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Abstract—We describe a semisupervised regression algorithm that learns to transform one time series into another time series given

examples of the transformation. This algorithm is applied to tracking, where a time series of observations from sensors is transformed

to a time series describing the pose of a target. Instead of defining and implementing such transformations for each tracking task

separately, our algorithm learns a memoryless transformation of time series from a few example input-output mappings. The algorithm

searches for a smooth function that fits the training examples and, when applied to the input time series, produces a time series that

evolves according to assumed dynamics. The learning procedure is fast and lends itself to a closed-form solution. It is closely related to

nonlinear system identification and manifold learning techniques. We demonstrate our algorithm on the tasks of tracking RFID tags

from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video

sequences. For these tasks, this algorithm requires significantly fewer examples compared to fully supervised regression algorithms or

semisupervised learning algorithms that do not take the dynamics of the output time series into account.

Index Terms—Semisupervised learning, example-based tracking, manifold learning, nonlinear system identification.

Ç

1 INTRODUCTION

MANY fundamental problems in machine perception,
computer graphics, and controls involve the transfor-

mation of one time series into another. For example, in
tracking, one transforms a time series of observations from
sensors to the pose of a target, one can generate computer
animation by transforming a time series representing the
motions of an actor to vectorized graphics and, fundamen-
tally, a controller maps a time series of measurements from
a plant to a time series of control signals. Typically, such
time series transformations are specified programmatically
with application-specific algorithms. We present an alter-
native: Algorithms that learn how to transform time series
from examples. This paper demonstrates how nonlinear
regression techniques, when augmented with a prior on the
dynamics of their output, can transform a variety of time
series with very few output examples.

Given enough input-output examples, nonlinear regres-

sion techniques can learn and represent any smooth

mapping using any sufficiently general family of functions

such as multilayer perceptrons or radial basis functions.

But, for many of the time series transformation applications

addressed here, traditional nonlinear regression techniques

require too many input-output examples to be of practical

use. To accommodate the dearth of available examples, our

algorithms utilize easy-to-obtain side information in the
form of a prior distribution on the output time series.
Utilizing this prior to regularize the output allows our
algorithms to take advantage of “unlabeled,” examples, or
examples for which no output example is provided.

In tracking applications, the output time series represents
the motion of physical objects, so we expect that this time
series will exhibit physical dynamics. We assume that a
linear-Gaussian autoregressive model that roughly captures
thedynamicsof theoutput time series is apriori available. It is
convenient to specify these dynamics by hand, as is done in
much of the tracking literature. Like nonlinear regression
methods, our algorithms search for a smooth function that fits
the given input-output examples. In addition, this function is
also made to map inputs to outputs that exhibit temporal
behavior consistent with the given dynamical model. The
search for this function is expressed as a joint optimization
over the labels of the unlabeled examples and amapping in a
ReproducingKernelHilbert Space.We showempirically that
the algorithms are not very sensitive to their parameter
settings, including those of the dynamics model, so fine
tuning this model is often not necessary.

We demonstrate our algorithms with an interactive
tracking system for annotating video sequences: The user
specifies the desired output for a few key frames in the video
sequence and the system recovers labels for the remaining
frames of the video sequence. The output examples are real-
valued vectors that may represent any temporally smoothly
varying attribute of the video frames. For example, to track
the limbs of a person in a 1-minute-long video, only 13 frames
of the video needed to be manually labeled with the position
of the person’s limbs. The estimatedmapping between video
frames and the person’s pose is represented using radial
kernels centeredon the framesof thevideo sequence. Because
the system can take advantage of unlabeled data, it can track
limbs much more accurately than simple interpolation or
traditional nonlinear regression given the same number of
examples. The very same algorithm can be used to learn to
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track deformable contours like the contour of lips (repre-
sented with a spline curve). The system is interactive, so the
user may specify additional examples to improve the
performance of the systemwhere needed.Ourmethodworks
directly on the provided feature space, which in the case of
images may be raw pixels, extracted silhouttes, or tracked
contours. No explicit representation or reasoning about
occlusions or 3D is required in our approach. Our algorithms
can also be applied in nonvisual settings. We can learn to
transform the voltages induced in a set of antennaeby aRadio
Frequency ID (RFID) tag to the position of the tag with only
four labeled examples.

Our main contribution is to demonstrate empirically that
for a large variety of tracking problems, sophisticated
generative models and nonlinear filters that are prone to
localminimaarenotneeded. Instead, a fewexamples coupled
with very generic assumptions on the dynamics of the latent
space and simple quadratic optimization are sufficient. We
demonstrate this by regularizing the output of a regression
algorithmwith adynamicalmodel. This results in anonlinear
system identification algorithm that, rather than estimating
an observation function that maps latent states to observa-
tions, estimates a function that maps observations to latent
states. This affords us significant computational advantages
over existing nonlinear system identification algorithms
when the observation function is invertible and the dynamics
are known, linear, andGaussian.When the dimensionality of
each output is lower than that of each observation, this
estimated functionperformsdimensionality reduction. Thus,
our contribution is also a semisupervised manifold learning
algorithm that takes advantage of the dynamics of the low-
dimensional representation.

2 RELATED WORK

This work is closely related to the problem of nonlinear
dimensionality reduction using manifold learning. Mani-
fold learning techniques [1], [2], [3], [4], [5], [6] find low-
dimensional representations that preserve geometric attri-
butes high-dimensional observed points. To define these
attributes, these algorithms identify local neighborhoods
along the manifold of observations by thresholding pair-
wise distances in the ambient space. When the manifold is
sparsely sampled, neighboring points along the manifold
are difficult to identify and the algorithms can fail to
recover any meaningful geometric attributes [7]. Our
approach utilizes the time-ordering of data points to obviate
the need to construct neighborhoods. While we do rely on
the distance between pairs of points, these distances are
used only to enforce the smoothness of the manifold.

Jenkins and Mataric [8] suggest artificially reducing the
distance between temporally adjacent points to provide an
additional hint to Isomap about the local neighborhoods of
image windows. We take advantage of dynamics in the low-
dimensional space to allow our algorithm to better estimate
the distance between pairs of temporally adjacent points
along the manifold. This requires only small enough
sampling over time to retain the temporal coherence between
video frames, which is much less onerous than the sampling
rate required to correctly estimate neighborhood relation-
ships in traditional manifold learning algorithms. Various
semisupervised extensions to manifold learning algorithms
have been proposed [9], [10], but these algorithms still do not

take advantage of the temporal coherence between adjacent
samples of the input time series.

Our technique is semisupervised in that it takes advantage
of both labeled data (the input-output examples) and
unlabeled data (the portions of the input time series without
output examples). The semisupervised regression ap-
proaches of [11] and [12] take into account the manifold
structure of the data, but they also rely on estimates of the
neighborhood structure and do not take advantage of the
time ordering of the data set. These semisupervised regres-
sion methods are similar to our method in that they also
impose a random field on the low-dimensional representa-
tion. The work presented here augments these techniques by
introducing the temporal dependency between output
samples in the random field. It can be viewed as a special
case of estimating the parameters of a continuous-valued
conditional random field [13] or a manifold learning
algorithm based on function estimation [14]. The algorithms
in this article are based on our earlier work [15]. Here, we
provide a simpler formulation of the problem along with a
variant, a more thorough comparison against existing
algorithms, and some new tracking applications.

