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Abstract. Machine learning techniques are often used in computer
vision due to their ability to leverage large amounts of training data
to improve performance. Unfortunately, most generic object trackers are
still trained from scratch online and do not benefit from the large num-
ber of videos that are readily available for offline training. We propose
a method for offline training of neural networks that can track novel
objects at test-time at 100 fps. Our tracker is significantly faster than pre-
vious methods that use neural networks for tracking, which are typically
very slow to run and not practical for real-time applications. Our tracker
uses a simple feed-forward network with no online training required. The
tracker learns a generic relationship between object motion and appear-
ance and can be used to track novel objects that do not appear in the
training set. We test our network on a standard tracking benchmark
to demonstrate our tracker’s state-of-the-art performance. Further, our
performance improves as we add more videos to our offline training set.
To the best of our knowledge, our tracker (Our tracker is available at
http://davheld.github.io/GOTURN/GOTURN.html) is the first neural-
network tracker that learns to track generic objects at 100 fps.

Keywords: Tracking · Deep learning · Neural networks · Machine
learning

1 Introduction

Given some object of interest marked in one frame of a video, the goal of “single-
target tracking” is to locate this object in subsequent video frames, despite object
motion, changes in viewpoint, lighting changes, or other variations. Single-target
tracking is an important component of many systems. For person-following appli-
cations, a robot must track a person as they move through their environment. For
autonomous driving, a robot must track dynamic obstacles in order to estimate
where they are moving and predict how they will move in the future.
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Fig. 1. Using a collection of videos and images with bounding box labels (but no
class information), we train a neural network to track generic objects. At test time, the
network is able to track novel objects without any fine-tuning. By avoiding fine-tuning,
our network is able to track at 100 fps

Generic object trackers (trackers that are not specialized for specific classes
of objects) are traditionally trained entirely from scratch online (i.e. during test
time) [3,15,19,36], with no offline training being performed. Such trackers suffer
in performance because they cannot take advantage of the large number of videos
that are readily available to improve their performance. Offline training videos
can be used to teach the tracker to handle rotations, changes in viewpoint,
lighting changes, and other complex challenges.

In many other areas of computer vision, such as image classification, object
detection, segmentation, or activity recognition, machine learning has allowed
vision algorithms to train from offline data and learn about the world [5,9,13,
23,25,28]. In each of these cases, the performance of the algorithm improves as it
iterates through the training set of images. Such models benefit from the ability
of neural networks to learn complex functions from large amounts of data.

In this work, we show that it is possible to learn to track generic objects in real-
time by watching videos offline of objects moving in the world. To achieve this goal,
we introduce GOTURN, Generic Object Tracking Using Regression Networks. We
train a neural network for tracking in an entirely offline manner. At test time, when
tracking novel objects, the network weights are frozen, and no online fine-tuning
required (as shown in Fig. 1). Through the offline training procedure, the tracker
learns to track novel objects in a fast, robust, and accurate manner.

Although some initial work has been done in using neural networks for track-
ing, these efforts have produced neural-network trackers that are too slow for
practical use. In contrast, our tracker is able to track objects at 100 fps, making it,
to the best of our knowledge, the fastest neural-network tracker to-date. Our real-
time speed is due to two factors. First, most previous neural network trackers are
trained online [7,24,26,27,30,34,35,37,39]; however, training neural networks is
a slow process, leading to slow tracking. In contrast, our tracker is trained offline
to learn a generic relationship between appearance and motion, so no online
training is required. Second, most trackers take a classification-based approach,
classifying many image patches to find the target object [24,26,27,30,33,37,39].
In contrast, our tracker uses a regression-based approach, requiring just a single
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feed-forward pass through the network to regresses directly to the location of
the target object. The combination of offline training and one-pass regression
leads to a significant speed-up compared to previous approaches and allows us
to track objects at real-time speeds.

GOTURN is the first generic object neural-network tracker that is able to
run at 100 fps. We use a standard tracking benchmark to demonstrate that our
tracker outperforms state-of-the-art trackers. Our tracker trains from a set of
labeled training videos and images, but we do not require any class-level labeling
or information about the types of objects being tracked. GOTURN establishes
a new framework for tracking in which the relationship between appearance and
motion is learned offline in a generic manner. Our code and additional experi-
ments can be found at http://davheld.github.io/GOTURN/GOTURN.html.

