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Abstract

Neural networks are a powerful class of nonlinear functions that can be trained
end-to-end on various applications. While the over-parametrization nature in
many neural networks renders the ability to fit complex functions and the strong
representation power to handle challenging tasks, it also leads to highly correlated
neurons that can hurt the generalization ability and incur unnecessary computation
cost. As a result, how to regularize the network to avoid undesired representation
redundancy becomes an important issue. To this end, we draw inspiration from a
well-known problem in physics – Thomson problem, where one seeks to find a state
that distributes N electrons on a unit sphere as evenly as possible with minimum
potential energy. In light of this intuition, we reduce the redundancy regularization
problem to generic energy minimization, and propose a minimum hyperspherical
energy (MHE) objective as generic regularization for neural networks. We also
propose a few novel variants of MHE, and provide some insights from a theoretical
point of view. Finally, we apply neural networks with MHE regularization to
several challenging tasks. Extensive experiments demonstrate the effectiveness of
our intuition, by showing the superior performance with MHE regularization.

1 Introduction

The recent success of deep neural networks has led to its wide applications in a variety of tasks. With
the over-parametrization nature and deep layered architecture, current deep networks [14, 46, 42]
are able to achieve impressive performance on large-scale problems. Despite such success, having
redundant and highly correlated neurons (e.g., weights of kernels/filters in convolutional neural
networks (CNNs)) caused by over-parametrization presents an issue [37, 41], which motivated a series
of influential works in network compression [10, 1] and parameter-efficient network architectures [16,
19, 62]. These works either compress the network by pruning redundant neurons or directly modify
the network architecture, aiming to achieve comparable performance while using fewer parameters.
Yet, it remains an open problem to find a unified and principled theory that guides the network
compression in the context of optimal generalization ability.

Another stream of works seeks to further release the network generalization power by alleviating
redundancy through diversification [57, 56, 5, 36] as rigorously analyzed by [59]. Most of these
works address the redundancy problem by enforcing relatively large diversity between pairwise
projection bases via regularization. Our work broadly falls into this category by sharing similar
high-level target, but the spirit and motivation behind our proposed models are distinct. In particular,
there is a recent trend of studies that feature the significance of angular learning at both loss and
convolution levels [29, 28, 30, 27], based on the observation that the angles in deep embeddings
learned by CNNs tend to encode semantic difference. The key intuition is that angles preserve the
most abundant and discriminative information for visual recognition. As a result, hyperspherical
geodesic distances between neurons naturally play a key role in this context, and thus, it is intuitively
desired to impose discrimination by keeping their projections on the hypersphere as far away from
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each other as possible. While the concept of imposing large angular diversities was also considered
in [59, 57, 56, 36], they do not consider diversity in terms of global equidistribution of embeddings
on the hypersphere, which fails to achieve the state-of-the-art performances.

Given the above motivation, we draw inspiration from a well-known physics problem, called Thomson
problem [48, 43]. The goal of Thomson problem is to determine the minimum electrostatic potential
energy configuration of N mutually-repelling electrons on the surface of a unit sphere. We identify
the intrinsic resemblance between the Thomson problem and our target, in the sense that diversifying
neurons can be seen as searching for an optimal configuration of electron locations. Similarly, we
characterize the diversity for a group of neurons by defining a generic hyperspherical potential energy
using their pairwise relationship. Higher energy implies higher redundancy, while lower energy
indicates that these neurons are more diverse and more uniformly spaced. To reduce the redundancy
of neurons and improve the neural networks, we propose a novel minimum hyperspherical energy
(MHE) regularization framework, where the diversity of neurons is promoted by minimizing the
hyperspherical energy in each layer. As verified by comprehensive experiments on multiple tasks,
MHE is able to consistently improve the generalization power of neural networks.

Orthonormal MHE Half-space MHE

Figure 1: Orthonormal, MHE and half-space MHE regularization.
The red dots denote the neurons optimized by the gradient of the
corresponding regularization. The rightmost pink dots denote
the virtual negative neurons. We randomly initialize the weights
of 10 neurons on a 3D Sphere and optimize them with SGD.

MHE faces different situations when it is
applied to hidden layers and output lay-
ers. For hidden layers, applying MHE
straightforwardly may still encourage
some degree of redundancy since it will
produce co-linear bases pointing to op-
posite directions (see Fig. 1 middle). In
order to avoid such redundancy, we pro-
pose the half-space MHE which con-
structs a group of virtual neurons and
minimize the hyperspherical energy of
both existing and virtual neurons. For
output layers, MHE aims to distribute
the classifier neurons1 as uniformly as
possible to improve the inter-class feature separability. Different from MHE in hidden layers, classi-
fier neurons should be distributed in the full space for the best classification performance [29, 28].
An intuitive comparison among the widely used orthonormal regularization, the proposed MHE and
half-space MHE is provided in Fig. 1. One can observe that both MHE and half-space MHE are able
to uniformly distribute the neurons over the hypersphere and half-space hypershpere, respectively. In
contrast, conventional orthonormal regularization tends to group neurons closer, especially when the
number of neurons is greater than the dimension.