Nonlinear system identification seeks to recover the
parameters of a generative model for observed data (see
[16], [17], [18], [19] and references within). Typically, the
model is a continuous-valued hidden Markov chain, where
the state transitions are governed by an unknown nonlinear
state transition function and states are mapped to observa-
tions by an unknown nonlinear observation function. In the
context of visual tracking, states are physical configurations
of objects and observations are frames of the video. Common
representations for the observation function (such asRBF [16]
or MLP [17]) require a great amount of storage, and find the
maximum a posteriori estimate of the observation function
requires optimization procedures that are prone to local
optima. Discrete dynamical models, such as HMMs, have
also been proposed [20]. Dynamic Textures [21] sidesteps
these issues by performing linear system identification
instead, which limits it to linear appearance manifolds.

Like conditional random fields [13], the algorithms in
this paper learn a mapping in the reverse direction, from
observations to states, though the states here are Gaussian
random variables. Adopting an RBF representation for the
mapping results in an optimization problem that is
quadratic in the latent states and the parameters of the
function to estimate. This makes the problem computation-
ally tractable, not subject to local minima and significantly
reduces the storage requirement in the case of very high-
dimensional observations.

3 BACKGROUND: FUNCTION FITTING

We wish to learn a memoryless and time-invariant function
that transforms each sample xt of an input time series X ¼
fxtg

T
t¼1 to a sample yt of the output time series Y ¼ fytg

T
t¼1.

The samples of X and Y are M and N-dimensional,
respectively. We will let sets of vectors such asX ¼ fxtg also
denote matrices that stack the vectors inX horizontally. In a
visual tracking application, eachxt might represent the pixels
of an image, withM � 106, yt might be the joint angles of the
limbs of a person in the scene, with N � 20, and we would
seek a transformation from images to joint angles. Function
fitting is theprocess of fitting a function f : RM ! RN given a
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set of input-output examples fxi; yig, with 0 � i � T . Scenar-
ios where not all the ys are given are discussed later.

To find the best mapping f , one defines a loss function
over the space of functions using a loss V ðy; zÞ between
output labels. Additionally, one may place a regularizer on
f or on its parameters to improve stability [22], resulting in
an optimization of the form

min
f

X

T

i¼1

V ðfðxiÞ; yiÞ þ P ðfÞ: ð1Þ

The mapping f can take any form that is algorithmically
convenient, such as linear, polynomial, radial basis function
(RBF), neural networks, or the nearest neighbors rule. In this
paper, we focus on the RBF representation, though other
representations, such as nearest neighbors, also result in
simple optimizations.

The Radial Basis Functions (RBF) form consists of a
weighted sum of radial basis functions centered at prespe-
cified centers fcjg1���J .

f�ðxÞ ¼
X

J

j¼1

�jkðx; cjÞ: ð2Þ

Here, the parameters � of the function consist of vectors �j 2
RN and k : RM �RM ! R is a function of the euclidean
distance between its arguments. When V in (1) is the
quadratic loss, estimating � reduces to a least-squares
problem since the output of f is linear in its parameters �.

3.1 Reproducing Kernel Hilbert Spaces

The theory of Reproducing Kernel Hilbert Spaces (RKHS)
provides a guide for a stabilizer P and a set of basis functions
for function fitting. Every positive definite kernel k :

RM �RM ! R defines an inner product on bounded func-
tions whose domains is a compact subset of RN and whose
range isR [23]. This innerproduct is defined so that it satisfies
the so-called reproducing property hkðx; �Þ; fð�Þi ¼ fðxÞ. That
is, in the RKHS, taking the inner product of a function with
kðx; �Þ evaluates that function at x. The norm k � k in this
Hilbert space is defined in terms of this inner product in the
usual way.

This norm favors smooth functions and will serve as the
stabilizer P for function fitting. According to Mercer’s
theorem [23], k has a countable representation on a compact
domain: kðx1; x2Þ ¼

P1
i¼1 �i�iðx1Þ�iðx2Þ, where the func-

tions �i : R
M ! R are linearly independent. Combining

this with the reproducing property reveals that the set of �
are a countable basis for the RKHS

fðxÞ ¼ hfð�Þ; kðx; �Þi ¼ fð�Þ;
X

1

i¼1

�i�ið�Þ�iðxÞ

* +

¼
X

1

i¼1

�iðxÞ�ihfð�Þ; �ið�Þi ¼
X

1

i¼1

�iðxÞci;

ð3Þ

where ci ¼ �ihfð�Þ; �ið�Þi are the coefficients of f in the basis
set defined by the �i.

The functions � are orthogonal under this inner product:
By the reproducing property, we have �jðxÞ ¼ h�jð�Þ;
kðx; �Þi ¼

P1
i¼1 �iðxÞ�ih�jð�Þ; �ið�Þi. The �s form a basis, so

�j cannot be written as a linear combination of other �s. This
implies h�i; �ji ¼ �ij=�i or that the �s are orthonormal.

The norm of a function in the RKHS can therefore be
expressed in terms of its coefficients

kfk2k ¼ hf; fi ¼
X

1

i¼1

�ici;
X

1

i¼1

�ici

* +

¼
X

ij

cicjh�i; �ji ¼
X

i

c2i =�i:

ð4Þ

An RBF kernel kðx; x0Þ ¼ kðkx� x0kÞ has sinusoidal
bases � [23], [24], so the norm kfk2k penalizes the
coefficients the projection of f on sinusoids. When k is a
Gaussian kernel kðx0; xÞ ¼ expð�kx� x0k2=�2kÞ, �i are posi-
tive and decaying with increasing i. Thus, kfkk under this
kernel penalizes the high frequency content in f more than
the low-frequency content, favoring smoother f’s [23], [24].

3.2 Nonlinear Regression with Tikhonov
Regularization on an RKHS

Since the RKHS norm for the Gaussian kernel favors smooth
functions,wemayuse it as a stabilizer for function fitting.We
fit a multivariate function f ¼ ½f1ðxÞ . . . fNðxÞ� to data by
applying Tikhonov regularization to each scalar-valuded
component of f independently. Denoting the dth component
of each yi by ydi , the Tikhonov problem for each fd becomes

min
fd

X

T

i¼1

V ðfdðxiÞ; y
d
i Þ þ �kkf

dk2k: ð5Þ

The minimization is over the RKHS defined by the kernel k
and �k is a scalar that controls the trade-off between
smoothness and agreement with the training data.

Although the optimization (5) is a search over a function
space, the Representer theorem states that its minimizer can
be represented as a weighted sum of kernels placed at each
xi [25]

fdðxÞ ¼
X

T

i¼1

cdi kðx; xiÞ: ð6Þ

To see that the optimum of (5) must have this form, we show

that any solution containing a component that is orthogonal

to the space of functions spanned by this form must have

a greater cost according to (5) and, therefore, cannot be

optimal. Specifically, suppose the optimal solution has the

form f ¼ gþ h, with g having the form (6) and h nonzero and

orthogonal to all functions of the form (6), i.e., for all c,

h
P

i¼1 cikð�; xiÞ; hi ¼ 0. By the reproducing property, we have
P

i cihðxiÞ ¼ 0 for all c, so hðxiÞ ¼ 0. Therefore, fðxiÞ ¼ gðxiÞ.