2 Related Work

Online training for tracking. Trackers for generic object tracking are typically
trained entirely online, starting from the first frame of a video [3,15,19,36]. A
typical tracker will sample patches near the target object, which are considered as
“foreground” [3]. Some patches farther from the target object are also sampled,
and these are considered as “background.” These patches are then used to train
a foreground-background classifier, and this classifier is used to score patches
from the next frame to estimate the new location of the target object [19,36].
Unfortunately, since these trackers are trained entirely online, they cannot take
advantage of the large amount of videos that are readily available for offline
training that can potentially be used to improve their performance.

Some researchers have also attempted to use neural networks for tracking
within the traditional online training framework [7,16,24,26,27,30,34,35,37,39],
showing state-of-the-art results [7,21,30]. Unfortunately, neural networks are
very slow to train, and if online training is required, then the resulting tracker will
be very slow at test time. Such trackers range from 0.8 fps [26] to 15 fps [37], with
the top performing neural-network trackers running at 1 fps on a GPU [7,21,30].
Hence, these trackers are not usable for most practical applications. Because our
tracker is trained offline in a generic manner, no online training of our tracker is
required, enabling us to track at 100 fps.

Model-based trackers. A separate class of trackers are the model-based track-
ers which are designed to track a specific class of objects [1,11,12]. For example,
if one is only interested in tracking pedestrians, then one can train a pedestrian
detector. During test-time, these detections can be linked together using tempo-
ral information. These trackers are trained offline, but they are limited because
they can only track a specific class of objects. Our tracker is trained offline in a
generic fashion and can be used to track novel objects at test time.

Other neural network tracking frameworks. A related area of research is
patch matching [14,38], which was recently used for tracking in [33], running
at 4 fps. In such an approach, many candidate patches are passed through the
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network, and the patch with the highest matching score is selected as the tracking
output. In contrast, our network only passes two images through the network,
and the network regresses directly to the bounding box location of the target
object. By avoiding the need to score many candidate patches, we are able to
track objects at 100 fps.

Prior attempts have been made to use neural networks for tracking in var-
ious other ways [18], including visual attention models [4,29]. However, these
approaches are not competitive with other state-of-the-art trackers when evalu-
ated on difficult tracker datasets.

3 Method

3.1 Method Overview

At a high level, we feed frames of a video into a neural network, and the network
successively outputs the location of the tracked object in each frame. We train
the tracker entirely offline with video sequences and images. Through our offline
training procedure, our tracker learns a generic relationship between appearance
and motion that can be used to track novel objects at test time with no online
training required.

3.2 Input/Output Format

What to track. In case there are multiple objects in the video, the network
must receive some information about which object in the video is being tracked.
To achieve this, we input an image of the target object into the network. We
crop and scale the previous frame to be centered on the target object, as shown
in Fig. 2. This input allows our network to track novel objects that it has not
seen before; the network will track whatever object is being input in this crop.
We pad this crop to allow the network to receive some contextual information
about the surroundings of the target object.

Fig. 2. Our network architecture for tracking. We input to the network a search region
from the current frame and a target from the previous frame. The network learns to
compare these crops to find the target object in the current image
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In more detail, suppose that in frame t − 1, our tracker previously predicted
that the target was located in a bounding box centered at c = (cx, cy) with a
width of w and a height of h. At time t, we take a crop of frame t − 1 centered
at (cx, cy) with a width and height of k1w and k1h, respectively. This crop tells
the network which object is being tracked. The value of k1 determines how much
context the network will receive about the target object from the previous frame.

Where to look. To find the target object in the current frame, the tracker
should know where the object was previously located. Since objects tend to
move smoothly through space, the previous location of the object will provide
a good guess of where the network should expect to currently find the object.
We achieve this by choosing a search region in our current frame based on the
object’s previous location. We crop the current frame using the search region and
input this crop into our network, as shown in Fig. 2. The goal of the network is
then to regress to the location of the target object within the search region.