MHE is originally defined on Euclidean distance, as indicated in Thomson problem. However, we
further consider minimizing hyperspherical energy defined with respect to angular distance, which we
will refer to as angular-MHE (A-MHE) in the following paper. In addition, we give some theoretical
insights of MHE regularization, by discussing the asymptotic behavior and generalization error.
Last, we apply MHE regularization to multiple vision tasks, including generic object recognition,
class-imbalance learning, and face recognition. In the experiments, we show that MHE is architecture-
agnostic and can considerably improve the generalization ability.

2 Related Works

Diversity regularization is shown useful in sparse coding [32, 35], ensemble learning [26, 24], self-
paced learning [21], metric learning [58], etc. Early studies in sparse coding [32, 35] show that the
generalization ability of codebook can be improved via diversity regularization, where the diversity
is often modeled using the (empirical) covariance matrix. More recently, a series of studies have
featured diversity regularization in neural networks [59, 57, 56, 5, 36, 55], where regularization is
mostly achieved via promoting large angle/orthogonality, or reducing covariance between bases. Our
work differs from these studies by formulating the diversity of neurons on the entire hypersphere,
therefore promoting diversity from a more global, top-down perspective.

Methods other than diversity-promoting regularization have been widely proposed to improve
CNNs [44, 20, 33, 30] and generative adversarial nets (GANs) [4, 34]. MHE can be regarded
as a complement that can be applied on top of these methods.

1Classifier neurons are the projection bases of the last layer (i.e., output layer) before input to softmax.
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3 Learning Neurons towards Minimum Hyperspherical Energy

3.1 Formulation of Minimum Hyperspherical Energy

Minimum hyperspherical energy defines an equilibrium state of the configuration of neuron’s direc-
tions. We argue that the power of neural representation of each layer can be characterized by the
hyperspherical energy of its neurons, and therefore a minimal energy configuration of neurons can
induce better generalization. Before delving into details, we first define the hyperspherical energy
functional for N neurons (i.e., kernels) with (d+1)-dimension WN ={w1, · · · ,wN ∈R

d+1} as

Es,d(ŵi|
N
i=1) =

N∑

i=1

N∑

j=1,j 6=i

fs
(

‖ŵi − ŵj‖
)

=

{ ∑

i 6=j
‖ŵi − ŵj‖

−s
, s > 0

∑

i 6=j
log

(
‖ŵi − ŵj‖

−1
)
, s = 0

, (1)

where ‖·‖ denotes Euclidean distance, fs(·) is a decreasing real-valued function, and ŵi=
wi

‖wi‖

is the i-th neuron weight projected onto the unit hypersphere S
d={w∈R

d+1| ‖w‖=1}. We also

denote ŴN ={ŵ1, · · · , ŵN ∈S
d}, and Es=Es,d(ŵi|

N
i=1) for short. There are plenty of choices for

fs(·), but in this paper we use fs(z) = z−s, s > 0, known as Riesz s-kernels. Particularly, as s → 0,
z−s→s log(z−1)+1, which is an affine transformation of log(z−1). It follows that optimizing the
logarithmic hyperspherical energy E0=

∑

i 6=j log(‖ŵi−ŵj‖
−1) is essentially the limiting case of

optimizing the hyperspherical energy Es. We therefore define f0(z)=log(z−1) for convenience.

The goal of the MHE criterion is to minimize the energy in Eq. (1) by varying the orientations of the
neuron weights w1, · · · ,wN . To be precise, we solve an optimization problem: minWN

Es with
s ≥ 0. In particular, when s=0, we solve the logarithmic energy minimization problem:

argmin
WN

E0 = argmin
WN

exp(E0) = argmax
WN

∏

i 6=j

‖ŵi − ŵj‖ , (2)

in which we essentially maximize the product of Euclidean distances. E0, E1 and E2 have interesting
yet profound connections. Note that Thomson problem corresponds to minimizing E1, which is a
NP-hard problem. Therefore in practice we can only compute its approximate solution by heuristics.
In neural networks, such a differentiable objective can be directly optimized via gradient descent.

3.2 Logarithmic Hyperspherical Energy E0 as a Relaxation

Optimizing the original energy in Eq. (1) is equivalent to optimizing its logarithmic form logEs.
To efficiently solve this difficult optimization problem, we can instead optimize the lower bound of
logEs as a surrogate energy, by applying Jensen’s inequality:

argmin
WN

{

Elog :=

N∑

i=1

N∑

j=1,j 6=i

log

(

fs
(

‖ŵi − ŵj‖
)

)}

(3)

With fs(z)=z−s, s>0, we observe that Elog becomes sE0=s
∑

i 6=j log(‖ŵi−ŵj‖
−1), which is

identical to the logarithmic hyperspherical energy E0 up to a multiplicative factor s. Therefore,
minimizing E0 can also be viewed as a relaxation of minimizing Es for s>0.

