
Learning Transfer-based Adaptive Energy

Minimization in Embedded Systems

Rishad A. Shafik, Member, IEEE, Sheng Yang, Member, IEEE, Anup Das, Member, IEEE, Luis A. Maeda-

Nunez, Member, IEEE, Geoff V. Merrett, Member, IEEE & Bashir M. Al-Hashimi, Fellow, IEEE

Abstract—Embedded systems execute applications with vary-
ing performance requirements. These applications exercise the
hardware differently depending on the computation task, generat-
ing varying workloads with time. Energy minimization with such
workload and performance variations within (intra) and across
(inter) applications is particularly challenging. To address this
challenge we propose an online approach, capable of minimizing
energy through adaptation to these variations. At the core of
this approach is a reinforcement learning algorithm that suitably
selects the appropriate voltage/frequency scaling (VFS) based
on workload predictions to meet the applications’ performance
requirements. The adaptation is then facilitated and expedited
through learning transfer, which uses the interaction between
the application, runtime and hardware layers to adjust the VFS.
The proposed approach is implemented as a power governor in
Linux and extensively validated on an ARM Cortex-A8 running
different benchmark applications. We show that with intra-
and inter-application variations, our proposed approach can
effectively minimize energy consumption by up to 33% compared
to the existing approaches. Scaling the approach to multi-core
systems, we also demonstrate that it can minimize energy by up
to 18% with 2X reduction in the learning time when compared
with an existing approach.

Index Terms—Energy-efficiency, dynamic voltage/frequency
scaling, reinforcement learning.

I. INTRODUCTION

Energy minimization is a prime design objective for embed-

ded systems. To enable energy minimization these systems are

equipped with processors with dynamic voltage and frequency

scaling (DVFS) capabilities, controlled by the system firmware;

examples include Linux’s power governors and ARM’s VFS

firmware [1]. The basic principle of DVFS is to reduce the

operating voltage/frequency (V/F) dynamically at runtime,

resulting in a cubic decrease in power consumption [2], [3],

[4].

Energy minimization approach through DVFS can be broadly

classified into two types – offline and online. The offline

approach characterizes the workloads of a given application

exploiting application-specific knowledge. The profiled work-

loads are then used during runtime to adjust the power control

S. Yang, A. Das, L.A. Maeda-Nunez, G.V. Merrett and B.M. Al-Hashimi
are with the School of ECS, University of Southampton, UK e-mail:
{sy2u12,akd1g13,lm15g10,gvm,bmah}@ecs.soton.ac.uk.

R.A. Shafik is affiliated with the School of EEE, Newcastle University, UK
e-mail: rishad.shafik@newcastle.ac.uk.

Manuscript first received on 18 Dec. 2014, revised on 4 April and 14 July,
accepted on 20 August 2015.

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org.

levers at regular intervals for achieving energy minimization.

Workload characterization and energy minimization of video

decoders [5], [6] and control-theoretic formulation of energy

consumption of multimedia workloads [7] are typical examples.

Online energy minimization approach has the basic principle

of controlling the hardware power levers based on the processor

workloads [8], [9]. Depending on the control mechanism,

online approach can be reactive or proactive. In the reactive

approach the VFS is controlled based on the history of CPU

workloads. When the CPU workload is higher/lower than a

pre-defined value, an increased/decreased V/F is used, e.g.

Linux’s ondemand power governor [11]. In the proactive

approach predicted workloads are used to manage the hardware

power control levers [10], [12]. The impact of such control

is then observed and adjusted through feedback from the

hardware performance monitors. Jung et al. [13] proposed

one such approach using an initial value problem based

processor workload classification. The workloads are then

predicted and classified to continuously determine V/F for

energy minimization. Ramakrishna et al [14] showed a similar

online approach for task workload classification and VFS

control with the feedback from the performance counters.

Since processor workloads are exercised differently depend-

ing on the application tasks, Siyu et al. [15] and Shen et al. [17]

have proposed online approaches using machine learning

algorithm. Their approaches have shown methods learning the

VFS required for an application to achieve energy minimization

in the presence of performance variations due to application-

generated CPU workloads. However, these approaches do not

consider the variation of application performances, such as

frame rate for video decoders, page loading rate for browsers

etc. Among others, learning-based idle-time manipulation has

been proposed in [18] to reduce energy in multi-core systems.

Modern embedded systems feature workload and perfor-

mance variations both within and across applications [16].

As these variations arise dynamically due to the types of

computation being executed, energy minimization using the

existing approaches is challenging (see Section II). This is

because the online approaches, such as [11], [14], [17] do not

interact with the applications for their changing performance

needs, which leads to either over-performance or failure in

meeting their performance requirements. Moreover, existing

approaches using machine learning [15], [17], [18] use a single

runtime formulation of V/F scaling for a given performance

requirement, which cannot adapt to intra- and inter-application

variations.

