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Abstract

Despite their local fluency, long-form text

generated from RNNs is often generic,

repetitive, and even self-contradictory. We

propose a unified learning framework that

collectively addresses all the above issues

by composing a committee of discrimina-

tors that can guide a base RNN genera-

tor towards more globally coherent gen-

erations. More concretely, discriminators

each specialize in a different principle of

communication, such as Grice’s maxims,

and are collectively combined with the

base RNN generator through a compos-

ite decoding objective. Human evaluation

demonstrates that text generated by our

model is preferred over that of baselines

by a large margin, significantly enhancing

the overall coherence, style, and informa-

tion of the generations.

1 Introduction

Language models based on Recurrent Neural Net-

works (RNNs) have brought substantial advance-

ments across a wide range of language tasks (Joze-

fowicz et al., 2016; Bahdanau et al., 2015; Chopra

et al., 2016). However, when used for long-

form text generation, RNNs often lead to degen-

erate text that is repetitive, self-contradictory, and

overly generic, as shown in Figure 1.

We propose a unified learning framework that

can address several challenges of long-form text

generation by composing a committee of discrim-

inators each specializing in a different principle

of communication. Starting with an RNN lan-

guage model, our framework learns to construct

a more powerful generator by training a number

of discriminative models that can collectively ad-

dress limitations of the base RNN generator, and

Context: The two guards thudded into the door on the 
other side and began pounding on it, shouting furiously. 
Scious raised the large bunch of keys then placed them in 
a large pocket in his coat. "Come, we have to go," he 
whispered and moved up the corridor, the guards still 
hammering on the door. Jared looked around. The table 
next to the room they had been in was bare.

LM: There was a small table set into the center of the table, 
and a table with two chairs and a table. A chair sat next to 
the couch. A large man stood in the doorway of the room, 
his arms crossed over his chest. "What 's up?" He asked.

L2W: Empty. It looked like some kind of prison. There were 
no windows, no doors, no windows. No sign of anyone in the 
house. No one had ever been here before. 

Reference: Only a flagon of wine and a couple of mugs 
plus a crude dice game. Light flickered in the stone 
corridor from lanterns on the walls. The place was dank 
and gloomy, moss in scattered patches on the floor and 
walls. The corridor ended just beyond the door to their 
former prison. No one else was about.

Figure 1: Sample generations from an RNN lan-

guage model (LM) and our system (L2W) con-

ditioning on the context shown on the top. The

red, underlined text highlights repetitions, while

the blue, italicized text highlights details that have

a direct semantic parallel in the reference text.

then learns how to weigh these discriminators to

form the final decoding objective. These “cooper-

ative” discriminators complement each other and

the base language model to form a stronger, more

global decoding objective.

The design of our discriminators are inspired

by Grice’s maxims (Grice et al., 1975) of quan-

tity, quality, relation, and manner. The discrimi-

nators learn to encode these qualities through the

selection of training data (e.g. distinguishing a

true continuation from a randomly sampled one

as in §3.2 Relevance Model), which includes gen-

erations from partial models (e.g. distinguishing

a true continuation from one generated by a lan-

guage model as in §3.2 Style Model). The system
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then learns to balance these discriminators by ini-

tially weighing them uniformly, then continually

updating its weights by comparing the scores the

system gives to its own generated continuations

and to the reference continuation.

Empirical results (§5) demonstrate that our

learning framework is highly effective in convert-

ing a generic RNN language model into a substan-

tially stronger generator. Human evaluation con-

firms that language generated by our model is pre-

ferred over that of competitive baselines by a large

margin in two distinct domains, and significantly

enhances the overall coherence, style, and infor-

mation content of the generated text. Automatic

evaluation shows that our system is both less repet-

itive and more diverse than baselines.

2 Background

RNN language models learn the conditional prob-

ability P (xt|x1, ..., xt−1) of generating the next

word xt given all previous words. This condi-

tional probability learned by RNNs often assigns

higher probability to repetitive, overly generic sen-

tences, as shown in Figure 1 and also in Table 3.

Even gated RNNs such as LSTMs (Hochreiter

and Schmidhuber, 1997) and GRUs (Cho et al.,

2014) have difficulties in properly incorporating

long-term context due to explaining-away effects

(Yu et al., 2017b), diminishing gradients (Pascanu

et al., 2013), and lack of inductive bias for the net-

work to learn discourse structure or global coher-

ence beyond local patterns.