3.3 MHE as Regularization for Neural Networks

Now that we have introduced the formulation of MHE, we propose MHE regularization for neural
networks. In supervised neural network learning, the entire objective function is shown as follows:

L =
1

m

m∑

j=1

ℓ(〈wout
i ,xj〉

c
i=1,yj)

︸ ︷︷ ︸
training data fitting

+ λh ·

L−1∑

j=1

1

Nj(Nj − 1)
{Es}j

︸ ︷︷ ︸
Th: hyperspherical energy for hidden layers

+λo ·
1

NL(NL − 1)
Es(ŵ

out
i |ci=1)

︸ ︷︷ ︸
To: hyperspherical energy for output layer

(4)

where xi is the feature of the i-th training sample entering the output layer, wout
i is the classifier

neuron for the i-th class in the output fully-connected layer and ŵ
out
i denotes its normalized version.

{Es}i denotes the hyperspherical energy for the neurons in the i-th layer. c is the number of classes,
m is the batch size, L is the number of layers of the neural network, and Ni is the number of neurons
in the i-th layer. Es(ŵ

out
i |ci=1) denotes the hyperspherical energy of neurons {ŵout

1 , · · · , ŵout
c }.

The ℓ2 weight decay is omitted here for simplicity, but we will use it in practice. An alternative
interpretation of MHE regularization from a decoupled view is given in Section 3.7 and Appendix C.
MHE has different effects and interpretations in regularizing hidden layers and output layers.

MHE for hidden layers. To make neurons in the hidden layers more discriminative and less redun-
dant, we propose to use MHE as a form of regularization. MHE encourages the normalized neurons to
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be uniformly distributed on a unit hypersphere, which is partially inspired by the observation in [30]
that angular difference in neurons preserves semantic (label-related) information. To some extent,
MHE maximizes the average angular difference between neurons (specifically, the hyperspherical
energy of neurons in every hidden layer). For instance, in CNNs we minimize the hyperpsherical
energy of kernels in convolutional and fully-connected layers except the output layer.

MHE for output layers. For the output layer, we propose to enhance the inter-class feature separa-
bility with MHE to learn discriminative and well-separated features. For classification tasks, MHE
regularization is complementary to the softmax cross-entropy loss in CNNs. The softmax loss focuses
more on the intra-class compactness, while MHE encourages the inter-class separability. Therefore,
MHE on output layers can induce features with better generalization power.

3.4 MHE in Half Space

Original MHE Half-space MHE
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Figure 2: Half-space MHE.

Directly applying the MHE formulation may still encouter some
redundancy. An example in Fig. 2, with two neurons in a 2-
dimensional space, illustrates this potential issue. Directly im-
posing the original MHE regularization leads to a solution that
two neurons are colinear but with opposite directions. To avoid
such redundancy, we propose the half-space MHE regularization
which constructs some virtual neurons and minimizes the hyper-
spherical energy of both original and virtual neurons together.
Specifically, half-space MHE constructs a colinear virtual neuron with opposite direction for every
existing neuron. Therefore, we end up with minimizing the hyperspherical energy with 2Ni neurons

in the i-th layer (i.e., minimizing Es({ŵk,−ŵk}|
2Ni

k=1)). This half-space variant will encourage the
neurons to be less correlated and less redundant, as illustrated in Fig. 2. Note that, half-space MHE
can only be used in hidden layers, because the colinear neurons do not constitute redundancy in output
layers, as shown in [29]. Nevertheless, colinearity is usually not likely to happen in high-dimensional
spaces, especially when the neurons are optimized to fit training data. This may be the reason that the
original MHE regularization still consistently improves the baselines.

3.5 MHE beyond Euclidean Distance

The hyperspherical energy is originally defined based on the Euclidean distance on a hypersphere,
which can be viewed as an angular measure. In addition to Euclidean distance, we further consider
the geodesic distance on a unit hypersphere as a distance measure for neurons, which is exactly
the same as the angle between neurons. Specifically, we consider to use arccos(ŵ⊤

i ŵj) to replace
‖ŵi−ŵj‖ in hyperspherical energies. Following this idea, we propose angular MHE (A-MHE) as a
simple extension, where the hyperspherical energy is rewritten as:

E
a
s,d(ŵi|

N
i=1) =

N∑

i=1

N∑

j=1,j 6=i

fs
(

arccos(ŵ⊤
i ŵj)

)

=

{ ∑

i 6=j
arccos(ŵ⊤

i ŵj)
−s, s > 0

∑

i 6=j
log

(
arccos(ŵ⊤

i ŵj)
−1

)
, s = 0

(5)

which can be viewed as redefining MHE based on geodesic distance on hyperspheres (i.e., angle), and
can be used as an alternative to the original hyperspherical energy Es in Eq. (4). Note that, A-MHE
can also be learned in full-space or half-space, leading to similar variants as original MHE. The key
difference between MHE and A-MHE lies in the optimization dynamics, because their gradients w.r.t
the neuron weights are quite different. A-MHE is also more computationally expensive than MHE.