But, by the orthogonality of f and g, kfk2k ¼ kgk2k þ khk2k, so

kfk2k is strictly greater than kgk2k, even though their corre-

sponding data terms are equal. Therefore, f cannot be

optimal.
When V ðx; yÞ has the quadratic form ðx� yÞ2, we can use

therepresenter theoremtoreduce (5) intoa finite-dimensional
least-squares problem in the coefficients of f . The optimal
solution given by (6) can be written in vector form as K0

xc
d,

where the ith component of the column vectorKx is kðx; xiÞ,
cd is a column vector of coefficients, and 0 is the transpose
operator. The column vector consisting of fd evaluated at
every xi can be written as Kcd, where Kij ¼ kðxi; xjÞ. Using
the reproducing property of the inner product, it can be seen

RAHIMI ET AL.: LEARNING TO TRANSFORM TIME SERIES WITH A FEW EXAMPLES 1761



that the RKHS norm of a functions of the form (6) is
kfdk2k ¼ cd

0
Kcd. Substituting these into (5) yields a finite-

dimensional least-squares problem in the coefficients of f

min
cd

kKcd � ydk2 þ �kc
d0Kcd: ð7Þ

One c is found, f can be evaluated at arbitrary points by
evaluating the form (6).

4 SEMISUPERVISED NONLINEAR REGRESSION WITH

DYNAMICS

It is appealing to use fully supervised regression to learn a
mapping from the samples of the input time series to those of
the output time series. But, for many of the applications we
consider here, obtaining adequate performance with these
techniques has required supplying so many input-output
examples that even straightforward temporal interpolation
between the examples yields adequate performance. This is
not surprising since a priori most nonlinear regression
algorithms take into account very little of the structure of
the problem at hand. In addition, they ignore unlabeled
examples.

Taking advantage of even seemingly trivial additional
information about the structure of the problem cannot only
improve regression with supervised points, but also renders
unlabeled points informative, which in turn provides a
significant boost in the quality of the regressor. For example,
explicitly enforcing the constraint thatmissing labelsmust be
binary and the regressor smooth, as in a transductive SVM
[26], [27], [28], [29], results in performance gains over an SVM
that only makes the latter assumption [30].

To take advantage of missing labels, we augment the cost
functional for Tikhonov regularized function regression
with a penalty function, S, over missing labels. The penalty
function S favors label sequences that exhibit plausible
temporal dynamics. Under this setting, semisupervised
learning becomes a joint optimization over a function f and
an output sequence Y. Let Z ¼ fzig, i 2 L be the set of
labeled outputs, where the index set L of input-output
examples may index a subset of samples of the time series
or may index additional out-of-sample examples.

The following optimization problem searches for an
assignment to missing labels that is consistent with S, and a
smooth function f that fits the labeled data:

min
f;Y

X

T

i¼1

V ðfðxiÞ; yiÞ þ �l

X

i2L

V ðfðxiÞ; ziÞ

þ �sSðYÞ þ �k

X

N

d¼1

kfdk2k:

ð8Þ

This cost functional adds two terms to the cost functional of
(1). As before, the second term ensures that f fits the given
input-output examples and the term weighted by �k favors
smoothness of f . The first term ensures that f also fits the
estimated missing labels and the term weighted by �s favors
sequencesY that adhere to the prior knowledge aboutY. The
scalar �l allows points with known labels to have more
influence than unlabeled points.

We consider applications where the output time series
represents the motion of physical objects. In many cases, a
linear-Gaussian random walk process is a reasonable model

for the time evolution of the dynamical state of the object, so
the negative log likelihood of this process provides the
penalty function S. For simplicity, we assume that each
coordinate of the object’s pose evolves independently of the
other coordinates and that the state sequence S ¼ fstgt¼1���T

for each coordinate evolves according to a chain of the form

st ¼ Ast�1 þ !t ð9Þ

A ¼

1 �v 0

0 1 �a

0 0 1

2

6

4

3

7

5
; ð10Þ

where the Gaussian random variable !t has zero mean and
diagonal covariance �!. These parameters, along with the
scalars �v and �a specify the desired dynamics of the output
time series. When describing the motion of an object, each
component of st has an intuitive physical analog: The first
component corresponds to a position, the second to
velocity, and the third to acceleration.

We would like to define S so that it favors output time
series Y that adhere to the position component of the
process defined by (9). Equation (9) defines a zero-mean
Gaussian distribution, pðSÞ, with

log pðSÞ¼k�
1

2

X

T

t¼1

kst�Ast�1k
2
�!

þ pðs0Þ ¼ k�
1

2
s0Ts; ð11Þ

where k is a normalization constant, pðs0Þ is a Gaussian
prior over the first time step, andT can be written as a block
tridiagonal matrix. Since pðSÞ is a zero-mean Gaussian pdf,
marginalizing over the components of S not corresponding
to position yields another zero-mean Gaussian distribution
p1ðs

1Þ, where s1 ¼ ½s11 � � � s
1
T �

0 denotes the column vector
consisting of the first component of each st. The Schur
complement of T over s1 gives the inverse covariance �1 of
p1ðs

1Þ [31], and we get log p1ðs
1Þ ¼ k1 �

1
2
s1

0
�1s

1. To favor
time series Y that adhere to these dynamics, we penalize
each component yd ¼ ½yd1 � � � y

d
T � of Y, using log p1ðy

dÞ. This
amounts to penalizing each component of Y with ðydÞ0�1y

d.
We can substitute this quadratic form into the semisu-

pervised learning framework of (8). Letting V be the
quadratic penalty function and defining zd ¼ fzdi gL as a
column vector consisting of the dth component of the
labeled outputs, we get

min
f;Y

X

N

d¼1

X

T

i¼1

�

fdðxiÞ � ydi

�2

þ �l

X

i2L

�

fdðxiÞ � zdi

�2

þ �kkf
dk2k þ �s yd

� �0
�1y

d:

ð12Þ

Because our choice of S decouples over each dimension of
Y, the terms in the summation over d are decoupled, so
each term over d can be optimized separately

min
fd;yd

X

T

i¼1

�

fdðxiÞ � ydi

�2

þ �l

X

i2L

�

fdðxiÞ � zdi

�2

þ �kkf
dk2k þ �s yd

� �0
�1y

d:

ð13Þ

This is an optimization over f , nestedwithin an optimization
over yd, so the Representer theorem still applies. Letting the
set I ¼ L [ f1 � � �Tg denote the index set of labeled and
unlabeled data, the optimum fd has the RBF form
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fdðxÞ ¼
X

i2I

cdi kðx; xiÞ: ð14Þ

Note that, incontrast to fully supervisednonlinear regression,
where kernels are only centered on labeledpoints, the kernels
here are centered on the labeled as well as the unlabeled
points. This allows the function f to have larger support in the
input data space without making it overly smooth.

Substituting the RBF form (14) for f in (13) turns it into a
quadratic problem in the coefficients of the RBF form and
the missing labels

min
cd;yd

kKT c
d � ydk2 þ �lkKLc

d � zdk2

þ �kc
d0
Kcd þ �s yd

� �0
�1y

d;
ð15Þ

where K is the kernel matrix corresponding to labeled and
unlabeled data, KT is the matrix consisting of the rows of K
that correspond to the unlabeled examples, and KL is the
kernel matrix consisting of the rows of K that correspond to
the labeled examples.