Several methods in the literature attempt to ad-

dress these issues. Overly simple and generic gen-

eration can be improved by length-normalizing the

sentence probability (Wu et al., 2016), future cost

estimation (Schmaltz et al., 2016), or a diversity-

boosting objective function (Shao et al., 2017; Vi-

jayakumar et al., 2016). Repetition can be re-

duced by prohibiting recurrence of the trigrams as

a hard rule (Paulus et al., 2018). However, such

hard constraints do not stop RNNs from repeating

through paraphrasing while preventing occasional

intentional repetition.

We propose a unified framework to address all

these related challenges of long-form text genera-

tion by learning to construct a better decoding ob-

jective, generalizing over various existing modifi-

cations to the decoding objective.

3 The Learning Framework

We propose a general learning framework for con-

ditional language generation of a sequence y given

a fixed context x. The decoding objective for gen-

eration takes the general form

fλ(x,y) = log(Plm(y|x))+
∑

k

λksk(x,y), (1)

where every sk is a scoring function. The

proposed objective combines the RNN language

model probability Plm (§3.1) with a set of ad-

ditional scores sk(x,y) produced by discrimi-

natively trained communication models (§3.2),

which are weighted with learned mixture coeffi-

cients λk (§3.3). When the scores sk are log prob-

abilities, this corresponds to a Product of Experts

(PoE) model (Hinton, 2002).

Generation is performed using beam search

(§3.4), scoring incomplete candidate generations

y1:i at each time step i. The RNN language

model decomposes into per-word probabilities via

the chain rule. However, in order to allow for

more expressivity over long range context we do

not require the discriminative model scores to fac-

torize over the elements of y, addressing a key

limitation of RNNs. More specifically, we use

an estimated score s′k(x,y1:i) that can be com-

puted for any prefix of y = y1:n to approxi-

mate the objective during beam search, such that

s′k(x,y1:n) = sk(x,y). To ensure that the train-

ing method matches this approximation as closely

as possible, scorers are trained to discriminate pre-

fixes of the same length (chosen from a predeter-

mined set of prefix lengths), rather than complete

continuations, except for the entailment module as

described in §3.2 Entailment Model. The prefix

scores are re-estimated at each time-step, rather

than accumulated over beam search.

3.1 Base Language Model

The RNN language model treats the context x and

the continuation y as a single sequence s:

logPlm(s) =
∑

i

logPlm(si|s1:i−1). (2)

3.2 Cooperative Communication Models

We introduce a set of discriminators, each of

which encodes an aspect of proper writing that

RNNs usually fail to capture. Each model is

trained to discriminate between good and bad gen-

erations; we vary the model parameterization and
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training examples to guide each model to focus on

a different aspect of Grice’s Maxims. The discrim-

inator scores are interpreted as classification prob-

abilities (scaled with the logistic function where

necessary) and interpolated in the objective func-

tion as log probabilities.

Let D = {(x1,y1), . . . (xn,yn)} be the set of

training examples for conditional generation. Dx

denote all contexts and Dy all continuations. The

scoring functions are trained on prefixes of y to

simulate their application to partial continuations

at inference time.

In all models the first layer embeds each word

w into a 300-dimensional vector e(w) initialized

with GloVe (Pennington et al., 2014) pretrained-

embeddings.

Repetition Model

This model addresses the maxim of Quantity by

biasing the generator to avoid repetitions. The

goal of the repetition discriminator is to learn to

distinguish between RNN-generated and gold con-

tinuations by exploiting our empirical observation

that repetitions are more common in completions

generated by RNN language models. However, we

do not want to completely eliminate repetition, as

words do recur in English.

In order to model natural levels of repetition, a

score di is computed for each position in the con-

tinuation y based on pairwise cosine similarity be-

tween word embeddings within a fixed window of

the previous k words, where

di = max
j=i−k...i−1

(CosSim(e(yj), e(yi))), (3)

such that di = 1 if yi is repeated in the window.

The score of the continuation is then defined as

srep(y) = σ(w⊤
r RNNrep(d)), (4)

where RNNrep(d) is the final state of a unidirec-

tional RNN ran over the similarity scores d =
d1 . . . dn and wr is a learned vector. The model

is trained to maximize the ranking log likelihood

Lrep =
∑

(x,yg)∈D,

ys∼LM(x)

log σ(srep(yg)− srep(ys)), (5)

which corresponds to the probability of the gold

ending yg receiving a higher score than the ending

sampled from the RNN language model.

Entailment Model

Judging textual quality can be related to the nat-

ural language inference (NLI) task of recognizing

textual entailment (Dagan et al., 2006; Bowman

et al., 2015): we would like to guide the generator

to neither contradict its own past generation (the

maxim of Quality) nor state something that read-

ily follows from the context (the maxim of Quan-

tity). The latter case is driven by the RNNs habit

of paraphrasing itself during generation.