3.6 Mini-batch Approximation for MHE

With a large number of neurons in one layer, calculating MHE can be computationally expensive as it
requires computing the pair-wise distances between neurons. To address this issue, we propose the
mini-batch version of MHE to approximate the MHE (either original or half-space) objective.

Mini-batch approximation for MHE on hidden layers. For hidden layers, mini-batch approxima-
tion iteratively takes a random batch of neurons as input and minimizes their hyperspherical energy
as an approximation to the MHE. Note that the gradient of the mini-batch objective is an unbiased
estimation of the original gradient of MHE.

Data-dependent mini-batch approximation for output layers. For the output layer, the data-
dependent mini-batch approximation iteratively takes the classifier neurons corresponding to the

classes that exist in mini-batches. It minimizes 1
m(N−1)

∑m
i=1

∑N
j=1,j 6=yi

fs(‖ŵyi
− ŵj‖) in each

iteration, where yi denotes the class label of the i-th sample in each mini-batch, m is the mini-batch
size, and N is the number of neurons (in one particular layer).
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3.7 Discussions

Connections to scientific problems. The hyperspherical energy minimization has close relationships
with scientific problems. When s=1, Eq. (1) reduces to Thomson problem [48, 43] (in physics) where
one needs to determine the minimum electrostatic potential energy configuration of N mutually-
repelling electrons on a unit sphere. When s=∞, Eq. (1) becomes Tammes problem [47] (in
geometry) where the goal is to pack a given number of circles on the surface of a sphere such that the
minimum distance between circles is maximized. When s=0, Eq. (1) becomes Whyte’s problem
where the goal is to maximize product of Euclidean distances as shown in Eq. (2). Our work aims to
make use of important insights from these scientific problems to improve neural networks.

Understanding MHE from decoupled view. Inspired by decoupled networks [27], we can view the
original convolution as the multiplication of the angular function g(θ)=cos(θ) and the magnitude
function h(‖w‖ , ‖x‖)=‖w‖·‖x‖: f(w,x)=h(‖w‖ , ‖x‖) ·g(θ) where θ is the angle between the
kernel w and the input x. From the equation above, we can see that the norm of the kernel and the
direction (i.e., angle) of the kernel affect the inner product similarity differently. Typically, weight
decay is to regularize the kernel by minimizing its ℓ2 norm, while there is no regularization on the
direction of the kernel. Therefore, MHE completes this missing piece by promoting angular diversity.
By combining MHE to a standard neural networks, the entire regularization term becomes

Lreg = λw ·
1

∑L

j=1
Nj

L∑

j=1

Nj∑

i=1

‖wi‖

︸ ︷︷ ︸
Weight decay: regularizing the magnitude of kernels

+λh ·

L−1∑

j=1

1

Nj(Nj − 1)
{Es}j + λo ·

1

NL(NL − 1)
Es(ŵ

out
i |ci=1)

︸ ︷︷ ︸
MHE: regularizing the direction of kernels

where λw, λh and λo are weighting hyperparameters for these three regularization terms. From the
decoupled view, MHE makes a lot of senses in regularizing the neural networks, since it serves as a
complementary and orthogonal role to weight decay. More discussions are in Appendix C.

Comparison to orthogonality/angle-promoting regularizations. Promoting orthogonality or large
angles between bases has been a popular choice for encouraging diversity. Probably the most related
and widely used one is the orthonormal regularization [30] which aims to minimize ‖W⊤

W − I‖F ,
where W denotes the weights of a group of neurons with each column being one neuron and I is an
identity matrix. One similar regularization is the orthogonality regularization [36] which minimizes
the sum of the cosine values between all the kernel weights. These methods encourage kernels to
be orthogonal to each other, while MHE does not. Instead, MHE encourages the hyperspherical
diversity among these kernels, and these kernels are not necessarily orthogonal to each other. [56]
proposes the angular constraint which aims to constrain the angles between different kernels of the
neural network, but quite different from MHE, they use a hard constraint to impose this angular
regularization. Moreover, these methods model diversity regularization at a more local level, while
MHE regularization seeks to model the problem in a more top-down manner.

Normalized neurons in MHE. From Eq. 1, one can see that the normalized neurons are used to
compute MHE, because we aim to encourage the diversity on a hypersphere. However, a natural
question may arise: what if we use the original (i.e., unnormalized) neurons to compute MHE?
First, combining the norm of kernels (i.e., neurons) into MHE may lead to a trivial gradient descent
direction: simply increasing the norm of all kernels. Suppose all kernel directions stay unchanged,
increasing the norm of all kernels by a factor can effectively decrease the objective value of MHE.
Second, coupling the norm of kernels into MHE may contradict with weight decay which aims to
decrease the norm of kernels. Moreover, normalized neurons imply that the importance of all neurons
is the same, which matches the intuition in [28, 30, 27]. If we desire different importance for different
neurons, we can also manually assign a fixed weight for each neuron. This may be useful when we
have already known certain neurons are more important and we want them to be relatively fixed. The
neuron with large weight tends to be updated less. We will discuss it more in Appendix D.

4 Theoretical Insights

This section leverages a number of rigorous theoretical results from [38, 23, 12, 25, 11, 23, 8, 54]
and provides theoretical yet intuitive understandings about MHE.