To effectively minimize energy consumption in the presence

of such workload and performance variations, this paper makes

the following specific contributions:

• an energy minimization approach to effectively adapt to

the intra- and inter-application variations is proposed,

• fundamental to the approach is a reinforcement learning

(RL) algorithm to suitably control VFS for a given

performance requirement, followed by a learning transfer

(LT) algorithm to adapt to variations, and

• a Linux runtime governor implementation of the approach

is shown for extensive validation using different applica-

tions.

To the best of authors’ knowledge, this is the first work that

shows learning transfer-based adaptive energy minimization and

its implementation on single and multi-core embedded systems.

The remainder of this paper is organized as follows. Section II

motivates the proposed approach, Sections III describes the

approach and its implementation. Sections IV and V reports

the experimental results and overheads analysis, Section VI

demonstrates scaling of the approach to multi-core systems.

Finally, Section VII concludes the paper.

0.E+0

1.E+7

2.E+7

3.E+7

4.E+7

5.E+7

6.E+7

7.E+7

8.E+7

0 8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

3
3

4
4

3
3

5
2

3
3

6
0

3
3

6
8

3
3

7
6

3
3

8
4 2

1
0

1
8

2
6

3
4

4
2

5
0

1
1

5
8 0 8

1
6

2
4

3
2

4
0

1
7

0

1
7

8

1
8

6

C
P

U
 W

o
rk

lo
a

d
,

C
y
cl

e
s

Frames

MPEG4: 24 fps SVGA MPEG4: 15 fps QVGA FFT: 16 wave fps

(1A): Intra-application

workload variation

(1B): Intra-application

performance variation
(2): Inter-application

variation

Browser: small pages

Fig. 1. Workload and performance variations within and across applications

II. MOTIVATION

Fig. 1 shows an example of workload (in CPU cycles)

and performance variations (in ms per frame) within (intra)

and across (inter) applications, considering three scenarios:

MPEG4 [20] followed by FFT [21] and browser (based

on [22]) rendering small html pages (less than 20kb in size)

from bbench [23]. The CPU workloads were recorded on

a DM3730 SoC from Texas Instruments, integrated on the

BeagleBoard-xM (BBxM) platform [19], which incorporates an

ARM Cortex-A8 CPU core running at 800MHz. The following

two observations are made:

Observation 1: The CPU workloads and performances vary

within an application. For example, MPEG4 decoding at 24

SVGA frames per second (fps) exhibits up to 7x workload

variation, Fig. 1 (1A). Such variations arise due to decoding

of intra-coded (I) SVGA frames with higher computations,

followed by a number of predictive-coded (P) frames with lower

computations [27]. The MPEG4 also experiences a performance

change from 24 SVGA fps to 15 QVGA fps, Fig. 1 (1B).

Observation 2: The CPU workload profiles change when the

system switches between applications. For example, when the

system switches from MPEG4 to FFT, the workload increases

by 3x on average (Fig. 1(2)), since FFT wave frames are

computationally intensive. Also, when the system switches

from FFT to browser, the workload decreases by 2x due to less

computations required. During such switches the performance

requirements also change from 67 ms per MPEG4 frame to 62

ms per FFT wave frame and then to 100 ms per browser page.

Minimizing energy consumption in the presence of the above-

mentioned variations can be particularly challenging as the

processor power control levers will need to be continually

learnt and adjusted. This paper proposes a learning transfer-

RuntimeRuntime

Application Application

Runtime

Hardware Hardware Hardware

(a) (b) (c)

Application

P
e

rf
o

rm
a

n
ce

v
a

ri
a

ti
o

n
s

W
o

rk
lo

a
d

v
a

ri
a

ti
o

n
s

Requirement Energy Avg. Performance Energy Avg. Performance Energy Avg. Performance

SVGA: 41 ms/frame 229 J 35 ms/frame 189 J 37 ms/frame 178 J 40 ms/frame

QVGA: 67 ms/frame 108 J 53 ms/frame 126 J 40 ms/frame 97 J 66 ms/frame

FFT: 62 ms/frame 164 J 50 ms/frame 123 J 67 ms/frame 131 J 61 ms/frame

Browser: 100 ms/page 119 J 79 ms/frame 89 J 112 ms/page 101 J 98 ms/page

Control VFS based on

CPU usage history
Learn VFS control

Learn VFS control and

adapt to variations

API

Linux Ondemand Learning Proposed

Fig. 2. Comparison between energy minimization approaches: (a) Linux’s
ondemand [11], (b) learning-based [17], and (c) proposed

based adaptive energy minimization approach, addressing such

learning and adaptation aspects. To highlight the importance

of such approach, Fig. 2 shows three energy minimization

approaches applied to the application scenarios in Fig. 1:

MPEG4 decoding at 24 SVGA fps (41 ms/frame) and 15

QVGA fps (i.e. 67 ms/frame), FFT processing 16 wave fps

(i.e. 62 ms/frame) and browser rendering at 100 ms/page. The

energy consumption incurred by the applications are measured

using an Agilent DC Power Analyzer (N6705B) (see Section IV

for details).

