators that twist three of the faces. The average solution length for this

macro table is 100 primitive moves which is slightly more than the 89 moves for the macro table

Without the decomposition.

It is surprising to moSt human solvers that the hlill l.ubik's Cube can be decomposed in this way.

This suggests that discovering such a decomposition for a problem, if one exists at all, is a non-trivial

task in general. The heuristic that was used to suggest this decomposition was the same as that used

for generating solution orders, namely pick a set of state variables such that the freedom of the

remaining state variables is maximized. Clearly. finding such problem decompositions is an area

which requires further research.

8.3. A Measure of Problem Difficulty

It is natural to ask what features of a problem ultimately limit the performance of the macro

learning program, even when combined with a good decomposition of the problem into sets of

independent subgoals. Recall that both the time and space complexity of the macro learning program

are dominated by the exponential term BD9V/2 where B is the average branching factor of the problem

space and Ds is the longest macro necessary to get between two successive intermediate states. If we

asmurnc that dhc problem solver has this set of subgoals available and no additional knowledge about

the problem, then this quantity also appears to be a good intuitive measure of problem difficulty as

experienced by other problem solving programs and human problem solvers. While further work

Would be required to support or refute this claim, we advance it here as a plausible conjecture.

In evaluating this proposal, it is worthwhile to examine several competing measures. One relates

the difficulty of a problem to the size of the problem space. However, problem size is not a good

intuitive measure of problem difficulty because there exist problems in large spaces for which there

are short solutions which are easy to find. For example, if we take the physical disks and pegs of the

Towers of Hanoi problem but remove the restrictions of moving one disk at a time and never placing

a larger disk on top of a smaller one, then we are left with an easy problem with a solution length of

at most two moves, one for moving the disks from each of the non-goal pegs. However, the problem

space is even larger than that of the standard Towers of Hanoi problem since the disks on a peg are

not constrained to be in order according to size.
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'Ihis suggests that a better mIeasurc of problem difficulty is the optimal solution iength in terms of

number of primitive moves. The t ouble with this hypothesis is that there exist problems for which

the solution path is long but which require few if any choices along the way. For example, there are

several puzzlcs, such as the Chinese Rings problem, for which the problem graph is a single large

cycle with a branching tactor of one after the first move. Such problems are not difficult to solve if

the bookkeeping is done carefully, even though they may be time consuming. As another example,

:."ost "dradgery" j.!'. such as !''ding vp long cc!umns (f numc., have " Iupmty.

Perhaps an analogy mncntioned pie- iously is useful here. Consider the problem of crossing a stream

on stepping stones. The site of the stream, its length times its width, is analogous to the size of the

problem space, and the width of the stream corresponds to the length of the minimum solution path.

The stepping stones are analogous to intermediate states or subgoals. Clearly the length of the stream

is irrelevant to the difficulty of crossing it. Similarly. the width of the stream is not that important if

there are sufficient stepping stones. The critical factor which determines the difficulty of crossing the

stream is the spacing between the stepping stones, and in particular the maximum distance between

an adjacent pair of stones on the easiest path.

As another analogy, one is reminded of the two watchmakers, Flora and Tempus, in Simon's

Sciences oj'the Aigficid [Simon 69]. Both make watches from 1000 different pieces which fall apart

when the watchmaker must answer the phone. However, Hora's watches are constructed from ten

stable assemblies, each of which is composed of ten stable subassemblies of ten pieces each, while

Tempus' watches have no stable assemblies or subassemblies. As a result, I-bra can complete many

more watches than Tempus in spite of the same number of interruptions. The analogy is between the

number of pieces that must be assembled to make up a stable subassembly and the number of moves

that must be made to get from one subgoal to the next.

The value of subgoals for problem solving depends on the maximum distance between successive

subgoals being less than the total solution length. In other words Ds must be less than Dp. This is

true regardless of whether the subgoals are serializable or not. The reason for protecting satisfied

subgoals when possible is based on two factors: one is that it makes it much more likely that the

distance between subgoals will be less than the total solution length, and second, it reduces the

branching factor for the remainder of the search. Both of these tactors improve the efficiency of

problem solving and learning.

