
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001 875

Learning to Trade via Direct Reinforcement
John Moody and Matthew Saffell

Abstract—We present methods for optimizing portfolios, asset
allocations, and trading systems based on direct reinforcement
(DR). In this approach, investment decision making is viewed as a
stochastic control problem, and strategies are discovered directly.
We present an adaptive algorithm called recurrent reinforcement
learning (RRL) for discovering investment policies. The need
to build forecasting models is eliminated, and better trading
performance is obtained. The direct reinforcement approach
differs from dynamic programming and reinforcement algorithms
such as TD-learning and Q-learning, which attempt to estimate
a value function for the control problem. We find that the RRL
direct reinforcement framework enables a simpler problem rep-
resentation, avoids Bellman’s curse of dimensionality and offers
compelling advantages in efficiency. We demonstrate how direct
reinforcement can be used to optimize risk-adjusted investment
returns (including the differential Sharpe ratio), while accounting
for the effects of transaction costs. In extensive simulation work
using real financial data, we find that our approach based on
RRL produces better trading strategies than systems utilizing
Q-Learning (a value function method). Real-world applications
include an intra-daily currency trader and a monthly asset
allocation system for the S&P 500 Stock Index and T-Bills.

Index Terms—Differential Sharpe ratio, direct reinforcement
(DR) , downside deviation, policy gradient, Q-learning, recurrent
reinforcement learning, TD-learning, trading, risk, value function.

I. INTRODUCTION

T HE investor’s or trader’s ultimate goal is to optimize some
relevant measure of trading system performance, such as

profit, economic utility, or risk-adjusted return. In this paper,
we describe direct reinforcement (DR) methods to optimize in-
vestment performance criteria. Investment decision making is
viewed as a stochastic control problem, and strategies are dis-
covered directly. We present an adaptive algorithm called re-
current reinforcement learning (RRL). The need to build fore-
casting models is eliminated, and better trading performance
is obtained. This methodology can be applied to optimizing
systems designed to trade a single security, allocate assets or
manage a portfolio.

Investment performance depends upon sequences of interde-
pendent decisions, and is thus path-dependent. Optimal trading
or portfolio rebalancing decisions require taking into account
the current system state, which includes both market condi-
tions and the currently held positions. Market frictions, the real-

Manuscript received March 6, 2001; revised March 29, 2001. This work was
supported by the Nonlinear Prediction Systems and from DARPA under Con-
tract DAAH01-96-C-R026 and AASERT Grant DAAH04-95-1-0485.

The authors are with the Computational Finance Program, Oregon Graduate
Institute of Science and Technology, Beaverton, OR 97006 USA, and also with
Nonlinear Prediction Systems, Beaverton, OR 97006 USA.

Publisher Item Identifier S 1045-9227(01)05010-X.

world costs of trading,1 make arbitrarily frequent trades or large
changes in portfolio composition become prohibitively expen-
sive. Thus, optimal decisions about establishing new positions
must consider current positions held.

In [1] and [2], we proposed the RRL algorithm for DR. RRL is
an adaptivepolicy searchalgorithm that can learn an investment
strategy on-line. We demonstrated in those papers that Direct
Reinforcement provides a more elegant and effective means for
training trading systems and portfolio managers when market
frictions are considered than do more standard supervised ap-
proaches.

In this paper, we contrast our DR (or “policy search”) ap-
proach with commonly used value function based approaches.
We use the term DR to refer to algorithms thatdo nothave to
learn a value function in order to derive a policy. DR methods
date back to the pioneering work by Farley and Clark [3], [4],
but have received little attention from the reinforcement learning
community during the past two decades. Notable exceptions
are Williams’ REINFORCE algorithm [5], [6] and Baxter and
Bartlett’s recent work [7].2

Methods such as dynamic programming [8], TD-Learning
[9] or Q-Learning [10], [11] have been the focus of most of
the modern research. These methods attempt to learn a value
function or the closely related Q-function. Such value function
methods are natural for problems like checkers or backgammon
where immediate feedback on performance is not readily avail-
able at each point in time. Actor-critic methods [12], [13] have
also received substantial attention. These algorithms are inter-
mediate between DR and value function methods, in that the
“critic” learns a value function which is then used to update the
parameters of the “actor.”3

Though much theoretical progress has been made in recent
years in the area of value function learning, there have been
relatively few widely-cited, successful applications of the tech-
niques. Notable examples include TD-gammon [19], [20], an
elevator scheduler [21] and a space-shuttle payload scheduler
[22]. Due to the inherently delayed feedback, these applica-
tions all use the TD-Learning or Q-Learning value function RL
methods.

For many financial decision making problems, however, re-
sults accrue gradually over time, and one can immediately mea-
sure short-term performance. This enables use of a DR approach

1Market frictions include taxes and a variety of transaction costs, such as com-
missions, bid/ask spreads, price slippage and market impact.

2Baxter and Bartlett have independently proposed the term DR for policy
gradient algorithms in a Markov decision process framework. We use the term
in the same spirit, but perhaps more generally, to refer to any reinforcement
learning algorithm thatdoes notrequire learning a value function.

3For reviews and in-depth presentations of value function and actor-critic
methods, see [16]–[18].

1045–9227/01$10.00 © 2001 IEEE

876 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

to provide immediate feedback to optimize the strategy. One
class of performance criteria frequently used in the financial
community are measures of risk-adjusted investment returns.
RRL can be used to learn trading strategies that balance the ac-
cumulation of return with the avoidance of risk. We describe
commonly used measures of risk, and review howdifferential
forms of the Sharpe ratio and downside deviation ratio can be
formulated to enable efficient online learning with RRL.

We present empirical results for discovering tradeable
structure in the U.S. Dollar/British Pound foreign exchange
market via DR. In addition, we compare performance for
an RRL-Trader and Q-Trader that learn switching strategies
between the S&P 500 Stock Index and Treasury Bills. For both
traders, the results demonstrate the presence of predictable
structure in US stock prices over a 25-year test period. However,
we find that the RRL-Trader performs substantially better than
the Q-Trader. Relative to Q-Learning, we observe that RRL
enables a simpler problem representation, avoids Bellman’s
curse of dimensionality and offers compelling advantages in
efficiency. The S&P 500 and foreign exchange results were
previously presented in [2], [23], and [24].

We discuss the relative merits of DR and value function
learning, and provide arguments and examples for why value
function based methods may result in unnatural problem
representations. Our results suggest that DR offers a powerful
alternative to reinforcement algorithms that learn a value
function, for problem domains where immediate estimates of
incremental performance can be obtained.

To conclude the introduction, we would like to note that
computational finance offers many interesting and challenging
potential applications of reinforcement learning methods.
While our work emphasizes DR, most applications in finance
to date have been based upon dynamic programming type
methods. Elton and Gruber [28] provide an early survey of
dynamic programming applications in finance. The problems
of optimum consumption and portfolio choice in continuous
time have been formulated by Merton [25]–[27] from the
standpoints of dynamic programming and stochastic control.
The extensive body of work on intertemporal (multi-period)
portfolio management and asset pricing is reviewed by Breeden
[29]. Duffie [30], [31] describes stochastic control and dy-
namic programming methods in finance in depth. Dynamic
programming provides the basis of the Coxet al. [32] and other
widely used binomial option pricing methods. See also the
strategic asset allocation work of Brennanet al.[33]. Due to the
curse of dimensionality, approximate dynamic programming
is often required to solve practical problems, as in the work
by Longstaff and Schwartz [34] on pricing American options.
During the past six years, there have been several applica-
tions that make use of value function reinforcement learning
methods. Van Roy [35] uses a TD() approach for valuing
options and performing portfolio optimization. Neuneier [36]
uses a Q-Learning approach to make asset allocation decisions,
and Neuneier and Mihatsch [37] incorporate a notion of risk
sensitivity into the construction of the Q-Function. Derivatives
pricing applications have been studied by Tsitsiklis and Van
Roy [38], [39]. Moody and Saffell compare DR to Q-Learning

for asset allocation in [23], and explore the minimization of
downside risk using DR in [24].

II. TRADING SYSTEMS AND PERFORMANCECRITERIA

A. Structure of Trading Systems

In this paper, we consider agents that trade fixed position sizes
in a single security. The methods described here can be general-
ized to more sophisticated agents that trade varying quantities of
a security, allocate assets continuously or manage multiple asset
portfolios. See [2] for a discussion of multiple asset portfolios.

