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Abstract

Background: Robotic ankle exoskeletons can provide assistance to users and reduce metabolic power during

walking. Our research group has investigated the use of proportional myoelectric control for controlling robotic ankle

exoskeletons. Previously, these controllers have relied on a constant gain to map user’s muscle activity to actuation

control signals. A constant gain may act as a constraint on the user, so we designed a controller that dynamically

adapts the gain to the user’s myoelectric amplitude. We hypothesized that an adaptive gain proportional myoelectric

controller would reduce metabolic energy expenditure compared to walking with the ankle exoskeleton unpowered

because users could choose their preferred control gain.

Methods: We tested eight healthy subjects walking with the adaptive gain proportional myoelectric controller with

bilateral ankle exoskeletons. The adaptive gain was updated each stride such that on average the user’s peak muscle

activity was mapped to maximal power output of the exoskeleton. All subjects participated in three identical training

sessions where they walked on a treadmill for 50 minutes (30 minutes of which the exoskeleton was powered) at 1.2

ms-1. We calculated and analyzed metabolic energy consumption, muscle recruitment, inverse kinematics, inverse

dynamics, and exoskeleton mechanics.

Results: Using our controller, subjects achieved a metabolic reduction similar to that seen in previous work in about

a third of the training time. The resulting controller gain was lower than that seen in previous work (β = 1.50 ± 0.14

versus a constant β = 2). The adapted gain allowed users more total ankle joint power than that of unassisted

walking, increasing ankle power in exchange for a decrease in hip power.

Conclusions: Our findings indicate that humans prefer to walk with greater ankle mechanical power output than

their unassisted gait when provided with an ankle exoskeleton using an adaptive controller. This suggests that robotic

assistance from an exoskeleton can allow humans to adopt gait patterns different from their normal choices for

locomotion. In our specific experiment, subjects increased ankle power and decreased hip power to walk with a

reduction in metabolic cost. Future exoskeleton devices that rely on proportional myolectric control are likely to

demonstrate improved performance by including an adaptive gain.
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Background
In order to achieve optimal assistance, the controller of an

active prosthetic or orthotic device must accomplish three

tasks. It must reliably determine the user’s intent, precisely

coordinate the timing of assistance with the user, and pro-

vide actuation profiles of a suitable shape. Only if the

controller succeeds in all three tasks, the robotic device

can achieve its assistive goal. For example, many robotic

assistive devices aim tominimize the energetic cost for the

user to perform a given task. Any amount of error in the

controller’s intent recognition, timing, or actuation shape

can result in motion that is energetically costly, unnatural,

or potentially dangerous for the user [1].

Without direct access to the human nervous system,

many lower-limb assistive robotic devices detect intent

and timing from estimates of the user’s motion. These

measurements are calledmechanically intrinsic as they are

taken from the mechanical device itself. These measure-

ments are used to estimate intent and trigger the timing

of predefined actuation profiles whose shapes correspond

to estimates of intended motion [2]. Controllers that

rely on mechanically intrinsic measurements often use

joint angles, impedances, gait events, or force measure-

ments from the device to control actuation [3–7]. Recent

exoskeleton controller designs relying on this type of sens-

ing have shown promise in reducing the user’s metabolic

cost during walking [8, 9]. However, using mechani-

cally intrinsic measurements for control has fundamen-

tal limitations. Because mechanically intrinsic measure-

ments are outcomes of physical motion, they are prone

to mechanical delays. The desired movement has already

started by the time the controller senses it. This delay

can cause the control timing to lag behind the user

and result in the user fighting the device [10]. Further-

more, the measurements are subject to complex inter-

actions between the user’s musculoskeletal system and

the mechanical structure of the device. If the combined

human-machine dynamics are not well understood it can

be difficult to reliably estimate intent. Additionally, it is

impossible for the user to receive appropriate assistance

for motion outside of the controller’s intent laws since

all actuation profile shapes are predefined for specific

movements.

The drawbacks of relying on mechanically intrinsic

measurements can potentially be overcome by a direct

access to the user’s nervous system. One approach using

bioelectrical signals for control is proportional myoelec-

tric control. A proportional myoelectric controller sends

a control signal to the actuators that is proportional to

the muscle recruitment of the user [11, 12]. In these

controllers muscle recruitment is measured using elec-

tromyography (EMG). The controller makes no assump-

tions about the human-machine dynamics because the

measurements used to determine intent come straight

from the user instead of the device. This puts the user

in direct control of the exoskeleton and allows for intent

recognition to be accurate and consistent. Additionally,

proportionalmyoelectric control has the potential for zero

lag in timing behind the user due to the electromechanical

delay of EMG [13]. EMG signals are produced beforemus-

cle tension develops which allows a proportional myoelec-

tric controller to have a buffer of time between sensor

measurement and actuation. The control signal shape of

these controllers is proportional to the user’s EMG signal

meaning there is inherent human-machine synchroniza-

tion. Additionally, this proportionality implies that the

device is not limited to predefined actuation profiles.