The learning approach (Fig. 2.(b)) carries out a single

formulation of the VFS controls based on the predicted

workloads using machine learning [17]. However, as the VFS

controls resulting from such learning approach do not adapt to

workload and performance variations across the applications,

it cannot achieve effective energy minimization. For example,

after initially learning VFS controls for the MPEG4 decoding

at 24 fps, the learning approach over-performs and incurs

higher energy consumption for the MPEG4 decoding 15 QVGA

fps. Conversely, in the case of FFT and browser applications

it under-performs and violates the specified performance

requirements (highlighted in red). Due to performance-agnostic

nature of VFS controls the Linux ondemand over-performs for

most of the applications, incurring higher energy consumptions

(Fig. 2.(a)). The proposed approach provides the lowest energy

consumption for all intra- and inter-application variations. This

is because it learns the appropriate VFS controls and adapts

to performance and workload variations across all applications

(Fig. 2.(c)).

 Runtime

OS Scheduler Power Governor

 Application

Task performance req. through API

 Hardware

Performance

Monitor
CPU

Voltage/freq. control Perf. Counter

V/F

levers

tasks

t1 t2 t3 t4 t5 ... tn

(a)

Next

decision

epoch?

Predict

current WL

using

EWMA

Map WL &

current perf. to

system states in

Q-table

D
e

cisio
n

 e
p

o
ch

D
e

cisio
n

 e
p

o
ch

t1 t2

If exploring?

Explore V/F

scaling in

Q-table

Monitor

performance and

update Q-table

Exploit V/F

scaling from

Q-table

Check WL and

performance

variation

WL/perf.

changed?

Minimal re-

exploration

YES

YES

NO

NO

Step 1: Initial Reinforement Learning

Step 2: Learning Transfer-based Adaptation

(b)

Scale current Q-

values

YES

Update

history of

past WLs

Fig. 3. (a) Proposed adaptive approach showing interactions between layers,
(b) flowchart of the proposed adaptive energy minimization approach

III. PROPOSED ENERGY MINIMIZATION APPROACH

Fig. 3.(a) shows the proposed approach highlighting the

interactions between the application, runtime and hardware

layers. The application layer consists of a series of tasks being

executed at time intervals (referred to as decision epochs).

Each task has a performance requirement, specified through

an application programming interface (API) as

rts.set_perf(41);

where rts is a thread-safe runtime variable (see Appendix A),

set perf sets the performance requirement as 41 ms per decision

epoch. The runtime layer consists of the power governor

implementing the proposed approach. With a given performance

requirement, the governor minimizes energy through suitably

controlling the hardware power levers (i.e. VFS) at regular

decision epochs.

A flowchart of the proposed approach is depicted in Fig. 3.(b),

showing two major steps: reinforcement learning (RL) and

learning transfer (LT) . The RL sets up proactive VFS

controls at each decision epoch through state prediction. When

performance or workload variations are detected, these controls

are adapted through a LT algorithm. These steps are detailed

in the following.

A. Step 1: Reinforcement Learning

The initial learning through RL algorithm evolves in three

phases, as follows.

1) State Prediction and Q-table Formation: State prediction

is a required phase in the RL step to identify the Q-value of the

future system state. In our approach, the same predictor is also

used to classify the expected workload to a system state at the

beginning of each decision epoch, similar to [14], [15], [17].

This predictor estimates the current CPU workload based on

the history of the past workloads and maps the workload to

a system state based on the current performance. The CPU

cycles’ count is preferred as the workload parameter over the

other parameters, such as memory accesses, cache misses and

instruction rate, etc. as it directly defines the CPU activity

when executing instructions of a task. To predict the workload,

an exponential weighted moving average (EWMA) scheme

is used, similar to [5], [8]. Using this scheme, the predicted

workload for the t+ 1th decision epoch, ˆCt+1 is

ˆCt+1 = ωCt +
t−D
∑

i=t−2

(1− ω)
i
Ci , (1)

where Ct and Ci are the previous observed workloads (in CPU

cycles) at the tth and ith decision epochs, (t−D) ≤ i ≤ (t−1),
ω is the moving average coefficient and D is the window size

of past observed workloads. The ω and D values are chosen

to give higher prediction accuracy for the given application

workloads, similar to [14]. However, the workload prediction

through (1) still undergoes mispredictions during runtime due to

variations in workloads. The impact of such mispredictions on

the corresponding VFS controls is discussed in Section IV-A.

