
Hindawi Publishing Corporation
Advances in Artificial Intelligence
Volume 2012, Article ID 484580, 15 pages
doi:10.1155/2012/484580

Research Article

Learning to Translate: A Statistical and Computational Analysis

Marco Turchi,1, 2 Tijl De Bie,2 Cyril Goutte,3 and Nello Cristianini2

1 European Commission-Joint Research Centre (JRC), IPSC, GlobeSec, Via Fermi 2749, 21020 Ispra, Italy
2 Intelligent Systems Laboratory, University of Bristol, MVB, Woodland Road, Bristol BS8 1UB, UK
3 Interactive Language Technologies, National Research Council Canada, 283 Boulevard Alexandre-Taché,
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We present an extensive experimental study of Phrase-based Statistical Machine Translation, from the point of view of its learning
capabilities. Very accurate Learning Curves are obtained, using high-performance computing, and extrapolations of the projected
performance of the system under different conditions are provided. Our experiments confirm existing and mostly unpublished
beliefs about the learning capabilities of statistical machine translation systems. We also provide insight into the way statistical
machine translation learns from data, including the respective influence of translation and language models, the impact of
phrase length on performance, and various unlearning and perturbation analyses. Our results support and illustrate the fact
that performance improves by a constant amount for each doubling of the data, across different language pairs, and different
systems. This fundamental limitation seems to be a direct consequence of Zipf law governing textual data. Although the rate of
improvement may depend on both the data and the estimation method, it is unlikely that the general shape of the learning curve
will change without major changes in the modeling and inference phases. Possible research directions that address this issue include
the integration of linguistic rules or the development of active learning procedures.

1. Introduction

Traditional approaches to machine translation (MT) [1]
relied to a large extent on linguistic analysis. The (rel-
atively) recent development of statistical approaches [2]
and especially phrase-based machine translation, or PBMT
[3, 4], has put the focus on the intensive use of large
parallel corpora. In that statistical framework, translation
is essentially viewed as the process of associating an input,
the source sentence, with an output, the target sentence.
Estimating a machine translation system is therefore similar
to learning the mapping between the source/input and the
target/output, a problem which has been extensively studied
in statistics and in machine learning. This justifies our
view of a typical phrase-based machine translation model
as a learning system and motivates our analysis of the
performance on that system.

A learning system typically considers a class of models,
or hypotheses, and tries to find the one element in that class
that provides the best prediction of the output on future,

unseen input examples. The performance of every learning
system is the result of (at least) two combined effects: the
representation power of the hypothesis class, determining
how well the system can approximate the target behaviour;
statistical effects, determining how well the system can
approximate the best element of the hypothesis class, based
on finite and noisy training information. The two effects
interact with richer classes being better approximators of the
target behaviour but requiring more training data to reliably
identify the best hypothesis. The resulting trade-off, equally
well known in statistics and in machine learning, can be
expressed in terms of bias versus variance, capacity control,
or model selection. Various theories on learning curves have
been proposed to deal with it, where a learning curve is a plot
describing performance of a learning system as a function
of some parameters, typically training set size. In practice
this trade-off is easily observed, by noticing how the training
error can be driven to zero by using a rich hypothesis class,
which typically results into overfitting and increased test
error.



2 Advances in Artificial Intelligence

In the context of statistical machine translation (SMT),
where large bilingual corpora are used to train adaptive
software to translate text, this task is further complicated
by the peculiar distribution underlying the data, where
the probability of encountering new words or expressions
never vanishes. If we want to understand the potential
and limitations of the current technology, we need to
understand this interplay between the two factors affecting
performance. In an age where the creation of intelligent
behaviour is increasingly data driven, this is a question
of great importance to all of artificial intelligence. These
observations lead us to an analysis of learning curves in
machine translation, and to a number of related questions,
including an analysis of the flexibility of the representation
class used, an analysis of the stability of the models with
respect to perturbations of the parameters, and an analysis of
the computational resources needed to train these systems.

In phrase-based approaches to statistical machine trans-
lation, translations are generated in response to some input
source text. The quality of the output translation depends on
the correctness of the generated language (fluency) as well
as on how faithful it is to the original meaning (adequacy).
This is reflected in the two main components of the typical
SMT model: the language model and the translation model.
While these will be formally defined in Section 2, let us
mention that the translation model relies on a bilingual table
of corresponding “phrases” (sequences of words), with an
associated probability which reflects how likely it is that
the source phrase will be translated as the target phrase.
The language model is typically built using a table of n-
grams, with associated probabilities, which is sufficient to
define a Markov chain. Note that the overall behaviour of
the translation system is largely controlled by the content
of those two tables. They are automatically filled during the
training phase, when a bilingual corpus is used to identify
both phrases and their probabilities. Since future translations
are produced by maximizing a scoring function estimating
translation quality, using the content of the two tables,
we see that the contents of the translation and language
models tables correspond to the tunable parameters of the
learning system. The hypothesis space of SMT systems is
then the class of all possible “translation functions” that can
be implemented, for all possible choices of language and
translation tables. As this is an enormous search space, it is
no wonder that both algorithmic and statistical challenges
are encountered when training these systems.

From a statistical learning point of view, this raises
interesting questions: How much of the overall error of the
translation system is due to representation limitations, and
how much to the difficulty of extracting suitable Translation
and Language model tables from a finite sample? And what
quantities control the trade off between the approximation
and estimation errors, essentially playing the role of model
selection?

We have undertaken a large scale experimental and
theoretical investigation of these questions. Using the open
source packages Moses [5] and Portage [6], and three
different corpora: the Spanish-English Europarl [7], the UN
Chinese-English, and the Giga Corpus French-English [8],

we have performed a detailed investigation of the influence
of data sizes and other design choices in training various
components of the system, both on the quality of translations
and on the computational cost. We use this data to inform a
discussion about learning curves. We have also investigated
the model-selection properties of n-gram size, where the
n-grams are the phrases used as building blocks in the
translation process. Note that our experiments have been
performed using English as target language. Although many
language pairs would yield different translation performance,
in this paper, we are not interested in the translation
performance per se: we focus our attention on analyzing the
SMT system as a learning system.