Our experiments have shown that for some problems, such as the 3x3x3 Rubik's Cube, even
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without the benefit of independent subgoals which can be solved scquentially, the maximum distance

between successive subgoals (12 mo es) is still significantly less than the oplimal solution length

(greater than 17 moves). This implies that by solving these subgoals. progress toward the solution is

being made, even though the subgoals do not remain solved. In other words, while the subgoals are

not independent, the degree of dependence among them is limited.

Related evidence can be found in the work of Goldberg [Goldberg 79] on NP-complctc problems.

Goldberg showed that the average-case performance of a relativcly simple algorithm for boolean

satisfiability is of order N-. The fact that this problem is NP-complete in the worst case is related to

the fact that there are no known :.ubproblems, such as satisfying assignments to subsets of the

variables, that arc guaranteed to represent progress toward a total solution. Hlowever, Goldberg's

result suggests that by carefully making partial variable assignments, with a capability for

backtracking on failure, these intermediate states do in fact represent progress toward the goal on the

average.

In summary, two ideas have been presented in this section. One is that for a given decomposition of

a problem into subgoals, tie branching factor of the space, raised to half the power of the maximum

distance betwCCn successive sLubgoals. is an appropriate measure of problem difficulty. The second is

that even when such a set of subgoals is not serializable, they often represent progress L oward the

main goal, to the degree that the maximum distance between two successive subgoals (D) is less than

the total solution length (D,).

8.4. Macros as a Representation for Knowledge

It is almost a cliche of artificial intelligence that expert problem solving performance in a domain

comes only as a result of a great deal of knowledge about the domain [Ncwell 82]. Clearly, the Macro

Problem Solver exhibits expert behavior in the domain of the example problems. Where then is the

knowledge? The knowledge is contained in the macro-operators which make up the macro table.

If macro-operators are an effective representation of knowledge in these domains, can knowledge

in other domains be represented as macros as well? In this section we will explore the use of macro-

operators as a representation for knowledge in several other domains. First, we will examine in detail

the domains of road navigation and Euclidean problem spaces in general. Next, we will consider the

use of macros to represent knowledge about arbitrary problem spaces. Finally, we will briefly touch

on the domains of theorem proving and computer programming. For purposes of this discussion, we

will depart from the restricted case of macros as used by the Macro Problem Solver, and refer to

macros as more general operator sequences.
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8.4.1. Road Navigation

The problem of road navigation is how to get from one point on a network of streets to another.

This problem has been studied by Kuipers [Kuipers 78, Kuipers 771 and by Elliot and Lesk [Elliot

821. The states of the space are intersections between streets and the operators are the streets

themselves, which take a traveller from one intersection to another. But what do we define as the

primitive operators? We adopt the principle that a primitive operator is one that maps one legal state

into another without passing through intermediate states from which other operators could be

applied. Thus, in the case of road navigation, a primitive operator is a move between two adjacent

intersections. For example, a section of street one block long serves as a primitive operator as does a

section of interstate highway between two successive interchanges. Note that this definition results in

a very large number of primitive operators, of the same order as the number of states. However, for

an arbitrary road network, there is no more economical description than simply to list all the

intersections and the connections between them.

Two different types of macros are used in road navigation. One is the routes that individuals

remember for frequently made trips, such as between home and work. The second is named roads,

which are macros used by an entire population of people to navigate in an area.

8.4.1.1. Individual Macros

An immediate observation about human problem solving in this space is that most of it is not

problem solving at all but simply recall of stored solutions. For example, to get from home to work

and back, most people do not plan a new route each day but rather follow a path that has been

learned and remembered. Similarly, most short trips in the vicinity of a person's home or work are

accomplished by recall of stored routes. In fact, it is probably the case that for most people, most of

their road navigation is accomplished by remembering learned paths.