Our research group has shown that proportional myo-

electric control is a viable control method for lower-limb

robotic exoskeletons that produces a relatively natural and

economical gait [14–19].

A proportional myoelectric control scheme can be illus-

trated as follows and is graphically represented by Fig. 1.

Suppose XTot represents the total actuator activation at

the assisted joint including both biological muscles and

the exoskeleton’s mechanical actuators. When walking

in an exoskeleton, we can apportion the activity from

the biological joint as XBio and the activity from the

exoskeleton asXExo. The biological activity can be thought

of as muscle activity about the assisted joint measured

via EMG and the exoskeleton activity can be thought

of as the control signals being sent to the exoskeleton

actuators.

XTot = XBio + XExo (1)

Fig. 1 Representation of Proportional Myoelectric Control. The above

figure is a graphical representation to compliment the mathematical

theory that describes proportional myoelectric control. In all of the

bar graphs, XTot is represented by the summation of XBio and XExo
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In a proportional myoelectric controller, the activity

from the exoskeleton is proportional to the biological

activity by some gain β . β maps biological activity to

exoskeleton activity. This mapping is scaled by the ratio

c = X̂Exo/XBio, where X̂Exo is the maximum unsaturated

exoskeleton activity and XBio is the normal unassisted

joint activity.

XExo = β

(
X̂Exo

XBio

)
XBio = β · c · XBio (2)

The exoskeletons presented here and in our previous

research can provide about half the power of the nor-

mal unassisted joint, so c has been estimated as c ≈ 0.5

[14, 15].

In the past, the proportional myoelectric controllers

developed by our group created a control signal for actu-

ation by using a constant gain of β = 2 to map the EMG

linear envelope to an actuation voltage. This gain was

chosen with the assumption that during powered walking

total joint activity should be equal to the unassisted joint

activity: XTot = XBio. Additionally, this gain was meant

to allow maximal assistance (XExo = X̂Exo) during steady

state operation. With this, we got from Eq. 1:

XBio = XBio + X̂Exo = XBio + XBio · c, (3)

and thus a reduction in biological joint activity: XBio =

(1 − c)XBio. For XExo = X̂Exo, we can solve Eq. 2 for the

necessary β :

β =
XBio

XBio
=

1

1 − c
=

1

1 − 0.5
= 2. (4)

In previous work, this choice of β resulted in large

reductions in metabolic cost. Our studies have also shown

that subjects indeed attempted to adapt to XBio ≈
1
β
XBio,

in accordance with Eq. 4 [15].

Yet walking in an exoskeleton is different than unas-

sisted walking and we might prefer more or less total joint

activity than XBio. In these previous studies, subjects had

the ability to adapt XBio < 1
β
XBio and deliberately chose

not to. This result suggests that XTot < XBio is not ener-

getically economical since we generally adapt to move

with as little energy as possible [20–24]. However, sub-

jects were somehow constrained when attempting XBio >
1
β
XBio as they would saturate the exoskeleton. Previous

work has shown that subjects avoided this saturation limit,

but we do not know the exact reason why. Perhaps sub-

jects avoided saturation due to discomfort or possibly

they chose to avoid the increased cognitive complexity

that comes with learning a highly nonlinear task. What-

ever the reason, we know that subjects naturally chose

to avoid operating the exoskeleton within the saturation

range. From Eq. 2 it follows that

XExo = β

(
X̂Exo

XBio

)
XBio > X̂Exo, for XBio >

1

β
XBio,

(5)

so it is unclear whether XTot = XBio is truly the optimal

value, or if subjects would prefer a largerXTot if saturation

were avoidable.

Therefore, we saw the need for a proportional myoelec-

tric controller that allows users to explore higher magni-

tudes of total joint activity. Such a controller would allow

users to adapt to find the most energetically economical

gait on their own. This adapation could potentially answer

whether or not XBio is the energetically optimal total joint

activity for walking in an exoskeleton. In designing such

a proportional myoelectric controller, we wanted to keep

the exoskeleton performing at maximumpotential regard-

less of biological activity (i.e., XExo = X̂Exo). This design

would allow for the user to vary the total joint activity by

just varying their biological activity. We made this possi-

ble by designing a proportional myoelectric controller in

which the gain was free to dynamically adapt on a stride by

stride basis. In other words, β was no longer held constant

but adapted itself on each stride i to maintain maximal

exoskeleton output. If we set XExo = X̂Exo in Eq. 2, we can

express βi as follows:

βi =
XBio

XBio,i
. (6)

Combining Eqs. 1, 2 and 6 shows that this adaptive pro-

portional myoelectric controller could allow users to vary

their amount of total joint activity:

XTot =
XBio

βi
+ X̂Exo. (7)

It is notable that lower gains βi (a consequence of larger

XBio,i) result in larger values for XTot . A time series rep-

resentation of this controller dynamically adapting to the

user is shown in Additional file 1: Figure A1.

The purpose of this study was to to test the performance

of an adaptive proportional myoelectric controller on a

robotic ankle exoskeleton. This controller allowed users to

explore a greater possible parameter space of walking in an

exoskeleton compared to walking with traditional propor-

tional myoelectric controllers. We were interested in what

β gain user’s choose when provided an adaptive controller.