Since our goal was to obtain high-accuracy learning
curves, that can be trusted both for comparing different
system settings and to extrapolate performance under unseen
conditions, we conducted a large-scale series of tests, to
reduce uncertainty in the estimations and to obtain the
strongest possible signals. This was only possible, to the
degree of accuracy needed by our analysis, by the extensive
use of a high-performance computer cluster over several
weeks of computation.

One of our key findings is that the current performance
of phrase-based statistical machine translation systems is
not limited by the representation power of the hypothesis
class, but rather by model estimation from data. In other
words, we demonstrate that parameter choices exist that can
deliver significantly higher performance, but that inferring
them from finite samples is the problem. We also suggest
that increasing dataset size is not likely to bridge that gap (at
least not for realistic amounts in the i.i.d. setting), nor is the
development of new parameter estimation principles. The
main limitation seems to be a direct consequence of Zipf ’s
law, and the introduction of constraints from linguistics
seems to be an unavoidable step, to help the system in the
identification of the optimal models without resorting to
massive increases in training data, which would also result
in unmanageable training times, and model sizes. This is
because the rate of improvement of translation performance
is at best logarithmic with the training set size. We estimate
that bridging the gap between training and test error would
require about 1015 paired bilingual sentences, which is larger
than the current estimated size of the web.

Parts of the results reported in this paper were presented
at the third workshop on statistical machine translation [9].
Work related to our learning curve experiments can also be
found in [10].

It is important to remark that while there are many
discussions about automatic evaluation of SMT systems, this
work does not consider them. We work within the well-
defined setting where a loss function has been agreed upon,
that can measure the similarity between two sentences, and a
paired training set has been provided. The setting prescribes
that the learning system needs to choose its parameters so
that it can identify high-quality (low expected loss) transla-
tions. We investigate the learning-theoretic implications of
this setting, including the interplay between approximation
error and estimation error, model selection, and accuracy
in parameters estimation. We do not address more general
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themes about the opportunity for SMT to be evaluated by
automatic metrics.

2. Phrase-Based Machine Translation

What is the best function class to map Spanish documents
into English documents? This is a question of linguistic
nature and has been the subject of a long debate. With
the growing availability of bilingual parallel corpora, the
1990 s saw the development of statistical machine translation
(SMT) models. Given a source (“foreign”) language sentence
f and a target (“English”) language translation e, the
relationship between e and f is modelled using a statistical
or probabilistic model such as p(e | f).

The first statistical models were word based [2, 11],
combining a Markovian language model with a generative
word-to-word translation model, in a noisy channel model
inspired by speech recognition research.

Current state-of-the-art SMT uses phrase-based models,
which generalized and superseded word-based models. They
rely on three key ideas:

(i) the use of phrases (sequences of consecutive words) as
basic translation units instead of words;

(ii) the use of a log-linear model instead of a simple
product of the language and translation models;

(iii) the use of minimum error-rate training in order
to estimate the parameters of the log-linear model,
instead of maximum likelihood.

Many additional ideas contribute to the efficiency of these
models, such as efficient hypothesis search, rescoring, or
improved feature functions. The underlying log-linear model
may be interpreted as a maximum entropy model:

p(e | f) =
exp(

∑
i λihi(e, f))

Z(f)
, (1)

where Z(f) is the normalization factor, and hi are the feature
functions, which we will discuss further in a moment.

Note that finding the best target translation e given a
source sentence f amounts to maximizing the conditional
probability p(e | f) with respect to e, which yields

ê = arg max
e

∑

i

λihi(e, f) ≈ arg max
e

∑

i

λihi(e, a, f). (2)

The feature functions hi(e, a, f) involve both the source and
target sentences, and the approximation gives these feature
functions access to a, the alignment connecting e and f .
This model for e given f is linear in the log domain, which
motivates the description of this framework as “log-linear
model” [3, 4, 12]. In addition, many feature functions are
defined as logarithms of probabilities. The search for the
optimal translation in (2) is also referred to as decoding as,
in the original analogy of the noisy channel, it corresponds
to retrieving the clean message e from a noisy or encrypted
observation f .

One key aspect of the log-linear model in (2) is that it
can take into account almost arbitrary feature functions, as

long as they can be defined in terms of e, f , and a. However,
in order to be able to efficiently search for the optimal
translation ê, we usually assume that the feature functions
decompose linearly across basic constituents of the sentences.
In phrase-based MT, the sentences are decomposed into
basic translation units called phrases. Note that these are
not phrases in the linguistic sense, but simply subsequences
of words. For a sentence e composed of the sequence
of words w1, . . . w|e|, phrases ek can be any contiguous
subsequence of words w j (and similarly for f). A feature
function that linearly decomposes across phrases takes the
form hi(e, a, f) =

∑
k hi(ek, ak, fk), where ek and fk are

phrases from e and f (resp.), and ak is the alignment that
connects them.

Typical examples of feature function that compose a basic
phrase-based MT system are:

(i) one or several phrase translation features:
hT(e, a, f) =

∑
k log p( fk | ek);

(ii) one or more language model features: hL(e, a, f) =
log p(e) =

∑
j log p(w j | w j−1, . . . w1);

(iii) distortion feature hD(e, a, f) =
∑

k −‖start( fk) −
end( fk−1)− 1‖;

(iv) word penalty and/or phrase penalty features.

The phrase translation probabilities p( fk | ek) are defined
over a set of phrase pairs (ek, fk) referred to as a phrase table.
Part of the overall MT training process is to estimate this
table and the associated probabilities. This is typically done
by first aligning each sentence pair at the word level, and then
extracting all phrase pairs that are compatible with the word
alignment. Statistics on the phrase pair are accumulated
over the entire corpus. In our experiments below, we rely
on word-to-word IBM models [2] for alignment. Although
more elaborate techniques have appeared more recently [13,
14], their impact on the resulting machine translation quality
is still unclear [15].

The standard language model feature such as used
below relies on an n-gram language model, combining
the probabilities of each word in the target hypothesis
given the preceding n-gram language models, combined
with appropriate smoothing, are very efficient and naturally
decomposable across words (and phrases), making them
particularly well suited in this framework. Again, more
recent alternatives exist, but their actual impact on MT
performance is not always obvious.

The distortion feature controls the reordering between
phrases. Note that only very short-range reordering may
be handled within phrases. Long-range reordering must be
handled by target phrase permutations. This feature allows
to regulate the amount of reordering depending on, for
example, the language pair.