These paths are clearly macro-operators, since they are sequences of primitive operators, often

quite long, which are learned and stored. They are a very effective representation for knowledge

about how to get from one place to another in an area a person is familiar with.

The value of storing these macros comes from the fact that for any given individual, all possible

trips in an area are not equally likely. Rather, certain trips, such as between home and work, occur

very frequently. Hence, it is computationally economical to store the macros for these trips since the

cost of learning and remembering them can be amortized over a large number of uses.
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However, what if we expand our perspective beyond a single traveller to include an entire

population'. When considering the set of trips made by the entire population of an area, we would

expect tie frequency distribution of all possible trips by a large population to more closely

approximate a uniform distribution than that for an individual. Note that even for a1 iolpulation the

distribution will not be uniform. For example, trips to and fiom places with high concentrations of

people, such as large office buildings or even cities, will be more frequent. However, it is a good

approximation when compared with the set of trips made by an indix idual. Are macmos still useful in

this situation?

8.4.1.2. Named Roads as Niacro Operators

When we look at a road network, what we find in addition to intersections and streets connecting

them is that certain sets of contiguous streets between intersections, usually straight but not always,

are given the same names. In fact, almost all street sections are a part of some uniformly named road.

Furthermore, most motorists tend to follow these roads in the sense that at any given intersection,

most automobiles caxe the intersection on the road with the same name as that on which they

entered the intersection.

Given our dcfinition of a primitive operator as a section of street between two adjacent

intersections, then these commonly named roads are macro-operators since they are sequences of

primitive operators. They are "stored" both on road maps and in the actual environment in the form

of street signs.

While most roads are straight sections of streets, the view of a named road as a macro-operator

becomes clearer when one considers certain types of non-standard roads. For example, when a state

or federal highway passes through a town, it often follows a tortuous path with many turns while

maintaining its name. Furthermore. in such a situation, the same section of road will often carry the

names of several different highways plus a local name as well. As another example, when

construction closes a section of a road, a detour that joins the two severed ends of the road and carries

the same name is usually "constructed" by simply posting signs. In fact, roads are often "built" by

just posting signs. A prime example of this are the beltways that surround Pittsburgh (e.g. the Blue

Belt). These roads were created by linking together existing sections of major secondary roads with

road signs to mark each of the many turns. Roads such as U.S. Route 1, which goes from the eastern

border of Maine to Key West and includes the main street of almost every city and town in betwcen,

were also built by connecting together existing sections of highway.



Relccions and. Furtier Work 119

An alternative to this modcl of a named road as a macro-operator views a road as the result of a

sequence of streets projected at a higher level of abstraction and ignoring the low level detail of each

intersection. I lowever, when one examines a road map drawn at a high lcvel of abstraction, such as a

map showing just the U.S. lntCrstate I lighway System, one still trinds named roads that pass dhlough

more than one intersCction. 'hus, if the primitive operators are still sections of road between

intersections, then nanied highways arc still sequences of primitive operators or macros. 'Fhe only

effect of abstracting to a higher level space is that some macros in the lower level space become

primitive operators in the higher level space, and as a result, macros in the higher level space are

composed of fewer primitives than they were in the lower level space.

Note that the usefulness of a road is enhanced by the fact that it can be used for a large number of

different trips. To be precise. a two-way road can be used to get from any intersection on the road to

any other, and a one-way road can be used to go from any intersection to any other in the correct

direction. Hlence, a road can be viewed as a collection of macros all sharing the same sequence of

primitive operators but differing in bcginning and end points.

Clearly, one of the reasons that moto ists follow named roads is for efficiency or spced of travel.

Most roads are straight and a vehicle can go straight through an intersection faster than it can make a

turn. I lowever. an equally important reason for the existence of named roads is as a navigational aid.

If une knows or is told that a certain road will take them to a certain destination, then at each

intersection along that road, and there may be many, the person knows which of several paths to take

out of the intersection.