We train a classifier that takes two sentences a

and b as input and predicts the relation between

them as either contradiction, entailment or neu-

tral. We use the neutral class probability of the

sentence pair as discriminator score, in order to

discourage both contradiction and entailment. As

entailment classifier we use the decomposable at-

tention model (Parikh et al., 2016), a competitive,

parameter-efficient model for entailment classifi-

cation.1 The classifier is trained on two large en-

tailment datasets, SNLI (Bowman et al., 2015) and

MultiNLI (Williams et al., 2017), which together

have more than 940,000 training examples. We

train separate models based on the vocabularies of

each of the datasets we use for evaluation.

In contrast to our other communication models,

this classifier cannot be applied directly to the full

context and continuation sequences it is scoring.

Instead every completed sentence in the continu-

ation should be scored against all preceding sen-

tences in both the context and continuation.

Let t(a,b) be the log probability of the neu-

tral class. Let S(y) be the set of complete sen-

tences in y, Slast(y) the last complete sentence,

and Sinit(y) the sentences before the last complete

sentence. We compute the entailment score of

Slast(y) against all preceding sentences in x and

y, and use the score of the sentence-pair for which

we have the least confidence in a neutral classifi-

cation:

sentail(x,y) = mina∈S(x)∪Sinit(y)t(a, Slast(y)).
(6)

Intuitively, we only use complete sentences be-

cause the ending of a sentence can easily flip en-

tailment. As a result, we carry over entailment

score of the last complete sentence in a genera-

tion until the end of the next sentence, in order to

maintain the presence of the entailment score in

the objective. Note that we check that the current

1We use the version without intra-sentence attention.
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Data: context x, beam size k, sampling temperature t
Result: best continuation
best = None
beam = [x]
for step = 0; step < max steps; step = step +1 do

next beam = []
for candidate in beam do

next beam.extend(next k(candidate))
if termination score(candidate) > best.score

then
best = candidate.append(term)

end

end
for candidate in next beam do

⊲ score with models
candidate.score += fλ(candidate)

end
⊲ sample k candidates by score

beam = sample(next beam, k, t)
end
if learning then

update λ with gradient descent by comparing best
against the gold.

end
return best

Algorithm 1: Inference/Learning in the Learning

to Write Framework.

sentence is not directly entailed or contradicted

by a previous sentence and not the reverse. 2 In

contrast to our other models, the score this model

returns only corresponds to a subsequence of the

given continuation, as the score is not accumu-

lated across sentences during beam search. Instead

the decoder is guided locally to continue complete

sentences that are not entailed or contradicted by

the previous text.

Relevance Model

The relevance model encodes the maxim of Rela-

tion by predicting whether the content of a candi-

date continuation is relevant to the given context.

We train the model to distinguish between true

continuations and random continuations sampled

from other (human-written) endings in the corpus,

conditioned on the given context.

First both the context and continuation se-

quences are passed through a convolutional layer,

followed by maxpooling to obtain vector represen-

tations of the sequences:

a = maxpool(conva(e(x))), (7)

b = maxpool(convb(e(y))). (8)

2If the current sentence entails a previous one it may sim-
ply be adding more specific information, for instance: “He
hated broccoli. Every time he ate broccoli he was reminded
that it was the thing he hated most.”

The goal of maxpooling is to obtain a vector rep-

resenting the most important semantic information

in each dimension.

The scoring function is then defined as

srel = wT
l · (a ◦ b), (9)

where element-wise multiplication of the context

and continuation vectors will amplify similarities.

We optimize the ranking log likelihood

Lrel =
∑

(x,yg)∈D,
yr∼Dy

log σ(srel(x,yg)− srel(x,yr)),

(10)

where yg is the gold ending and yr is a randomly

sampled ending.

Lexical Style Model

In practice RNNs generate text that exhibit much

less lexical diversity than their training data. To

counter this effect we introduce a simple dis-

criminator based on observed lexical distributions

which captures writing style as expressed through

word choice. This classifier therefore encodes as-

pects of the maxim of Manner.

The scoring function is defined as

sbow(y) = wT
s maxpool(e(y)). (11)

The model is trained with a ranking loss us-

ing negative examples sampled from the language

model, similar to Equation 5.