The word length (or word penalty) feature regulates the
length of the target sentence. This is useful because the
language model feature typically favours shorter sentences
(because each additional trigram can only lower the language
model probability). This is a simple, yet effective feature.

The process of training a machine translation system
involves estimating the various parameters of the model: the
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log-linear parameters λi as well as the parameters internal
to the feature functions, such as the phrase translation
probabilities and language model n-gram and backoff prob-
abilities. In a typical phrase-based system such as used in our
work, training is modularized by first estimating the later
on various corpora, for example, a large bilingual corpus for
translation probabilities and a possibly larger monolingual
corpus for the language model parameters.

The log-linear parameters are then estimated by mini-
mum error rate training (MERT). The weights λi are tuned
to optimize an automatic MT metric such as BLEU [16] over
a number of bilingual sentence pairs from a development
corpus:

λ̂ = arg max
λ

BLEU(ê(f), e; (e, f) ∈D), (3)

where ê(f) is the translation produced by solving (2) for
source sentence f , and e is the corresponding reference
translation. D is the set of sentence pairs over which MERT
is performed. Solving (3) is difficult because the decoding
necessary to produce the hypothesis translation is expensive.
The standard solution [17] is to approximate the exhaustive
search in (2) by a search over a smaller set of n-best candidate
translations for f . For each new value of λ tried by MERT,
new hypothesis translations are added to the list. As the
number of hypotheses produced by the decoder is finite,
this is guaranteed to converge, and in practice, it does
fairly quickly. An additional difficulty is that the landscape
of the cost, for example, BLEU, is piecewise constant and
highly irregular. In practice, the optimization in (3) is done
using the Powell’s method [18], a straightforward coordinate
descent method where optimization is performed along each
λi in turn. The key observation is that when optimization
is approximated as described above by a search over a list
of n translations, there are at most n − 1 points along
the line search where BLEU can change. This yields an
efficient algorithm for obtaining the exact solution of each
line search in Powell’s method and therefore provides a way
to iteratively optimize the log-linear weights λ using MERT. A
number of alternatives have been proposed, such as on-line
discriminative training [19, 20]. However, the two systems
we use here both use a fairly traditional implementation of
MERT.

This phrase-based machine translation approach relies on
a specific representation of the translation process, such as
the choice of contiguous word sequences (phrases) as basic
units in the language and translation models. How far can
this representation take us towards the target of improving
translation quality? Are the current limitations due to the
approximation error of this representation, or to estimation
errors originating from insufficient training data? How much
space for improvement is there, given new data or new
statistical estimation methods or given different models with
different complexities?

Before we present experimental results that address these
questions, we will describe the setup that was used to obtain
these results.

3. Experimental Setup

3.1. Data. We used three different sentence-aligned corpora,
covering different language pairs and sizes:

(1) Europarl Release v3 Spanish-English [7],

(2) UN Chinese-English corpus provided by the Linguis-
tic Data Consortium,

(3) Giga corpus French-English [8].

The details of these three corpora are given in Table 1.
The language pairs cover European as well as non-European
languages, and the sizes range from 1.2 M to 22.5 M sentence
pairs. We expect that translation between European lan-
guages will be easier than from Chinese to English; however,
we are not so much interested in the actual translation
performance as in the way this performance evolves with
increasing data and under a number of conditions.

The Europarl corpus contains material extracted from
the proceedings of the European parliament, and the UN
data contains material from the United Nations. Both
therefore cover a wide range of themes, but are fairly
homogeneous in terms of style and genre. The Giga corpus,
on the other hand, was obtained through a targeted web
crawl of bilingual web sites. These sites come from the
Canadian government, the European Union, the United
Nations, and other international organizations. In addition
to covering a wide range of themes, they also contain
documents with different styles and genres. We estimate that
the rate of misaligned sentence pairs was around 13%.

These corpora are each divided in three sets, each with a
different role. The training part is used to obtain the language
model and phrase tables. The development set is used to
estimate the log-linear weights λ using MERT, and the test set
is set aside during the estimation process in order to provide
an unbiased estimate of the translation performance.

This work contains several experiments on different types
and sizes of data set. To be consistent and to avoid anomalies
due to overfitting or particular data combinations, each set of
pairs of sentences has been randomly sampled. The number
of pairs is fixed, and a program selects them randomly from
the whole original training, development, or test set using
a uniform distribution. This process is iterated a certain
number of time and redundancy of pairs is allowed inside
each subset (bootstrap, see [18, 21, 22] for an application to
PBSMT).

3.2. Software. Several software packages are available for
training PBSMT systems. In this work, we use both Moses
[5] and Portage [6]. Moses is a complete open-source
phrase-based translation toolkit for academic purposes,
while Portage is a similar package available to partners of
the National Research Council Canada. Both provide all
the state-of-the-art components needed to create a phrase-
based machine translation system from one language to
another. They contain different modules to preprocess data
and train the language models and the translation models.
These models can be tuned using minimum error rate
training [17]. Both use standard external tools for training
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Table 1: Number of total and distinct words in training, development, and test sets.

Training Development Test

No. of Sentences 1,259,914 2,000 2,000

English
Total words 35,284,052 58,762 59,147

Europarl Distinct words 124,080 6,551 6,429

Spanish
Total words 36,695,628 60,536 61,160

Distinct words 164,920 8,182 8,239

No. of Sentences 4,968,857 1,000 10,000

English
Total words 146,980,344 29,545 295,085

UN corpus Distinct words 485,494 5,210 17,105

Chinese
Total words 138,045,740 27,764 278,4256

Distinct words 530,295 4,353 13,193

No. of Sentences 22,515,400 2,000 3,000

English
Total words 636,113,866 51,549 90,474

Giga corpus Distinct words 2,603,907 8,691 12,580

French
Total words 772,104,558 62,682 109,197

Distinct words 2,512,286 10,124 14,614

the language model, such as SRILM [23], and Moses also uses
GIZA++ [24] for word alignments. Moses and Portage are
very sophisticated systems, capable of learning translation
tables, language models, and decoding parameters from data.
We will later analyze the contribution of each component to
the overall score.