A simple way to perform this minimization is to rewrite
the cost function (15) as a quadratic form plus a linear term

min
cd;yd

cd

yd

" #0
K

0
TKT þ �kKþ �lK

0
LKL �K

0
T

�KT Iþ �s�1

� �

cd

yd

" #

þ
�2�lK

0
Lz

d

0

" #0
cd

yd

" #

:

ð16Þ

The optima can be found by matrix inversion, but because
the right-hand side of this inversion problem has a zero
block, we can reduce the complexity of the inversion by
solving for c only. Denote by P the matrix that appears in
the quadratic term and partition it according to

P ¼
Pc Pcy

P
0
cy Py

� �

:

Taking derivatives of the cost and setting to zero yields

Pcc Pcy

P
0
cy Pyy

� �

cd

yd

� �

¼
�lK

0
Lz

d

0

� �

:

Using the matrix inversion lemma yields a solution for the
optimal cd

cd� ¼ �l Pcc �PcyP
�1
yy P

0
cy

� ��1

K
0
Lz

d: ð17Þ

Once these coefficients are recovered, labels can be
estimated by evaluating f at various xs by evaluating the
RBF form (14).

This algorithm is not very sensitive to the settings of the its
parameters, and usually works with default parameter
settings. These parameters are �k, �l, �s, �v, �a, �!, and the
parameters required to define the kernel kð�; �Þ. Since �s scales
�!, it is subsumed by�!, which is diagonal, leaving uswith a
total of seven parameters, plus the parameters of k (which is
usually just a scalar). In [32], we present a variant based on a
nearest-neighbors representation of f that requires fewer
parameters. Thenext sectionpresents avariationbasedon the
RBF form that eliminates one parameter. Sections 6 and 8
provide some intuition to guide any manual parameter
tuning that may be necessary.

5 ALGORITHM VARIATION: NOISE-FREE EXAMPLES

The learning functional in the previous section does not
require f to fit the given input-output examples exactly,
allowing some noise to be present in the given output
labels. But, if the given labels are accurate, we may require
that f fit them exactly. This has the advantage of
eliminating the free parameter �l, which weights the
influence of the labeled points.

An exact fit to the given examples can be enforced by
making �l very large, but this makes the cost functional
poorly conditioned. A better solution is to turn the second
term into a set of constraints, resulting in the following
alternative to (8):

min
f;Y

X

T

i¼1

V
�

fðxiÞ; yi

�

þ �sSðYÞ þ �k

X

N

d¼1

kfdkv2; ð18Þ

s:t: fðxiÞ ¼ zi; 8i 2 L: ð19Þ

When V is quadratic, this reduces to minimizing a
quadratic form subject to linear constraints

min
cd;yd

cd

yd

" #0"

K
0
TKT þ �kK �K

0
T

�KT Iþ �s�1

#

cd

yd

" #

; ð20Þ

s:t: KLc
d ¼ zd: ð21Þ

To solve for cd, partition again the matrix that appears in the
quadratic term as

P ¼
Pcc Pcy

P
0
cy Pyy

� �

:

Solving for the optimal yd and plugging back in yields a
quadratic form in terms of the Schur complement of P,
which we denote by H ¼ Pcc �PcyP

�1
yy P

0
cy

min
cd

�

cd
�0
Hcd ð22Þ

s:t: KLc
d ¼ zd: ð23Þ

The optimal coefficients, derived in the Appendix, which
can be found at http://computer.org/tpami/archives.htm,
are given by

cd� ¼ H
�1
K

0
L

�

K
0
LH

�1
KL

��1
zd: ð24Þ

6 INTUITIVE INTERPRETATION

An informal understanding of these algorithms will be
helpful in understanding when they will work and how to
tune their parameters. The optimization (8) simultaneously
interpolates themissing labels using S and fits a function f to
missing and given labels with Tikhonov regularization. This
can be better understood by regrouping the terms of (8)

. Function fitting. The data penalty terms fit f to
given and estimated labels. To see this, rewrite (8) as

min
Y

�sSðYÞ þ

"

min
f

X

T

i¼1

V
�

fðxiÞ; yi

�

þ �l

X

i2L

V
�

fðxiÞ; zi

�

þ �k

X

N

d¼1

kfdk2k

#

:

ð25Þ

RAHIMI ET AL.: LEARNING TO TRANSFORM TIME SERIES WITH A FEW EXAMPLES 1763



The inner optimization is Tikhonov regularization
and assigns a different weight to known labels and
imputed labels.

. Interpolation. The optimization overY implements a
smoother over label trajectories that uses fðxiÞ as
observations andS as a prior. To see this, rewrite (8) as

min
f

�k

X

N

d¼1

kfdk2k þ �l

X

i2L

V
�

fðxiÞ; zi

�

þ min
Y

X

T

i¼1

V ðfðxiÞ; yiÞ þ �sSðYÞ

" #

:

ð26Þ

This nested smoothing operation corrects the output
of f at unlabeled points. This, in turn, guides the
function fitting step.

The coupling between these two operations allows the
algorithm to learn the correct mapping in regions where
labeled data is scarce. In those regions, the labels can be
inferred by interpolating them from temporally adjacent
known outputs. This effect is starkly illustrated with the
Sensetable data set in the next section.

7 LEARNING TO TRACK FROM EXAMPLES WITH

SEMISUPERVISED LEARNING

This section exhibits the effectiveness of regularizing the
output nonlinear regression when solving tracking pro-
blems. The relationship to manifold learning algorithms is
clarified with some synthetic examples. We then report our
experiments in learning a tracker for RFID tags and our
sequence annotation tool for labeling video sequences.
Throughout this section, we show that a fully supervised
nonlinear regression algorithm would require significantly
more examples to learn these operations.

The applications demonstrated here rely on the semi-
supervised learning algorithm of Section 5, which
requires the output time series to fit the input-output
examples exactly. We use a Gaussian kernel kðx1; x2Þ ¼
expð� 1

2
kx1 � x2k

2=�2Þ , whose bandwidth parameter � is a
free parameter of the algorithm. Section 8 provides some
guidance in tuning the algorithm’s free parameters.

7.1 Synthetic Manifold Learning Problems

We first demonstrate the effectiveness of the semisupervised
learning algorithm on a synthetic dimensionality reduction
problem where the task is to recover low-dimensional
coordinates on a smooth 2D manifold embedded in R3. The
data set considered here proves challenging for existing
manifold learning techniques, which estimate the neighbor-
hood structure of the manifold based on the proximity of
high-dimensional points. Taking advantage of temporal
dynamics, and a few points labeled with their low-dimen-
sional coordinates, makes the problem tractable using our
algorithm. To assess the importance of labeledpoints,we also
compare against a semisupervised learning algorithm that
does not take temporal dynamics into account.

The high-dimensional data set is constructed by lifting a
randomwalk on a 2D euclidean patch toR3 via a smooth and
invertiblemapping. See Figs. 1a and 1b. The task is to recover
the projection function f : R3 ! R2 to invert this lifting.