In more detail, the crop of the current frame t is centered at c′ = (c′
x, c′

y),
where c′ is the expected mean location of the target object. We set c′ = c, which
is equivalent to a constant position motion model, although more sophisticated
motion models can be used as well. The crop of the current frame has a width
and height of k2 w and k2 h, respectively, where w and h are the width and height
of the predicted bounding box in the previous frame, and k2 defines our search
radius for the target object. In practice, we use k1 = k2 = 2.

As long as the target object does not become occluded and is not moving too
quickly, the target will be located within this region. For fast-moving objects, the
size of the search region could be increased, at a cost of increasing the complexity
of the network. Alternatively, to handle long-term occlusions or large movements,
our tracker can be combined with another approach such as an online-trained
object detector, as in the TLD framework [19], or a visual attention model [2,4,
29]; we leave this for future work.

Network output. The network outputs the coordinates of the object in the
current frame, relative to the search region. The network’s output consists of
the coordinates of the top left and bottom right corners of the bounding box.

3.3 Network Architecture

For single-target tracking, we define a novel image-comparison tracking archi-
tecture, shown in Fig. 2 (note that related “two-frame” architectures have also
been used for other tasks [10,20]). In this model, we input the target object
as well as the search region each into a sequence of convolutional layers. The
output of these convolutional layers is a set of features that capture a high-level
representation of the image.

The outputs of these convolutional layers are then fed through a number
of fully connected layers. The role of the fully connected layers is to compare
the features from the target object to the features in the current frame to find
where the target object has moved. Between these frames, the object may have
undergone a translation, rotation, lighting change, occlusion, or deformation.
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The function learned by the fully connected layers is thus a complex feature
comparison which is learned through many examples to be robust to these vari-
ous factors while outputting the relative motion of the tracked object.

In more detail, the convolutional layers in our model are taken from the first
five convolutional layers of the CaffeNet architecture [17,23]. We concatenate the
output of these convolutional layers (i.e. the pool5 features) into a single vector.
This vector is input to 3 fully connected layers, each with 4096 nodes. Finally, we
connect the last fully connected layer to an output layer that contains 4 nodes
which represent the output bounding box. We scale the output by a factor of 10,
chosen using our validation set (as with all of our hyperparameters). Network
hyperparameters are taken from the defaults for CaffeNet, and between each
fully-connected layer we use dropout and ReLU non-linearities as in CaffeNet.
Our neural network is implemented using Caffe [17].

3.4 Tracking

During test time, we initialize the tracker with a ground-truth bounding box
from the first frame, as is standard practice for single-target tracking. At each
subsequent frame t, we input crops from frame t−1 and frame t into the network
(as described in Sect. 3.2) to predict where the object is located in frame t. We
continue to re-crop and feed pairs of frames into our network for the remainder
of the video, and our network will track the movement of the target object
throughout the entire video sequence.

4 Training

We train our network with a combination of videos and still images. The training
procedure is described below. In both cases, we train the network with an L1
loss between the predicted bounding box and the ground-truth bounding box.

4.1 Training from Videos and Images

Our training set consists of a collection of videos in which a subset of frames
in each video are labeled with the location of some object. For each successive
pair of frames in the training set, we crop the frames as described in Sect. 3.2.
During training time, we feed this pair of frames into the network and attempt
to predict how the object has moved from the first frame to the second frame
(shown in Fig. 3). We also augment these training examples using our motion
model, as described in Sect. 4.2.

Our training procedure can also take advantage of a set of still images that are
each labeled with the location of an object. This training set of images teaches
our network to track a more diverse set of objects and prevents overfitting to the
objects in our training videos. To train our tracker from an image, we take ran-
dom crops of the image according to our motion model (see Sect. 4.2). Between
these two crops, the target object has undergone an apparent translation and
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Fig. 3. Examples of training videos. The goal of the network is to predict the location
of the target object shown in the center of the video frame in the top row, after being
shifted as in the bottom row. The ground-truth bounding box is marked in green (Color
figure online)

Fig. 4. Examples of training images. The goal of the network is to predict the location
of the target object shown in the center of the image crop in the top row, after being
shifted as in the bottom row. The ground-truth bounding box is marked in green (Color
figure online)

scale change, as shown in Fig. 4. We treat these crops as if they were taken from
different frames of a video. Although the “motions” in these crops are less var-
ied than the types of motions found in our training videos, these images are still
useful to train our network to track a variety of different objects.