The system state is determined by using the Ĉ through (1)

and the current performance as a pair. The state space S is

comprised of the combinations of average slack ratios (L) and

Ĉ, denoted as S{C,L}. For each state (st), the average slack

ratio at tth decision epoch (Lt) is divided in bins (five, for

example) as

∀st :











Lt > 0.15, Lt ≤ −0.15,

0.05 < Lt ≤ 0.15, −0.15 < Lt ≤ −0.05, &

|Lt| ≤ 0.05

(2)

Similarly, for each state CPU workloads are divided in several

workload bins (six, for example) as:

∀st :











Ct > [Cb + 2∆C] ; higher bin,

(Cb +m∆C) > Ct ≥ [Cb + (m− 1)∆C] ;m = −1 : 2,

Ct < [Cb − 2∆C] ; lower bin.
(3)

where ∆C is the size of the workload bins around a base

workload (Cb). With the given combinations between Lt and

Ĉt+1 in (2) and (3), state entries for the Q-table are set up. Thus,

for each predicted workload (ˆCt+1) and the current performance

(Lt) pair the system state is mapped using (2) and (3).

The state space, and the action space (formed of the VFS

control options, denoted as A{V dd, f}) define the size of Q-

table for the RL step. The size of the Q-table in terms of the

total number of state-action pairs (|A{V dd, f}| × |S{C,L}|)
is important for the RL algorithm as it influences the trade-off

between learning overhead and energy minimization achieved

(see Section III-B and IV for detailed trade-offs). In this

work, the size of Q-table is carefully chosen to ensure a good

trade-off between learning overhead and energy minimization

(see Section V). With the given state prediction and Q-

table formation, the RL algorithm carries out exploration and

evaluation of the VFS control actions as discussed next.

2) Exploration: Exploration is a crucial phase in RL

algorithm as does the actual learning of appropriate VFS actions

based on the system states. Traditionally, it is carried out using

a random action selection strategy from the pool of actions,

each with a uniform probability distribution (UPD). However,

such exploration is inefficient as it does not use the intuitive

relationships that often exist between the state-action pairs [24].

To reflect such relationship during exploration, we use the

following discrete exponential probability distribution (EPD)

function for the selection of action (at)

p(at)at∈A{V dd,f} = λ exp [−λf(a)βL], (4)

where λ is the uniform probability of actions (i.e. λ =
1/|A{V dd, f}|), f(a) is the operating frequency in action

a and β is a constant. According to (4) when L is close to

zero, the exploration probabilities are almost uniform, guided

by λ. However, positive and negative L prioritize selection

of lower and higher frequencies, respectively. The probability

distribution, given by (4), has an advantage in terms of quicker

learning, which can be stated and proven by Lemma I (see

Appendix B). At the beginning of the (t+ 1)
th

decision epoch,

the Q-value corresponding to a selected VFS action is updated

as [15]:

Q(st+1, at) = Q(st, at)(1− α) + α[rt + γ max
at

Q(st+1, at)],
(5)

where α is the learning rate, γ is the discount factor to de-

scale the current maximum Q-value in the row (0 ≤ α, γ ≤
1), st is the observed state in the tth decision epoch and

st+1 is the predicted state in the (t+ 1)th decision epoch

determined by estimated workload and current performance

(see Section III-A1). The reward function rt in (5) is computed

as a function of the resulting average slack ratio at the tth

decision epoch (Lt) and it’s change since the last decision

epoch (∆L), i.e.

rt = K1|Lt|+K2∆L , (6)

where K1 and K2 denote constant values, pre-determined to

ensure actions that improve Lt values (through ∆L trends) are

rewarded or vice versa. The ∆L values are estimated by

Lt =
1

N(Tref)

t
∑

i=0

(Tref − Ti − TOVH) , (7)

where Tref is the reference execution time, Ti is the application

task execution time, N is the number of decision epochs

elapsed since application started with a given Tref , TOVH

is the total overheads caused by learning and adaptation steps

(see Section V) and ∆Lt is the average slack difference since

the last observation, given as ∆Lt = Lt−1 −Lt. The Ti in (7)

can be estimated as the ratio between the observed processor

CPU cycles (Ci) and the operating frequency chosen (fi) at

ith decision epoch as

Ti =
Ci

fi
. (8)

Equations (5) and (6) set up the exploration of VFS control

actions.