In this data set, the nearest neighbors inR3 of points near
the region of near-self-intersection (the “neck”) will straddle

the neck, and the recovered neighborhood structure will not
reflect the proximity of points on the manifold. This causes
existing manifold learning algorithms such as LLE [2],
Isomap [1], and Laplacian Eigenmaps [3] to assign similar
coordinates to points that are in fact very far from each other
on the manifold. Isomap creates folds in the projection. See
Fig. 2a. Neither LLE nor Laplacian Eigenmaps produced
sensible results, projecting the data to a straight line, even
with denser sampling of the manifold (up to 7,000 samples)
and with a variety of neighborhood sizes (from three
neighbors to 30 neighbors).

Thesemanifold learning algorithms ignore labeled points,
but the presence of labeled points does notmake the recovery
of low-dimensional coordinates trivial. To show this, we also
compare against Belkin and Nyogi’s graph Laplacian-based
semisupervised regression algorithm [12], referred to here as
BNR. Sixpoints on theboundaryof themanifoldwere labeled
with their ground truth low-dimensional coordinates.
Figs. 2b and 2e show the results of BNR on this data set when
it operates on large neighborhoods. There is a fold in the
resulting low-dimensional coordinates because BNR assigns
the same value to all points behind the neck. Also, the
recovered coordinates are shrunk toward the center, because
the Laplacian regularizer favors coordinates with smaller
magnitudes. For smaller settings of the neighborhood size,
the folding disappears, but the shrinking remains.1

It is also not sufficient to merely take temporal adjacency
into account when building the neighborhood structure of
the high-dimensional points. Figs. 2c and 2f show the result
of BNR when the neighborhood of each point includes
temporally adjacent points. Including these neighbors does
not improve the result.

Finally, Fig. 2d shows the result of Tikhonov regulariza-
tion on an RKHS with quadratic loss (the solution of (5)
applied to the high-dimensional points). This algorithm uses
only labeled points and ignores unlabeled data. Because all
the labeled points have the same y coordinates, Tikhonov
regularization cannot generalize the mapping to the rest of
the 3D shape.

Taking into account the temporal coherence between data
points and the dynamics of the low-dimensional coordinates
alleviates these problems. Folding problems are alleviated
becauseouralgorithmtakesadvantageof the timeorderingof
data points and the explicit dynamical model alleviates the
shrinking toward zero by implicitly modeling velocity in the
low-dimensional trajectory. Fig. 1c shows the low-dimen-
sional coordinates recovered by our algorithm. These values
are close to the true low-dimensional coordinates.

We can also assess the quality of the learned function f
on as-yet unseen points. Figs. 1d and 1e show a 2D grid
spanning ½0; 5� � ½�3; 3� lifted by the same mapping used to
generate the training data. Each of these points in R3 is
passed through the recovered mapping f to obtain the
2D representation shown in Fig. 1f. These projections fall
close to the true 2D location of these samples, implying that
f has correctly generalized an inverse for the true lifting.
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1. In comparing the algorithm with Isomap, LLE, and Laplacian
Eigenmaps, we relied on source code available from the respective authors’
Web sites. To compute eigenvalues and eigenvectors, we tried both
MATLAB’s EIGS routine and JDQR [33], a drop-in replacement for EIGS.
We used our own implementation of BNR, but relied on the code supplied
by the authors to compute the Laplacian.



This synthetic experiment illustrates three features that

recur in subsequent experiments:

. While the kernel matrix K takes into account the
similarity of the high-dimensional data points,
explicitly taking into account the dynamics of the
low-dimensional process obviates the need to build
the brittle neighborhood graph that is common in
manifold learning and semisupervised learning
algorithms.

. The assumed dynamics model does not need to be
very accurate. The true low-dimensional random
walk used to generate the data set bounced off the
boundaries of the rectangle ½0; 5� � ½�3; 3�, an effect

not modeled by a linear-Gaussian Markov chain.
Nevertheless, the assumed dynamics of (9) are
sufficient for recovering the true location of unla-
beled points.

. The labeled examples do not need to capture all the
modes of variation of the data. Despite the fact that
the examples only showed how to transform points
whose y coordinate is 2.5, our semisupervised
learning algorithm learned the low-dimensional
coordinate of points with any y-coordinate.

7.2 Learning to Track: Tracking with the Sensetable

TheSensetable is a hardwareplatform for tracking theposition

of radio frequency identification (RFID) tags [35]. It consists of
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Fig. 1. (a) The true 2D parameter trajectory. The six labeled points are marked with big blue triangles. The trajectory has 1,500 samples. In all of
these plots, the color of each trajectory point is based on its y-value, with higher intensities corresponding to greater y-values. (b) Embedding of the
path via the lifting F ðx; yÞ ¼ ðx; jyj; sinð�yÞðy2 þ 1Þ�2 þ 0:3yÞ. (c) Recovered low-dimensional representation using our algorithm. The original data in
(a) is recovered. (d) Even sampling of the rectangle ½0; 5� � ½�3; 3�. (e) Lifting of this rectangle via F . (f) Projection of (e) via the learned function f.
The recovered locations are close to their 2D locations, showing that the inverse of F has been learned correctly.



10 antennae woven into a flat surface that is 30 cm on a side.
As anRFID tagmoves along the flat surface, analog-to-digital
conversion circuitry reports the strength of theRF signal from
the RFID tag as measured by each antenna, producing a time
series of 10 numbers. See Fig. 3a. The Sensetable has been
integrated into various hardware platforms, such as a system
for visualizing supply chains and the Audiopad [34], an
interactive disc jockey system.

We wish to learn to map the 10 signal strength measure-
ments from the antennae to the 2D position of the RFID tag.
Previously, a mapping was recovered by hand through an
arduous reverse-engineering process that involved building
a physical model of the inner-workings of the Sensetable and

resorting to trial and error to refine the resulting mappings
[35]. Rather than reverse-engineering this device by hand,we
show that it is possible to recover thismappingwith only four
labeled examples and some unlabeled data points, even
though the relationship between the tag’s position an the
observed measurements is highly oscillatory. Once it is
learned, we can use the mapping to track RFID tags. The
procedure we follow is quite general and can be applied to a
variety of other hardware.

To collect the four labeled examples, the tagwas placed on
each of the four corners of the Sensetable, the Sensetable’s
output was recorded. We collected unlabeled data by
sweeping the tag on the Sensetable’s surface for about
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Fig. 2. (a) Isomap’s recovered 2D coordinates for the data set of Fig. 1b. Errors in estimating the neighborhood relations at the neck of the manifold
cause the projection to fold over itself in the center. The neighborhood size was 10, but smaller neighborhoods produce similar results. (d) Fully
supervised algorithms, which do not take advantage of unlabeled points, cannot correctly recover the coordinates of unlabeled points because only
points at the edges of the shape are labeled. (b) Projection with BNR, a semisupervised regression algorithm, with neighborhood size of 10. Although
the structure is recoveredmore accurately, all the points behind the neck are folded into one thin strip. (e) BNRwith neighborhood size of 3 prevents only
some of the folding. Points are still shrunk to the center, so the low-dimensional values are not recovered accurately. (c) and (f) BNR as before, with
temporally adjacent points included in neighborhoods. There is no significant improvement over building neighborhoods using nearest neighbors only.