Here, our traders are assumed to take only long, neutral, or
short positions, , of constant magnitude. Along
position is initiated by purchasing some quantity of a security,
while ashortposition is established by selling the security.4

The price series being traded is denoted. The position is
established or maintained at the end of each time interval, and
is reassessed at the end of period . A trade is thus possible
at the end of each time period, although nonzero trading costs
will discourage excessive trading. A trading system return
is realized at the end of the time interval and includes
the profit or loss resulting from the position held during
that interval and any transaction cost incurred at timedue to a
difference in the positions and .

In order to properly incorporate the effects of transactions
costs, market impact and taxes in a trader’s decision making, the
trader must have internal state information and must therefore be
recurrent. A single asset trading system that takes into account
transactions costs and market impact has the following decision
function:

with

(1)

where denotes the (learned) system parameters at timeand
denotes the information set at time, which includes present

and past values of the price seriesand an arbitrary number
of other external variables denoted. A simple example is a
long, short trader with autoregressive inputs

sign (2)

where are theprice returnsof (defined below) and the
system parametersare the weights . A trader of this
form is used in the simulations described in Section IV-A.

The above formulation describes a discrete-action, deter-
ministic trader, but can be easily generalized. One simple
generalization is to use continuously valued , for ex-
ample, by replacing with . When discrete values

are imposed, however, the decision function
is not differentiable. Nonetheless, gradient based optimization
methods for may be developed by considering differentiable

4For stocks, ashort saleinvolves borrowing shares and then selling the bor-
rowed shares to a third party. A profit is made when theshortedshares are repur-
chased at a later time at a lower price. Short sales of many securities, including
stocks, bonds, futures, options, and foreign exchange contracts, are common
place.

MOODY AND SAFFELL: LEARNING TO TRADE VIA DIRECT REINFORCEMENT 877

prethresholded outputs or, for example, by replacing with
during learning and discretizing the outputs when trading.

Moreover, the models can be extended to a stochastic frame-
work by including a noise variable in

with (3)

The random variable induces a joint probability density for
the discrete actions , model parameters and model inputs:

(4)

The noise level (measured by or more generally the scale of
) can be varied to control the “exploration vs. exploitation”

behavior of the trader. Also, differentiability of the probability
distribution of actions enables the straightforward application of
gradient based learning methods.

B. Profit and Wealth for Trading Systems

Trading systems can be optimized by maximizing perfor-
mance functions, , such as profit, wealth, utility functions
of wealth or performance ratios like the Sharpe ratio. The
simplest and most natural performance function for a risk-in-
sensitive trader is profit.

Additive profits are appropriate to consider if each trade is
for a fixed number of shares or contracts of security. This is
often the case, for example, when trading small stock or futures
accounts or when trading standard US$ FX contracts in dollar-
denominated foreign currencies. We define and

as the price returns of a risky (traded) asset
and a risk-free asset (like T-Bills), respectively, and denote the
transactions cost rate as. The additive profit accumulated over

time periods with trading position size is then defined
in term of the trading returns, , as:

where

(5)

with and typically . When the risk-free
rate of interest is ignored (), a simplified expression is
obtained

(6)

The wealth of the trader is defined as .
Multiplicative profits are appropriate when a fixed fraction

of accumulated wealth is invested in each long or short
trade. Here, and . If
no short sales are allowed and the leverage factor is set fixed at

, the wealth at time is

where

(7)

When the risk-free rate of interest is ignored (), a second
simplified expression is obtained

(8)

Relaxing the constant magnitude assumption is more realistic
for asset allocations and portfolios, and enables better risk con-
trol. Related expressions for portfolios are presented in [2].

C. Performance Criteria

In general, the performance criteria that we consider are func-
tions of profit or wealth after a sequence of time steps,
or more generally of the whole time sequence of trades

(9)

The simple form includes standard economic utility
functions. The second case is the general form for path-de-
pendent performance functions, which include inter-temporal
utility functions and performance ratios like the Sharpe ratio
and Sterling ratio. In either case, the performance criterion
at time can be expressed as a function of the sequence of
trading returns

(10)

For brevity, we denote this general form by .
For optimizing our traders, we will be interested in the mar-

ginal increase in performance due to returnat each time step

(11)

Note that depends upon the current trading return, but that
does not. Our strategy will be to derivedifferentialperfor-

mance criteria that capture the marginal “utility” of
the trading return at each period.5

D. The Differential Sharpe Ratio

Rather than maximizing profits, most modern fund man-
agers attempt to maximize risk-adjusted return, as suggested
by modern portfolio theory. The Sharpe ratio is the most
widely-used measure of risk-adjusted return [40]. Denoting
as before the trading system returns for period(including
transactions costs) as , the Sharpe ratio is defined to be

Average
Standard Deviation

(12)

where the average and standard deviation are estimated for pe-
riods . Note that for ease of exposition and anal-
ysis, we have suppressed inclusion of portfolio returnsdue
to the risk free rate on capital . Substitutingexcessreturns

5Strictly speaking, many of the performance criteria commonly used in the
financial industry are not true utility functions, so we use the term “utility” in a
more colloquial sense.

878 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

for in the equation above produces the stan-
dard definition. With this caveat in mind, we use (12) for dis-
cussion purposes without loss of mathematical generality.6

Proper on-line learning requires that we compute the influ-
ence on the Sharpe ratio (marginal utility) of the trading re-
turn at time . To accomplish this, we have derived a new ob-
jective function called thedifferential Sharpe ratiofor on-line
optimization of trading system performance [1], [2]. It is ob-
tained by considering exponential moving averages of the re-
turns and standard deviation of returns in (12), and expanding
to first order in the adaptation rate

(13)

Note that a zero adaptation rate corresponds to an infinite time
average. Expanding about amounts to “turning on” the
adaptation.

Since only the first order term in this expansion depends upon
the return at time , we define thedifferential Sharpe ratioas

(14)

where the quantities and are exponential moving esti-
mates of the first and second moments of

(15)

Treating and as numerical constants, note thatin
the update equations controls the magnitude of the influence
of the return on the Sharpe ratio . Hence, the differential
Sharpe ratio represents the influence of the trading return
realized at time on . It is the marginal utility for the Sharpe
ratio criterion.

The influences of risk and return on the differential Sharpe
ratio are readily apparent. The current returnenters expres-
sion (14) only in the numerator through and

. The first term in the numerator is positive if
exceeds the moving average of past returns (increased

reward), while the second term is negative if exceeds the
moving average of past squared returns (increased risk).

The differential Sharpe ratio is used in the RRL algorithm
(see (31) in Section III) as the current contribution to the perfor-
mance function . Since in (13) does not depend on ,
we have . When optimizing
the trading system using (14), the relevant derivatives have the
simple form:

(16)

6For systems that trade futures and forward,R should be used in place of
~R , because the risk free rate is already accounted for in the relation between
forward prices and spot prices.

The differential Sharpe ratio has several attractive properties:

• Facilitates recursive updating: The incremental nature of
the calculations of and make updating the expo-
nential moving Sharpe ratio straightforward. It is not nec-
essary to recompute the average and standard deviation of
returns for the entire trading history in order to update the
Sharpe ratio for the most recent time period.

• Enables efficient on-line optimization: and
can be cheaply calculated using the previously computed
moving averages and and the current return

. This enables efficient stochastic optimization.
• Weights recent returns more: Based on the exponential

moving average Sharpe ratio, recent returns receive
stronger weightings in than do older returns.

• Provides interpretability: The differential Sharpe ratio iso-
lates the contribution of the current return to the ex-
ponential moving average Sharpe ratio. The simple form
of makes clear how risk and reward affect the Sharpe
ratio.

One difficulty with the Sharpe ratio, however, is that the use
of variance or as a risk measure does not distinguish between
upside and downside “risk.” Assuming that , the
largest possible improvement in occurs when

(17)

Thus, the Sharpe ratio actually penalizes gains larger than,
which is counter-intuitive relative to most investors’ notions of
risk and reward.

E. Downside Risk

Symmetric measures of risk such as variance are more and
more being viewed as inadequate measures due to the asym-
metric preferences of most investors to price changes. Few in-
vestors consider large positive returns to be “risky,” though both
large positive as well as negative returns are penalized using a
symmetric measure of risk such as the variance. To most in-
vestors, the term “risk” refers intuitively to returns in a portfolio
that decrease its profitability.