3.3 Mixture Weight Learning

Once all the communication models have been

trained, we learn the combined decoding objec-

tive. In particular we learn the weight coefficients

λk in equation 1 to linearly combine the scoring

functions, using a discriminative loss

Lmix =
∑

(x,y)∈D

(fλ(x,y)− fλ(x,A(x))2, (12)

where A is the inference algorithm for beam

search decoding. The weight coefficients are thus

optimized to minimize the difference between the

scores assigned to the gold continuation and the

continuation predicted by the current model.

Mixture weights are learned online: Each suc-

cessive generation is performed based on the cur-

rent values of λ, and a step of gradient descent

is then performed based on the prediction. This

has the effect that the objective function changes
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BookCorpus TripAdvisor

Model BLEU Meteor Length Vocab Trigrams BLEU Meteor Length Vocab % Trigrams

L2W 0.52 6.8 43.6 73.8 98.9 1.7 11.0 83.8 64.1 96.2

ADAPTIVELM 0.52 6.3 43.5 59.0 92.7 1.94 11.2 94.1 52.6 92.5
CACHELM 0.33 4.6 37.9 31.0 44.9 1.36 7.2 52.1 39.2 57.0
SEQ2SEQ 0.32 4.0 36.7 23.0 33.7 1.84 8.0 59.2 33.9 57.0
SEQGAN 0.18 5.0 28.4 73.4 99.3 0.73 6.7 47.0 57.6 93.4

REFERENCE 100.0 100.0 65.9 73.3 99.7 100.0 100.0 92.8 69.4 99.4

Table 1: Results for automatic evaluation metrics for all systems and domains, using the original con-

tinuation as the reference. The metrics are: Length - Average total length per example; Trigrams - %

unique trigrams per example; Vocab - % unique words per example.

dynamically during training: As the current sam-

ples from the model are used to update the mixture

weights, it creates its own learning signal by ap-

plying the generative model discriminatively. The

SGD learning rate is tuned separately for each

dataset.

3.4 Beam Search

Due to the limitations of greedy decoding and the

fact that our scoring functions do not decompose

across time steps, we perform generation with a

beam search procedure, shown in Algorithm 1.

The naive approach would be to perform beam

search based only on the language model, and then

rescore the k best candidate completions with our

full model. We found that this approach leads to

limited diversity in the beam and therefore cannot

exploit the strengths of the full model.

Instead we score the current hypotheses in the

beam with the full decoding objective: First, each

hypothesis is expanded by selecting the k high-

est scoring next words according to the language

model (we use beam size k = 10). Then k se-

quences are sampled from the k2 candidates ac-

cording to the (softmax normalized) distribution

over the candidate scores given by the full de-

coding objective. Sampling is performed in order

to increase diversity, using a temperature of 1.8,

which was tuned by comparing the coherence of

continuations on the validation set.

At each step, the discriminator scores are re-

computed for all candidates, with the exception of

the entailment score, which is only recomputed for

hypotheses which end with a sentence terminat-

ing symbol. We terminate beam search when the

termination score, the maximum possible score

achievable by terminating generation at the current

position, is smaller than the current best score.

4 Experiments

4.1 Corpora

We use two English corpora for evaluation. The

first is the TripAdvisor corpus (Wang et al., 2010),

a collection of hotel reviews with a total of 330

million words.3 The second is the BookCorpus

(Zhu et al., 2015), a 980 million word collection

of novels by unpublished authors.4 In order to

train the discriminators, mixing weights, and the

SEQ2SEQ and SEQGAN baselines, we segment

both corpora into sections of length ten sentences,

and use the first 5 sentence as context and the sec-

ond 5 as the continuation. See supplementary ma-

terial for further details.

4.2 Baselines

ADAPTIVELM Our first baseline is the same

Adaptive Softmax (Grave et al., 2016) language

model used as base generator in our framework

(§3.1). This enables us to evaluate the effect of

our enhanced decoding objective directly. A 100k

vocabulary is used and beam search with beam

size of 5 is used at decoding time. ADAPTIVELM

achieves perplexity of 37.46 and 18.81 on Book-

Corpus and TripAdvisor respectively.

CACHELM As another LM baseline we include

a continuous cache language model (Grave et al.,

2017) as implemented by Merity et al. (2018),

which recently obtained state-of-the-art perplex-

ity on the Penn Treebank corpus (Marcus et al.,

1993). Due to memory constraints, we use a vo-

cabulary size of 50k for CACHELM. To generate,

beam search decoding is used with a beam size 5.

CACHELM obtains perplexities of 70.9 and 29.71
on BookCorpus and TripAdvisor respectively.