400 seconds, and down-sampled the result by a factor of 3 to
obtain about 3,600 unlabeled data points. Fig. 3b shows the
ground truth trajectory of the RFID tag, as recovered by the
manually reverse-engineered Sensetable mappings. The four
triangles in the corners of the figure depict the location of the
labeled examples. The rest of the 2D trajectory was not made
available to the algorithm. Contrary to what one might hope,
the output fromeach antenna of the Sensetabledoes not have a
straightforward one-to-one relationshipwith a component of
the 2D position. For example, when the tag is moved in a
straight line from left to right, it generates oscillatory traces
similar to those shown in Fig. 3c.

The four labeled points, along with the few minutes of
recorded data were passed to the semisupervised learning
algorithm to recover the mapping. The algorithm took
90 seconds to process this data set on a 3.2GhzXeonmachine.
The trajectory is recoveredaccuratelydespite the complicated
relationship between the 10 outputs and the tag position (see
Fig. 4). The RMS distance to the ground truth trajectory is
about 1.3 cm, though the ground truth itself is based on the
reverse engineered tracker and may be inaccurate. Fig. 4b
shows the regions that aremost prone to errors. The errors are
greatest outside the bounding box of the labeled points, but
points near the center of the board are recovered very

accurately, despite the lack of labeled points there. This
phenomenon is discussed in Section 6.

The recovered mapping from measurements to positions
can be used to track tags. Individual samples of 10 measure-
ments can be passed to the recovered mapping f to recover
the corresponding tag position, but because the Sensetable’s
output is noisy, the results must be filtered. Fig. 5 shows the
output of a few test paths after smoothing using the assumed
dynamics. The recovered trajectories match the patterns
traced by the tag.

Unlabeled data and explicitly taking advantage of dy-
namics is critical in this data set because the relationship
between signal strengths and tag positions is complex, and
few input-output examples are available. Thus, fully super-
vised learningwithTikhonov regularizationonanRKHSfails
to recover the mapping. See Fig. 6a. Fig. 6b shows the
trajectory recovered by BNR with its most favorable para-
meter setting for this data set. Fig. 6c shows the trajectory
recovered by BNR when temporally adjacent neighbors are
counted as part of the adjacency graph when computing the
Laplacian. As with the synthetic data set, there is severe
shrinkage toward the mean of the labeled points and some
folding at the bottom and taking temporal adjacency into
account does not significantly improve the results.
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Fig. 3. (a) A top view of the Sensetable, an interactive environment for tracking RFID tags. Users manipulate RFID tagged pucks and a projector
overlays visual feedback on the surface of the table. Coils under the table measure the strength of the signals induced by RFID tags. Our algorithm
recovers a mapping from these signal strengths to the position of the tags. (b) The ground truth trajectory of the tag. The tag was moved around
smoothly on the surface of the Sensetable for about 400 seconds, producing about 3,600 signal strength measurement samples after downsampling.
Triangles indicate the four locations where the true location of the tag was provided to the algorithm. The color of each point is based on its y-value,
with higher intensities corresponding to higher y-values. (c) Samples from the antennae of the Sensetable over a six second period, taken over the
trajectory marked by large circles in (a).

Fig. 4. (a) The recovered tag positions match the original trajectory depicted in Fig. 3. (b) Errors in recovering the ground truth trajectory. Circles
depict ground truth locations, with the intensity and size of each circle proportional to the euclidean distance between a point’s true position and its
recovered position. The largest errors are outside the bounding box of the labeled points. Points in the center are recovered accurately, despite the
lack of labeled points there.



7.3 Learning to Track: Visual Tracking

In this section, we demonstrate an interactive application
where our algorithm helps a user quickly annotate every
frame of a video sequence with a low-dimensional represen-
tation of a the scene given a fewmanually-labeledkey frames.
These labels are specifiedwith an interactive graphical tool as
a collection of vectorized drawing primitives, such as splines
and polylines. The output representation consists of the
control points of these drawing primitives. Given the video
sequence and the labeled examples, our algorithm recovers
the control points for the unlabeled frames of the video
sequence. If the user is not satisfied with the rendering of
these control points, he canmodify the labeling and rerun the
algorithm at interactive rates. The tool is demonstrated on a
lip tracking video where the user specifies the shape of the
lips of a subject and two articulated body tracking experi-
ments [36], [37], where the user specifies positions of the
subject’s limbs. The annotation tool is available online [38].

There is a rich body of work in learning visual trackers
from examples using fully supervised regression algorithms.
For example, relying on thenearest neighbors representation,
Efros et al. [39] used thousands of labeled images of soccer
players to recover the articulated pose of players in new
images and Shaknarovich et al. [40] used a database of
synthetically rendered hands to recover the pose of hands.
Relying on theRBF representation, ElGammal [41] recovered
the deformation of image patches and Agarwal and Triggs
[42] learned a mapping from features of an image to the pose
of human bodies. In our case, the training sequence are
sequential frames of a video, and taking advantage of the
temporal coherence between these frames allows us to take
advantage of unlabeled examples, and greatly reduces the
need for labeled outputs.

Because it is interactive, our system is reminiscent of
rotoscoping tools [43], [44], which allow the user to
interactively adjust the output of contour trackers by
annotating key frames. Since our algorithm does not rely
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Fig. 5. Once f is learned, it can be used it to track tags. Each panel shows a ground truth trajectory (blue crosses) and the estimated trajectory (red

dots). The recovered trajectories match the intended shapes.

Fig. 6. (a) Tikhonov regularization with labeled examples only. The trajectory of the RFID tag is not recovered. Both (b) BNR with 3-nearest
neighbors and (c) BNR with 3-nearest neighbors including temporal neighbors exhibit folding at the bottom of the plot, where black points appear
under the lighter red points. There is also severe shrinking toward the mean.



explicitly on edges or the spatial coherence of pixels in
images, it can learn arbitrary smooth mappings from
images to vectorized representations that do not correspond
to contours. For this reason, it is robust to occlusions.

While other example-based tracking systems preprocess
the images by selecting a relevant patch [39], [41] or
extracting silhouettes [40], [45], we represent images as
by concatenating their pixel values into a column vector.
Thus, we represent a 640� 480 gray-scale image as a vector
in R307;200. The visual tracking results in this section use this
simple representation, without applying any preprocessing
to the images, and represent the mappings using Gaussian
radial basis functions.

Because it performs no preprocessing on the input images,
several caveats apply for this algorithm to work well in
visual settings. First, the motion being tracked must be the
dominant source of differences between the images: There
may be no large distractors that are not governed by the
underlying representation. Such distractors include other
moving objects in the scene, significant lighting variations
over time, and motions of the camera. But, occlusions due to
stationary objects or even self occlusions are allowed because
the Gaussian RBF representation relies only on pixel
differences between pairs of images. Thus, the algorithm is
also invariant to orthonormal operators applied to images,
such as permutations of the pixels, as these operations do not
affect the response of the Gaussian kernel. If distractors do
exist in the scene, theymay be removed by preprocessing the
frames, and adopting a more invariant representation. This
could further reduce the number of required examples and
make the learned mapping applicable to inputs that are
significantly different from the training images. The tracker
can also be made to ignore these distractors by providing
additional labeled data. Second, the algorithm assumes that
themapping from images to labels is smooth: A small change
in the input image should result in a small change in its label.
This smoothness requirement is satisfied in practice, even in
the presence of occlusions. Third, the algorithm assumes that
the output time series evolves smoothly over time. If this is
not the case, the algorithm cannot take advantage of
unlabeled data.