Markowitz, the father of modern portfolio theory, understood
this. Even though most of his work focussed on the mean-vari-
ance framework for portfolio optimization, he proposed the
semivariance as a means for dealing with downside returns
[41]. After a long hiatus lasting three decades, there is now
a vigorous industry in the financial community in modeling
and minimizing downside risk. Criteria of interest include
the double deviation (DD), the second lower partial moment
(SLPM) and the th lower partial moment [42]–[46].

One measure of risk-adjusted performance widely used in
the professional fund management community (especially for
hedge funds) is the Sterling ratio, commonly defined as

Sterling Ratio
Annualized Average Return

Maximum Drawn-Down
(18)

Here, the maximum draw-down (from peak to trough) in ac-
count equity or net asset value is defined relative to some stan-
dard reference period, for example one to three years. Mini-

MOODY AND SAFFELL: LEARNING TO TRADE VIA DIRECT REINFORCEMENT 879

mizing drawdowns is somewhat cumbersome, so we focus on
the DD as a measure of downside risk in this paper.7

The DD is defined to be the square root of the average of the
square of the negative returns

DD (19)

Using the DD as a measure of risk, we can now define a utility
function similar to the Sharpe ratio, which we will call the down-
side deviation ratio (DDR)

DDR
Average

DD
(20)

The DDR rewards the presence of large average positive returns
and penalizes risky returns, where “risky” now refers to down-
side returns.

In order to facilitate the use of our recurrent reinforcement
learning algorithm (Section III), we need to compute the influ-
ence of the return at timeon the DDR. In a similar manner to
the development of the differential Sharpe ratio in [2], we define
exponential moving averages of returns and of the squared DD

DD DD DD (21)

and define the DDR in terms of these moving averages. We ob-
tain our performance function by considering a first-order ex-
pansion in the adaptation rateof the DDR

DDR DDR
DDR

(22)

We define the first-order termDDR to be the differential
downside deviation ratio. It has the form

DDR

DD
(23)

DD

DD
(24)

From (24) it is obvious that when , the utility increases
as increases, with no penalty for large positive returns such
as exists when using variance as the risk measure. See [24] for
detailed experimental results on the use of the DDR to build
RRL trading systems.

III. L EARNING TO TRADE

Reinforcement learning adjusts the parameters of a system to
maximize the expected payoff or reward that is generated due to
the actions of the system. This is accomplished through trial and

7White has found that the DD tracks the Sterling ratio effectively [47].

error exploration of the environment and space of strategies. In
contrast to supervised learning, the system is not presented with
examples of desired actions. Rather, it receives a reinforcement
signal from its environment (a reward) that provides information
on whether its actions are good or bad.

In [1], [2], we compared supervised learning to our DR
approach. The supervised methods discussed included trading
based upon forecasts of market prices and training a trader
using labeled data. In both supervised frameworks, difficulties
are encountered when transaction costs are included. While
supervised learning methods can be effective for solving the
structural credit assignment problem, they do not typically
address the temporal credit assignment problem.

Structural credit assignment refers to the problem of as-
signing credit to the individual parameters of a system. If
the reward produced also depends on a series of actions of
the system, then the temporal credit assignment problem is
encountered, ie. assigning credit to the individual actions
taken over time [48]. Reinforcement learning algorithms offer
advantages over supervised methods by attempting to solve
both problems simultaneously.

Reinforcement learning algorithms can be classified as either
DR (sometimes called “policy search”), value function, or actor-
critic methods. The choice of the best method depends upon
the nature of the problem domain. We will discuss this issue
in greater detail in Section V. In this section, we present the
recurrent reinforcement learning algorithm for DR and review
value function based methods, specifically Q-learning [10] and
a refinement of Q-learning called advantage updating [49]. In
Section IV-C, we compare the RRL and value function methods
for systems that learn to allocate assets between the S&P 500
stock index and T-Bills.

A. Recurrent Reinforcement Learning

In this section, we describe the recurrent reinforcement
learning algorithm for DR. This algorithm was originally
presented in [1] and [2].

Given a trading system model , the goal is to adjust the
parameters in order to maximize . For traders of form (1)
and trading returns of form (6) or (8), the gradient of with
respect to the parametersof the system after a sequence of
periods is

(25)

The system can be optimized in batch mode by repeatedly
computing the value of on forward passes through the data
and adjusting the trading system parameters by using gradient
ascent (with learning rate)

(26)

or some other optimization method. Note that due to the inherent
recurrence, the quantities are total derivatives that de-
pend upon the entire sequence of previous time periods. To cor-
rectly compute and optimize these total derivatives in an effi-

880 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

cient manner requires an approach similar to backpropagation
through time (BPTT) [50], [51]. The temporal dependencies in
a sequence of decisions are accounted for through a recursive
update equation for the parameter gradients

(27)

The above expressions (25) and (27) assume differentiability
of . For the long/short traders with thresholds described in
Section II-A, the reinforcement signal can be backpropagated
through the prethresholded outputs in a manner similar to the
Adaline learning rule [52]. Equations (25)–(27) constitute the
batch RRL algorithm.

There are two ways in which the batch algorithm described
above can be extended into a stochastic framework. First, ex-
ploration of the strategy space can be induced by incorporating
a noise variable , as in the stochastic trader formulation of (3).
The tradeoff between exploration of the strategy space and ex-
ploitation of a learned policy can be controlled by the magnitude
of the noise variance . The noise magnitude can be annealed
over time during simulation, in order to arrive at a good strategy.

Second, a simple on-line stochastic optimization can be ob-
tained by considering only the term in (25) that depends on the
most recently realized return during a forward pass through
the data

(28)

The parameters are then updated on-line using

(29)

Such an algorithm performs a stochastic optimization, since
the system parameters are varied during each forward pass
through the training data. The stochastic, on-line analog of (27)
is

(30)

Equations (28)–(30) constitute the stochastic (or adaptive)
RRL algorithm. It is a reinforcement algorithm closely related
to recurrent supervised algorithms such as real time recurrent
learning (RTRL) [53] and dynamic backpropagation [54]. See
also the discussion of backpropagating utility in Werbos [14].

For differential performance criteria described in (11) of
Section II-C (such as the differential Sharpe ratio (14) and dif-
ferential downside deviation ratio (24)), the stochastic update
equations (28) and (29) become

(31)

We use on-line algorithms of this recurrent reinforcement
learning type in the simulations presented in Section IV. Note
that we find that use of a noise variable provides little
advantage for the real financial applications that we consider,
since the data series contain significant intrinsic noise. Hence,
we find that a simple “greedy” update is adequate.8

The above description of the RRL algorithm is for traders
that optimize immediate estimates of performancefor spe-
cific actions taken. This presentation can be thought of as a spe-
cial case of a more general Markov decision process (MDP)
and policy gradient formulation. One straightforward extension
of our formulation can be obtained for traders that maximize
discounted future rewards. We have experimented with this ap-
proach, but found little advantage for the problems we consider.
A second extension to the formulation is to consider a stochastic
trader (3) and an expected reward framework, for which the
probability distribution of actions is differentiable. This latter
approach makes use of the joint density of (4). While the ex-
pected reward framework is appealing from a theoretical per-
spective, (28)–(30) presented above provide the practical basis
for simulations.

Although we have focussed our discussion on traders of a
single risky asset with scalar , the algorithms described in
this section can be trivially generalized to the vector case for
portfolios. Optimization of portfolios is described in [1], [2].

B. Value Functions and Q-Learning

Besides explicitly training a trader to take actions, we can also
implicitly learn correct actions through the technique of value
iteration. Value iteration uses a value function to evaluate and
improve policies (see [16] for a tutorial introduction and [18] for
a full overview of these algorithms). The value function, ,
is an estimate of discounted future rewards that will be received
from starting in state, and by following the policy thereafter.
The value function satisfies Bellman’s equation

(32)

where
probability of taking action in state ;
probability of transitioning from state to state

when taking action ;
immediate reward [differential utility, as in (11)]
from taking action and transitioning from state

to state ;
discount factor that weighs the importance of fu-
ture rewards versus immediate rewards.

A policy is an optimal policy if its value function is greater
than or equal to the value functions of all other policies for a
given set of states. The optimal value function is defined as

(33)

8Tesauro finds a similar result for TD-Gammon [19], [20]. A “greedy” update
works well, because the dice rolls in the game provided enough uncertainty to
induce extensive strategy exploration.