3http://times.cs.uiuc.edu/˜wang296/

Data/
4http://yknzhu.wixsite.com/mbweb

http://times.cs.uiuc.edu/~wang296/Data/
http://times.cs.uiuc.edu/~wang296/Data/
http://yknzhu.wixsite.com/mbweb
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BookCorpus Specific Criteria Overall Quality

L2W vs. Repetition Contradiction Relevance Clarity Better Equal Worse

ADAPTIVELM +0.48 +0.18 +0.12 +0.11 47% 20% 32%
CACHELM +1.61 +0.37 +1.23 +1.21 86% 6% 8%
SEQ2SEQ +1.01 +0.54 +0.83 +0.83 72% 7% 21%
SEQGAN +0.20 +0.32 +0.61 +0.62 63% 20% 17%

LM VS. REFERENCE -0.10 -0.07 -0.18 -0.10 41% 7 % 52%
L2W VS. REFERENCE +0.49 +0.37 +0.46 +0.55 53% 18% 29%

TripAdvisor Specific Criteria Overall Quality

L2W vs. Repetition Contradiction Relevance Clarity Better Equal Worse

ADAPTIVELM +0.23 -0.02 +0.19 -0.03 47% 19% 34%
CACHELM +1.25 +0.12 +0.94 +0.69 77% 9% 14%
SEQ2SEQ +0.64 +0.04 +0.50 +0.41 58% 12% 30%
SEQGAN +0.53 +0.01 +0.49 +0.06 55% 22% 22%

LM VS. REFERENCE -0.10 -0.04 -0.15 -0.06 38% 10% 52%
L2W VS. REFERENCE -0.49 -0.36 -0.47 -0.50 25% 18% 57%

Table 2: Results of crowd-sourced evaluation on different aspects of the generation quality as well as

overall quality judgments. For each sub-criteria we report the average of comparative scores on a scale

from -2 to 2. For the overall quality evaluation decisions are aggregated over 3 annotators per example.

SEQ2SEQ As our evaluation can be framed as

sequence-to-sequence transduction, we compare

against a seq2seq model directly trained to predict

5 sentence continuations from 5 sentences of con-

text, using the OpenNMT attention-based seq2seq

implementation (Klein et al., 2017). Similarly to

CACHELM, a 50k vocabulary was used and beam

search decoding was performed with a beam size

of 5.

SEQGAN Finally, as our use of discrimina-

tors is related to Generative Adversarial Networks

(GANs), we use SeqGAN (Yu et al., 2017a), a

GAN for discrete sequences trained with policy

gradients.5 This model is trained on 10 sentence

sequences, which is significantly longer than pre-

vious experiments with GANs for text; the vocab-

ulary is restricted to 25k words to make training

tractable. Greedy sampling was found to outper-

form beam search. For implementation details, see

the supplementary material.

4.3 Evaluation Setup

We pose the evaluation of our model as the task

of generating an appropriate continuation given an

initial context. In our open-ended generation set-

ting the continuation is not required to be a spe-

cific length, so we require our models and base-

lines to generate 5-sentence continuations, consis-

tent with the way the discriminator and seq2seq

baseline datasets are constructed.

Previous work has reported that automatic mea-

5We use the implementation available at https://

github.com/nhynes/abc.

sures such as BLEU (Papineni et al., 2002) and

Meteor (Denkowski and Lavie, 2010) do not lead

to meaningful evaluation when used for long

or creative text generation where there can be

high variance among acceptable generation out-

puts (Wiseman et al., 2017; Vedantam et al., 2015).

However, we still report these measures as one

component of our evaluation. Additionally we re-

port a number of custom metrics which capture

important properties of the generated text: Length

– Average sequence length per example; Trigrams

– percentage of unique trigrams per example; Vo-

cab – percentage of unique words per example.

Endings generated by our model and the baselines

are compared against the reference endings in the

original text. Results are given in Table 1.

For open-ended generation tasks such as our

own, human evaluation has been found to be the

only reliable measure (Li et al., 2016b; Wiseman

et al., 2017). For human evaluation, two possi-

ble endings are presented to a human, who as-

sesses the text according to several criteria, which

are closely inspired by Grice’s Maxims: repeti-

tion, contradiction, relevance and clarity. See sup-

plementary material for examples of the evalua-

tion forms we used. For each criterion, the two

continuations are compared using a 5-point Likert

scale, to which we assign numerical values of −2
to 2. The scale measures whether one generation

is strongly or somewhat preferred above the other,

or whether they are equal. Finally, the human is

asked to make a judgement about overall quality:

which ending is better, or are they of equal qual-

https://github.com/nhynes/abc
https://github.com/nhynes/abc
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CONTEXT We thoroughly enjoyed staying at this hotel. We travelled with our kids aged 4 and 6. The rooms were
clean, spacious and well maintained. The beds were great and all of us slept well. The hotel provided
vouchers towards breakfast at the adjoining restaurant.