Can we characterize more generally why macros are useful for the problem of street navigation? In

other words, what exactly is the value of a given macro-operator in such a space? In order to answer

this question, we will generalize the problem space to a continuous -Uclidean plane.

8.4.2. Macros in Euclidean Problem Spaces

Consider an area with a very dense road netwoi-k, so dense that we can approximate it by a

continuous plane where every point is a state and there exists a primitive operator to go a short

distance, relative to the size of the plane, in any direction from any point. A quantity of search in this

space is measured by the amount of two-dimensional area covered. The problem is to find a path

between two arbitrary points on this plane. We assume that we do not know the relative direction of'

either point from the other.
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Ilhe most efficient strategy is to search outward in concentric circles from both endpoints

siMultancously, until thc circles intersect (see Figure 8-1). If the distance between thc two points is

1), the circles will meet after expanding to a radius of )/2 each, assuming they expand at the samre

rate, and the total area covered will be 2.n(1)12)2 or 7r D2/2.

Figure 8-1: Search with no macros

Now assume there is a marked path through the space running cast-wcst, in other words a macro-

operator (see figure 8-2). In this case, the searches proceed as before but if one of the searches

intersects the path before reaching the other, then it follows the path in both directions until it meets

the other search. In that case the total amount of search is 711R 2 + v R 2 where R, and R2 arc the

perpendicular distances of each endpoint from the path. The path will be useful whenever R 2 + R 2

is less than D2/2.

Note that the introduction of a single macro reduces the amount of search for a large number of

problem instances, roughly for those pairs of initial and goal states that lie closer to the macro than to

each other. However, there is a penalty for this search reduction and that is that the resulting paths

arc not of optimal length. Any path using this macro will be longer than the optimal path unless both

endpoints lie on the path and the path is straight.
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Figure 8-2: Search with one macro

An cast-west road is of no use for finding a patti between two points that are directly north-south of

each other. However, if we add a north-south path, and connect it to tie cast-west path. we reduce

the search required for even more problem instances (see Figure 8-3). In general. as we increase the

number of connected macros to cover more of the space, the amoUnt of search to soive an arbit:ary

problem instance becomes 27rR 2, where R is the average distance from a state to the closest macro.

This assumes that no search is required within the macro ictwork.

Figure 8-3: Search with two macros
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8.4.3. Macros in Arbitrary Problem Spac-es

CAn We quilantify die tradcoff between the size of a macro network and the amount of search

req uircd to sol, e an arbitrary problei 1, Iance'? Ilurthriorc, can wC autoI(imatically lCaun a USC1fl

macro network for an arbitrary problem space? In order to answcr these qtilestions rca i stically, we

consider an arbitrary discrete problem space.

8.4.3.1. \iacro/Search Tradeoff

In order to quantify the macro/search tradcoff ve return to the sin,,l-goal model in which every

problem instance has a diffcrent initial state but the ,ame goal ,tate. We as.,unc that the macro

network is connected, dat it contains the single goal state, and that it Uniformly covers the problem

space in the sense that the average distance from a state to the closest macro is roughly constant over

the entire space. We fLI rther assume that finding a path to the goal from any point on the macro

network requires no search. One way of accomplishing this is to mark every macro with the direction

to the goal.

let .S" be the number of states in tile space and let Al be the size of te macro network expressed as

the number of states that are located on a macro. Since we assume that the macros ,inifoimly cover

the space. we expect one out orcverV S/31 states in any part of the space to lie on z macro. Thus, if

we start 1rom any arbitrary initial state, we would expect to have to search about S/I! states before

findinag a state on the macro network. Hence, the total amount of search is S/Al. Note that the

product of the number of states in th macro network, At, and the amount of,-earch required to find a

path from any arbitrary state to the goal, S/AlI, equals the number of states in the space, S,

independent of the size of the macro network. In other words, there is a multiplicative tradeoff

between the size of the macro network and the amount of search required to solve problem instances

in the space.