MOODY AND SAFFELL: LEARNING TO TRADE VIA DIRECT REINFORCEMENT 881

and satisfies Bellman’s optimality equation

(34)

The value iteration update

(35)

is guaranteed to converge to the optimal value function under
certain general conditions. The optimal policy can be deter-
mined from the optimal value function through

arg (36)

1) Q-Learning: The technique named Q-Learning [10] uses
a value function which estimates future rewards based on both
the current state and the current action taken. We can write the
Q-function version of Bellman’s optimality equation as

(37)

Similarly to (35), the Q-function can be learned using a value
iteration approach

(38)

This iteration has been shown [10] to converge to the optimal
Q-function, , given certain constraints. The advantage
of using the Q-function is that there is no need to know the
system model as in (36) in order to choose the best ac-
tion. One calculates the best action as

arg (39)

The update rule for training a function approximator is then
based on the gradient of the error

(40)

2) Advantage Updating:A refinement of the Q-learning al-
gorithm is provided by advantage updating [49]. Advantage up-
dating was developed specifically to deal with continuous-time
reinforcement learning problems, though it is applicable to the
discrete-time case as well. It is designed to deal with the situa-
tion where the relative advantages of individual actions within
a state are small compared to the relative advantages of being in
different states. Also, advantage updating has been shown to be
able to learn at a much faster rate than Q-learning in the pres-
ence of noise.

Advantage updating learns two separate functions: the advan-
tage function , and the value function . The advan-
tage function measures the relative change in value of choosing

Fig. 1. A trading system based on DR, the approach taken in this paper. The
system trades the target series, making trading decisions based upon a set of
input variables and the current positions held. No intermediate steps such as
making forecasts or labeling desired trades are required and it is not necessary
to learn a value function. The trader learns a strategy via trial and error
exploration, taking actions and receiving positive or negative reinforcement
based on the results. A trading performance functionU(�) such as profit,
utility or risk-adjusted return is, hence, used to directly optimize the trading
system parameters�. The system is recurrent; the feedback of system state
(current positions or portfolio weights) enables the trading system to learn
to correctly incorporate transactions costs into its trading decisions. For the
traders considered in this paper, the DR (policy search) method of recurrent
reinforcement learning is used to optimize the trader.

action while in state versus choosing the best possible ac-
tion for that state. The value function measures the expected
discounted future rewards as described previously. Advantage
updating has the following relationship with Q-learning:

(41)

Similarly to Q-learning, the optimal action to take in state
is found by arg . See Baird [49] for a
description of the learning algorithms.

IV. EMPIRICAL RESULTS

This section presents empirical results for three problems.
First, controlled experiments using artificial price series are
done to test the RRL algorithm’s ability to learn profitable
trading strategies, to maximize risk adjusted return (as mea-
sured by the Sharpe ratio), and to respond appropriately to
varying transaction costs. The second problem demonstrates
the ability of RRL to discover structure in a real financial price
series, the half-hourly U.S. Dollar/British Pound exchange rate
(see Fig. 1). For this problem, the RRL trader attempts to avoid
downside risk by maximizing the downside deviation ratio.
Finally, we compare the performance of traders based on RRL
and Q-learning for a second real-world problem, trading the
monthly S&P 500 stock index. Over the 25-year test period, we
find that the RRL-Trader outperforms the Q-Trader, and that
both outperform a buy and hold strategy. Further discussion of
the Q-Trader versus RRL-Trader performance is presented in
Section V-D.

A. Trader Simulation

In this section we demonstrate the use of the RRL algorithm
to optimize trading behavior using the differential Sharpe ratio
(14) in the presence of transaction costs. More extensive results

882 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

Fig. 2. Artificial prices (top panel), trading signals (second panel), cumulative
sums of profits (third panel) and the moving average Sharpe ratio with� = 0:01
(bottom panel). The system performs poorly while learning from scratch during
the first 2000 time periods, but its performance remains good thereafter.

are presented in [2]. There, we find that maximizing the dif-
ferential Sharpe ratio yields more consistent results than max-
imizing profits, and that both methods outperform trading sys-
tems based on forecasts.

The RRL-Traders studied here takelong, short positions
and have recurrent state similar to that described in Section
II-A. To enable controlled experiments, the data used in this sec-
tion are artificial price series that are designed to have tradeable
structure. These experiments demonstrate that 1) RRL is an ef-
fective means of learning trading strategies and 2) trading fre-
quency is reduced as expected as transaction costs increase.

1) Data: We generate log price series as random walks with
autoregressive trend processes. The two parameter model is thus

(42)

(43)

where and are constants, and and are normal
random deviates with zero mean and unit variance. We define
the artificial price series as

(44)

where is a scale defined as the range of :
over a simulation with 10 000 samples.9

For the results we present here, we set the parameters of the
price process to and . The artificial price series
are trending on short time scales and have a high level of noise.
A realization of the artificial price series is shown in the top
panel of Fig. 2.

2) Simulated Trading Results:Figs. 2–4 show results for a
single simulation for an artificial market as described above. For

9This is slightly more than the number of hours in a year (8760), so the series
could be thought of as representing hourly prices in a 24-hour artificial market.
Alternatively, a series of this length could represent slightly less than five years
of hourly data in a market that trades about 40 hours per week.

Fig. 3. An expanded view of the last thousand time periods of Fig. 2. The
exponential moving Sharpe ratio has a forgetting time scale of1=� = 100

periods. A smaller� would smooth the fluctuations out.

Fig. 4. Histograms of the price changes (top), trading profits per time period
(middle) and Sharpe ratios (bottom) for the simulation shown in Fig. 2. The left
column is for the first 5000 time periods, and the right column is for the last
5000 time periods. The transient effects during the first 2000 time periods for
the real-time recurrent learning are evident in the lower left graph.

these experiments, the RRL-Traders are single threshold units
with an autoregressive input representation. The inputs at time

are constructed using the previous eight returns.
The RRL-Traders are initialized randomly at the beginning,

and adapted using real-time recurrent learning to optimize the
differential Sharpe ratio (14). The transaction costs are fixed at
a half percent during the whole real-time learning and trading
process. Transient effects of the initial learning while trading
process can be seen in the first 2000 time steps of Fig. 2 and
in the distribution of differential Sharpe ratios in the lower left
panel of Fig. 4.

Fig. 5 shows box plots summarizing test performances
for ensembles of 100 experiments. In these simulations, the
10 000 data samples are partitioned into an initial training
set consisting of the first 1000 samples and a subsequent test
data set containing the last 9000 samples. The RRL-Traders

MOODY AND SAFFELL: LEARNING TO TRADE VIA DIRECT REINFORCEMENT 883

are first optimized on the training data set for 100 epochs and
adapted on-line throughout the whole test data set. Each trial
has different realizations of the artificial price process and
different randomly chosen initial trader parameter values. We
vary the transaction cost from 0.2%, 0.5%, to 1%, and observe
the trading frequency, cumulative profit and Sharpe ratio over
the test data set. As shown, in all 100 experiments, positive
Sharpe ratios are obtained. As expected, trading frequency is
reduced as transaction costs increase.

B. U.S. Dollar/British Pound Foreign Exchange Trading
System

A long, short, neutral trading system is trained on
half-hourly U.S. Dollar/British Pound foreign exchange (FX)
rate data. The experiments described in this section were first
reported in [24]. The dataset used here consists of the first 8
months of quotes from the 24-hour, five-days-a-week foreign
exchange market during 1996.10 Both bid and ask prices are
in the dataset, and the trading system is required to incur the
transaction costs of trading through the bid/ask prices. The
trader is trained via the RRL algorithm to maximize the differ-
ential downside deviation ratio (24), a measure of risk-adjusted
return.

The top panel in Fig. 6 shows the U.S. Dollar/British Pound
price series for the eight-month period. The trading system is
initially trained on the first 2000 data points, and then produces
trading signals for the next two-week period (480 data points).
The training window is then shifted forward to include the just
tested on data, is retrained and its trading signals recorded for
the next two-week out-of-sample time period. This process for
generating out-of-sample trading signals continues for the rest
of the data set.