We tested young healthy subjects walking with the adap-

tive gain proportional myoelectric controller on bilateral

robotic ankle exoskeletons.We predicted that the adaptive

controller would allow users to walk with reduced ener-
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getic cost and a β gain less than that of our previous work

with a constant gain controller. A β gain less than that

of our previous work would indicate that subjects have

adapted to using more total ankle activity than that of

unassisted walking.

Methods

Subjects

We tested eight healthy subjects for this study (male, 21 ±

1 years, 74.0 ± 2.7 kg, 180.0 ± 2.8 cm; means ± s.e.m.).

All subjects were prescreened for exoskeleton hardware

fit prior to testing. Subjects exhibited no gait abnormal-

ities and had no prior experience walking in a powered

exoskeleton. Prior to testing, all subjects gave informed

written consent to participate in the study in accordance

to the University of Michigan’s Medical School’s Institu-

tional Review Board (HUM00070022).

Exoskeleton hardware

We custom fabricated bilateral ankle exoskeletons for this

study similar to those used in previous studies from our

research group [14, 15, 25, 26]. The exoskeletons consisted

of a shank component and a shoe component that were

joined by a rotational joint. This joint constrained the

exoskeleton motion to plantar flexion and dorsiflexion.

The shank was made from stainless steel rods and plas-

tic cuffs. The shoe was a standard orthotic shoe that was

outfitted with attachments for actuation. The exoskeleton

could accommodate subjects that wore between a 9 and

11 U.S. men’s shoe size.

We actuated the exoskeletons using custom built arti-

ficial pneumatic muscles attached posteriorly allowing

for plantar flexion assistance when actuated [25]. We

attached a load cell in series (Omega Engineering, Stam-

ford, Connecticut) with the actuator to record actuation

kinetics. The shoe, shank, actuator, and load cell com-

bined to a total mass of 2.08 kg (approximately 0.81 kg at

the foot and 1.27 kg at the shank).

Exoskeleton control

The exoskeleton controller was a dynamically adaptive

proportional myoelectric controller. We used the wearer’s

soleus EMG for the input signal to the controller in order

to maintain biological synergy with the exoskeleton.

We designed the controller to process the user’s raw

soelus EMG into its linear envelope in real time. The

processing consisted of a high-pass filter (2nd order But-

terworth, cutoff frequency 80 Hz) to remove motion arti-

facts, followed by full wave rectification.We then low-pass

filtered the rectified signal (2nd order Butterworth, cutoff

frequency 4 Hz) to get the linear envelope. In a traditional

proportional myoelectric controller, this linear envelope

would then be multiplied by a static mapping gain to cal-

culate the control signal [11, 12]. In the current study, this

mapping gain was dynamically adjusted by the controller

using the following methodology (Fig. 2b).

For each stride i, we determined the maximum voltage

of the linear envelope, xi, in real time. We then calculated

A

B

Fig. 2 Testing Protocol and Control Scheme. a All eight subjects

walked at 1.2 ms-1 with the exoskeletons on during three separate

training sessions. Each session consisted of 50 minutes of walking

where the first 10 minutes were unpowered, the following 30

minutes were powered, and the last 10 minutes were unpowered.

Four time intervals from each session were analyzed in the analysis:

minutes 7–10 of the 1st unpowered section, minutes 3–6 of the

powered section, minutes 27–30 of the powered session, and

minutes 7-10 of the 2nd unpowered section. b For control we

processed the soleus linear envelope in real time and then conducted

a maximum search on a stride by stride basis. We used these max

values to calculate the mapping gain that the linear envelope was

multiplied by to create the actuation control signal
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the gain, gi, necessary for this value to reach a desired peak

actuation voltage, Vpeak .

gi =
Vpeak

xi
(8)

We calculated the dynamic gain, Gi, using a finite

impulse response (FIR) filter with a tap size, N = 50, and

unity weighting. Gi was then used to proportionally scale

the EMG linear envelope to the actuation control signals.

Gi =
1

N

⎛
⎝

i−1∑

j=i−N

gj

⎞
⎠ (9)

The actuation control signals were sent to propor-

tional pressure control valves (MAC Valves, Wixom, MI).

These valves regulated the pressure in the artificial pneu-

matic muscles to be proportional to the user’s amplified

linear envelope. This pressure roughly corresponded to

the exoskeleton torque output with some nonlinearities

induced by actuator dynamics and a changing moment

arm. We ran our controller on a desktop and real-time

control board (dSPACE, Inc., Northville, MI) during all

testing. All software was composed in Simulink (The

Mathworks, Inc., Natick,MA) and then converted to Con-

trolDesk (dSPACE, Inc., Northville, MI) using commercial

dSPACE software.