Todemonstrate the algorithm’s ability to trackdeformable
shapes, the interactive toolwasusedtoannotate thecontourof
a subject’s lip in a 2,000 frame video sequence. Fig. 7a shows a
few frames of this sequence. The contour of lips are
represented with cubic splines controlled by four points.
Two of the control points were placed on the corners of the
mouth, and the other two were placed above and below the
lips.Only seven labeled frameswerenecessary toobtaingood
lip tracking performance for the rest of the sequence. See
Fig. 7b. The tracker is robust to all the artifactsmanifest in this
video sequence, including blinking, facial expressions, small
movements of the head, and the appearance and disappear-
ance of teeth. Applying fully supervised Tikhonov regular-
ization on these seven examples yields identical results. But,
this is not the casewith the following video sequences, where
fully supervised nonlinear regression does not perform well
with the given examples.

Fig. 8a shows the labeled images of a 2,300 frame sequence
of a subject moving his arms. These 12 framesweremanually
labeled with line segments denoting the upper and lower

arms. Fig. 8b shows that the limb positions were recovered
accurately for the unlabeled portions of the sequence. Fig. 8c
shows that limb positions are recovered accurately for novel
frames that were not in the training sequence. Because the
raw pixel representation is used, the mapping between
observations and pose is nearly one-to-one, so poses can be
recovered from individual frames. For the same reason, the
mapping is robust to self-occlusions when the subject’s arms
cross themselves. Fully supervised nonlinear regression
produced the limb locations shown in black in Fig. 8. In
contrast to the semisupervised case, the resulting recovered
positions are often wrong.

Fig. 9a shows some of the labeled images in another
2,000 frame sequence. Thirteen labeled frameswere sufficient
for recovering the outline of the subject’s right arm through-
out the sequence. See the rest of Fig. 9. The resulting tracker
misses the fine motions of the hand (for example, when the
subject moves his hand in a small circle, the annotation
remains stationary), but captures the grossmotion of the arm.
Tracking is robust to themotion of the subject’s torso and the
subject turning his head because some of the 13 examples
explicitly annotate these cases.

To numerically assess the quality of these results, we
corrected its output at every fifth frame by hand and used
the magnitude of this correction as a measure of quality.
These corrections were not supplied to the algorithm and
serve only to numerically assess the quality of the output
from the 13 labeled images. Table 1 shows the magnitude of
these corrections averaged over the whole sequence. Our
algorithm outperforms temporal linear interpolation be-
tween the 13 labeled frames and fully supervised regression
using Tikhonov regularization with the 13 labeled frames.
The output of each algorithm was corrected separately to
avoid unintentionally favoring any one algorithm.

8 CHOOSING EXAMPLES AND TUNING PARAMETERS

This section provides guidelines for selecting which data
points to label and how to set the parameters. We find that
the algorithm returns similar results for a wide setting of
parameters, but that the choice of labeled examples has a
strong effect on the accuracy of the result.

Typically, it is onlynecessary to label input sampleswhose
labels lie on the corners of the output space. For example, in
the Sensetable experiment, we labeled the corners of the table,
and in the arm tracking example of Fig. 8, we labeled extreme
arm positions. As is shown in Fig. 4b, labels in the hull of the
labeledexamples canusuallybe recoveredveryaccurately, so
it is not necessary to label them.This is because there is often a
path between two labeled points that either follows the given
dynamics and passes through the interior, so the label of the
interior points can be recovered with temporal interpolation
or because thesepoints lie in regionswhere f returns accurate
results due to proximity to other labels that are well-
estimated. An unsupervised version of our learning algo-
rithm [46] can be used to identify boundary points in a first
pass, if these points cannot be easily identified by inspection.
However, if good paths through the interior are rare, interior
points may need to be labeled as well. For example, in Fig. 9,
frames where the subject pointed to the “X” in the middle of
the board had to be labeled, even though the appropriate
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parameters of the shape of the arm for these frames lie in the

convex hull of the other labeled frames. In this video

sequence, to reach the “X” from a boundary point, the
subject’s arm followed a circuitous path through previously

unexplored interior regions of the board. Because this path

was neither very likely according to the dynamics model nor

near other points whose labels were recovered, we had to

explicitly label some points along it.
The algorithm is insensitive to settings of the other

parameters up to several orders of magnitude and, typically,
only the parameters of the kernel need to be tuned. When
using a Gaussian kernel, if the bandwidth parameter is too
small,Kbecomesdiagonal andall points are considered to be
dissimilar. If the bandwidth parameter is too large,K has one
in each entry and all points are considered to be identical.We
initially set the kernel bandwidth parameter so that the
minimum entry inK is approximately 0.1. Other parameters,
including the scalar weights and the parameters of dynamics

are initially set to 1. After labeling a few boundary examples,
we run the algorithm with this default set of parameters and
adjust them or add new examples depending on the way in
which the output falls short of the desired result. Some of the
symptoms and possible adjustments are:

. Boundary points are not correctly mapped: The
output may exhibit slight shrinkage toward the
center. One way to fix this issue is to provide more
labels on the boundary. Another solution is to
increase �v and �a to under-damp the dynamics.

. All outputs take on the same value, except for abrupt
jumps at example points: This happens when the
kernel bandwidth parameter is too small, causing
the algorithm to treat all points as being dissimilar.
Increasing the bandwidth fixes this problem.

. Jittery outputs: If the recovered labels are not smooth
over time, one can either force f to become smoother
as a function of x or force the label sequence to
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Fig. 7. (a) The contour of the lips was annotated in seven frames of a 2,000 frame video. The contour is represented using cubic splines, controlled by
four control points. The desired output time series is the position of the control points over time. These labeled points and first 1,500 frames were used
to train our algorithm. (b) The recoveredmouth contours for various frames. The first three images show the labeling recovered for to unlabeled frames
in the training set and the next two show the labeling for frames that did not appear in the training set. The tracker is robust to natural changes in lighting
(i.e., the flicker of fluorescent lights), blinking, facial expressions, small movements of the head, and the appearance and disappearance of teeth.



become smoother over time. The first fix is achieved
by increasing �l and the second by decreasing the
variance of the driving noise in the dynamics.

It takes two or three iterations of applying these rules before
one converges on a good set of parameters and labeled
examples.

One can also search for the parameters of the model
automatically by searching for the parameter settings that
minimize the leave-one-out cross validation error on the
labeled outputs. To compute this error, we withhold one of
the labeled examples from the learning algorithm and
estimate its label based on all the other examples. The error
in this estimate, averaged over several left-out examples
provides a measure of performance for a given setting of the

parameters. We use the simplex method to find the
parameter settings that minimize this cross validation error.
This procedure can take many hours to converge, because
evaluating the leave-one-out error requires running the
algorithm once for each left-out point. Though it is possible
to speed it up with a recursive version of the learning
algorithm that can quickly update its solution when labeled
examples are added or removed, our experiments show that
fine parameter tuning is not necessary.