L2W We didn’t have breakfast, so can’t comment on that. The concierge was very helpful, and gave us direc-
tions, etc. Overall, we would definitely recommend this hotel to others. We would stay here again in a
heartbeat. If you’re looking for a great location, and good value, I’d recommend this hotel.

ADAPTIVELM The breakfast buffet was very good, and the staff was very friendly and helpful, and it was a great way to
start our day! I would definitely stay here again, and would recommend it to my friends, and would stay
there again if I ever go back to Montreal. The location was great, and the staff was friendly and helpful.
I would definitely stay here again!!

CACHELM The staff was very friendly and helpful. The hotel is located in a great location. It is right in the middle
of the gaslamp district. I would recommend this hotel to anyone. I would definitely stay here again.

SEQ2SEQ The staff were very friendly and helpful. The hotel is in a great location. The staff were very friendly and
helpful. The hotel is in a great location. The staff were very friendly and helpful.

SEQGAN We had a breakfast at Shula’s & a delicious breakfast. The staff was very helpful and helpful. The
breakfast was great as well. The staff was very helpful and friendly. We had a great service and the food
was excellent.

REFERENCE The restaurant was great and we used the vouchers towards whatever breakfast we ordered. The hotel
had amazing grounds with a putting golf course that was fun for everyone. The pool was fantastic and
we lucked out with great weather. We spent many hours in the pool, lounging, playing shuffleboard and
snacking from the attached bar. The happy hour was great perk.

Table 3: Example continuations generated by our model (L2W) and various baselines (all given the

same context from TripAdvisor) compared to the reference continuation. For more examples go to

https://ari-holtzman.github.io/l2w-demo/.

ity?

The human evaluation is performed on 100 ex-

amples selected from the test set of each corpus,

for every pair of generators that are compared. We

present the examples to workers on Amazon Me-

chanical Turk, using three annotators for each ex-

ample. The results are given in Table 2. For the

Likert scale, we report the average scores for each

criterion, while for the overall quality judgement

we simply aggregate votes across all examples.

5 Results and Analysis

5.1 Quantitative Results

The absolute performance of all the evaluated sys-

tems on BLEU and Meteor is quite low (Table 1),

as expected. However, in relative terms L2W is

superior or competitive with all the baselines, of

which ADAPTIVELM performs best. In terms of

vocabulary and trigram diversity only SEQGAN

is competitive with L2W, likely due to the fact

that sampling based decoding was used. For gen-

eration length only L2W and ADAPTIVELM even

approach human levels, with the former better on

BookCorpus and the latter on TripAdvisor.

Under the crowd-sourced evaluation (Table 2),

on BookCorpus our model is consistently favored

over the baselines on all dimensions of compar-

ison. In particular, our model tends to be much

less repetitive, while being more clear and rel-

evant than the baselines. ADAPTIVELM is the

most competitive baseline owing partially to the

robustness of language models and to greater vo-

cabulary coverage through the adaptive softmax.

SEQGAN, while failing to achieve strong co-

herency, is surprisingly diverse, but tended to pro-

duce far shorter sentences than the other models.

CACHELM has trouble dealing with the complex

vocabulary of our domains without the support of

either a hierarchical vocabulary structure (as in

ADAPTIVELM) or a structured training method

(as with SEQGAN), leading to overall poor re-

sults. While the SEQ2SEQ model has low con-

ditional perplexity, we found that in practice it is

less able to leverage long-distance dependencies

than the base language model, producing more

generic output. This reflects our need for more

complex evaluations for generation, as such mod-

els are rarely evaluated under metrics that inspect

characteristics of the text, rather than ability to

predict the gold or overlap with the gold.

For the TripAdvisor corpus, L2W is ranked

higher than the baselines on overall quality, as well

as on most individual metrics, with the exception

that it fails to improve on contradiction and clar-

ity over the ADAPTIVELM (which is again the

most competitive baseline). Our model’s strongest

improvements over the baselines are on repetition

and relevance.

https://ari-holtzman.github.io/l2w-demo/
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Trip Advisor Ablation

Ablation vs. LM Repetition Contradiction Relevance Clarity Better Neither Worse

REPETITION ONLY +0.63 +0.30 +0.37 +0.42 50% 23% 27%
ENTAILMENT ONLY +0.01 +0.02 +0.05 -0.10 39% 20% 41%
RELEVANCE ONLY -0.19 +0.09 +0.10 +0.060 36% 22% 42%

LEXICAL STYLE ONLY +0.11 +0.16 +0.20 +0.16 38% 25% 38%

ALL +0.23 -0.02 +0.19 -0.03 47% 19% 34%

Table 4: Crowd-sourced ablation evaluation of generations on TripAdvisor. Each ablation uses only one

discriminative communication model, and is compared to ADAPTIVELM.