8.4.3.2. Learning Macros in Arbitrary Problem Spaces

Given an arbitrary problem space, how can we learn a macro network which will achieve the above

tradeoff? One possibility is to take a random walk starting from the goal state, Md store the path as a

macro. However, random walks tend to wander around their origins, and hence such a macro is not

likely to reach states that are far from the goal. If we bias the random walk by excluding all states that

were previously visited, the distance from the origin will gradually increase, but very slowly. Hence,

another technique is required.

Note that the most useful macros in a Euclidean problem space are straight line segments. A
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straight line has the properCy that the shortest path be tween any two points on the linc is along the
line. The analog ofa straight line in an arbitrary discrete probleim space is a macro with the property

that the shortest path between any two states on the macro is along tle macro. All the macros

considered so far in this thesis, with the exception of the seven generated tor tie 3x3x3 Rubik's Cube

using macro composition, have this optimality property.

This Stiggcsts that a usefil macro network for an arbitrary problem graph could be learned by

conducting a b,-,adth-tirst search from the goal statc. and storing several macros which have the

property that each successive state on each macro is one move further from the goal ia the shortest

path than the preceding sutte. Once the depth limit of the search is reached by exlausting tie

available memory, then similar searches could be sprouted from the ends of each of the nacros, and

this process could be repeated. A technique such as this may prove to be a useful general learning

paradigm.

8.4.4. Macros in Theorem Proving and Computer Programming

We now turn our attention to two real-world problem solving domains, theorem proving and

computer programming, and find that much of the knowledge in these domains can be captured in

the form ot'macro-operators.

8.4.4.1. Theorem Proving

Consider the problem of proving theorems in some axiomnatized domain such as propositional

logic. A state in the problem space is the set of formulas that are known to be true at any given point.

The initial state is composed of the axioms of the system plus the antecedent of the theorem to be

proved. The goal state is one in which the consequent of the theorem is asserted. The task is to find a

sequence of states from the antecedent to the consequent of the theorem. The primitive operators of

dte space are the rles of inference of the system.

A difficult theorem to prove usually involves a long sequence of applications of axioms and rules of

inference. One way in which a theorem prover impioves its performance is by learning and

remembering theorems which can be used as lemmas to prove other theorems. When a theorem is

used as a lemma in a proof, it is simply a shorthand notation for the sequence of individual steps that

went into proving the theorem initially. Thus a theorem behaves as a macro-operator when used in a

proof.

Knowledge about a domain generally advances by the accumulation of more and more theorems
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that are proven. [hese theorems have tI, o purpsPsS. One is that they reprcscnt knowledge about the

domain tor its own sake. The other, and perhaps more important purpose, is that these theorems can

be used as lemmas to proe other theorems. These other thcorCms to he proved may be beyond the

capability of the thCorcm pro~er without the addition of these leimmas as single deductions. Thus, we

find that much of the knowledge in a theorem proving domain can be viewed as macro-operators.

8.4.4.2. Computer Programming

A similar situation exists in the domain of computer programming. [he problem of computer

programming is to generate a sequence of machine instructions which when run on a computer will

implement a particular algorithm. The primitive operators of the space are these machine

instructions. In general, a complex program may involve sequences which are thousands of machine

instructions long.

One of the early techniques discovered for dealing with this complexity was higher level languages

and compilers. A higher level language is a set of programming constructs with the property that in

generil each construct expands into several lower level machine instructions. (if the correspondence

is one-to-one. the language is called an assembly language.) A compiler is provided to perform this

translation automatically. Thus. the constructs of a higher level language can be viewed as macro-

operators in the space of machine instructions.

The value of these higher level constructs is that they improve the efficiency of the programming

process, although in general at a slight cost in efficiency of the resulting programs. The reason for the

improvement is that it has been shown empirically that the productivity of a programmer in terms of

statements per day is relatively independent of de language. Thus, a programmer coding in a higher

level language effectively produces more machine language instructions per day than a programmer

in an assembly language. The constructs of a higher level language represent knowledge about

programming because they select out those particular sequences of machine instructions, out of all

possible sequences, which are likely to be most useful to a programmer.