3) Exploitation: In this phase, the state-action relationships

learnt are exploited. The transition from the exploration

to exploitation phase is controlled through the exploration

probability (EP), denoted by ǫ (0 ≤ ǫ ≤ 1). To accelerate

exploitation ǫt at the tth decision epoch is updated as

ǫt = ǫt−1 exp [−(1− α)] , (9)

where α is the learning factor per decision epoch. Based on the

ǫt value, the exploration or exploitation is carried out to find

the best policy sub-set (π∗(st, at)) from a set of exploration

policies (Π(st, at), π ∈ Π) as follows:

π∗(st, at) =

{

at : max (Q(st, a)) ; if p > ǫt,
ak : p(ak) is given by (4)

(10)

where p is a random value uniformly distributed over [0, 1].
As can be seen, when ǫt value decreases in (9), the probability

of exploitation increases in (10).

TABLE I
THE COMPARISONS BETWEEN SINGLE Q-TABLE [9] AND LEARNING

TRANSFER APPROACHES

|A| ∆C Q-table size: |A|×|S| Q-table size: |A|×|S|
(single Q-table) (learning transfer)

4 1×107 4000 120

4 2×107 2000 120

4 4×107 1000 120

6 1×107 6000 180

6 2×107 3000 180

6 4×107 1500 180

B. Step 2: Learning Transfer-based Adaptation

Using a single Q-table in RL algorithm step for covering the

dynamic ranges of workload and performance variations can

expand the learning space substantially. Table I shows example

illustrations of the impact of using a single Q-table approach,

similar to [9]; column 1 and 2 show the number of actions and

the size of workload bins, while column 3 shows the number

of state-actions pairs considering a workload coverage from 0

to 1010 cycles. As can be seen, for such a dynamic workload

a single Q-table will have 4000 state-action pairs considering

4 actions with workload bin size of 107 each. The size of the

Q-table can expand further to 6000 for 6 actions.

To ensure a quicker learning and adaptation to dynamic

workload or performance variations, smaller Q-table is used

in this work together with LT. Columns 5 and 6 show the

motivation of using such LT-based adaptation (Table I). As

expected with a smaller state space of 30, the number of state-

action pairs is 120 for 4 actions, and 180 for 6 actions around

a base workload. With smaller Q-tables the LT also benefits

from quicker convergence and learning of the Q-table. Table II

compares the worst-case convergence times between single Q-

table approach and smaller Q-tables in the LT-based approach

considering both workload and performance variations in the

case of ∆C=107 and |A|=4. Columns 1-3 show the number of

workload variations and the corresponding number of decision

epochs required for full convergence of both approaches. As

can be seen, the single Q-table approach takes invariably

4000 decision epochs despite any workload variations for the

full learning of the Q-table. The LT-based approach takes

significantly lower number of decision epochs for the same

due to smaller Q-tables. The convergence time in this approach,

however, depends on the number of workload variations. As

can be seen, when the number of workload variation increases

from 1 to 8, the the convergence time increases from 160 to

440 decision epochs, which is still significantly lower than the

single Q-table approach.

TABLE II
COMPRATIVE CONVERGENCES OF SINGLE Q-TABLE APPROACH [9] AND

PROPOSED LEARNING TRANSFER-BASED APPROACH

Workload variation Performance variation

No. of Learning convergence No. of Learning convergence
Variations single transfer Variations single transfer

0 4000 120 0 4000 120

1 4000 160 1 8000 160

2 4000 200 2 12000 200

4 4000 280 4 20000 280

8 4000 440 8 36000 440

Table II also compares the worst case convergence times of

both approaches for different performance variations (columns

4-6). As can be seen, the single Q-table approach requires

significantly higher number of decision epochs when per-

formance variations (i.e. change in Tref) are encountered.

This is because the original Q-table can no longer provide

the the optimized VFS scaling options with such variation,

necessitating re-learning from scratch. Unlike the single Q-

table approach, the LT can continue to exploit the previous

learning and converge faster to give the optimized VFS options

for the new system states (Lemma I compares and proves the

convergences times, see Appendix B).

Phase 1: Application initiates

execution with a perf. req., Tref

Phase 2: Explore/exploit V/F

controls & compute avg. WL Cn

Phase 3:

If Cn > (Cb+4ΔC) or

Cn < (Cb-4ΔC)

NO

runtime

runtime

runtime↔HW

ru
nt
im

e↔
ru
nt
im

e

Phase 5: Update Cb

& learning transfer

(Algorithm 1)

runtime

YES

Phase 6:

App. switch?

runtime

ru
nt
im

e↔
ru
nt
im

e

ap
pl
ic
at
io
n→

ru
nt
im

e

Phase 4: Update Cb

& scale Q-values

application

Fig. 4. Learning transfer-based adaptation to workload/performance variations

When the workload profile changes within an application

beyond the current base workload (observation 1), the current

Q-table fails to minimize energy consumption effectively. The

same is also true when the performance requirement changes

within and across applications (observation 2). To enable

adaptation to these variations the proposed approach first detects

these variations through inter-layer interactions (Fig. 4). This

is then followed by a Q-table update through LT algorithm

(Algorithm 1). The detection of workload and performance

variations and their adaptations are further detailed next.