Ablation

To investigate the effect of individual discrimina-

tors on the overall performance, we report the re-

sults of ablations of our model in Table 4. For each

ablation we include only one of the communica-

tion modules, and train a single mixture coeffi-

cient for combining that module and the language

model. The diagonal of Table 4 contains only pos-

itive numbers, indicating that each discriminator

does help with the purpose it was designed for.

Interestingly, most discriminators help with most

aspects of writing, but all except repetition fail to

actually improve the overall quality over ADAP-

TIVELM.

The repetition module gives the largest boost by

far, consistent with the intuition that many of the

deficiencies of RNN as a text generator lie in se-

mantic repetition. The entailment module (which

was intended to reduce contradiction) is the weak-

est, which we hypothesize is the combination of

(a) mismatch between training and test data (since

the entailment module was trained on SNLI and

MultiNLI) and (b) the lack of smoothness in the

entailment scorer, whose score could only be up-

dated upon the completion of a sentence.

Crowd Sourcing

Surprisingly, L2W is even preferred over the orig-

inal continuation of the initial text on BookCor-

pus. Qualitative analysis shows that L2W’s con-

tinuation is often a straightforward continuation

of the original text while the true continuation

is more surprising and contains complex refer-

ences to earlier parts of the book. While many of

the issues of automatic metrics (Liu et al., 2016;

Novikova et al., 2017) have been alleviated by

crowd-sourcing, we found it difficult to incentivize

crowd workers to spend significant time on any

one datum, forcing them to rely on a shallower un-

derstanding of the text.

5.2 Qualitative Analysis

L2W generations are more topical and stylisti-

cally coherent with the context than the baselines.

Table 3 shows that L2W, ADAPTIVELM, and

SEQGAN all start similarly, commenting on the

breakfast buffet, as breakfast was mentioned in the

last sentence of the context. The language model

immediately offers generic compliments about the

breakfast and staff, whereas L2W chooses a rea-

sonable but less obvious path, stating that the pre-

viously mentioned vouchers were not used. In

fact, L2W is the only system not to use the line

“The staff was very friendly and helpful.”, de-

spite this sentence appearing in less than 1% of

reviews. The semantics of this sentence, however,

is expressed in many different surface forms in the

training data (e.g., “The staff were kind and quick

to respond.”).

The CACHELM begins by generating the

same over-used sentence and only produce short,

generic sentences throughout. Seq2Seq simply re-

peats sentences that occur often in the training

set, repeating one sentence three times and an-

other twice. This indicates that the encoded con-

text is essentially being ignored as the model fails

to align the context and continuation.

The SEQGAN system is more detailed, e.g.

mentioning a specific location “Shula’s” as would

be expected given its highly diverse vocabulary (as

seen in Table 1). Yet it repeats itself in the first sen-

tence. (e.g. “had a breakfast”, “and a delicious

breakfast”). Consequently SEQGAN quickly de-

volves into generic language, repeating the incred-

ibly common sentence “The staff was very helpful

and friendly.”, similar to SEQ2SEQ.

The L2W models do not fix every degenerate

characteristic of RNNs. The TripAdvisor L2W

generation consists of meaningful but mostly dis-

connected sentences, whereas human text tends

to build on previous sentences, as in the refer-

ence continuation. Furthermore, while L2W re-
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peats itself less than any of our baselines, it still

paraphrases itself, albeit more subtly: “we would

definitely recommend this hotel to others.” com-

pared to “I’d recommend this hotel.” This ex-

ample also exposes a more fine-grained issue:

L2W switches from using “we” to using “I” mid-

generation. Such subtle distinctions are hard to

capture during beam re-ranking and none of our

models address the linguistic issues of this sub-

tlety.

6 Related Work

Alternative Decoding Objectives A number of

papers have proposed alternative decoding ob-

jectives for generation (Shao et al., 2017). Li

et al. (2016a) proposed a diversity-promoting ob-

jective that interpolates the conditional probabil-

ity score with negative marginal or reverse condi-

tional probabilities. Yu et al. (2017b) also incor-

porate the reverse conditional probability through

a noisy channel model in order to alleviate the

explaining-away problem, but at the cost of sig-

nificant decoding complexity, making it impracti-

cal for paragraph generation. Modified decoding

objectives have long been a common practice in

statistical machine translation (Koehn et al., 2003;

Och, 2003; Watanabe et al., 2007; Chiang et al.,

2009) and remain common with neural machine

translation, even when an extremely large amount

of data is available (Wu et al., 2016). Inspired

by all the above approaches, our work presents a

general learning framework together with a more

comprehensive set of composite communication

models.