4.2 Learning Motion Smoothness

Objects in the real-world tend to move smoothly through space. Given an
ambiguous image in which the location of the target object is uncertain, a tracker
should predict that the target object is located near to the location where it was
previously observed. This is especially important in videos that contain multiple
nearly-identical objects, such as multiple fruit of the same type. Thus we wish
to teach our network that, all else being equal, small motions are preferred to
large motions.

To concretize the idea of motion smoothness, we model the center of the
bounding box in the current frame (c′

x, c′
y) relative to the center of the bounding

box in the previous frame (cx, cy) as

c′
x = cx + w · ∆x (1)

c′
y = cy + h · ∆y (2)
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where w and h are the width and height, respectively, of the bounding box of
the previous frame. The terms ∆x and ∆y are random variables that capture
the change in position of the bounding box relative to its size. In our training
set, we find that objects change their position such that ∆x and ∆y can each
be modeled with a Laplace distribution with a mean of 0 (see Supplementary
Material for details). Such a distribution places a higher probability on smaller
motions than larger motions.

Similarly, we model size changes by

w′ = w · γw (3)

h′ = h · γh (4)

where w′ and h′ are the current width and height of the bounding box and w
and h are the previous width and height of the bounding box. The terms γw and
γh are random variables that capture the size change of the bounding box. We
find in our training set that γw and γh are modeled by a Laplace distribution
with a mean of 1. Such a distribution gives a higher probability on keeping the
bounding box size near the same as the size from the previous frame.

To teach our network to prefer small motions to large motions, we aug-
ment our training set with random crops drawn from the Laplace distributions
described above (see Figs. 3 and 4 for examples). Because these training examples
are sampled from a Laplace distribution, small motions will be sampled more
than large motions, and thus our network will learn to prefer small motions
to large motions, all else being equal. We will show that this Laplace cropping
procedure improves the performance of our tracker compared to the standard
uniform cropping procedure used in classification tasks [23].

The scale parameters for the Laplace distributions are chosen via cross-
validation to be bx = 1/5 (for the motion of the bounding box center) and
bs = 1/15 (for the change in bounding box size). We constrain the random crop
such that it must contain at least half of the target object in each dimension. We
also limit the size changes such that γw, γh ∈ (0.6, 1.4), to avoid overly stretching
or shrinking the bounding box in a way that would be difficult for the network
to learn.

4.3 Training Procedure

To train our network, each training example is alternately taken from a video or
from an image. When we use a video training example, we randomly choose a
video, and we randomly choose a pair of successive frames in this video. We then
crop the video according to the procedure described in Sect. 3.2. We additionally
take k3 random crops of the current frame, as described in Sect. 4.2, to augment
the dataset with k3 additional examples. Next, we randomly sample an image,
and we repeat the procedure described above, where the random cropping creates
artificial “motions” (see Sects. 4.1 and 4.2). Each time a video or image gets sam-
pled, new random crops are produced on-the-fly, to create additional diversity in
our training procedure. In our experiments, we use k3 = 10, and we use a batch
size of 50.
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The convolutional layers in our network are pre-trained on ImageNet [8,31].
Because of our limited training set size, we do not fine-tune these layers to
prevent overfitting. We train this network with a learning rate of 1e–5, and
other hyperparameters are taken from the defaults for CaffeNet [17].

5 Experimental Setup

5.1 Training Set

As described in Sect. 4, we train our network using a combination of videos and
still images. Our training videos come from ALOV300++ [32], a collection of
314 video sequences. We remove 7 of these videos that overlap with our test
set (see Supplementary Material for details), leaving us with 307 videos to be
used for training. In this dataset, approximately every 5th frame of each video
has been labeled with the location of some object being tracked. These videos
are generally short, ranging from a few seconds to a few minutes in length. We
split these videos into 251 for training and 56 for validation/hyper-parameter
tuning. The training set consists of a total of 13,082 images of 251 different
objects, or an average of 52 frames per object. The validation set consists of
2,795 images of 56 different objects. After choosing our hyperparameters, we
retrain our model using our entire training set (training + validation). After
removing the 7 overlapping videos, there is no overlap between the videos in the
training and test sets.