The second panel in Fig. 6 shows the out-of-sample trading
signal produced by the trading system, and the third panel dis-
plays the equity curve achieved by the trader. The bottom panel
shows a moving average calculation of the Sharpe ratio over the
trading period with a time constant of 0.01. The trading system
achieves an annualized 15% return with an annualized Sharpe
ratio of 2.3 over the approximately six-month long test period.
On average, the system makes a trade once every five hours.

These FX simulations demonstrate the ability of the RRL
algorithm to discover structure in a real-world financial price
series. However, one must be cautious when extrapolating
from simulated performance to what can be achieved in actual
real-time trading. One problem is that the data set consists of
indicative quotes which are not necessarily representative of
the price at which the system would have actually been able to
transact. A related possibility is that the system is discovering
market microstructure effects that are not actually tradeable
in real-time. Also, the simulation assumes that the pound is
tradeable 24 hours a day during the five-day trading week.
Certainly a real-time trading system will suffer additional
penalties when trying to trade during off-peak, low liquidity
trading times. An accurate test of the trading system would
require live trading with a foreign exchange broker or directly

10The data is part of the Olsen & Associates HFDF96 dataset, obtainable by
contacting www.olsen.ch.

Fig. 5. Boxplots of trading frequency, cumulative sums of profits and Sharpe
ratios versus transaction costs. The results are obtained over 100 trials with
various realizations of artificial data and initial system parameters. Increased
transaction costs reduce trading frequency, profits and Sharpe ratio, as expected.
The trading frequency is the percentage of the number of time periods during
which trades occur. All figures are computed on the last 9000 points in the data
set.

through the interbank FX market in order to verify real time
transactable prices and profitability.

884 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

Fig. 6. fLong, short, neutralg trading system of the U.S. Dollar/British Pound that uses the bid/ask spread as transaction costs. The data consists of half-hourly
quotes for the five-day-per-week, 24–hour interbank FX market. The time period shown is the first eight months of 1996. The trader is optimized via recurrent
reinforcement learning to maximize the differential downside deviation ratio. The first 2000 data points (approximately two months) are used for training and
validation. The trading system achieves an annualized 15% return with an annualized Sharpe ratio of 2.3 over the approximately six-month out-of-sample test
period. On average, the system makes a trade once every five hours.

Fig. 7. Time series that influence the return attainable by the S&P 500/TBill asset allocation system. The top panel shows the S&P 500 series with and without
dividends reinvested. The bottom panel shows the annualized monthly Treasury Bill and S&P 500 dividend yields.

C. S&P 500/T-Bill Asset Allocation

In this section we compare the use of recurrent reinforce-
ment learning to the advantage updating formulation of the
Q-learning algorithm for building a trading system. These
comparative results were presented previously at NIPS*98
[23]. The long/short trading systems trade the S&P 500 stock
index, in effect allocating assets between the S&P 500 and
three-month Treasury Bills. When the traders are long the S&P

500, no T-Bill interest is earned, but when the traders are short
stocks (using standard 2:1 leverage), they earn twice the T-Bill
rate. We use the advantage updating refinement instead of the
standard Q-Learning algorithm, because we found it to yield
better trading results. See Section III-B.2 for a description of
the representational advantages of the approach.

The S&P 500 target series is the total return index computed
monthly by reinvesting dividends. The S&P 500 indexes with

MOODY AND SAFFELL: LEARNING TO TRADE VIA DIRECT REINFORCEMENT 885

and without dividends reinvested are shown in Fig. 7 along with
the three-month Treasury Bill and S&P 500 dividend yields.
The 84 monthly input series used in the trading systems include
both financial and macroeconomic data. All data are obtained
from Citibase,11 and the macroeconomic series are lagged by
one month to reflect reporting delays.

A total of 45 years of monthly data are used, from January
1950 through December 1994. The first 20 years of data are used
only for the initial training of the system. The test period is the
25 year period from January 1970 through December 1994. The
experimental results for the 25–year test period are trueex ante
simulated trading results.

1) Simulation Details:For each year during 1970 through
1994, the system is trained on a moving window of the previous
20 years of data. For 1970, the system is initialized with random
parameters. For the 24 subsequent years, the previously learned
parameters are used to initialize the training. In this way, the
system is able to adapt to changing market and economic condi-
tions. Within the moving training window, the RRL-Trader sys-
tems use the first ten years for stochastic optimization of system
parameters, and the subsequent ten years for validating early
stopping of training. The RRL-Trader networks use a single

unit, and are regularized using quadratic weight decay
during training with a regularization parameter of 0.01.

The Q-Trader systems use a bootstrap sample of the 20
year training window for training, and the final ten years of
the training window are used for validating early stopping of
training. For the results reported, the networks are two-layer
feedforward networks with 30 units in the hidden layer.
The networks are trained initially with the discounting
factor set to zero. Then is set to 0.75. We find decreasing
performance when the value ofis adjusted to higher values.

To investigate the bias/variance tradeoff for the Q-Traders,
we tried networks of size 10, 20, 30, and 40 hidden units. The
30 unit traders performed significantly betterout of samplethan
traders with smaller or larger networks. The 20 unit traders were
significantly better than the ten unit traders, suggesting that the
smaller networks could not represent the Q function adequately
(high model bias). The degradation in performance observed for
the 40 unit nets suggests possible overfitting (increased model
variance).

2) S&P Experimental Results:Fig. 8 shows box plots sum-
marizing the test performance for the full 25 year test period of
the trading systems with various realizations of the initial system
parameters over 30 trials for the RRL-Trader system, and ten
trials for the Q-Trader system.12 The transaction cost is set at
0.5%. Profits are reinvested during trading, and multiplicative
profits are used when calculating the wealth. The notches in the
box plots indicate robust estimates of the 95% confidence in-
tervals on the hypothesis that the median is equal to the perfor-
mance of the buy and hold strategy. The horizontal lines show
the performance of the RRL-Trader voting, Q-Trader voting and
buy and hold strategies for the same test period. The total profits
of the buy and hold strategy, the Q-Trader voting strategy and
the RRL-Trader voting strategy are 1348%, 3359%, and 5860%,

11Citibase historical data is obtainable from www.fame.com.
12Ten trials were done for the Q-Trader system due to the amount of compu-

tation required in training the systems.

Fig. 8. Test results for ensembles of simulations using the S&P 500 stock
index and 3-month Treasury Bill data over the 1970-1994 time period. The
boxplots show the performance for the ensembles of RRL-Trader and Q-Trader
trading systems. The horizontal lines indicate the performance of the systems
and the buy and hold strategy. The solid curves correspond to the RRL-Trader
system performance, dashed curves to the Q-Trader system and the dashed and
dotted curves indicate the buy and hold performance. Both systems significantly
outperform the buy and hold strategy.

respectively. The corresponding annualized monthly Sharpe ra-
tios 0.34, 0.63, and 0.83, respectively.13 Remarkably, the supe-
rior results for the RRL-Trader are based on networks with a
single thresholded unit, while those for the Q-Trader re-
quired networks with 30 hidden units.14

Fig. 9 shows results for following the strategy of taking posi-
tions based on a majority vote of the ensembles of trading sys-
tems compared with the buy and hold strategy. We can see that
the trading systems go short the S&P 500 during critical pe-
riods, such as the oil price shock of 1974, the tight money pe-
riods of the early 1980s, the market correction of 1984 and the
1987 crash. This ability to take advantage of high treasury bill
rates or to avoid periods of substantial stock market loss is the
major factor in the long term success of these trading models.
One exception is that the RRL-Trader trading system remains
long during the 1991 stock market correction associated with
the Persian Gulf war, a political event, though the Q-Trader
system is fortunately short during the correction. On the whole
though, the Q-Trader system trades much more frequently than
the RRL-Trader system, and in the end does not perform as well
on this data set.

From these results we find that both trading systems outper-
form the buy and hold strategy, as measured by both accumu-
lated wealth and Sharpe ratio. These differences are statisti-
cally significant and support the proposition that there is pre-
dictability in the U.S. stock and treasury bill markets during the
25–year period 1970 through 1994. A more detailed presenta-
tion of the RRL-Trader results appears in [2]. Further discussion
of the Q-Trader versus RRL-Trader performance is presented in
Section V-D.

13The Sharpe ratios calculated here are for the returns in excess of the three-
month treasury bill rate.

14As discussed in the Section IV-C.1, care was taken to avoid both underfit-
ting and overfitting in the Q-Trader case, and smaller nets performed substan-
tially worse.