Pragmatic Communication Models Models

for pragmatic reasoning about communicative

goals such as Grice’s maxims have been pro-

posed in the context of referring expression gen-

eration (Frank and Goodman, 2012). Andreas and

Klein (2016) proposed a neural model where can-

didate descriptions are sampled from a genera-

tively trained speaker, which are then re-ranked

by interpolating the score with that of the lis-

tener, a discriminator that predicts a distribution

over choices given the speaker’s description. Sim-

ilar to our work the generator and discriminator

scores are combined to select utterances which fol-

low Grice’s maxims. Yu et al. (2017c) proposed

a model where the speaker consists of a convolu-

tional encoder and an LSTM decoder, trained with

a ranking loss on negative samples in addition to

optimizing log-likelihood.

Generative Adversarial Networks GANs

(Goodfellow et al., 2014) are another alternative

to maximum likelihood estimation for generative

models. However, backpropagating through

discrete sequences and the inherent instability

of the training objective (Che et al., 2017) both

present significant challenges. While solutions

have been proposed to make it possible to train

GANs for language (Che et al., 2017; Yu et al.,

2017a) they have not yet been shown to produce

high quality long-form text, as our results confirm.

Generation with Long-term Context Several

prior works studied paragraph generation using

sequence-to-sequence models for image captions

(Krause et al., 2017), product reviews (Lipton

et al., 2015; Dong et al., 2017), sport reports

(Wiseman et al., 2017), and recipes (Kiddon et al.,

2016). While these prior works focus on develop-

ing neural architectures for learning domain spe-

cific discourse patterns, our work proposes a gen-

eral framework for learning a generator that is

more powerful than maximum likelihood decod-

ing from an RNN language model for an arbitrary

target domain.

7 Conclusion

We proposed a unified learning framework for the

generation of long, coherent texts, which over-

comes some of the common limitations of RNNs

as text generation models. Our framework learns a

decoding objective suitable for generation through

a learned combination of sub-models that capture

linguistically-motivated qualities of good writing.

Human evaluation shows that the quality of the

text produced by our model exceeds that of com-

petitive baselines by a large margin.
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Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with neu-
ral checklist models. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 329–339.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proceedings of the Association of Computational
Linguistics.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology - Vol-
ume 1, pages 48–54. Association for Computational
Linguistics.

Jonathan Krause, Justin Johnson, Ranjay Krishna, and
Li Fei-Fei. 2017. A hierarchical approach for gener-
ating descriptive image paragraphs. In Proceedings
of the Conference on Computer Vision and Pattern
Recognition.

https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
http://arxiv.org/abs/1702.07983
http://arxiv.org/abs/1702.07983
http://dl.acm.org/citation.cfm?id=1620754.1620786
http://dl.acm.org/citation.cfm?id=1620754.1620786
http://www.aclweb.org/anthology/N16-1012
http://www.aclweb.org/anthology/N16-1012
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
https://www.aclweb.org/anthology/D12-1097
https://www.aclweb.org/anthology/D12-1097
https://www.aclweb.org/anthology/D12-1097
http://www.aclweb.org/anthology/E17-1059
http://www.aclweb.org/anthology/E17-1059
https://doi.org/10.1126/science.1218633
https://doi.org/10.1126/science.1218633
http://arxiv.org/abs/1612.04426
http://arxiv.org/abs/1612.04426
http://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1602.02410
https://aclweb.org/anthology/D16-1032
https://aclweb.org/anthology/D16-1032
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.3115/1073445.1073462


1648

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 110–119, San Diego,
California. Association for Computational Linguis-
tics.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016b. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Austin, Texas. Association for Computational Lin-
guistics.

Zachary Chase Lipton, Sharad Vikram, and Julian
McAuley. 2015. Capturing meaning in product re-
views with character-level generative text models.
CoRR, abs/1511.03683.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How not to evaluate your dialogue system: An em-
pirical study of unsupervised evaluation metrics for
dialogue response generation. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2122–2132, Austin, Texas.
Association for Computational Linguistics.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional Linguistics, 19(2):313–330.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing lstm lan-
guage models. ICLR.

Jekaterina Novikova, Ondřej Dušek, Amanda Cer-
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