Our training procedure also leveraged a set of still images that were used for
training, as described in Sect. 4.1. These images were taken from the training set
of the ImageNet Detection Challenge [31], in which 478,807 objects were labeled
with bounding boxes. We randomly crop these images during training time, as
described in Sect. 4.2, to create an apparent translation or scale change between
two random crops. The random cropping procedure is only useful if the labeled
object does not fill the entire image; thus, we filter those images for which the
bounding box fills at least 66 % of the size of the image in either dimension
(chosen using our validation set). This leaves us with a total of 239,283 anno-
tations from 134,821 images. These images help prevent overfitting by teaching
our network to track objects that do not appear in the training videos.

5.2 Test Set

Our test set consists of the 25 videos from the VOT 2014 Tracking Challenge [22].
We could not test our method on the VOT 2015 challenge [21] because there
would be too much overlap between the test set and our training set. However,
we expect the general trends of our method to still hold.

The VOT 2014 Tracking Challenge [22] is a standard tracking benchmark
that allows us to compare our tracker to a wide variety of state-of-the-art track-
ers. The trackers are evaluated using two standard tracking metrics: accuracy (A)
and robustness (R) [6,22], which range from 0 to 1. We also compute accuracy
errors (1 − A), robustness errors (1 − R), and overall errors 1 − (A + R)/2.
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Each frame of the video is annotated with a number of attributes: occlusion,
illumination change, motion change, size change, and camera motion. The track-
ers are also ranked in accuracy and robustness separately for each attribute, and
the rankings are then averaged across attributes to get a final average accuracy
and robustness ranking for each tracker. The accuracy and robustness rankings
are averaged to get an overall average ranking.

6 Results

6.1 Overall Performance

The performance of our tracker is shown in Fig. 5, which demonstrates that our
tracker has good robustness and performs near the top in accuracy. Further,
our overall ranking (computed as the average of accuracy and robustness) out-
performs all previous trackers on this benchmark. We have thus demonstrated
the value of offline training for improving tracking performance. Moreover, these
results were obtained after training on only 307 short videos. Figure 5 as well
as analysis in the supplement suggests that further gains could be achieved if
the training set size were increased by labeling more videos. Qualitative results,
as well as failure cases, can be seen in the Supplementary Video; currently, the
tracker can fail due to occlusions or overfitting to objects in the training set.

On an Nvidia GeForce GTX Titan X GPU with cuDNN acceleration, our
tracker runs at 6.05 ms per frame (not including the 1 ms to load each image in
OpenCV), or 165 fps. On a GTX 680 GPU, our tracker runs at an average of

Fig. 5. Tracking results from the VOT 2014 tracking challenge. Our tracker’s perfor-
mance is indicated with a blue circle, outperforming all previous methods on the overall
rank (average of accuracy and robustness ranks). The points shown along the black line
represent training from 14, 37, 157, and 307 videos, with the same number of training
images used in each case (Color figure online)
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Fig. 6. Rank vs runtime of our tracker (red) compared to the 38 baseline methods from
the VOT 2014 Tracking Challenge (blue). Each blue dot represents the performance
of a separate baseline method (best viewed in color). Accuracy and robustness metrics
are shown in the supplement (Color figure online)

9.98 ms per frame, or 100 fps. If only a CPU is available, the tracker runs at 2.7
fps. Because our tracker is able to perform all of its training offline, during test
time the tracker requires only a single feed-forward pass through the network,
and thus the tracker is able to run at real-time speeds.

We compare the speed and rank of our tracker compared to the 38 other
trackers submitted to the VOT 2014 Tracking Challenge [22] in Fig. 6, using the
overall rank score described in Sect. 5.2. We show the runtime of the tracker
in EFO units (Equivalent Filter Operations), which normalizes for the type of
hardware that the tracker was tested on [22]. Figure 6 demonstrates that ours
was one of the fastest trackers compared to the 38 other baselines, while outper-
forming all other methods in the overall rank (computed as the average of the
accuracy and robustness ranks). Note that some of these other trackers, such as
ThunderStruck [22], also use a GPU.