1) Adaptation to Workload Variation: The workload varia-

tion is detected through the interaction between the runtime

and the hardware layers in the following phases, as shown in

Fig. 4. Initially, with a given performance requirement of Tref

per application task (Fig. 3.(a)), the runtime learns VFS control

actions (phases 1-2). During this time the runtime also computes

the short-term average workload, Cn, over the last n decision

epochs (the impact of varying n is studied in Section V). The

mean workload, Cn, is then compared with the current base

workload (Cb) in the Q-table (phase 3). If Cn is confirmed

as beyond the current table limits (i.e. Cn > (Cb + 4∆C) or

Cn < (Cb − 4∆C)), the Q-table states are updated and scaled

with a new base workload (Cb) nearest to Cn (phase 4). The

scaling from the old Q-table is carried out as follows:

∀t : Q(st, at)scaled = Q(st, at)old exp

[

−
1

LρWL

]

, (11)

where ρWL is the scaling ratio proportional to
Cbnew

Cbold

. Note

that the Q-value scaling in (11) ensures that the Q-values are

downscaled according to the L states. At higher L values the

Q(st, at)scaled values are less downscaled, while at lower L
values the Q(st, at)scaled values are more downscaled to ensure

that further exploration of VFS control actions can update the

optimal policy π∗ quickly. To minimize such exploration, the

current best policy (π∗(st, at)) in the scaled Q-table is then

updated in the next phase using LT algorithm, as shown in

Algorithm 1 (phase 5).

Algorithm 1 Learning transfer algorithm

Require: ρWL, Q(st, at)scaled, π∗(st, at)old
1: for each st in Q(st, at)new do

2: if st is explored then

3: if L(st) is near-zero (i.e. ±5%) then

4: set: f(π′(st, at)new) = ρWL × f(π∗(st, at)old)
5: else

6: set: f(π′(st, at)new) = f(π∗(st, at)old)
7: end if

8: map: f(π′(st, at)new) to the nearest action a′
t

in Q(st, at)new

9: for every action in Q(st, at)new do

10: if action is a′
t

then

11: swap Q(st, a′t)new with Q(st, a∗t)scaled
12: else

13: set: Q(st, at)new = αQ(st, at)scaled
14: end if

15: end for

16: else

17: set: Q(st, at)new = Q(st, at)scaled
18: end if

19: end for

20: return π′(st, at)new and Q(st, at)new

As can be seen, for each already explored state (st) the

chosen frequency in the new policy (f(π′(st, at)new)) is

obtained through scaling by a factor of ρWL (lines 2-6). For

a state with near-zero slack (i.e. ±5%), such scaling requires

multiplying the old chosen frequency by the scaling ratio

(ρWL), while for a state with higher positive or negative

slack the old chosen frequency is retained as the new chosen

frequency. After such scaling of chosen frequencies, their

corresponding actions are mapped in the new Q-table and

the new Q-values are updated through transfer of the scaled Q-

values (lines 9-15). The Q-value of the new chosen action

is set as the Q-value of the old chosen action (line 11),

while the other values retained from the scaled Q-values

through (11). For un-explored or partially explored state (st),
the scaled Q-value is retained in the new Q-table (line 17).

The resulting Q-table (line 20) with transferred learning is then

used with a reduced exploration probability (ǫt) for accelerated

re-exploration, instead of learning from the scratch.

2) Adaptation to Performance Variation: When the applica-

tion performance requirement changes due to intra- or inter-

application switch, the adaptation is enabled through the API-

based interaction between application and runtime layer (phase

6, Fig. 4). Upon such interaction, the runtime layer learns the

new Tref with the old Cb and carries out Q-value scaling and

LT (phases 4 and 5). Similar to (11), the Q-value scaling is

carried out as

∀t : Q(st, at)scaled = Q(st, at)old exp

[

−
1

LρT

]

, (12)

where ρT is the scaling ratio, proportional to
Trefold

Trefnew

. Similar

to (11), Equation (12) also scales Q(st, at)old values based on

the L values. Following the Q-value scaling in (12), the Q-

values are transferred between action pairs using the Algorithm

1 with pWL values replaced by pT . The transferred Q-values

are then used for further minimal explorations (Fig. 3.(b)). The

LT-based adaptation has the advantage of lower number of

re-explorations required when compared with the re-learning

based approach. The reduction of the number of explorations

is described through Proposition I (see Appendix B).