Testing protocol

The following protocol is largely adapted from [15]. All

subjects participated in three identical training sessions

with the device (sessions 1–3). We conducted these train-

ing sessions over the course of 7–14 days for each subject,

allowing at least one day rest between sessions for motor

consolidation [14, 27]. Each training session consisted of

50 continuous minutes of level ground walking in the

exoskeleton. Subjects walked on a split belt treadmill at

1.2 ms-1 (Bertec Corporation, Columbus, OH) for all tests.

The first 10 minutes of each walking session were with the

device unpowered (i.e., no actuation). We gave subjects

a verbal warning before actuation was turned on for the

following 30 minutes. The FIR filter was initialized with

zeros, so a peak control signal was not reached until 50

strides or approximately 60 seconds of powered walking.

After the full 30minutes of powered walking, we gave sub-

jects a verbal warning before actuation was turned off for

another 10 minutes.

We analyzed data from four time windows of each ses-

sion: minutes 7–10 of the 1st unpowered condition, min-

utes 3–6 of the powered condition, minutes 27–30 of the

powered condition, and minutes 7-10 of the 2nd unpow-

ered condition (Fig. 2a). Respiratory data was averaged

over each three minute time window. Gait data was aver-

aged over the last 25 strides of each time window. From

this gait data, we calculated muscle recruitment, inverse

kinematics, inverse dynamics, and exoskeleton mechan-

ics. Strides were defined as heel-strike (0% gait cycle)

to heel-strike (100% gait cycle). Data from all session’s

1st unpowered condition were averaged to get the Aver-

age Unpowered values. These values are compared to data

from the end of powered conditions of each session in

Figs. 4 through 8.

Metabolic cost

We used a portable open-circuit indirect spirometry sys-

tem (CareFusion Oxycon Mobile, Hoechberg, Germany)

to measure O2 and CO2 flow rates. We used formulas

from Brockway [28] to convert these measurements to

metabolic power. Prior to walking trials, we recorded a

three minute standing trial from each subject. We aver-

aged over these three minutes to get each subject’s stand-

ingmetabolic power which was then subtracted from each

walking trial to calculate the net metabolic power of each

walking condition [29]. We analyzed each walking condi-

tion by averaging the metabolic power over a three minute

interval then normalizing it by the subjects body mass.

During testing, we monitored each subject’s respiratory

exchange ratio (RER) to ensure that it remained in the

aerobic range (RER<1) [30].

Electromyography

We measured electromyography from the soleus, tibialis

anterior, medial gastrocnemius, biceps femoris long head,

vastus lateralis, and rectus femoris. All EMG recordings

came from the subject’s right side except for the soleus in

which recordings came from both the left and right since

they were used as control inputs. We used bipolar surface

electrodes (sample rate: 1000 Hz; Biometrics, Ladysmith,

VA) with an inter-electrode distance of 2.0 cm and elec-

trode diameter of 1.0 cm to record all muscle activity. The

EMG amplifier used for data collection had a bandwidth

of 20–460 Hz. We placed all electrodes according to the

procedure of Winter and Yack [31].

For post-processing the EMGdata, we high-pass filtered

all EMG signals with a 35 Hz cut-off frequency (3rd order

Butterworth filter, zero-lag) and then full-wave rectified.

We then low-pass filtered all rectified signals with a 10

Hz cut-off frequency (3rd order Butterworth filter, zero

lag) to achieve the signal’s linear envelope. Each linear

envelope was then epoched by stride (heel-strike to heel-

strike) and averaged. We normalized each muscle’s linear

envelope by its corresponding peak voltage from the end

of the 1st unpowered walking portion of the session [31].

We additionally calculated the root mean square (r.m.s.)

stride average for the rectified EMG signal. The r.m.s. cal-

culations were normalized by the average r.m.s. from the

end of the 1st unpowered portion of each session. All EMG

normalization was done prior to averaging.
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Kinematics

We measured joint kinematics during treadmill walking

using a 10-camera motion capture system (sample rate:

100 Hz; Vicon, Oxford, UK). We used a 39 reflective

marker set for each subject (34 on the pelvis and lower

limbs, 4 on the torso, and 1 on the head). All joint kinemat-

ics were calculated from raw marker data using OpenSim

3.2 [32]. In OpenSim we scaled a generic model to subject

specific marker placements. The model consisted of lower

extremities and a trunk with 23 degrees of freedom and

54 actuators. We ensured that all subject model scaling

and inverse kinematic r.m.s. values were within the range

recommend by OpenSim during processing [33].

We calculated the Pearson product moment correla-

tions between the mean joint kinematics from the end of

powered conditions to the end of 1st unpowered condi-

tions. We assessed similarities in powered verses unpow-

ered joint kinematics by the coefficient of determination

(R2) of these correlations [14].

Joint mechanics

We imported all ground reaction force data into Open-

Sim 3.2 to use in conjunction with the calculated joint

kinematics to perform inverse dynamics. We scaled each

model’s mass anthropomorphically using the subject’s

mass and then manually included additional mass at the

shank and foot to account for the exoskeleton. We used

OpenSim’s residual reduction algorithm (RRA) to itera-

tively adjust themodel as needed to get residual forces and

moments as low as possible. We used the adjusted model

to calculate inverse dynamics. Our final residuals after

using the RRA can be seen in Table 1. These residuals are

within OpenSim’s recommended ranges with the excep-

tion of Fy maximum and Fz root mean square which are

marginally outside of the recommended ranges [33]. We

believe these values are acceptable and we attribute the

larger residuals to the added complexity of the exoskeleton

being present in the analysis.