886 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

Fig. 9. Test results for ensembles of simulations using the S&P 500 stock index
and three-month Treasury Bill data over the 1970-1994 time period. Shown are
the equity curves associated with the systems and the buy and hold strategy, as
well as the trading signals produced by the systems. The solid curves correspond
to the RRL-Trader system performance, dashed curves to the Q-Trader system
and the dashed and dotted curves indicate the buy and hold performance. Both
systems significantly outperform the buy and hold strategy. In both cases, the
traders avoid the dramatic losses that the buy and hold strategy incurred during
1974 and 1987.

3) Model Insight Through Sensitivity Analysis:A sensitivity
analysis of the RRL-Trader systems was performed in an at-
tempt to determine on which economic factors the traders are
basing their decisions. Fig. 10 shows the absolute normalized
sensitivities for three of the more salient input series as a func-
tion of time, averaged over the 30 members of the RRL-Trader
committee. The sensitivity of inputis defined as:

(45)

where is the unthresholded trading output of the policy func-
tion and denotes input.

The time-varying sensitivities in Fig. 10 emphasize the non-
stationarity of economic relationships. For example, the yield
curve slope (which measures inflation expectations) is found to
be a very important factor in the 1970s, while trends in long term
interest rates (measured by the six-month difference in the AAA
bond yield) becomes more important in the 1980s, and trends in
short term interest rates (measured by the six-month difference
in the treasury bill yield) dominate in the early 1990s.

V. LEARN THE POLICY OR LEARN THE VALUE?

As mentioned in Section III, reinforcement learning algo-
rithms can be classified as eitherDR (sometimes called “policy
search”), value function methods, or actor-critic methods. The
choice of the best method depends upon the nature of the
problem domain.

A. Immediate versus Future Rewards

Reinforcement signals received from the environment can
be immediate or delayed. In some problems, such as checkers
[55], [56], backgammon [19], [20], navigating a maze [57], or

Fig. 10. Sensitivity traces for three of the inputs to the RRL-Trader trading
system averaged over the ensemble of traders. The nonstationary relationships
typical among economic variables is evident from the time-varying sensitivities.

maneuvering around obstacles [58], reinforcement from the
environment occurs only at the end of the game or task. The
final rewards received aresuccess, failure or win, lose .
For such tasks, the temporal credit assignment problem is ex-
treme. There is usually noa priori assessment of performance
available during the course of each game or trial. Hence, one
is forced to learn a value function of the system state at each
time. This is accomplished by doing many runs on a trial and
error basis, and discounting the ultimate reward received back
in time. This discounting approach is the basis of dynamic
programming [8], TD-Learning [9] and Q-Learning [10], [11].

For these value function methods, the action taken at each
time is that which offers the largest increase in expected value.
Thus, the policy is not represented directly. An intermediate
class of reinforcement algorithms are actor-critic methods [12].
While the actor module provides a direct representation of the
policy for these methods, it relies on the critic module for feed-
back. The role of the critic is to learn the value function.

In contrast, direct reinforcement methods represent the
policy directly, and make use of immediate feedback to adjust
the policy. This approach is appealing when it is possible to
specify an instantaneous measure of performance, because the
need to learn a value function is bypassed.

In trading, asset allocation and portfolio management prob-
lems, for example, overall performance accrues gradually over
time. For these financial decision making problems, an imme-
diate measure of incremental performance is available at each
time step. Although total performance usually involves inte-
grating or averaging over time, it is nonetheless possible to adap-
tively update the strategy based upon the investment return re-
ceived at each time step.

Other domains that offer the possibility of immediate feed-
back include a wide range of control applications. The standard
formulation for optimal control problems involves time inte-
grals of an instantaneous performance measure. Examples of
common loss functions include average squared deviation from
a desired trajectory or average squared jerk.15

15“Jerk” is the rate of change of acceleration.

MOODY AND SAFFELL: LEARNING TO TRADE VIA DIRECT REINFORCEMENT 887

A related approach that represents and improves policies
explicitly is the policy gradient approach. Policy gradient
methods use the gradient of the expected average or discounted
reward with respect to the parameters of the policy function
to improve the policy. The expected rewards are typically
estimated by learning a value function, or by using single
sample paths of the Markov reward process. There have been
several recent, independent proofs for the convergence of
policy gradient methods. Marbach and Tsitsiklis [59], [60] and
Baxter and Bartlett [7]16 show convergence to locally optimal
policies by using simulation based methodologies to approx-
imate expected rewards. Suttonet al. [61] and Konda and
Tsitsiklis [62] obtain similar results when estimating expected
rewards from a value function implemented using a function
approximator. An application to robot navigation is provided by
Grudic and Ungar [63]. Note that some of the so-called “policy
gradient” methods are not DR methods, because they require
the estimation of a value function. Rather, these methods are
more properly classified as actor-critic methods.

B. Policies versus Values

Much attention in the reinforcement learning community has
been given recently to the question of learning policies versus
learning value functions. Over the past 20 years or so, the value
function approach has dominated the field. The approach has
worked well in many applications, and a number of convergence
theorems exist that prove that the approach will work under cer-
tain conditions.

However, the value function approach suffers from several
limitations. The original formulation of Q-learning is in the con-
text of discrete state and action spaces. As such, in many prac-
tical situations it suffers from the “curse of dimensionality.”
When Q-learning is extended to function approximators, it has
been shown in many cases that there are simple Markov deci-
sion processes for which the algorithms fail to converge [64].
Also, the policies derived from a Q-learning approach tend to be
brittle, that is, small changes in the value function can produce
large changes in the policy. For finance in particular, the pres-
ence of large amounts noise and nonstationarity in the datasets
can cause severe problems for a value function approach.17

We find our RRL algorithm to be a simpler and more
efficient approach. Since the policy is represented directly, a
much simpler functional form is often adequate to solve the
problem. A significant advantage of the RRL approach is the
ability to produce real valued actions (e.g., portfolio weights)
naturally without resorting to the discretization necessary in the
Q-learning case. Constraints on actions are also much easier to
represent given the policy representation. Other advantages are
that the RRL algorithm is more robust to the large amounts of
noise that exists in financial data, and is able to quickly adapt
to nonstationary market conditions.

16Baxter and Bartlett have independently coined the term DR to describe
policy gradient methods in an MDP framework based on simulating sample
paths and maximizing average rewards. Our intended usage of the term is in
the same spirit, but perhaps more general, referring to all algorithms that do not
need to learn a value function in order to derive a policy.

17Brown [65] provides a nice example that demonstrates the brittleness of
Q-learners in noisy environments.

Fig. 11. A representation of the value function to be learned by the Q-learning
algorithm for the example given in the text (Section V). The function represents
the Q-value,Q(r; a), which is the value from taking action “a” in state “r.”
The figure on the left shows the value function for the case of discrete, binary
returns. The Q-function has the form of theXOR problem, while the optimal
policy is simplya = r. The figure on the right shows the value function when
returns are real-valued (note the change in axes). The Q-function now becomes
arbitrarily hard to represent accurately using a single function approximator of
tanh units while the optimal policy is still very simple,a = sign(r).

C. An Example

We present an example of how an increase in complexity oc-
curs when a policy is represented implicitly through the use of a
value function. We start with the most simple trading problem:
a trader that makes decisions to buy and sell a single asset where
there are no transaction costs or trading frictions. The asset re-
turns are from a binomial process in . To make mat-
ters even more simple, we will assume that the next period’s re-
turn is known in advance. Given these conditions, the op-
timal policy does not require knowledge of future rewards, so
the Q-learning discount parameterwill be set to zero. We will
measure the complexity of the solution by counting the number
of units that are required to implement a solution using a
single function approximator.

It is obvious that the policy function is trivial. The optimal
policy is to take the action . In terms of model struc-
ture, a single unit would suffice. On the other hand, if we
decide to learn the value function before taking actions, we find
in this case that we have to learn theXOR function. As shown
in Fig. 11, the value function is 1 when the proposed action

has the same sign as and 1 otherwise. Because of the
binomial return process, we can solve this problem using only
two units. Due to the value function representation of the
problem, the complexity of the solution has doubled.

This doubling of model complexity is by comparison minor
if we make the problem a little more realistic by allowing
returns to be drawn from a continuous real-valued distribution.
The complexity of the policy function has not increased,

sign . However, the value function’s increase in
complexity is potentially enormous. Since returns are now
real valued, if we wish to approximate the value function to
an arbitrarily small precision, we must use an arbitrarily large
model.