Our tracker is able to track objects in real-time due to two aspects of our model:
First, we learn a generic tracking model offline, so no online training is required.
Online training of neural networks tends to be very slow, preventing real-time per-
formance. Online-trained neural network trackers range from 0.8 fps [26] to 15
fps [37], with the top performing trackers running at 1 fps on a GPU [7,21,30].
Second, most trackers evaluate a finite number of samples and choose the highest
scoring one as the tracking output [24,26,27,30,33,37,39]. With a sampling app-
roach, the accuracy is limited by the number of samples, but increasing the num-
ber of samples also increases the computational complexity. On the other hand,
our tracker regresses directly to the output bounding box, so GOTURN achieves
accurate tracking with no extra computational cost, enabling it to track objects
at 100 fps.

6.2 How Does It Work?

How does our neural-network tracker work? There are two hypotheses that one
might propose:
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1. The network compares the previous frame to the current frame to find the
target object in the current frame.

2. The network acts as a local generic “object detector” and simply locates the
nearest “object.”

We differentiate between these hypotheses by comparing the performance of our
network (shown in Fig. 2) to the performance of a network which does not receive
the previous frame as input (i.e. the network only receives the current frame as
input). For this experiment, we train each of these networks separately. If the
network does not receive the previous frame as input, then the tracker can only
act as a local generic object detector (hypothesis 2).

Figure 7 shows the degree to which each of the hypotheses holds true for
different tracking conditions. For example, when there is an occlusion or a large
camera motion, the tracker benefits greatly from using the previous frame, which
enables the tracker to “remember” which object is being tracked. Figure 7 shows
that the tracker performs much worse in these cases when the previous frame
is not included. In such cases, hypothesis 1 plays a large role, i.e. the tracker is
comparing the previous frame to the current frame to find the target object.

On the other hand, when there is a size change or no variation, the tracker
performs slightly worse when using the previous frame (or approximately the
same). Under a large size change, the corresponding appearance change is too
drastic for our network to perform an accurate comparison between the previous
frame and the current frame. Thus the tracker is acting as a local generic object
detector in such a case and hypothesis 2 is dominant. Each hypothesis holds true
in varying degrees for different tracking conditions, as shown in Fig. 7.

Fig. 7. Overall tracking errors for our network which receives as input both the cur-
rent and previous frame, compared to a network which receives as input only the
current frame (lower is better). This comparison allows us to disambiguate between
two hypotheses that can explain how our neural-network tracker works (see Sect. 6.2).
Accuracy and robustness metrics are shown in the supplement
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6.3 Generality vs Specificity

How well can our tracker generalize to novel objects not found in our training
set? For this analysis, we separate our test set into objects for which at least 25
videos of the same class appear in our training set and objects for which fewer
than 25 videos of that class appear in our training set. Figure 8 shows that, even
for test objects that do not have any (or very few) similar objects in our training
set, our tracker performs well. The performance continues to improve even as
videos of unrelated objects are added to our training set, since our tracker is
able to learn a generic relationship between an object’s appearance change and
its motion that can generalize to novel objects.

Fig. 8. Overall tracking errors for different types of objects in our test set as a function
of the number of videos in our training set (lower is better). Class labels are not used by
our tracker; these labels were obtained only for the purpose of this analysis. Accuracy
and robustness metrics are shown in the supplement

Additionally, our tracker can also be specialized to track certain objects par-
ticularly well. Figure 8 shows that, for test objects for which at least 25 videos
of the same class appear in the training set, we obtain a large improvement as
more training videos of those types of objects are added. This allows the user
to specialize the tracker for particular applications. For example, if the tracker
is being used for autonomous driving, then the user can add more objects of
people, bikes, and cars into the training set, and the tracker will learn to track
those objects particularly well. At the same time, Fig. 8 also demonstrates that
our tracker can track novel objects that do not appear in our training set, which
is important when tracking objects in uncontrolled environments.

6.4 Ablative Analysis

In Table 1, we show which components of our system contribute the most to
our performance. We train our network with random cropping from a Laplace
distribution to teach our tracker to prefer small motions to large motions (e.g.
motion smoothness), as explained in Sect. 4.2. Table 1 shows the benefit of this
approach compared to the baseline of uniformly sampling random crops (“No
motion smoothness”), as is typically done for classification [23]. As shown, we
reduce errors by 20 % by drawing our random crops from a Laplace distribution.
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Table 1. Comparing our full GOTURN tracking method to various modified versions
of our method to analyze the effect of different components of the system