To calculate all joint powers, we multiplied joint angular

velocities by the joint torque. We took a simple derivative

of the joint positions to get the joint angular velocities and

filtered them with a 25 Hz cut-off frequency (3rd order

Butterworth, zero-lag) to remove the amplified noise that

resulted from taking the derivative. We calculated bio-

logical ankle power by subtracting the exoskeleton power

from the total ankle power at each time instance. We

calculated average joint power values by taking the time

interval of the power time series data and dividing it by

corresponding stride periods [34, 35]. Average positive

and negative power values were computed by separating

out the time integrals to periods of positive and negative

power. Average net power was calculated using the time

series of all power data. Followingmethodology from [34],

we assessed total average positive power, P
+

Tot , as the sum

of average positive power from the ankle, knee, and hip

(P
+

Ankle, P
+

Knee, P
+

Hip, respectively).

P
+

Tot = P
+

Ankle + P
+

Knee + P
+

Hip (10)

Exoskeleton mechanics

The distance from the base of the actuator attachment

to the exoskeleton joint center was 10.07 cm. Knowing

the ankle joint angle from the inverse kinematics, we cal-

culated the moment arm on the actuator at each time

instance of collection. We filtered all load cell data with

a 25 Hz cut-off frequency (3rd order Butterworth filter,

zero-lag). We multiplied the filtered force data by the

calculated moment arm to get the exoskeleton torques.

The calculated exoskeleton torques were multiplied by

the ankle angular velocities to calculate the exoskeleton

power. We calculated average exoskeleton power values

the same way as average joint power values. We calculated

exoskeleton mechanics from one exoskeleton per subject.

Statistical analyses

We performed two types of repeated-measures ANOVA

analysis using SPSS Statistics 22 (IBM, Armock, NY) on

all data of interest with a significance level set to 0.05.

One ANOVA analysis compared across the four time

windows of each training session. Another ANOVA anal-

ysis compared across the training sessions of each time

window.

Results

Metabolic cost

As subjects began to adapt to the exoskeleton, the

amount of metabolic power required to walk in the device

decreased (Fig. 3). Subjects had a significant decrease in

metabolic power in every session (all P<0.05). By the end

Table 1 Average residual values after final run of the RRA in OpenSim

Fx Fy Fz Mx My Mz pErrx pErry pErrz

(N) (N) (N) (Nm) (Nm) (Nm) (cm) (cm) (cm)

Maximum 12.9 33.3 17.4 29.3 40.6 40.6 3.8 2.3 0.4

Root mean square 7.4 9.6 11.1 9.8 19.3 11.1 2.6 1.5 0.2

Fx , Fy , and Fz refer to the residual forces at the pelvis.Mx ,My , andMz refer to the residual moments at the pelvis. pErrx , pErry , and pErrz refer to the translational position error

of the markers
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Fig. 3Metabolic Power Reductions. The top axis shows the mean net metabolic power required by eight subjects to walk in the exoskeleton across

the three training sessions. All net metabolic power values are normalized by subject mass. The bottom axis represents the powered conditions of

this same data as a mean percent change in net metabolic power. Error bars represent ± 1 s.e.m

of powered walking in session 3, subjects were able to

walk with a net metabolic power of 3.01 ± 0.08 W kg−1

(mean ± s.e.m., here and throughout). Compared to the

first unpowered condition of that same session, 3.66 ±

0.18 W kg−1, this was a reduction of 17.8%. All net

metabolic power values are listed in Table 2.

There was a large change in metabolic power dur-

ing powered minutes 3-6 across sessions. During ses-

sion 1, subjects had a net metabolic power of 3.72 ±

0.18 W kg−1, a reduction of 5.6% compared to the

1st unpowered condition. By session 3, net metabolic

power was 3.14 ± 0.11 W kg−1, a reduction of 14.2%

compared to the 1st unpowered condition. Statistically,

there was a significant reduction in net metabolic power

during powered minutes 3-6 across the three sessions

(P = 0.028).

Dynamically adjusted gain

By the end of session 3, our adaptive controller chose gains

that resulted in β = 1.50 ± 0.14 (mean ± s.e.m. between

subjects; we averaged βi over the final three minutes of the

powered session to calculate β). The average gain values

Table 2 Resulting net metabolic cost from each time interval across sessions

1st Unpowered Powered Powered 2nd Unpowered Within session

minutes 7–10 minutes 3–6 minutes 27–30 minutes 7–10 P-Value

Session 1 3.94 ± 0.25 3.72 ± 0.18 3.30 ± 0.15 3.86 ± 0.24 0.002

Session 2 3.75 ± 0.18 3.31 ± 0.19 3.08 ± 0.14 3.75 ± 0.20 0.024

Session 3 3.66 ± 0.18 3.14 ± 0.11 3.01 ± 0.08 3.74 ± 0.15 0.006

Across session P-Value 0.070 0.028 0.193 0.614 —

Net metabolic rates are all expressed in units of W kg−1 (mean ± s.e.m.). P < 0.05 represents statistical significance
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from the final three minutes of each session showed no

significant difference across sessions (P = 0.273).