The typical processing pipeline is as follows. Given a par-
allel training corpus, long sentences are filtered out, and the
remaining material is lowercased and tokenized. These sen-
tences are used to train the language and translation models.
Training the translation models requires several steps such as
aligning words, computing the lexical translation, extracting
and scoring the phrases, and creating the reordering model.
When the models have been created, the development set
is used to run the minimum error rate training (MERT)
algorithm [17] to optimize their weights. We refer to that step
as the optimization step in the rest of the paper. The test set
is used to evaluate the quality of models on the data.

All experiments using Moses have been run using the
default parameter configuration. GIZA++ used IBM models
1, 2, 3, and 4 with number of iterations for model 1 equal to
5, model 2 equal to 0, and model 3 and 4 equal to 3; SRILM
used n-gram order equal to 3 and the Kneser-Ney smoothing
algorithm; MERT has been run fixing to 100 the number of n
best target sentence for each developed sentence, and it stops
when none of the weights changed more than 1e-05 or the n
best list does not change.

The training, development, and test set sentences are tok-
enized and lowercased. The maximum number of tokens for

each sentence in the training pair has been set to 50, whilst no
limit is applied to the development or test set. TMs were lim-
ited to a phrase length of 7 words, and LMs were limited to 3.

3.3. Hardware. All the experiments have been run on high-
performance clusters of machines.

The first cluster (at U. Bristol) includes 96 nodes each
with two dual-core Opteron processors, 8 GB of RAM per
node (2 GB per core) and 4 thick nodes each with four dual-
core Opteron processors, 32 GB of RAM per node (4 GB per
core), for a total of 416 CPUs. Additional information: Clear-
Speed accelerator boards on the thick nodes; SilverStorm
Infiniband high-speed connectivity throughout for parallel
code message passing; General Parallel File System (GPFS)
providing data access from all the nodes with a total of 11
terabytes of storage. Each experiment has been run using one
core and allocating 4 Gb of RAM.

The second cluster (at NRC) includes 29 nodes each with
two dual-core processors and 16 GB RAM per node (4 GB
per core) and 8 “fat” nodes with 4 quad-core processors each
and 128 GB RAM per node (8 GB per core), for a total of
244 CPUs. The file system is Ibrix and provides data access
from all nodes, with a total of 17 TB of storage. Experiments
using Portage are distributed over several CPUs, the total
number of which depends on the various stages in the
estimation process.

3.4. Evaluation Metrics. The evaluation of a machine trans-
lation system is a lively and hotly debated topic in this
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Table 2: Correlation coefficient between evaluation scores.

BLEU NIST METEOR TER

BLEU 1 0.724 0.8633 −0.866

NIST 0.724 1 0.6171 −0.8702

METEOR 0.8633 0.6171 1 −0.8173

TER −0.866 −0.8702 −0.8173 1

field. Ideally, human beings can evaluate the quality of a
translated sentence. However, this is unfeasible for rapid
development of automatically trained systems with multiple
parameter tuning, as human evaluation is expensive, slow,
and sometimes inconsistent and subjective.

Therefore, instead of reporting human judgement of
translation quality, various automatic measures have been
proposed. An automatic score measures the quality of
machine-translated sentences by comparing them to a set
of human translations, called reference sentences. The score
needs to be able to discriminate good translations from
bad ones, whilst considering aspects such as adequacy and
fluency.

Several metrics have been introduced: BLEU [16], NIST
[25], Meteor [26, 27], and TER [28] are among the most
well known. BLEU and NIST are based on averaging n-gram
precisions, combined with a length penalty which penalizes
short translations containing only sure words. These metrics
differ on the way the precisions are combined and on the
length penalty.

Meteor evaluates a translation by computing a score
based on the word alignment between the translation and a
given reference translation. TER relies on the computation
of an edit distance, and it is defined as the minimum number
of edit operations (insertions, deletions, substitutions, and
shifts) needed to change an automatically translated sentence
into one of the references, normalized by the average length
of the references.

Table 2 reports the correlation coefficients between the
measures (details on how these values have been computed
are in Section A.3). Clearly, all measures correlate strongly
with each other, such that the choice of the performance
measure is fairly arbitrary, as long as one is consistent.
For this reason, we have chosen to use BLEU throughout
this paper as it is the most widely used automatic score in
machine translation.

4. Learning Curve Analysis

4.1. Role of Training Set Size on Performance on New Sentences.
In this section, we analyze how training set size affects the
performance by creating learning curves (BLEU score versus
training set size).

The general framework for this set of experiments
consists of creating subsets of the complete corpus by sub-
sampling from a uniform distribution without replacement.
We have created 10 random subsets for each of the 20 chosen
sizes, where each size represents 5%, 10%, and so forth

Table 3: Different settings used to create the Learning Curves.
Due to the large dimension of the Giga corpus, only three random
subsets have been built.

Language pairs Data SMT system
No. random

subsets

Es− En Europarl Moses 10

Es− En Europarl Portage 10

Fr − En Giga Moses 3

Zh− En UN Portage 10

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

Training set size

B
L

E
U

 s
co

re

Portage
Moses

106105

Learning curves for Es-En Europarl corpus—Portage and Moses

Figure 1: Spanish-English learning curve obtained using Europarl
corpus, Portage and Moses.

of the complete corpus. For each subset, a new instance
of the PBSMT system has been created, for a total of 200
models. Two hundred experiments have then been run on
an independent test set (of 2,000 sentences, also not included
in any other phase of the experiment).

In these experiments, we focus our attention on the
growth rate of the learning curve, in particular we are
interested to check if the learning curve has a logarithmic
behaviour. In fact, a common belief in SMT is that learning
curves follow logarithmic laws; to analyze this in our
experiments, we show all the learning curves in the linear log
scale, where we can study if the curve has a linear behaviour.

Note that sampling without replacement, error bar
dimension reduces according to the increment of the training
set size. We also believe that in this particular situation, the
presence of the error bars may help to better understand the
stability of the system.

Using the framework described above, four different
settings have been set to produce learning curves, see Table 3.
In Figures 1, 2, and 3, the learning curves are shown.

In all the figures, the curves are increasing linearly or
slightly more slowly than that, suggesting a learning curve
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Figure 2: French-English learning curve obtained using Giga
corpus and Moses.

Learning curve for Chinese UN corpus
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Figure 3: Chinese-English learning curve obtained using UN
corpus and Portage.

that is “at best” logarithmically increasing with the training
set size. Shape of the learning curves is comparable across dif-
ferent data size and language pairs. In any case, the addition
of massive amounts of data from the same distribution will
result in small improvements in the performance.