0.E+0

1.E+7

2.E+7

3.E+7

4.E+7

5.E+7

81
5

84
5

87
5

90
5

93
5

96
5

99
5

10
25

10
55

10
85

11
15

11
45

11
75

12
05

12
35

12
65

12
95

13
25

13
55

13
85

14
15

14
45

14
75

44
38

44
68

44
98

45
28

45
58

45
88

46
18

C
P

U
 w

o
rk

lo
ad

, c
lo

ck
 C

yc
le

s

Decision epoch

Predicted WL C_n

[C_n > 1.5e7] or [C_n < 1.3e7] TRUE

requiring re-learning at 4423rd decision epoch

(a)

Q-table during exploration in the initial

learning step with base workload,

Cb = 1.5x10
7
 cycles

Q-table after minimal re-exploration in

learning transfer step with base workload,

Cb = 3.0x10
7
 cycles

Q-table after Q-value & action scaling in the

learning transfer step with base workload,

Cb = 3.0x10
7
 cycles

Application 1

Application 2

Exploitation Phase

(b) (c) (d)

(V1,

F1)

(V2,

F2)

(V3,

F3)

(V4,

F4)

Lt > 15% 0 -58 -13 102

15%< Lt<= 5% -703 -102 15.2 -35.6

5%<Lt<= -5% -30.2 58.1 -35 -112.1

-5%<Lt<= 15% -341 126.2 78.1 0

Lt < -15% -32 -117 -137 0

Lt > 15% 0 0 0 -16

15%<Lt<= 5% 0 0 0 0

5%<Lt<= -5% 0 -14 0 0

-5%< Lt<= 15% 0 0 0 0

Lt < -15% -12 -19 0 0

Q-value scaling

(V1,

F1)

(V2,

F2)

(V3,

F3)

(V4,

F4)

Lt > 15% 0 -10.4 -2.3 18.3

15%< Lt<= 5% -5.4 -0.8 0.1 -0.3

5%<Lt<= -5% -0.4 0.7 -0.4 -1.4

-5%<Lt<= 15% -2.6 1.0 0.6 0

Lt < -15% -6.3 -27.1 -38.5 0

Lt > 15% 0 0 0 -2.9

15%<Lt<= 5% 0 0 0 0

5%<Lt<= -5% 0 -2.4 0 0

-5%< Lt<= 15% 0 0 0 0

Lt < -15% -2.1 -2.7 0 0

After Learning Transfer and re-exploration

(V1,

F1)

(V2,

F2)

(V3,

F3)

(V4,

F4)

Lt > 15% 0 -12.5 14.8 22.0

15%< Lt<= 5% -1.7 -0.9 0.3 -13.2

5%<Lt<= -5% 10.5 -5.2 -6.1 -19.2

-5%<Lt<= 15% 7.4 11.5 -15.5 0

Lt < -15% -29.5 -6.9 -17.0 0

Lt > 15% 0 0 0 -2.9

15%<Lt<= 5% 0 0 0 0

5%<Lt<= -5% 0 -2.4 0 0

-5%< Lt<= 15% 0 0 0 0

Lt < -15% -2.9 -6.9 -12 0

W
L
:
1

.5
x
1

0
7

to
 1

.6
5

x
1

0
7

W
L
:
1

.3
5

x
1

0
7

to
 1

.5
x
1

0
7

W
L
:
3

.0
x
1

0
7

to
 3

.3
x
1

0
7

W
L
:
2

.7
x
1

0
7

to
 3

.0
x
1

0
7

W
L
:
3

.0
x
1

0
7

to
 3

.3
x
1

0
7

W
L
:
2

.7
x
1

0
7

to
 3

.0
x
1

0
7

Fig. 5. Example illustration of learning transfer-based adaptation

3) Example Illustration: To illustrate how the proposed

approach adapts to inter-application switch (from Application 1

to Application 2) as an example, Fig. 5.(a) plots the predicted

(Ĉt) and observed mean workload (Cn) values, with n=300

decision epochs, while Fig. 5.(b)-(d) show Q-tables for ten

states covering two workload bins around the mean workload

and five slack state variations as shown in (eq:statedef1) out of

total 30 states (for demonstration purposes) and four actions

for both applications. As can be seen in Fig. 5.(b), after the

initial learning and exploration the Q-table is populated with

two different kinds of states: explored states and partially

explored or un-explored states. The explored states are more

frequently visited due to workloads exercised by the hardware

due to Application 1. As a result, most of the actions are

evaluated and the best actions are chosen as the highest Q-

value in the table (highlighted in blue). The un-explored or

partially explored states are not visited as often and hence

not all actions are evaluated (un-explored actions are marked

by zero values). After initial exploration and learning of the

controls, the Q-table facilitates exploitation for the Application

1 with a Cb=1.5× 107.