Note that this process of constructing higher level macro-operators out of sequences of lower level

instructions is repeated at man' different levels of the programming process. For example, the

beginning student of a higher level language learns and stores program schemas which are common

patterns of usage of language statements. Similarly, the expert programmer usually writes a set of

procedures or subroutines which are appropriate to his application and then writes the rest of the

program in terms of these routines. Both these schemas and subroutines are macros constructed from
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the highcr level Ia nguage, and reprVCsent knowAlCJ9 11)e abot al C~ISS 01 programmI11ing problems or an

application domain.

Helnce, we find that inl Computer programming, as inl ti..z;-C, pro~ ing. knowledge is often encoded

as macro-operators. I n fact, the term macro itself is borrowed fromn a sequceIC of insiruiCtionS Used in

computer programming.

8.5. Conclusions

There arc several research directions for extcnd~lng the wckprcewnted ill this thesis. One Is thc

aUtomatic seletion of solution orders and target values Cor- the Macro Problem Solver. Another is

enhancing the power of the method by comnhining it with other problem solving methods such as

operator subgoaling. macro generalization, and problemn decomnposition. A third direction is to

evaluate the proposed mealsure of problem difficulty with respect to other problem solving programs

and human problem solvers. Finally, the most important extension to this work is the application of

macros to other problem domains, and in particu.lar thc dec~elopnient of the paradigin of learning by

searching for macro-operators.
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Chapter 9

Conclusions

There are sexeral Conclusions that can be drawn frorm this work. The first is that our current

collection of weak methods is incomplete. In particular, there exists problems, such as Rubik's Cube,

that cannot be solved efficiently by any of the weak methods, including means-ends analysis and

heuristic search. I lowever, these problems can be solved by people with no prior knowledge of the

problems. This implies that some other technique must be involved.

The Macro Problem Solver, a new problem solving method based on macro-operators, can solve

these problems efficiently. The basic idea is that while the primitive operators of the space may make

large global changes in the state of the problem, there exist sequences of primitive operators that

make only small local changes. While a fairly general method, thc technique depends on problem

dependent knowledge in the form of the macro-operators.

These macros can be learned automatically. Learning is accomplished by searching through the

space of all macro-operators for those macros which leave most of the problem state invariant. The

macro learning techniques are relatively problem independent. For difficult problems, such as the

full 3x3x3 Rubik's Cube, the learning methods are sufficiently powerful to find all necessary macros

is a reasonable amount of computer time (less than 15 minutes).

'he success of this paradigm is bascd on a structural property of problems called operator

decomposability. An operator is totally decomposable if its effect on each component of a state can

be expressed as a function of only that component of the state. Given an ordering of the state

components, a operator is serially decomposable if its effect on each state component can be

expressed as a function of only that component and any previous components in the ordering. Total

decomposability is a special case of serial decomposability. The Macro Problem Solver and the macro

learning techniques arc effective for any problems which are serially decomposable. Operator

decomposability is a property of a problem space which allows a general strategy for solving a

problem from any initial state to be based on a relatively small amount of knowledge.
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The performance of this ITCLhod, l1e;aSulred in tcrnis Of number of macros that have to he stored,

learning time, and number ot prinitivc operators for a solutm1. is quite accepa)le when compared

with problei difficulty. In particular, 1) the nuiiber of macros is a small Iraction of die total number

of states in the space. 2) the amount of time to learn all the macros is of the same order as would be

required to solve just one instance of the problc:n, and 3) the worst case solution length is no more

than n times the optimal solution length, where n is the number of subgoals the problem is broken

down into.

Finally, it is observed that macro-operators, viewed more generally, are a useftil representation for

knowledge in several domains, inclUding road navigation, theorem proving, computer programming.

This suggests that the paradigm of learning by searching for macro-operator,; may be a fairly general

learning paradigm, or in other words, a weak method for learning.
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