D. Discussion of the S&P 500/T-Bill Results

For the S&P 500/T-Bill asset allocation problem described
in Section IV-C, we find that RRL offers advantages over
Q-Learning in performance, interpretability and computational
efficiency. Over the 25–year test period, the RRL-Trader
produced significantly higher profits (5860% versus 3359%)
and Sharpe ratios (0.83 versus 0.63) than did the Q-Trader.
The RRL-Trader learns a stable and robust trading strategy,

888 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

maintaining its positions for extended periods. The frequent
switches in position by the Q-Trader suggests that it is more
sensitive to noise in the inputs. Hence, the strategy it has
learned is brittle.

Regarding interpretability, we find the value function repre-
sentation to be obscure. While the change in the policy as im-
plemented by the RRL algorithm is directly related to changes
in the inputs, for the value function the effect on policy is not
so clear. While the RRL-Trader has an almost linear policy rep-
resentation (a net with just a single unit), the Q-Trader’s
policy is the of a two layer network for which the policy
is aninput. The brittle behavior of the Q-Trader is probably due
to the complexity of the learned Q-function with respect to the
inputs and actions. The problem representation for the Q-Trader
thus reduces explanatory value.

The sensitivity analysis presented for the RRL-Trader
strategy in Section IV-C.3 was easy to formulate and imple-
ment. It enables us to identify the most important explanatory
variables, and to observe how their relative saliency varies
slowly over time. For the Q-Trader, however, a similar analysis
is not straightforward. The possible actions are represented as
inputs to the Q-function network, with the chosen action being
determined by the . While we can imagine proxies
for a sensitivity analysis in a simple two actionlong, short
framework, it is not clear how to perform a sensitivity analysis
for actions versus inputs in general for a Q-learning framework.
This reduces the explanatory value of a Q-Trader.

Since the long, short Q-Trader is implemented using a
neural network function approximator, Bellman’s curse of
dimensionality has a relatively small impact on the results
of the experiments presented here. The input dimensionality
of the Q-Trader is increased by only one, and there are only
two actions to consider. However, in the case of a portfolio
management or multi-sector asset allocation system, the di-
mensionality problem becomes severe.18 Portfolio management
requires a continuous weight for each of assets included
in the portfolio. This increases the input dimension for the
Q-Trader by relative to the RRL-Trader. Then, in order
to facilitate the discovery of actions, we can only
consider discrete action sets. The number of discrete actions
that must be considered is exponential in. As another issue,
we must also consider the possible loss of utility that results
due to the finite resolution of action choices.

In terms of efficiency, the advantage updating representa-
tion used for the Q-Trader required two networks each with 30

units. In order to reduce run time, the simulation code was
written in C. Still, each run required approximately 25 hours to
complete using a Pentium Pro 200 running the Linux operating
system. The RRL networks used a single unit, and were
implemented as uncompiled Matlab code. Even given this un-
optimized coding, the RRL simulations were 150 times faster,
taking only 10 min.

VI. CONCLUSION

In this paper, we have demonstrated how to train trading sys-
tems via DR. We have described the RRL algorithm, and used
it to optimize financial performance criteria such as the differ-

18We have encountered this obstacle in preliminary, unpublished experiments.

ential Sharpe ratio and differential downside deviation ratio. We
have also provided empirical results that demonstrate the pres-
ence of predictability as discovered by RRL in intradaily U.S.
Dollar/British Pound exchange rates and in the monthly S&P
500 Stock Index for the 25-year test period 1970 through 1994.

In previous work [1], [2], we showed that trading systems
trained via RRL significantly outperform systems trained using
supervised methods. In this paper, we have compared the DR
approach using RRL to the Q-learning value function method.
We find that an RRL-Trader achieves better performance than
a Q-Trader for the S&P 500/T-Bill asset allocation problem.
We observe that relative to Q-learning, RRL enables a simpler
problem representation, avoids Bellman’s curse of dimension-
ality and offers compelling advantages in efficiency.

We have also discussed the relative merits of DR and value
function learning, and provided arguments and examples for
why value function-based methods may result in unnatural
problem representations. For problem domains where imme-
diate estimates of incremental performance can be obtained,
our results suggest that DR offers a powerful alternative.

ACKNOWLEDGMENT

The authors wish to thank L. Wu and Y. Liao for their contri-
butions to our early work on DR, and A. Atiya, G. Tesauro, and
the reviewers for their helpful comments on this manuscript.

REFERENCES

[1] J. Moody and L. Wu, “Optimization of trading systems and portfolios,”
in Decision Technologies for Financial Engineering, Y. Abu-Mostafa, A.
N. Refenes, and A. S. Weigend, Eds. London: World Scientific, 1997,
pp. 23–35.

[2] J. Moody, L. Wu, Y. Liao, and M. Saffell, “Performance functions and re-
inforcement learning for trading systems and portfolios,”J. Forecasting,
vol. 17, pp. 441–470, 1998.

[3] W. A. Clark and B. G. Farley, “Simulation of self-organizing systems by
digital computer,”IRE Trans. Inform. Theory, vol. 4, pp. 76–84, 1954.

[4] , “Generalization of pattern recognition in a self-organizing
system,” inProc. 1955 Western Joint Comput. Conf., 1955, pp. 86–91.

[5] R. J. Williams, “Toward a theory of reinforcement-learning connec-
tionist systems,” College Comput. Sci., Northeastern Univ., Boston,
MA, Tech. Rep. NU-CCS-88-3, 1988.

[6] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,”Machine Learning, vol. 8, pp.
229–256, 1992.

[7] J. Baxter and P. L. Bartlett, “Direct gradient-based reinforcement
learning: I. Gradient estimation algorithms,” Comput. Sci. Lab.,
Australian Nat. Univ., Tech. Rep., 1999.

[8] R. E. Bellman,Dynamic Programming. Princeton, NJ: Princeton Univ.
Press, 1957.

[9] R. S. Sutton, “Learning to predict by the method of temporal differ-
ences,”Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[10] C. J. C. H. Watkins, “Learning with Delayed Rewards,” Ph.D. thesis,
Cambridge Univ, Psychol. Dept., 1989.

[11] C. J. Watkins and P. Dayan, “Technical note: Q-Learning,”Machine
Learning, vol. 8, no. 3, pp. 279–292, 1992.

[12] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,”IEEE Trans.
Syst., Man, Cybern., vol. 13, no. 5, pp. 835–846, Sept. 1983.

[13] A. G. Barto,Handbook of Intelligent Control. New York: Van Nos-
trand Reinhold, 1992, ch. 12.

[14] Handbook of Intelligent Control, D. A. White and D. A. Sofge, Eds.,
Van Nostrand Reinhold, New York, 1992, pp. 65–90.

[15] Handbook of Intelligent Control, D. A. White and D. A. Sofge, Eds.,
Van Nostrand-Reinhold, New York, 1992, pp. 493–526.

[16] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,”J. Artificial Intell. Res., vol. 4, 1996.

[17] D. P. Bertsekas and J. N. Tsitsiklis,Neuro-Dynamic Program-
ming. Belmont, MA: Athena Scientific, 1996.

MOODY AND SAFFELL: LEARNING TO TRADE VIA DIRECT REINFORCEMENT 889

[18] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1997.

[19] G. Tesauro, “TD-Gammon, a self-teaching backgammon program,
achieves master-level play,”Neural Comput., vol. 6, no. 2, pp. 215–219,
1994.

[20] , “Temporal difference learning and TD-Gammon,”Commun.
ACM, vol. 38, no. 3, pp. 58–68, 1995.

[21] R. H. Crites and A. G. Barto, “Improving elevator performance using
reinforcement learning,” inAdvances in Neural Information Processing
Systems, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds., 1996,
vol. 8, pp. 1017–1023.

[22] W. Zhang and T. G. Dietterich, “High-performance job-shop scheduling
with a time-delay TD(�) network,” in Advances Neural Inform. Pro-
cessing Syst., D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds.,
1996, vol. 8, pp. 1024–1030.

[23] J. Moody and M. Saffell, “Reinforcement learning for trading,” inAd-
vances Neural Inform. Processing Syst., S. A. Solla, M. S. Kearns, and
D. A. Cohn, Eds: MIT Press, 1999, vol. 11, pp. 917–923.