4.1 Asymptotic Behavior

This subsection shows how the hyperspherical energy behaves asymptotically. Specifically, as

N→∞, we can show that the solution ŴN tends to be uniformly distributed on hypersphere S
d

when the hyperspherical energy defined in Eq. (1) achieves its minimum.

5



Definition 1 (minimal hyperspherical s-energy). We define the minimal s-energy for N points on the
unit hypersphere S

d={w∈R
d+1| ‖w‖=1} as

εs,d(N) := inf
ŴN⊂Sd

Es,d(ŵi|
N
i=1) (6)

where the infimum is taken over all possible ŴN on S
d. Any configuration of ŴN to attain the

infimum is called an s-extremal configuration. Usually εs,d(N)=∞ if N is greater than d and
εs,d(N)=0 if N=0, 1.

We discuss the asymptotic behavior (N→∞) in three cases: 0<s<d, s=d, and s>d. We first write
the energy integral as Is(µ)=

∫∫

Sd×Sd
‖u−v‖−sdµ(u)dµ(v), which is taken over all probability

measure µ supported on S
d. With 0<s<d, Is(µ) is minimal when µ is the spherical measure

σd=Hd(·)|Sd/H
d(Sd) on S

d, where Hd(·) denotes the d-dimensional Hausdorff measure. When
s≥d, Is(µ) becomes infinity, which therefore requires different analysis. In general, we can say all
s-extremal configurations asymptotically converge to uniform distribution on a hypersphere, as stated
in Theorem 1. This asymptotic behavior has been heavily studied in [38, 23, 12].

Theorem 1 (asymptotic uniform distribution on hypersphere). Any sequence of optimal s-energy

configurations (Ŵ ⋆
N )|∞2 ⊂S

d is asymptotically uniformly distributed on S
d in the sense of the weak-

star topology of measures, namely
1

N

∑

v∈Ŵ ⋆
N

δv → σ
d
, as N → ∞ (7)

where δv denotes the unit point mass at v, and σd is the spherical measure on S
d.

Theorem 2 (asymptotics of the minimal hyperspherical s-energy). We have that limN→∞
εs,d(N)
p(N)

exists for the minimal s-energy. For 0<s<d, p(N)=N2. For s=d, p(N)=N2 logN . For s>d,

p(N)=N1+s/d. Particularly if 0<s<d, we have limN→∞
εs,d(N)

N2 =Is(σ
d).

Theorem 2 tells us the growth power of the minimal hyperspherical s-energy when N goes to infinity.
Therefore, different potential power s leads to different optimization dynamics. In the light of
the behavior of the energy integral, MHE regularization will focus more on local influence from
neighborhood neurons instead of global influences from all the neurons as the power s increases.

4.2 Generalization and Optimality

As proved in [54], in one-hidden-layer neural network, the diversity of neurons can effectively
eliminate the spurious local minima despite the non-convexity in learning dynamics of neural
networks. Following such an argument, our MHE regularization, which encourages the diversity of
neurons, naturally matches the theoretical intuition in [54], and effectively promotes the generalization
of neural networks. While hyperspherical energy is minimized such that neurons become diverse on
hyperspheres, the hyperspherical diversity is closely related to the generalization error.

More specifically, in a one-hidden-layer neural network f(x)=
∑n

k=1 vkσ(W
⊤
k x) with least

squares loss L(f)= 1
2m

∑m
i=1(yi−f(xi))

2, we can compute its gradient w.r.t Wk as ∂L
∂Wk

=
1
m

∑m
i=1(f(xi)−yi)vkσ

′(W⊤
k xi)xi. (σ(·) is the nonlinear activation function and σ′(·) is its

subgradient. x∈ is the training sample. Wk denotes the weights of hidden layer and vk is the

weights of output layer.) Subsequently, we can rewrite this gradient as a matrix form: ∂L
∂W =D ·r

where D∈R
dn×m,D{di−d+1:di,j}=viσ

′(W⊤
i xj)xj ∈R

d and r∈R
m, ri=

1
mf(xi)−yi. Further,

we can obtain the inequality ‖r‖≤ 1
λmin(D)‖

∂L
∂W ‖. ‖r‖ is actually the training error. To make the

training error small, we need to lower bound λmin(D) away from zero. From [54, 3], one can know
that the lower bound of λmin(D) is directly related to the hyperspherical diversity of neurons. After
bounding the training error, it is easy to bound the generalization error using Rademachar complexity.