GOTURN variant Overall errors Accuracy errors Robustness errors

L2 loss 0.43 0.69 0.17

No motion smoothness 0.30 0.48 0.13

Image training only 0.35 0.54 0.16

Video training only 0.29 0.44 0.13

Full method (Ours) 0.24 0.39 0.10

Table 1 also shows the benefit of using an L1 loss compared to an L2 loss.
Using an L1 loss significantly reduces the overall tracking errors from 0.43 to
0.24. Because the L2 penalty is relatively flat near 0, the network does not
sufficiently penalize outputs that are close but not correct, and the network
would often output a bounding box that was slightly too large or too small.
When applied to a sequence of frames, the bounding box would grow or shrink
without bound until the predicted bounding box was just a single point or the
entire image. In contrast, an L1 loss penalizes more harshly answers that are
only slightly incorrect, which keeps the bounding box size closer to the correct
size and prevents the bounding box from shrinking or growing without bound.

We train our tracker using a combination of images and videos. Table 1 shows
that, given the choice between images and videos, training on only videos gives
a much bigger improvement to our tracker performance. At the same time,
training on both videos and images gives the maximum performance for our
tracker. Training on a small number of labeled videos has taught our tracker to
be invariant to background motion, out-of-plane rotations, deformations, lighting
changes, and minor occlusions. Training from a large number of labeled images
has taught our network how to track a wide variety of different types of objects.
By training on both videos and images, our tracker learns to track a variety of
object types under different conditions, achieving maximum performance.

7 Conclusions

We have demonstrated that we can train a generic object tracker offline such
that its performance improves by watching more training videos. During test
time, we run the network in a purely feed-forward manner with no online fine-
tuning required, allowing the tracker to run at 100 fps. Our tracker learns offline
a generic relationship between an object’s appearance and its motion, allowing
our network to track novel objects at real-time speeds.
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UDARO and ONR grant 1165419-10-TDAUZ.



Learning to Track at 100 FPS with Deep Regression Networks 763

References

1. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-
detection-by-tracking. In: IEEE Conference on Computer Vision and Pattern
Recognition, 2008. CVpPR 2008, pp. 1–8. IEEE (2008)

2. Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual atten-
tion. arXiv preprint arXiv:1412.7755 (2014)

3. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple
instance learning. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2009. CVPPR 2009, pp. 983–990. IEEE (2009)

4. Bazzani, L., Larochelle, H., Murino, V.,Ting, J.a., Freitas, N.D.: Learning atten-
tional policies for tracking and recognition in video with deep networks. In: Pro-
ceedings of the 28th International Conference on Machine Learning (ICML-2011),
pp. 937–944 (2011)

5. Bo, L., Ren, X., Fox, D.: Multipath sparse coding using hierarchical matching
pursuit. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 660–667. IEEE (2013)

6. Cehovin, L., Kristan, M., Leonardis, A.: Is my new tracker really better than yours?
In: 2014 IEEE Winter Conference on Applications of Computer Vision (WACV),
pp. 540–547. IEEE (2014)

7. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially reg-
ularized correlation filters for visual tracking. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 4310–4318 (2015)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition, 2009. CVPPR 2009, pp. 248–255. IEEE (2009)

9. Donahue, J., Hendricks, L.A., Guadarrama, S., Rohrbach, M., Venugopalan, S.,
Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual
recognition and description. arXiv preprint arXiv:1411.4389 (2014)

10. Dosovitskiy, A., Fischery, P., Ilg, E., Hazirbas, C., Golkov, V., van der Smagt, P.,
Cremers, D., Brox, T., et al.: FlowNet: learning optical flow with convolutional
networks. In: 2015 IEEE International Conference on Computer Vision (ICCV),
pp. 2758–2766. IEEE (2015)

11. Fan, J., Xu, W., Wu, Y., Gong, Y.: Human tracking using convolutional neural
networks. IEEE Trans. Neural Netw. 21(10), 1610–1623 (2010)

12. Geiger, A.: Probabilistic models for 3D urban scene understanding from movable
platforms. Ph.D. thesis, KIT (2013)

13. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 580–587. IEEE (2014)

14. Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: MatchNet: unifying fea-
ture and metric learning for patch-based matching. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3279–3286 (2015)

15. Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels.
In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 263–270.
IEEE (2011)