[24] , “Minimizing downside risk via stochastic dynamic program-
ming,” in Computational Finance 1999, A. W. Lo, Y. S. Abu-Mostafa,
B. LeBaron, and A. S. Weigend, Eds. Cambridge, MA: MIT Press,
2000, pp. 403–415.

[25] R. C. Merton, “Lifetime portfolio selection under uncertainty: The con-
tinuous-time case,”Rev. Economics Statist., vol. 51, pp. 247–257, Aug.
1969.

[26] , “Optimum consumption and portfolio rules in a continuous-time
model,”J. Economic Theory, vol. 3, pp. 373–413, Dec. 1971.

[27] R. C. Merton,Continuous-Time Finance. Oxford, U.K.: Blackwell,
1990.

[28] E. J. Elton and M. J. Gruber, “Dynamic programming applications in
finance,”J. Finance, vol. 26, no. 2, 1971.

[29] D. T. Breeden, “Intertemporal portfolio theory and asset pricing,” in
Finance, J. Eatwell, M. Milgate, and P. Newman, Eds. New York:
Macmillan, 1987, pp. 180–193.

[30] D. Duffie, Security Markets: Stochastic Models. New York: Aca-
demic, 1988.

[31] , Dynamic Asset Pricing Theory, 2nd ed. Princeton, NJ: Princeton
Univ. Press, 1996.

[32] J. C. Cox, S. A. Ross, and M. Rubinstein, “Option pricing: A simplified
approach,”J. Financial Economics, vol. 7, pp. 229–263, Oct. 1979.

[33] M. J. Brennan, E. S. Schwartz, and R. Lagnado, “Strategic asset alloca-
tion,” J. Economic Dynamics Contr., vol. 21, pp. 1377–1403, 1997.

[34] F. Longstaff and E. Schwartz, “Valuing American options by simulation:
A simple least squares approach,” Rev. Financial Studies, 2001, to be
published.

[35] B. Van Roy, “Temporal-difference learning and applications in finance,”
in Computational Finance 1999, Y. S. Abu-Mostafa, B. LeBaron, A. W.
Lo, and A. S. Weigend, Eds. Cambridge, MA: MIT Press, 2001, pp.
447–461.

[36] R. Neuneier, “Optimal asset allocation using adaptive dynamic program-
ming,” in Advances in Neural Information Processing Systems, D. S.
Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA:
MIT Press, 1996, vol. 8, pp. 952–958.

[37] R. Neuneier and O. Mihatsch, “Risk sensitive reinforcement learning,”
in Advances in Neural Information Processing Systems, M. S. Kearns,
S. A. Solla, and D. A. Cohn, Eds. Cambridge, MA: MIT Press, 1999,
vol. 11, pp. 1031–1037.

[38] J. N. Tsitsiklis and B. Van Roy, “Optimal stopping of Markov processes:
Hilbert space theory, approximation algorithms, and an application to
pricing high-dimensional financial derivatives,”IEEE Trans. Automat.
Contr., vol. 44, pp. 1840–1851, Oct. 1999.

[39] , “Regression methods for pricing complex American-Style Op-
tions,” IEEE Trans. Neural Networks, vol. 12, no. 4, pp. 694–703, July
2001.

[40] W. F. Sharpe, “Mutual fund performance,”J. Business, pp. 119–138, Jan.
1966.

[41] H. M. Markowitz,Portfolio Selection: Efficient Diversification of Invest-
ments. New York: Wiley, 1959.

[42] F. A. Sortino and R. van der Meer, “Downside risk—capturing what’s
at stake in investment situations,”J. Portfolio Management, vol. 17, pp.
27–31, 1991.

[43] D. Nawrocki, “Optimal algorithms and lower partial moment: Ex post
results,”Appl. Economics, vol. 23, pp. 465–470, 1991.

[44] , “The characteristics of portfolios selected by n-degree lower par-
tial moment,”Int. Rev. Financial Anal., vol. 1, pp. 195–209, 1992.

[45] F. A. Sortino and H. J. Forsey, “On the use and misuse of downside risk,”
J. Portfolio Management, vol. 22, pp. 35–42, 1996.

[46] D. Nawrocki, “A brief history of downside risk measures,”J. Investing,
pp. 9–26, Fall 1999.

[47] H. White, private communication, 1996.
[48] R. S. Sutton, “Temporal credit assignment in reinforcement learning,”

Ph.D. dissertation, Univ. Massachusetts, Amherst, 1984.
[49] L. C. Baird, “Advantage updating,” Wright Laboratory, Wright-Pat-

terson Air Force Base, OH, Tech. Rep. WL-TR-93-1146, 1993.
[50] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-

ternal representations by error propagation,” inParallel Distributed
Processing: Exploration in the Microstructure of Cognition, D. E.
Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT Press,
1986, ch. 8, pp. 310–362.

[51] P. J. Werbos, “Back-propagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[52] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” inIRE
WESCON Convention Record, 1960, pp. 96–104.

[53] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,”Neural Comput., vol. 1, pp.
270–280, 1989.

[54] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,”IEEE Trans. Neural Networks,
vol. 1, pp. 4–27, 1990.

[55] A. L. Samuel, “Some studies in machine learning using the game of
checkers,”IBM J. Res. Development, vol. 3, pp. 211–229, 1959.

[56] , “Some studies in machine learning using the game of checkers.
II—Recent progress,”IBM J. Res. Development, vol. 11, pp. 601–617,
1967.

[57] J. Peng and R. J. Williams, “Efficient learning and planning within the
Dyna framework,”Adaptive Behavior, vol. 1, no. 4, pp. 437–454, 1993.

[58] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement
learning with less data and less real time,”Machine Learning, vol. 13,
pp. 103–130, 1993.

[59] P. Marbach and J. N. Tsitsiklis, “Simulation-based optimization of
Markov reward processes,” inProc. IEEE Conf. Decision Contr., 1998.

[60] , “Simulation-based optimization of Markov reward processes,”
IEEE Trans. Automat. Contr., vol. 46, pp. 191–209, Feb. 2001.

[61] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems, T. K. Leen, S. A.
Solla, and K.-R. Muller, Eds. Cambridge, MA: MIT Press, 2000, vol.
12, pp. 1057–1063.

[62] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” inAdvances
in Neural Information Processing Systems, S. A. Solla, T. K. Leen, and
K.-R. Muller, Eds. Cambridge, MA: MIT Press, 2000, vol. 12, pp.
1008–1014.

[63] G. Z. Grudic and L. H. Ungar, “Localizing policy gradient estimates to
action transitions,” inProc. 17th Int. Conf. Machine Learning, 2000.

[64] L. Baird and A. Moore, “Gradient descent for general reinforcement
learning,” in Advances in Neural Information Processing Systems, S.
A. Solla, M. S. Kearns, and D. A. Cohn, Eds. Cambridge, MA: MIT
Press, 1999, vol. 11, pp. 968–974.

[65] T. X. Brown, “Policy vs. value function learning with variable discount
factors,” inProc. NIPS 2000 Workshop Reinforcement Learning: Learn
the Policy or Learn the Value Function?, Dec. 2000.

John Moody received the B.A degree in physics from the University of Chicago,
Chicago, IL, in 1979 and the M.A. and Ph.D. degrees in theoretical physics from
Princeton University, Princeton, NJ, in 1981 and 1984, respectively.

He is the Director of the Computational Finance Program and a Professor of
Computer Science and Electrical Engineering at Oregon Graduate Institute of
Science and Technology, Beaverton. He is also the Founder and President of
Nonlinear Prediction Systems, a company specializing in the development of
forecasting and trading systems. His research interests include computational
finance, time series analysis, and machine learning.

Dr. Moody recently served as Program Co-Chair for Computational Finance
2000 in London, and is a past General Chair and Program Chair of the Neural
Information Processing Systems (NIPS) Conference, and is a member of the
editorial board ofQuantitative Finance.

Matthew Saffell received the B.Sc. degree in computer science and engineering
with a minor in mathematics from LeTourneau University, Longview, TX, in
1992, and the M.Sc. degree in computer science and engineering from the Uni-
versity of Tennessee, in 1994. He is pursuing the Ph.D. degree in the Com-
puter Science and Engineering Department at the Oregon Graduate Institute,
Beaverton.

He is a Consulting Scientist at Nonlinear Prediction Systems.