5 Applications and Experiments

5.1 Improving Network Generalization

First, we perform ablation study and some exploratory experiments on MHE. Then we apply MHE to
large-scale object recognition and class-imbalance learning. For all the experiments on CIFAR-10 and
CIFAR-100 in the paper, we use moderate data augmentation, following [14, 27]. For ImageNet-2012,
we follow the same data augmentation in [30]. We train all the networks using SGD with momentum
0.9, and the network initialization follows [13]. All the networks use BN [20] and ReLU if not
otherwise specified. Experimental details are given in each subsection and Appendix A.
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5.1.1 Ablation Study and Exploratory Experiments

Method
CIFAR-10 CIFAR-100

s=2 s=1 s=0 s=2 s=1 s=0

MHE 6.22 6.74 6.44 27.15 27.09 26.16

Half-space MHE 6.28 6.54 6.30 25.61 26.30 26.18

A-MHE 6.21 6.77 6.45 26.17 27.31 27.90

Half-space A-MHE 6.52 6.49 6.44 26.03 26.52 26.47

Baseline 7.75 28.13

Table 1: Testing error (%) of different MHE on CIFAR-10/100.

Variants of MHE. We evaluate all dif-
ferent variants of MHE on CIFAR-10
and CIFAR-100, including original MHE
(with the power s=0, 1, 2) and half-space
MHE (with the power s=0, 1, 2) with
both Euclidean and angular distance. In
this experiment, all methods use CNN-9
(see Appendix A). The results in Table 1 show that all the variants of MHE perform consistently better
than the baseline. Specifically, the half-space MHE has more significant performance gain compared
to the other MHE variants, and MHE with Euclidean and angular distance perform similarly. In
general, MHE with s=2 performs best among s=0, 1, 2. In the following experiments, we use s=2
and Euclidean distance for both MHE and half-space MHE by default if not otherwise specified.

Method 16/32/64 32/64/128 64/128/256 128/256/512 256/512/1024

Baseline 47.72 38.64 28.13 24.95 25.45

MHE 36.84 30.05 26.75 24.05 23.14

Half-space MHE 35.16 29.33 25.96 23.38 21.83

Table 2: Testing error (%) of different width on CIFAR-100.

Network width. We evaluate MHE with
different network width. We use CNN-9
as our base network, and change its filter
number in Conv1.x, Conv2.x and Conv3.x
(see Appendix A) to 16/32/64, 32/64/128,
64/128/256, 128/256/512 and 256/512/1024. Results in Table 2 show that both MHE and half-space
MHE consistently outperform the baseline, showing stronger generalization. Interestingly, both MHE
and half-space MHE have more significant gain while the filter number is smaller in each layer, indi-
cating that MHE can help the network to make better use of the neurons. In general, half-space MHE
performs consistently better than MHE, showing the necessity of reducing colinearity redundancy
among neurons. Both MHE and half-space MHE outperform the baseline with a huge margin while
the network is either very wide or very narrow, showing the superiority in improving generalization.

Method CNN-6 CNN-9 CNN-15

Baseline 32.08 28.13 N/C

MHE 28.16 26.75 26.9

Half-space MHE 27.56 25.96 25.84

Table 3: Testing error (%) of different
depth on CIFAR-100. N/C: not converged.

Network depth. We perform experiments with different net-
work depth to better evaluate the performance of MHE. We
fix the filter number in Conv1.x, Conv2.x and Conv3.x to 64,
128 and 256, respectively. We compare 6-layer CNN, 9-layer
CNN and 15-layer CNN. The results are given in Table 3.
Both MHE and half-space MHE perform significantly better
than the baseline. More interestingly, baseline CNN-15 can not converge, while CNN-15 is able
to converge reasonably well if we use MHE to regularize the network. Moreover, we also see that
half-space MHE can consistently show better generalization than MHE with different network depth.

Method
H O H O H O

× √ √× √√

MHE 26.85 26.55 26.16

Half-space MHE N/A 26.28 25.61

A-MHE 27.8 26.56 26.17

Half-space A-MHE N/A 26.64 26.03

Baseline 28.13

Table 4: Ablation study on CIFAR-100.

Ablation study. Since the current MHE regularizes the neurons
in the hidden layers and the output layer simultaneously, we
perform ablation study for MHE to further investigate where
the gain comes from. This experiment uses the CNN-9. The
results are given in Table 4. “H” means that we apply MHE
to all the hidden layers, while “O” means that we apply MHE
to the output layer. Because the half-space MHE can not be
applied to the output layer, so there is “N/A” in the table. In general, we find that applying MHE
to both the hidden layers and the output layer yields the best performance, and using MHE in the
hidden layers usually produces better accuracy than using MHE in the output layer.
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Figure 3: Hyperparameter.

Hyperparameter experiment. We evaluate how the selection of hy-
perparameter affects the performance. We experiment with different
hyperparameters from 10−2 to 102 on CIFAR-100 with the CNN-9.
HS-MHE denotes the half-space MHE. We evaluate MHE variants by
separately applying MHE to the output layer (“O”), MHE to the hidden
layers (“H”), and the half-space MHE to the hidden layers (“H”). The
results in Fig. 3 show that our MHE is not very hyperparameter-sensitive
and can consistently beat the baseline by a considerable margin. One can
observe that MHE’s hyperparameter works well from 10−2 to 102 and
therefore is easy to set. In contrast, the hyperparameter of weight decay
could be more sensitive than MHE. Half-space MHE can consistently
outperform the original MHE under all different hyperparameter settings. Interestingly, applying
MHE only to hidden layers can achieve better accuracy than applying MHE only to output layers.
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Method CIFAR-10 CIFAR-100

ResNet-110-original [14] 6.61 25.16

ResNet-1001 [15] 4.92 22.71

ResNet-1001 (64 batch) [15] 4.64 -

baseline 5.19 22.87

MHE 4.72 22.19

Half-space MHE 4.66 22.04

Table 5: Error (%) of ResNet-32.