16. Hong, S., You, T., Kwak, S., Han, B.: Online tracking by learning discrimina-
tive saliency map with convolutional neural network. In: Proceedings of the 32nd
International Conference on Machine Learning, 6–11 July 2015, Lille (2015)

http://arxiv.org/abs/1412.7755
http://arxiv.org/abs/1411.4389


764 D. Held et al.

17. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,
S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093 (2014)

18. Jin, J., Dundar, A., Bates, J., Farabet, C., Culurciello, E.: Tracking with deep
neural networks. In: 2013 47th Annual Conference on Information Sciences and
Systems (CISS), pp. 1–5. IEEE (2013)

19. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans.
Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

20. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732
(2014)

21. Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Cehovin, L., Fernandez, G.,
Vojir, T., Hager, G., Nebehay, G., Pflugfelder, R.: The visual object tracking
vot2015 challenge results. In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV) Workshops, pp. 1–23 (2015)

22. Kristan, M., et al.: The visual object tracking VOT2014 challenge results. In:
Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp.
191–217. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16181-5 14

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

24. Kuen, J., Lim, K.M., Lee, C.P.: Self-taught learning of a deep invariant representa-
tion for visual tracking via temporal slowness principle. Pattern Recognit. 48(10),
2964–2982 (2015)

25. Levi, G., Hassner, T.: Age and gender classification using convolutional neural
networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
Workshop (CVPRW) (2015)

26. Li, H., Li, Y., Porikli, F.: DeepTrack: learning discriminative feature representa-
tions by convolutional neural networks for visual tracking. In: Proceedings of the
British Machine Vision Conference. BMVA Press (2014)

27. Li, H., Li, Y., Porikli, F.: DeepTrack: learning discriminative feature representa-
tions online for robust visual tracking. arXiv preprint arXiv:1503.00072 (2015)

28. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

29. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In:
Advances in Neural Information Processing Systems, pp. 2204–2212 (2014)

30. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual
tracking. arXiv preprint arXiv:1510.07945 (2015)

31. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: ImageNet large scale visual recog-
nition challenge. Int. J. Comput. Vis. 1–42 (2014)

32. Smeulders, A.W., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah,
M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach.
Intell. 36(7), 1442–1468 (2014)

33. Tao, R., Gavves, E., Smeulders, A.W.M.: Siamese instance search for tracking. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2016)

http://arxiv.org/abs/1408.5093
http://dx.doi.org/10.1007/978-3-319-16181-5_14
http://arxiv.org/abs/1503.00072
http://arxiv.org/abs/1510.07945


Learning to Track at 100 FPS with Deep Regression Networks 765

34. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolu-
tional networks. In: Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), pp. 3119–3127 (2015)

35. Wang, N., Li, S., Gupta, A., Yeung, D.Y.: Transferring rich feature hierarchies for
robust visual tracking. arXiv preprint arXiv:1501.04587 (2015)

36. Wang, N., Shi, J., Yeung, D.Y., Jia, J.: Understanding and diagnosing visual track-
ing systems. arXiv preprint arXiv:1504.06055 (2015)

37. Wang, N., Yeung, D.Y.: Learning a deep compact image representation for visual
tracking. In: Advances in Neural Information Processing Systems, pp. 809–817
(2013)

38. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convo-
lutional neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4353–4361 (2015)

39. Zhang, K., Liu, Q., Wu, Y., Yang, M.H.: Robust visual tracking via convolutional
networks. arXiv preprint arXiv:1501.04505 (2015)

http://arxiv.org/abs/1501.04587
http://arxiv.org/abs/1504.06055
http://arxiv.org/abs/1501.04505

	Learning to Track at 100 FPS with Deep Regression Networks
	1 Introduction
	2 Related Work
	3 Method
	3.1 Method Overview
	3.2 Input/Output Format
	3.3 Network Architecture
	3.4 Tracking

	4 Training
	4.1 Training from Videos and Images
	4.2 Learning Motion Smoothness
	4.3 Training Procedure

	5 Experimental Setup
	5.1 Training Set
	5.2 Test Set

	6 Results
	6.1 Overall Performance
	6.2 How Does It Work?
	6.3 Generality vs Specificity
	6.4 Ablative Analysis

	7 Conclusions
	References