The small error bars that we have obtained also allow us
to regard the stability of the SMT when trained on the same
training set size.

Due to the large amount of data in the Giga corpus,
Fr-En learning curve has been obtained running only three
subsamples for training set size.

4.2. Relative Importance of TM and LM. In the previous
section, experiments have been run using the same training

set size for language and translation models. In general, there
is a large difference in terms of cost of retrieving training
data for language and translation models; the former can
be trained using monolingual data, while the second needs
bilingual texts. In recent years, several parallel corpus have
been produced, for example, Europarl [7], JRC Acquis [29],
and others, but they are not comparable to the amount of
freely available monolingual datasets.

Google in [30] has shown that performance improves
logarithmically in the linear scale with the number of tokens
in the language model training set when this quantity is
huge (from billions to trillions of tokens). In this section,
we are interested to understand whether there is a trade-
off between the training data size used to build language
and translation models and how performances are affected
by their differences. We propose a mathematical model
to estimate the BLEU score’s variations according to the
language and translation training data sizes. Performance of
an SMT system is a function of the dimension of the training
data that can be logarithmic as seen in the previous section.
We have modelled this relation in the following way:

BLEU(d) = αLM × log2(dLM) + αTM × log2(dTM) + ǫ ,
(4)

where d is the amount of training data, dLM is the amount
of training data used to build the language model, dTM is
the amount of training data used to build the translation
model, αLM and αTM are weighting factors that identify the
contribution of language and translation training data to the
BLEU score, and ǫ is the residual. To evaluate the relation
between the amount of training data used to build language
and translation models, we estimated αLM and αTM.

Subsets of the training data have been selected using
10% of the data as increasing set size. For each training set
size, one random set has been created without replacement.
Development and test sets are fixed. One instance of the SMT
system has been run for each of all possible combinations
of the language and translation training data sizes. BLEU
score value has been associated to each pair: language and
translation set size. Multiple linear regression based on least
squares [31] has been performed using the BLEU score
values as response observations and the logarithmic values
of the training set sizes as observations. This setting has been
applied to Europarl and Giga corpus datasets using Moses as
SMT system.

We performed two sets of experiments: in the first one,
we estimated the weighting factors using all the data, see
Table 4, and in the second, we tested the prediction capability
of our model randomly splitting the data in training (80%)
and test (20%) sets.

The results in Table 4 empirically confirm the common
belief that adding data to the translation model is more
important than to the language model (αTM > αLM).
The values of αLM and αTM vary across the datasets and
correspond to an increase of 1.3 to 1.5 BLEU point for the
LM and 1.8 to 1.9 for the TM, for each doubling of the data.
However, their ratio is rather stable.

For the second set of experiments, data has been
randomly sampled in training and test sets one thousand
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Table 4: Empirical estimation of the weighing factors αLM and αTM.
Experiments have been performed independently on the Europarl
and Giga corpus datasets.

Data αLM αTM αTM/αLM ǫ

Europarl 0.0147 0.0193 1.313 2 × 10−4

Giga Corpus 0.0133 0.0182 1.368 4 × 10−6

times. Training set has been used to estimate the alphas and
the residual, and test set to predict the BLEU score values.
At each iteration, estimation error was computed. Average
α and error on the Europarl and Giga corpus datasets are
shown in Table 5. The proposed model is able to approximate
well enough the BLEU score using Moses as translation
system and in-domain test sets. According to this setting
and assuming that we are in the standard case where dLM

is equal to dTM, it is possible to use our model to estimate
the amount of training data needed to reach a certain Bleu
score for example, more than 150 million sentences to obtain
a Spanish-English Bleu score equal to 0.45.

4.3. Role of Phrase Length in the Translation Table (Model
Selection). The richness of the hypothesis class controls the
trade-off between training and test error. Richer hypothesis
classes can fit the training data more accurately but generalize
less well than poorer classes, a phenomenon known as
overfitting. The choice of the appropriate expressive power,
within a parametrized class of models, is called model
selection and is one of the most crucial steps in the design
of learning systems.

In phrase-based SMT, this is controlled by selecting
the maximum length of phrases to be used as building
blocks for translation. Using long phrases will help when the
system has to translate sequences of words that match what
was encountered in the training corpus, but this becomes
increasingly unlikely as the phrases become longer. On the
other hand, short sentences are more often reused, but
may also be more ambiguous and lead to errors more
often. This is where the trade-off between representation
and estimation errors is controlled. When extracting longer
phrases, we expect training set performance to be higher,
but test performance to drop (overfitting). Optimizing test
performance requires the right trade-off.

In this section, we analyze how the phrase length
can affect the performance in terms of BLEU score. We
also report the distribution of the phrase lengths in the
translation table, as well as how the system uses the phrases
of different length during the translation of both training
and test material. We have created 10 random subsets of
the complete Europarl corpus containing 629,957 pairs of
sentences. For each subset, ten PBMT systems have been
estimated. Each instance of Moses has been trained using
a different maximum phrase length, from 1 to 10. Each
model was then tested on the 2000 sentence test set, and
on a random subset of 2000 training sentences. Translation
of training sentences allows us to estimate the training
error.
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Figure 4: BLEU versus n-gram length. “Test on test set” has been
obtained using a fixed test set and no optimization phase. “Test on
training set” is a test set selected by the training set for each training
set size and no optimization phase.

The learning curves in Figure 4 illustrate how the
performance is affected by the phrase length. The “test on
test set” curve is less influenced by the phrase length than the
“test on training set” curve. The latter shows a large upward
bias in translation performance, which is expected from a
learning system when testing on material that has been used
for training. Both learning curves show a big improvement
when moving from the word-to-word translation (phrase
length equal to one) to the phrase-based model (higher
phrase lengths).

In the “test on test set” learning curve, there seems to
be no significant advantage to using phrases longer than 4
words. By contrast, when testing on the subset of the training
material, the performance continues to grow. This unrealistic
case is not affected by the Zipf ’s law, because almost all the
words necessary to translate the training material have, by
definition, already been observed. The model is therefore
able to match long phrases when producing the “test on
training set” translations.

In order to explore this further, we also compute the
distribution of the entries in the translation table as a
function of the length of the source language phrases.
Figure 5 shows that the number of phrases peaks around
4-grams and 5-grams, then steadily decreases. This means
that the phrase extraction algorithm finds it more and more
difficult to extract longer phrases.