MHE for ResNets. Besides the standard CNN, we also
evaluate MHE on ResNet-32 to show that our MHE is
architecture-agnostic and can improve accuracy on multi-
ple types of architectures. Besides ResNets, MHE can also
be applied to GoogleNet [46], SphereNets [30] (the exper-
imental results are given in Appendix E), DenseNet [17],
etc. Detailed architecture settings are given in Appendix A.
The results on CIFAR-10 and CIFAR-100 are given in Table 5. One can observe that applying MHE to
ResNet also achieves considerable improvements, showing that MHE is generally useful for different
architectures. Most importantly, adding MHE regularization will not affect the original architecture
settings, and it can readily improve the network generalization at a neglectable computational cost.

5.1.2 Large-scale Object Recognition

Method ResNet-18 ResNet-34

baseline 33.95 30.04

Orthogonal [36] 33.65 29.74

Orthnormal 33.61 29.75

MHE 33.50 29.60

Half-space MHE 33.45 29.50

Table 6: Top1 error (%) on ImageNet.

We evaluate MHE on large-scale ImageNet-2012 datasets. Specif-
ically, we perform experiment using ResNets, and then report
the top-1 validation error (center crop) in Table 6. From the re-
sults, we still observe that both MHE and half-space MHE yield
consistently better recognition accuracy than the baseline and the
orthonormal regularization (after tuning its hyperparameter). To
better evaluate the consistency of MHE’s performance gain, we use two ResNets with different
depth: ResNet-18 and ResNet-34. On these two different networks, both MHE and half-space MHE
outperform the baseline by a significant margin, showing consistently better generalization power.
Moreover, half-space MHE performs slightly better than full-space MHE as expected.

5.1.3 Class-imbalance Learning

(a) CNN without MHE (b) CNN with MHE

Figure 4: Class-imbalance learning on MNIST.

Because MHE aims to maximize the hyperspherical mar-
gin between different classifier neurons in the output
layer, we can naturally apply MHE to class-imbalance
learning where the number of training samples in differ-
ent classes is imbalanced. We demonstrate the power of
MHE in class-imbalance learning through a toy exper-
iment. We first randomly throw away 98% training data
for digit 0 in MNIST (only 100 samples are preserved
for digit 0), and then train a 6-layer CNN on this imbal-
ance MNIST. To visualize the learned features, we set
the output feature dimension as 2. The features and classifier neurons on the full training set are
visualized in Fig. 4 where each color denotes a digit and red arrows are the normalized classifier
neurons. Although we train the network on the imbalanced training set, we visualize the features of
the full training set for better demonstration. The visualization for the full testing set is also given in
Appendix H. From Fig. 4, one can see that the CNN without MHE tends to ignore the imbalanced
class (digit 0) and the learned classifier neuron is highly biased to another digit. In contrast, the CNN
with MHE can learn reasonably separable distribution even if digit 0 only has 2% samples compared
to the other classes. Using MHE in this toy setting can readily improve the accuracy on the full testing
set from 88.5% to 98%. Most importantly, the classifier neuron for digit 0 is also properly learned,
similar to the one learned on the balanced dataset. Note that, half-space MHE can not be applied to
the classifier neurons, because the classifier neurons usually need to occupy the full feature space.

Method Single Err. (S) Multiple

Baseline 9.80 30.40 12.00

Orthonormal 8.34 26.80 10.80

MHE 7.98 25.80 10.25

Half-space MHE 7.90 26.40 9.59

A-MHE 7.96 26.00 9.88

Half-space A-MHE 7.59 25.90 9.89

Table 7: Error on imbalanced CIFAR-10.

We experiment MHE in two data imbalance settings on
CIFAR-10: 1) single class imbalance (S) - All classes have
the same number of images but one single class has signif-
icantly less number, and 2) multiple class imbalance (M) -
The number of images decreases as the class index decreases
from 9 to 0. We use CNN-9 for all the compared regular-
izations. Detailed setups are provided in Appendix A. In
Table 7, we report the error rate on the whole testing set. In addition, we report the error rate (denoted
by Err. (S)) on the imbalance class (single imbalance setting) in the full testing set. From the results,
one can observe that CNN-9 with MHE is able to effectively perform recognition when classes are
imbalanced. Even only given a small portion of training data in a few classes, CNN-9 with MHE can
achieve very competitive accuracy on the full testing set, showing MHE’s superior generalization
power. Moreover, we also provide experimental results on imbalanced CIFAR-100 in Appendix H.
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5.2 SphereFace+: Improving Inter-class Feature Separability via MHE for Face Recognition