Electromyography

During session 1, subjects quickly reduced their soleus

activation levels (Fig. 4 and Additional file 2: Table A2).

At the beginning of the powered condition of session 1,

subjects reduced their soleus r.m.s. EMG by 13.8 ± 3.8%

compared to the end of the 1st unpowered condition. By

the end of that same session, subjects had achieved a

soleus r.m.s. EMG reduction of 20.3 ± 8.2% (28.0 ± 6.8%

reduction in peak linear envelope). Contrary to previ-

ous studies, subjects preferred to increase their soleus

recruitment with additional training sessions. By the end

of session 3, subjects were walking with a soleus r.m.s.

EMG reduction of only 10.8 ± 7.9% (21.5 ± 4.8% reduc-

tion in peak linear envelope). The medial gastrocnemius

EMG showed no significant change during testing.

Across testing sessions, subjects adapted to use less rec-

tus femoris recruitment when walking in the powered

exoskeleton (Fig. 4 and Additional file 2: Table A2). By

the end of the powered condition of session 3, subjects

had adapted to reduce their rectus femoris r.m.s. EMG by

20.2 ± 9.2% compared to the 1st unpowered condition.

As subjects learned to walk in the exoskeleton, their rec-

tus femoris activity decreased across sessions during the

powered minutes 3–6 (P = 0.005). The most noticeable

change was the reduction in peak EMG activity shown

by Fig. 4. By session 3, subjects were able to reduce their

peak rectus femoris activation level around toe off by

43.8 ± 13.8% compared to the 1st unpowered condition.

Unlike the rectus femoris EMG, the vastus lateralis EMG

showed no r.m.s. reduction during powered walking. The

biceps femoris long head EMG r.m.s. values showed sig-

nificant reductions during each session (all P<0.05), yet

the reduction observed during the end of the powered

A

B

Fig. 4 Soleus and Rectus Femoris EMG. a The mean soleus and mean rectus femoris EMG linear envelope (high-pass cutoff frequency of 35 Hz and

low-pass cutoff frequency of 10 Hz) of eight subjects is represented by the solid lines and +1 s.d. is represented by the dashed lines. b The mean

soleus and mean rectus femoris r.m.s. of rectified EMG for four time intervals is indicated by the colored bars across all three sessions. Error bars

represent ±1 s.e.m. Each subject’s r.m.s. values were normalized to the corresponding session’s 1st unpowered r.m.s. value prior to averaging
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condition lasted through the end of the 2nd unpowered

condition (Additional file 2: Table A2).

Joint kinematics

Subjects had the largest change in joint kinematics at the

ankle when comparing powered to unpowered conditions

(Fig. 5). A linear regression between ankle kinematics

from the end of the powered condition in session 3 and

the 1st unpowered condition of that same session had an

R2 value of 0.58 ± 0.11. This lack of correlation between

the two conditions is due to the fact that subjects plan-

tar flexed ∼8–9° more throughout the mid and late stance

phase (30–60% gait cycle). Subjects continued to increase

peak plantar flexion from session 1 (23.5°) to session 3

(27.3°). The powered peak plantar flexion values are large

compared to the 1st unpowered condition (12.9°).

Little change was observed in the knee and hip kinemat-

ics. All hip and knee linear regressions comparing the end

of the powered condition to the 1st unpowered condition

of each session had R2 values greater than 0.97.

Joint mechanics

The relationship between subjects’ actuation control sig-

nal magnitude and exoskeleton torque output was approx-

imately linear with an R2 value of 0.74 ± 0.13 by the end

of session 3. The mean total moment at the ankle (bio-

logical and exoskeleton) increased ∼0.16–0.18 Nm kg-1

(∼47.8%) during the early to mid stance phase (0–30%

gait cycle) when comparing the end powered conditions

to the average unpowered condition (Fig. 5). This increase

in total ankle plantarflexion moment during the early to

mid stance phase corresponds with a decrease in hip flex-

ion muscle moment. Subjects experienced a decrease in

mean hip flexion muscle moment ∼0.14–0.15 Nm kg-1

(∼31.7%) during this phase of the gait. There was little

change in knee joint dynamics.

Subjects increased positive average total ankle power

when the exoskeleton was powered (P = 0.001; Fig. 6).

Most noticeably, subjects walked with a 0.13 ± 0.01 W

kg-1 (65.8 ± 8.9%) increase in positive average total ankle

power by session 3 relative to the average unpowered con-

dition. Across training sessions, subjects increased their

positive ankle exoskeleton power as they adapted to the

device (P = 0.019). Subjects had no significant change in

net biological power output between powered and average

unpowered conditions (P = 0.614). There was no signif-

icant difference in average net knee power between pow-

ered and average unpowered conditions (P = 0.195), yet a

decreasing trend of the magnitude was observed. Between

the average unpowered condition and the end of session

3’s powered condition, there was a 25.4% reduction in the

magnitude of the average net knee power. There were sig-

nificant differences in average positive hip power between

powered and average unpowered conditions (P = 0.003).