Fig. 10 shows the performance of the algorithm on the
sequence of Fig. 9 as the kernel bandwidth and regulariza-
tion weight are varied by several orders of magnitude. The
other parameters were fixed to values we used to generate
the results of Fig. 9 and Table 1. The figure of merit is the
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Fig. 8. (a) Twelve frames were annotated with the joint positions of the subject in a 1,500 frame video sequence. (b) The recovered positions of the
hands and elbows for the unlabeled frames are plotted in white. The output of fully supervised nonlinear regression using only the 12 labeled frames
and no unlabeled frames is plotted in black. Using unlabeled data improves tracking significantly. (c) Recovered joint positions for frames that were
not in the training set. The resulting mapping generalizes to as-yet unseen images.



average distance to the corrected sequence used in the
evaluation of Table 1. The algorithm produces the same
result over a large range of settings for this parameter, until
numerical problems emerge for wider kernels. The same
result are also reported for a wide range of settings for �k,
which governs the smoothness of f .

Thealgorithmis also resilient toawide rangeof settings for
the dynamical model. We drew 400 random joint samples of
�v and �a, restricting both parameters in the ranges 10�4 to
103, and fixing all other parameters to the settings used to
generate the results of Fig. 9 and Table 1. Similar errors were

reported for all the trajectories recovered with these para-
meter settings, with the average location error ranging from
3.528 to 3.53 pixels for one corner associated with the hand
and 4.77 to 4.78 pixels for the other corner. The algorithm is
similarly resilient to settings of the driving noise of the
dynamicalmodel.We sampled thediagonal elements of�! in
a similar fashion, restricting all three parameters to lie
between 10�7 and 106. All recovered trajectories again exhibit
similar errors, with the average location error ranging from
3.528 to 3.53 pixels for one corner and 4.781 to 4.783 pixels for
the other corner associated with the hand.
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Fig. 9. (a) Twelve of the 13 annotated frames for the arm tracking experiment. The labeling is a closed polygon with six corners. The corners are
placed at the shoulder, elbow, and hand. Two corners are associated with each of these body parts. To handle the subject turning his head, we
annotated a few frames with the subject’s head turned toward the camera and away from the camera. (b) A few recovered annotations. Tracking is
robust to head rotations and small motions of the torso because we explicitly annotated the arm position in frames exhibiting these distractors.



On the other hand, the number and choice of labels has a
strong influence on thequality of the recovered trajectory.We
ran our algorithm on randomly selected subsets of the
13 labeled points used to generate the results of Fig. 9 and
Table 1. The parameters of the algorithm were fixed. Fig. 11
shows the accuracy with which the algorithm recovered one
of the corners corresponding to the hand when training on
200 randomly selected subsets of the 13 labeled points. The
accuracy of the algorithm drops with the number of labeled
examples. Also, note that given a fixed number of labeled
examples, the choice of the examples to label can affect the
accuracy by as much as 16 pixels when only three examples
are labeled.

9 CONCLUSION

We have presented algorithms that learn to transform time
series. Our algorithms search smooth memoryless functions
that fit input-output training examples and, when applied to

the input time series, produce a time series that evolves
according to assumed dynamics. In this way, they can take
advantage of unlabeled input examples. The learning
procedures are fast and lend themselves to closed-form
solutions.

This work augments previous work on example-based
tracking by supplying a prior on the dynamics of the output.
This prior can leverage unlabeled data, thereby significantly
reducing the number of examples required to learn trackers.
Wewere able to recover the pose of articulated bodies and the
contour of deformable shapes from videos using very few
hand-labeled frames. We were also able to learn the
complicated mapping between the signal strength measure-
ments induced by an RFID tag in a set of antennae to the
position of the RFID tag. Fully supervised regression
algorithms or semisupervised learning algorithms that do
not take the dynamics of the output time series into account
were unable to perform many of these tasks.

The success of our technique on these data sets
demonstrates some characteristics that many other tracking
problems may exhibit:

1. When pose is the dominant factor governing the
measurements, an abundance of unlabeled data
can obviate the need for hand-crafted image
representations.

2. Simple dynamical models capture enough of the
temporal coherence to learn an appearance model.

3. The combination of labeled and unlabeled examples
can obviate the need for sophisticated appearance
models.

It is important to point out that in our data sets, pose was
the dominant factor in the appearance of the scene, so
changes in the background were negligible. Further, it was
possible to construct a function to map appearance to state
without the benefit of context. An extension to address the
latter issue is discussed in the next section.

In [46], we develop unsupervised learning algorithms that
take temporal coherency into account and rely on no labeled
data. The success of these algorithms further underlines the
importance of capturing temporal coherency in learning
algorithms.
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Fig. 10. (a) Average error in the position of each recovered corner in the data set of Fig. 9 as the kernel bandwidth parameter is varied over several
orders of magnitude. The parameter is �2 in the kernel kðx; x0Þ ¼ ð2��2Þ�

M
2 expð� 1

2�2 kx� x0k2Þ. (b) Performance as the weight �k, which favors the
smoothness of f, is varied. The algorithm has the same performance over a wide range of settings for both parameters.

TABLE 1
Comparison between Output and

Hand-Labeled Ground Truth for the Data Set of Fig. 9

All distances are in pixels. The first column gives the average distance
between the position of each corner as recovered by our algorithm and
its hand-correct location. The error for the two corners associated with
each body part (shoulder, elbow, and hand) is reported separately. To
gauge the magnitude of the errors, the last column gives the maximum
deviation between each corner’s position and its average position in the
sequence. The second and third columns report the errors for temporally
interpolating between the 13 labels, and applying fully supervised
regression on the 13 labels. Tikhonov regularization was run with the
best settings of its parameters (kernel variance and the weighting of the
stabilizer). These parameters were found by gridding the parameter
space. Our algorithm outperforms both of these approaches.



10 FUTURE WORK

Several interesting directions remain to be explored. We

would like to apply the semisupervised learning algorithm

to more application areas, and to extend this work by

exploring various kernels that might provide invariance to

more distractors, more sophisticated dynamical models,

and an automatic way of selecting data points to label.
In this work, the pose of the target was the only factor

governing the appearance of the target. This allowedus touse
a simpleGaussiankernel to compare observations. toprovide
more invariance to distractors, we could either summarize
images by a list of interest points and their descriptors, as in
[42], or compute the similarity matrix with different kernels,
as in [47] and referenceswithin.Wewould also like to explore
an automatic way to select features by tuning the covariance
matrix of the Gaussian kernel.

We have also assumed that a priori the components of
the output evolve independently of each other. In some
settings, such as when tracking articulated objects in 3D
with a weak-perspective camera, a priori correlation
between the outputs becomes an important cue because
the observation function is not invertible and pose can only
be recovered up to a subspace from a single frame. To
address this issue, the data matching terms in the cost
function can be set to V ðfðxiÞ;HyiÞ, where H spans this
subspace. A correlated prior on Y would then allow the
algorithm to recover the best path within the subspace. We
have not tried our algorithm on a data set where correlated
outputs and one-to-many mappings are critical, but it
would be interesting to examine the benefits of these
additions, and the use of other priors.

We provided some guidelines for choosing the inputs
to label, but it would be interesting to let the system
guide the user’s choice of inputs to label via active
learning [48], [49], [50].

In the future, we hope to explore many other application
areas. For example, we could learn to transform images to
cartoon sequences, add special effects to image sequences,
extract audio from muted video sequences, and drive video
with audio signals.
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