We investigate this further by plotting the distribution of
phrases actually used while translating. We randomly select 2
sets of 500 sentences, one from the training and one from
the test material. In each case, we count the number of
phrases of each length that were actually used to produce
the translation. The right panel of Figure 5 reports these
distribution. It shows that, while the models use a fair
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Table 5: Performance obtained training the regressor on 80% of the data and testing on 20%. This process has been iterated 1,000 times.
Experiments have been performed independently on the Europarl and Giga corpus dataset.

Data αLM αTM Estimation Error

Europarl 0.0102± 2 × 10−4 0.0134± 2 × 10−4 5.45 × 10−5± 14 × 10−4

Giga Corpus 0.0092± 7 × 10−5 0.0126± 7 × 10−5 −5.57 × 10−5± 2 × 10−4
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Figure 5: N-gram statistics: (left) number of n-grams of each size in the translation table; (right) distribution of phrase size used for
translating training and test material, for n = 1, . . . , 10.

amount of longer phrases to translate the training material,
these longer phrases are essentially never used for translating
the test set: 98% of the phrases are 5-grams or shorter.
Again this is related to Zipf ’s law: while the model is able
to match longer sequences from material it has already seen,
test data is usually too different to reliably match beyond 4 or
5 consecutive words.

These experiments suggest that the phrase length has a
limited impact on actual test performance. Going to larger
n-grams seems to bring little benefit in terms of performance
as the model continues to prefer short phrases during
the decoding phase. This is due to both the diminishing
number of longer phrases in the table and to the lower
probability that these longer sequences match the test
material.

5. Model Perturbation: Analysis and
Unlearning Curves

Much research has focused on devising improved principles
for the statistical estimation of the parameters in language
and translation models. The introduction of discriminative
graphical models has marked a departure from traditional
maximum likelihood estimation principles, and various
approaches have been proposed.

The question is how much information is contained in
the probabilities estimated by the model? Does the perfor-
mance improve with more data because certain parameters
are estimated better, or just because the lists are growing? In
the second case, it is likely that more sophisticated statistical
algorithms to improve the estimation of probabilities will
have limited impact.

In this section, we analyze what we call “unlearning
curves.” These are obtained by increasingly perturbing the
parameters inferred by the system, in order to observe
how performance deteriorates. This can either represent the
effect of insufficient statistics in estimating them, or the
use of imperfect parameter estimation biases. These param-
eters are probabilities, phrases, and associations between
source/target phrases contained inside translation and lan-
guage model tables.

We have performed two different types of perturbation.

(i) Unlearning by Adding Noise. A percentage of noise
has been added to each probability, p̃, in the Lan-
guage model, including conditional probability, and
translation model, bidirectional phrase translation
probabilities and lexicalized weighting. The aim of
this set of experiments is to test how robust the
system is with respect to a reduced accuracy of its
numeric parameters.
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Figure 6: Each probability of the language and translation models
has been perturbed adding a percentage of noise. This learning
curve reports BLEU score versus the percentage of perturbation
applied. These results have been obtained using a fixed training set
size equal to 62,995 and 629,957 pairs of sentences and Moses as
translation system.

The noised probability is obtained as p′ = min(1, p̃+
ν), where ν = rand(− p̃ × k, + p̃ × k) with percentage
of noise k ∈ [0, 1]. Different noise levels k have
been used. For each value of k, ten experiments
have been run. In this case, we randomly select two
fixed training set sizes equal to 62,995 and 629,957
pairs of sentences form the Europarl corpora and use
Moses as translation system. The unlearning curves
are shown in Figure 6.

(ii) Unlearning by Randomization of Parameters. The
second kind of noise that we add to the model
is based on a swap of a particular quantity inside
two entries of language or translation model. This
is meant to test how robust the system is to per-
turbations of the all-important associations between
phrases/numbers and to the associations between
source/target phrases.

We refer to “numerical swap” when, given two
entries, probabilities are swapped. While we refer
to “words swap” when, given two entries of the
translation model, we swap the target language
phrases.

Three different sets of experiments have been run
applying “numerical swap” only to the language
model, “numerical swap” only to the translation
model and “words swap” only to the translation
model. Different values of percentage of noise
between 0 and 1 have been used. For each percentage
value, ten experiments have been run. All the pertur-
bations have been applied on a model trained with

629,957 pairs of sentences randomly selected form
the Europal data using Moses as translation system.
The unlearning curves are shown in Figure 7.

Various observations can be made based on these
experiments. The first unlearning curve (Figure 6), obtained
by adding to each parameter a random number (sampled
from within a range) proportional to its size, is meant to test
the role of detailed tuning of parameters. While the orders of
magnitude are respected, the fine structure of the parameter
set is randomized. The gentle decline in performance seems
to suggest that fine tuning of parameters is not what controls
the performance here, and that perhaps advanced statistical
estimation or more observations of the same n-grams would
not lead to much better performance. This is also compatible
with what is seen in the learning curve.

It is important to notice, however, that introducing a
more aggressive type of noise (Figure 7(b)) that essentially
replaces entire parameters with random values does lead to a
more significant decline in performance. This was obtained
by swapping random entries, and so after 100 percent of
swaps essentially every entry is a random number (because
the locations to swap are chosen with replacement). It is
interesting to see that the decline of the language model is
much less pronounced than that of the translation model.

The set of experiments in Figure 7(a) is harder to explain
without discussing the inner workings of the translation
model and Moses. Here, we swapped n-grams in the transla-
tion table, essentially breaking the connection between words
and their translation. A rapid decline should be expected.
However, the mapping between words is stored in a very
redundant way within the TM, and this depends on the way
the translation table is created, based on sentence alignments.
Once an alignment has been found between two sentences,
essentially every n-gram (for every value of n) is a candidate
for insertion in the translation table. So very often, longer n-
grams are inserted, alongside shorter segments of the same
n-grams, and are added to different entries of the table. So if
we remove an n-gram, chances are that other similar (longer
or shorter) n-grams are present and can take over. In this way,
it is not possible to directly compare the unlearning curve for
the n-grams part with that for the numeric part of the tables.