Fig. 5 Joint Kinematics, Dynamics, and Power. Mean joint angles, moments, and powers from eight subjects. Joint dynamics and power have been

normalized by subject mass. In the kinematics and dynamics plots all positive numbers represent extension while all negative numbers represent

flexion
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A B

Fig. 6 Breakdown of Ankle Power. aMean total ankle power, exoskeleton power, and biological ankle power from eight subjects across all three

sessions. The exoskeleton power was calculated from ankle kinematics and force outputs. The biological power was calculated by subtracting the

exoskeleton power from the total ankle power. b Average power plots of positive, negative, and net power for total ankle power, exoskeleton

power, and biological ankle power. All error bars represent ±1 s.e.m. An astrix represent significance across all four conditions (ANOVA, P<0.05) and

a double astrix represents significance in both all four conditions as well as just across sessions 1–3 (ANOVA, P<0.05)

By session 3, subjects walked with an average positive hip

power 0.06 ± 0.01 W kg-1 (14.7 ± 2.5%) less than that of

the 1st average unpowered condition (Fig. 7).

Subjects increased the amount of average total positive

power, P
+

Tot , from the average unpowered condition to the

end of the powered sessions (P = 0.009). Additionally
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A B

Fig. 7 Breakdown of Knee and Hip Power. aMean knee power and mean hip power from eight subjects. b Average power plots of positive,

negative, and net power for knee and hip power. An astrix represent significance across all four conditions (ANOVA, P<0.05)

subjects altered percent contributions of the ankle and hip

joint to P
+

Tot (P = 0.002 and P = 0.002 respectively; Fig. 8).

There was no significant change in percent contributions

from the knee between conditions (P = 0.165). Percent

contributions from the ankle increased from 27.7 ± 1.9%

to 41.2± 1.0% between the average unpowered condition

and the end of the powered condition of session 3. Percent

contributions from the hip decreased from 52.8 ± 1.6%

to 41.3± 0.9% between the average unpowered condition

and the end of the powered condition of session 3.

Discussion
The results from this study support our hypothesis that

subjects would learn to reduce their energetic cost when

walking in the robotic ankle exoskeletons. By the end of

the session 3, subjects required 3.01±0.08W kg−1 to walk

in the powered device. This result is comparable to that of

previous studies using a traditional proportional myoelec-

tric controller [15]. An important difference between our

metabolic results and that of previous studies is that all

eight of our subjects experienced ametabolic reduction by

the end of session 1’s powered condition. In previous stud-

ies, the mean metabolic reduction by the end of session

1’s powered condition was approximately zero. Addition-

ally, in previous work subjects had to complete three full

training sessions before additional training had no effect

metabolic power reduction. In our current study there

was no statistically significant difference in net metabolic
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Fig. 8 Total Positive Power Contributions. Mean ankle (dark), knee

(medium), and hip (light) percent contributions to total positive

power from eight subjects during unpowered and powered walking

power reduction at the end of the powered condition

across sessions (P = 0.193). Although the meanmetabolic

values at the end of each session’s powered condition sug-

gests slight training effects, the percent reduction between

the first unpowered condition and end of the powered

condition on session 1 was 16.2% were on session 3 it

was 17.8%. These results suggests that the learning rate

with an adaptive proportional myoelectric controller is

faster than that of a traditional proportional myoelectric

controller.

Despite no significant difference in net metabolic power

reduction at the end of the powered condition across ses-

sions, the rate at which subjects reached this netmetabolic

power reduction increased with additional training ses-

sions. This is made evident by the significant differences

in net metabolic power during the beginning of the pow-

ered condition across sessions (P = 0.028; Fig. 3 and

Table 2). These metabolic results show that an adaptive

gain proportional myoelectric controller can positively

assist users. It is important to note that the control scheme

presented here is not the first variation on the traditional

proportional myoelectric control algorithm [36]; however,

to the best of our knowledge it is the first to implement an

adaptive gain.

In addition to the metabolic reductions, our results also

suggest that subjects preferred a β value smaller than that

used in our previous work (β = 1.50 ± 0.14 versus a con-

stant β = 2). We found that subjects had no statistical

difference in final β gains between sessions (P = 0.273)

which suggests the gain converged to a steady state value

after only one session. According to Eq. 7, this smaller

gain should lead to a larger total joint activity compared to

unassisted walking (XTot > XBio). This relationship might

seem unintuitive at first, but it is important to note that

in both cases the exoskeleton is operated close to its max-

imum capacity of X̂Exo. Given a smaller gain β , the user’s

contribution XBio was larger than that of previous studies

without oversaturating XExo. It is this contribution from

the user that leads to a larger total joint activity at the

ankle. Our prediction of increased XTot as a result of a

smaller β manifested itself in this study by an increase in

positive average total ankle power. Positive average total

ankle power increased from 0.21 to 0.35 W kg-1 between

unpowered and powered conditions on session 3. The

exoskeleton provided 0.17 W kg-1 additional average pos-

itive power, while the biological average positive power

was reduced by only 0.02 W kg-1. We did not observe

an increase in total ankle power with our previous work

using a static gain proportional myoelectric controller.