We have shown that full-space MHE for output layers can encourage classifier neurons to distribute
more evenly on hypersphere and therefore improve inter-class feature separability. Intuitively, the
classifier neurons serve as the approximate center for features from each class, and can therefore guide
the feature learning. We also observe that open-set face recognition (e.g., face verification) requires
the feature centers to be as separable as possible [28]. This connection inspires us to apply MHE to
face recognition. Specifically, we propose SphereFace+ by applying MHE to SphereFace [28]. The
objective of SphereFace, angular softmax loss (ℓSF) that encourages intra-class feature compactness,
is naturally complementary to that of MHE. The objective function of SphereFace+ is defined as

LSF+ =
1

m

m∑

j=1

ℓSF(〈w
out
i ,xj〉

c
i=1,yj ,mSF)

︸ ︷︷ ︸
Angular softmax loss: promoting intra-class compactness

+λM ·
1

m(N − 1)

m∑

i=1

N∑

j=1,j 6=yi

fs(
∥
∥ŵ

out
yi

− ŵ
out
j

∥
∥)

︸ ︷︷ ︸
MHE: promoting inter-class separability

(8)

where c is the number of classes, m is the mini-batch size, N is the number of classifier neurons, xi

the deep feature of the i-th face (yi is its groundtruth label), and w
out
i is the i-th classifier neuron.

mSF is a hyperparameter for SphereFace, controlling the degree of intra-class feature compactness
(i.e., the size of the angular margin). Because face datesets usually have thousands of identities, we
will use the data-dependent mini-batch approximation MHE as shown in Eq. (8) in the output layer to
reduce computational cost. MHE completes a missing piece for SphereFace by promoting the inter-
class separability. SphereFace+ consistently outperforms SphereFace, and achieves state-of-the-art
performance on both LFW [18] and MegaFace [22] datasets. More results on MegaFace are put in
Appendix I. MHE can also improve other face recognition methods, as shown in Appendix F.

mSF
LFW MegaFace

SphereFace SphereFace+ SphereFace SphereFace+

1 96.35 97.15 39.12 45.90

2 98.87 99.05 60.48 68.51

3 98.97 99.13 63.71 66.89

4 99.26 99.32 70.68 71.30

Table 8: Accuracy (%) on SphereFace-20 network.

mSF
LFW MegaFace

SphereFace SphereFace+ SphereFace SphereFace+

1 96.93 97.47 41.07 45.55

2 99.03 99.22 62.01 67.07

3 99.25 99.35 69.69 70.89

4 99.42 99.47 72.72 73.03

Table 9: Accuracy (%) on SphereFace-64 network.

Performance under different mSF. We evaluate SphereFace+ with two different architectures
(SphereFace-20 and SphereFace-64) proposed in [28]. Specifically, SphereFace-20 and SphereFace-
64 are 20-layer and 64-layer modified residual networks, respectively. We train our network with
the publicly available CASIA-Webface dataset [60], and then test the learned model on LFW and
MegaFace dataset. In MegaFace dataset, the reported accuracy indicates rank-1 identification
accuracy with 1 million distractors. All the results in Table 8 and Table 9 are computed without
model ensemble and PCA. One can observe that SphereFace+ consistently outperforms SphereFace
by a considerable margin on both LFW and MegaFace datasets under all different settings of mSF.
Moreover, the performance gain generalizes across network architectures with different depth.

Method LFW MegaFace

Softmax Loss 97.88 54.86

Softmax+Contrastive [45] 98.78 65.22

Triplet Loss [40] 98.70 64.80

L-Softmax Loss [29] 99.10 67.13

Softmax+Center Loss [53] 99.05 65.49

CosineFace [51, 49] 99.10 75.10

SphereFace 99.42 72.72

SphereFace+ (ours) 99.47 73.03

Table 10: Comparison to state-of-the-art.

Comparison to state-of-the-art methods. We also compare
our methods with some widely used loss functions. All these
compared methods use SphereFace-64 network that are trained
with CASIA dataset. All the results are given in Table 10
computed without model ensemble and PCA. Compared to the
other state-of-the-art methods, SphereFace+ achieves the best
accuracy on LFW dataset, while being comparable to the best
accuracy on MegaFace dataset. Current state-of-the-art face
recognition methods [49, 28, 51, 6, 31] usually only focus on compressing the intra-class features,
which makes MHE a potentially useful tool in order to further improve these face recognition methods.

6 Concluding Remarks

We borrow some useful ideas and insights from physics and propose a novel regularization method for
neural networks, called minimum hyperspherical energy (MHE), to encourage the angular diversity
of neuron weights. MHE can be easily applied to every layer of a neural network as a plug-in
regularization, without modifying the original network architecture. Different from existing methods,
such diversity can be viewed as uniform distribution over a hypersphere. In this paper, MHE has been
specifically used to improve network generalization for generic image classification, class-imbalance
learning and large-scale face recognition, showing consistent improvements in all tasks. Moreover,
MHE can significantly improve the image generation quality of GANs (see Appendix G). In summary,
our paper casts a novel view on regularizing the neurons by introducing hyperspherical diversity.
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