6. Discussion

The impressive capability of current machine translation
systems is not only a testament to an incredibly productive
and creative research community, but can also be seen as a
paradigm for other artificial intelligence tasks. Data-driven
approaches to all main areas of AI currently deliver the
state-of-the-art performance, from summarization to speech
recognition to machine vision to information retrieval. And
statistical learning technology is central to all approaches to
data-driven AI. Understanding how sophisticated behaviour
can be learnt from data is hence not just a concern for
machine learning, or to individual applied communities,
such as statistical machine translation, but rather a general
concern for modern artificial intelligence. The analysis
of learning curves and the identification of the various
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Figure 7: Unlearning curves. These results have been obtained using a fixed training set size equal to 629,957 pairs of sentences and Moses
as translation system. In (a), “words swap TM” has been obtained by swapping the target phrases inside the TM. In (b), two unlearning
curves have been compared. “Numerical swap LM” has been obtained applying numerical swaps only to the LM and “numerical swap TM”
applying numerical swaps only to the LM.

limitations to performance are a crucial part of the machine
learning method, and one where statistics and algorithms
interact closely.

Using state-of-the-art phrase-based statistical machine
translation packages and high-performance computing, we
derived very accurate learning curves for a number of
language pairs and domains. Our results suggest that perfor-
mance, as measured by BLEU, increases by a constant factor
for each doubling of the data. Although that factor varies
depending on corpus and language pair, this result seems
consistent over all experimental conditions we tried. Our
findings confirm the results reported, for example, by [30,
32]. Authors in [30] reported “almost linear” improvements
in BLEU score by doubling the training set size. In the
presentation [32], the claim is that BLEU increases with
each doubling of the training set size, by 0.5 and 2.5 BLEU
points for the language and translation models, respectively,
in the context of Arabic-English translation. Both claims
seem to be qualitatively compatible with our observation of
improvements that are at best logarithmic in the training set
size, although our estimates are closer to 1.4 and 1.9 BLEU
points for the LM and TM, respectively.

Our findings are also consistent with the curves presented
by [33], although their results are limited to a much lower
data set size (less than 105 sentences) and presented on a
linear scale. Incidentally, that paper also presents a recent
attempt into using active learning for improving MT and
meets the challenge of “diminishing returns” identified in
the learning curves: a constant performance improvement
requires increasing amounts of data. Active learning is well-
known in machine learning as an attempt to bypass the

distribution-sampling limitations by actively seeking new
examples. One way to achieve this could be to either intro-
duce an oracle to which the system can ask for annotation
when needed or a process that uses linguistic knowledge to
create new table entries based on existing table entries and
some grammatical rules. An oracle could be formed by a web
agent capable of locating useful bilingual sentences, for any
given task, or even a linguistic-based system that could turn
SMT models into richer ones by essentially generating new
entries and removing unreliable ones. Any way to enforce
linguistic constraints might result in a reduced need for data,
and ultimately in more complete models, given the same
corpus [34]. Neither approach would change the statistical
nature of the system, but they would help it bypass the phrase
acquisition bottleneck. Note however that the development
of active learning systems for statistical MT raises the issue of
confidence estimation, which is typically at the heart of many
classical active learning procedures. This is an active area of
research in machine translation [35–37].

The results of the perturbation analysis in Section 5
suggest that the limiting factor in the translation tables is
not in the numeric part of the model—the parameters being
estimated—but in the phrases contained in it, the entries
of the phrase table. Together these observations point to
limitations to the phrase-acquisition process, that under i.i.d.
conditions is controlled by a Zipf law and hence leads to very
slow rate of discovery of new phrases. In other words, the
essential limiting factor for phrase-based SMT systems seems
to be the Zipf law found in natural language.

Our large-scale analysis also suggests that the current
bottleneck of the phrase-based SMT approach is the lack of
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sufficient data, not the function class used for the represen-
tation of translation systems. We reach this conclusion by
noting that within a fixed class of parameters, an instance of
the model has been trained on a set of sentences that includes
also the test set (while limiting the phrase length to 7 words,
to prevent full-sentence memorization), and this yields much
improved performance. In addition, we also observed that
the larger phrases (beyond 5 words) are in fact seldom
used.

The high performance observed in the train-on-test
conditions shows that there exists at least one choice of
tunable parameters with which the phrase-based translation
system can deliver much higher performance. This is useful
to bound the space of “possible performances,” although
in ideal situations. The clear gap between performances
on training and test set, together with the rate of the
learning curves and our perturbation experiments, suggest
that improvements in BLEU score are theoretically possible,
if the right entries were present in the translation and lan-
guage models. Unfortunately, current estimation procedures
are unable to reach such high-performing regions of the
parameter space. This was also noted by a recent paper by
Wisniewski et al. who note that “the current bottleneck of
translation performances is not the representation power of the
[phrase-based translation systems] but rather in their scoring
functions” [38].

Finally, let us note that we have not addressed the thorny
issue of the reliability of automatic MT metrics. Some
will be quick to point out that maximizing, for example,
BLEU may neither be necessary for, nor guarantee good
translation performance. Although we acknowledge that
automatic MT metrics may not tell the whole story as far as
translation quality is concerned, our systematic study aims
at characterizing the behaviour of SMT systems that are built
by maximizing such metrics. Deriving learning curves using
human-generated translation quality score would definitely
be interesting, but we are not aware of such effort, which
would currently involve an overwhelming amount of human
annotation.

7. Conclusion

Data-driven solutions to classic AI problems are now com-
monplace, ranging from computer vision to information
retrieval tasks, and machine translation is one of the main
successes of this approach. The idea of putting learning
systems at the centre of all AI methodologies introduces
however the need to understand the properties and lim-
itations of these learning components. In this study, we
have produced very accurate learning curves for the class of
phrase-based SMT systems, using different implementations,
different language pairs, and different datasets. In each case,
we found the same overall behaviour, of a logarithmic growth
in performance with training set size. The question becomes
as follows: on which aspect of these systems should we
act to achieve better performance? We have performed an
extensive series of experiments to separately measure how
different factors affect the performance of phrase-based SMT
systems. Our first concerns were to distinguish between

approximation and estimation error: the performance lim-
itations due to the use of a limited language model versus
those due to the need to estimate the parameters of that
model from a finite sample. Our experiments show that the
estimation part of the error is the dominant one, suggesting
that performance can still improve if the appropriate entries
were available in the language and translation models. The
second concern was to distinguish between the role of the
numerical and lexical parts in the language and translation
models. Various perturbation experiments show that the
accuracy in estimating the numerical parameters is not a
crucial aspect of performance, while the estimation of the
lexical parts of the tables is a major factor in determining
performance. In a third set of experiments, we determined
that the estimation of the translation model has a bigger
effect than the estimation of the language model, on
performance.