Our methodology for tuning β in the past may have con-

strained users to using levels of total ankle power no larger

than that of unassisted walking in the device.

This increase in positive average total ankle power led to

significant changes in hip joint mechanics. Positive aver-

age hip power decreased from 0.41 to 0.35Wkg-1 between

unpowered and powered conditions on session 3. Addi-

tionally, our results show that subjects chose to increase

ankle contribution to total positive power (27.7 to 41.2%)

in exchange for a decrease in hip contribution (52.8 to

41.3%) between these conditions. We acknowledge that

the baseline of the unpowered condition is shifted from

walking without an exoskeleton most likely due to the

added mass of the device. As a point of reference, Far-

ris et al. showed that in healthy subjects walking without

any exoskeleton at 1.25 ms-1 (compared to 1.2 ms-1 in

this study) about 46% of the total average positive power

comes from the ankle while 40% comes from the hip [34].

Although the percent contributions of power at the end

of session 3 in this study look similar to those reported by

Farris et al., we would not conclude that subjects adapted

back to normal unassisted gait dynamics. We would not

make this conclusion due to the large differences in power

and moment profiles of each individual joint from this
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study compared to that of previously reported profiles of

healthy unassisted walking [34, 37]. Our results emphasize

that replicating unassisted joint mechanics with assis-

tive devices may not be the best approach to lowering

metabolic power. We also observed a trade-off in soleus

EMG activity and rectus femoris EMG activity. This result

agrees with previous studies such that ankle assistance can

lead to decreases in activity at muscles not associated with

the ankle [38, 39].

Research has shown that a trade-off between ankle and

hip mechanics exists in unassisted locomotion. The pos-

sibility of redistributing joint powers has been shown for

example by Lewis et al. [40]. When subjects were asked

to walk with an increased ankle push off, the power at

their hip decreased. However, little has been said about

the energetic implications of this trade-off with human

subject testing. In 2002, Art Kuo showed in simulation

that increasing work at the ankle can be energetically eco-

nomical in comparison to doing so at the hip [41]. He

further hypothesized that it is only biological limitations

that prevent us from using more ankle work in practice.

Our results might point in the same direction. During

unpowered walking, the ratio of hip to ankle contribution

that we observe is larger than that reported in previous lit-

erature [34, 42]. Thismay be a consequence of the increase

in required total positive joint power that results from

the mass of the exoskeletons which is added distally to

the legs. We believe that this additional power is primar-

ily produced at the hip because there exists a biological

limitation preventing the ankle from comfortably provid-

ing more positive power. With the added power of the

exoskeleton, however, subjects were able to increase con-

tributions from the ankle and reduce the effort put forth

at the hip. Our findings that an ankle exoskeleton can

reduce effort at the hip can potentially be applied to mus-

culoskeletal hip rehabilitation. Given that subjects showed

large reductions in average positive hip power, an ankle

exoskeleton could be a viable option for those in need

of hip assistance yet more testing is necessary to say for

certain.

Conclusion
This study used an adaptive proportionalmyoelectric con-

troller on bilateral ankle exoskeletons to test if users could

adapt to the controller to reduce metabolic power and

see what β gain they chose when given an adaptive con-

troller. Subjects demonstrated that a significant metabolic

reduction can be met after only one day of training.

Subjects adapted to a β gain smaller than that used in

previous work with traditional proportional myoelectric

controllers. This smaller β gain allowed subjects increased

amounts of total ankle power compared to unassisted

walking and resulted in reduced power output at the hip.

More research is needed to be done in adaptive control

of assistive devices to gain a better understanding of how

subjects co-adapt with these systems. However, we believe

that an adaptive nature of control parameters will be key

to developing better assistive devices.

Additional files

Additional file 1: Figure A1. Here we have a cartoon example of how the

controller reacts given a subject’s adaptation in the device. (A) The

controller is turned off during unpowered walking and the user receives no

actuation. (B)When the controller is turned on, the finite impulse response

filter begins to initialize with strides causing the mapping gain, Gi , to

increase. This increase in Gi causes an increase in the exoskeleton activity,

XExo . (C) The user then begins to adapt to the actuation by decreasing

their biological activity, XBio . During this time the adaptive controller

compensates for the decreased biological activity by increasing βi and

thus the mapping gain Gi . This increase in Gi brings the exoskeleton

activity back toward the saturation limit X̂Exo . (D) The user then holds their

adapted biological activity at some steady state value. βi and Gi settle at

their steady state values βss and Gss , respectively. (PDF 177kb)

Additional file 2: Table A2. Root mean square electromyography data

for all recorded muscles. (PDF 56kb)
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