We therefore reach the conclusion that estimating entries
in the phrase translation tables is the dominant factor in
determining performance. What controls the creation of
phrase-translation tables? This is mostly limited by Zipf ’s
law, since the probability of encountering phrases that have
not been seen in the training set does not vanish even
after observing very large corpora. The question therefore
becomes as follows: how can we fill translation tables with
phrase pairs while Zipf ’s law seems to prevent us from
generating them from the data alone? Among possible
methods, two stand out as particularly promising. The first
is to generate phrase pairs by using grammatical or various
linguistic rules (e.g., turning existing entries into new entries,
by applying various forms of inflection). The second is to
allow the system to make queries, active learning style, in
order to produce phrase-table entries without having to wait
for them to appear by sampling additional textual data. Both
of these ideas of course are being pursued at the moment. It
is of course important to remark that these limitations only
refer to the current systems, where language is modelled as
a Markov chain, and by entirely changing language model,
different limitations could be found.

Appendix

A. Supplementary Results

A.1. Effect of Data Size in Optimization Set. In this section,
we study the role of the optimization/development set
with regard to the quality of translation. In particular, we
analyze how different sizes of the development set affect the
performance and the computational cost of the optimization
phase.

The whole Europarl training set has been randomly
split into two parts without replacements. One, containing
1,159,914 pairs of sentences, has been used to train the
model. This step has been done only once, and all the exper-
iments use the same translation, language, and reordering
models. The second set has 100,000 pairs of sentences, and
it is used to randomly select the development sets. The test
set contains 2,000 pairs of sentences and is the same for all
the experiments.
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Figure 8: BLEU score versus development set size. The horizontal
line is the BLEU score without any optimization. It is equal to
0.3116.

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000
Tuning time versus development set size

Development set size

T
u

n
in

g 
ti

m
e 

Figure 9: Tuning CPU times versus development set size.

Different sizes of the development set (100, 250, 500,
750, 1,000, 1,250, 1,500, 1,750, 2,000, 2,250, 2,500, 2,750,
3,000, 4,000, and 5,000 pairs of sentences) have been
chosen, focusing our attention on small, rather than large
dimensions. Replacements are not allowed. These choices
also depend on the high computational cost of the tuning
algorithm. For each size, ten random sets have been selected.
For each set, an instance of the system has been run.
The optimized model is used to test, and the results are
evaluated.

In Figure 8, BLEU score as function of the development
size is reported. The optimization procedure increases the
quality of the translations. This improvement does not seem
to be significant after a certain size of the development set.
In fact, when we increase the development set size beyond
2,000 sentence pairs, BLEU does not change significantly. On
the other hand, optimization is really expensive in terms of
computational cost. In Figure 9, it increases roughly linearly
with the development set size. It is nice to note how the
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Figure 10: Optimization steps versus development set size.

computational time is strongly related to the number of
optimization steps in Figure 10.

A.2. Role of the Unknown Words. Understanding the most
important reasons for failure of a PBSMT system is a
fundamental task. In [39], a classification of different types
of error has been proposed. In this section, we focus our
attention on a particular type of error: unknown words. This
type of error is considered a source error because it depends
on the source sentence and not the translation process. It
has been distinguished between truly unknown words (or
stems) and unseen forms of known stems. The unknown
words are the direct effect of Zipf ’s law in a language, as new
words can come, but the training set is not flexible enough
to cover them.

We have created 10 random subsets for each of the 10
chosen sizes, where each size represents 10%, 20%, and so
forth of the complete corpus. For each subset, a new instance
of the PBSMT system has been created, for a total of 100
models. Each model has been tested on the test set and on a
subset of 2,000 pairs the training set. The optimization step
has not been run. For each model, we count the unknown
words.

Figure 11 shows unknown words as function of the
training model. It is clear that small training sets are able to
cover a small part of the word space. When increasing the
dimension of the training set, the number of unknown words
decreases. These curves reflect how machine translation is
strongly affected by Zipf ’s law and confirm the results of the
previous sections. A briefly discussion about the presence of
unknown words when we test on a subset of the training set
is given by Section 4.3.

A.3. Role of Test Set Size on Measuring Performance. BLEU
score, the metric used in this work to evaluate the quality of
the translation, is test set dependent. It means that different
test sets regardless of the dimension can produce variation in
the value of the BLEU score. In this section, we investigate
how BLEU is affected by the test set size.



14 Advances in Artificial Intelligence

0

100

200

300

400

500

600

700

800

900
Unknown words versus training size

Training size

U
n

k
n

o
w

n
 w

o
rd

s

Test on test set
Test on training set

0 2 4 6 8 10 1412

×105

Figure 11: Number of unknown words translating training and test
sets versus training set size.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.25

0.26

0.27

0.28

0.29

0.3

0.31
 BLEU score versus test set size

Test set size

 B
L

E
U

 s
co

re

Figure 12: BLEU score versus test set size.

We have isolated 4,000 pairs of sentences from the
Europarl training set, and we have selected from the
remaining part 629,957 pairs. A Moses model is trained using
this set. Using the 4,000 sentences pairs, we have created 10
random subsets for each of the 16 chosen sizes, where each
size can contain a number of pairs from 250 to 4,000 by a
step of 250 pairs. The model is tested over all these subsets,
and the learning curve is reported in Figure 12. Small test set
sizes produce a big variance in BLEU score. When increasing
the test set size, the error bars tend to reduce.

In this work, a test set with 2,000 sentences pairs has been
used. In the learning curve in Figure 12, the average value and
standard deviation for this size are equal to 0.29677±0.0057.
This implies that differences in BLEU score smaller than
1.9% using two different test sets of the same size depend on

the test set choice and not on different techniques. In recent
years, this trouble has been partially solved using a standard
test set obtained by the Europarl corpus.

In Section 3.4, we report the correlation coefficient
between all the measures. Each correlation coefficient is
computed using the results of the 160 experiments described
above.
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