After the 4423rd decision epochs the system switches

from Application 1 to Application 2 with both workload and

performance variations. The workload variation is observed

through the mean workload Cn, while performance variation is

directly communicated by the application to the runtime (Fig. 4).

To adapt to such variations, the proposed approach carries out

LT in two stages. First, the Q-values are scaled through (11)

using the new base Cb=3.0×107 near the current mean workload

(Cn). The resulting scaled Q-values are shown in Fig. 5.(c).

The scaled Q-values are then used to carry out further action

transfer of explored and un-explored states through Algorithm

1. For explored states, the new actions near zero values (±5%)

are further minimally re-explored. The resulting Q-values and

the chosen actions after such exploration are shown in Fig. 5.(d).

It is to be noted that LT requires only 1 out of 10 states to be

explored compared all 10 states in other approaches.

IV. EXPERIMENTAL RESULTS

The proposed adaptive energy minimization approach is im-

plemented as a power governor in Linux kernel revision 3.7.10

(see Appendix A) running on DM3730 SoC, integrated on the

BeagleBoard-xM (BBxM) platform [19]. The platform consists

of, among others, a single-core ARM Cortex-A8 CPU core,

which supports four V/F levels: 300MHz at 0.93V, 600MHz at

1.10V, 800MHz at 1.26V and 1GHz at 1.35V [19]. To evaluate

the effectiveness of the proposed governor, ffmpeg-based

multimedia [20], MiBench benchmark [21] and browser [22]

applications are executed. The energy consumptions of the

ARM Cortex-A8 core are measured through direct observation

of current and voltage using an Agilent DC Power Analyzer

(N6705B). The current was observed by lifting an inductor

off of the board and re-routing the signal through the same

inductor and the power analyzer, while the voltage supplied

across the Cortex-A8 was measured directly across the core

supply. All experiments are carried out using a Q-table size

of (30x4) consisting of 5 slack states and 6 workload states

as such table size gives the best trade-off between energy

minimization and learning overheads as discussed in Section V.

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

7.E+07

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

5
7

0
4

5
7

0
9

5
7

1
4

5
7

1
9

5
7

2
4

5
7

2
9

5
7

3
4

5
7

3
9

5
7

4
4

5
7

4
9

5
7

5
4

5
7

5
9

5
7

6
4

5
7

6
9

5
7

7
4

5
7

7
9

5
7

8
4

5
7

8
9

5
7

9
4

C
P

U
 w

o
rk

lo
a

d
,

C
y

cl
e

s

Frames

Predicted workload

Observed workload

-60

-40

-20

0

20

40

60

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

5
7

0
4

5
7

0
9

5
7

1
4

5
7

1
9

5
7

2
4

5
7

2
9

5
7

3
4

5
7

3
9

5
7

4
4

5
7

4
9

5
7

5
4

5
7

5
9

5
7

6
4

5
7

6
9

5
7

7
4

5
7

7
9

5
7

8
4

5
7

8
9

5
7

9
4

A
v

e
ra

g
e

 s
la

ck
,

%

Frames

The impact of mispredictions during initial stage

and learning is mitigated through average slack

considerations in the Q-table

application switch triggers mispredictions and

under-performance, which is corrected

after D frames in the EWMA algorithm; the impact

mispredictions is mitigated through learning transfer

MPEG4 workloads

Browser workloads-->

(a)

(b)

Fig. 6. (a) CPU workload predictions of MPEG4, followed by FFT, (b) impact
of learning on the average slack ratio (in %)

A. Impact of State Prediction and Exploration

To investigate into the impact of state prediction on learning,

Fig. 6.(a) shows the predicted and observed workloads (in

CPU cycles), while Fig. 6.(b) shows the corresponding average

slack ratios (L) caused by the RL algorithm (Section III-A)

for MPEG4 decoding at 24 SVGA fps, followed by browser

application. As can be seen, the EWMA based workload

prediction (given by (1)) incurs occasional mispredictions:

during the exploration (the first 25 frames) and exploitation

phases (after 90 frames) of MPEG4 and also briefly when

the system switches from MPEG4 to browser (after 5750

frames, Fig. 6.(a)). The highest average misprediction of about

8% on average with respect to the mean observed workload

was observed during the initial 100 frames in the MPEG4

decoding 24 SVGA fps, while the lowest misprediction of only

3% was observed for the following frames. To mitigate the

impact of such mispredictions the RL algorithm (Section III-A)

considers the current performance offset in terms of average

slack ratio (Lt) together with the currently predicted workload

during state mapping of the next state. In the event of

performance offset (showing positive or negative high Lt)

caused by mispredictions, the RL algorithm learns and applies

the appropriate VFS controls to minimize it through the action

rewarding mechanism (see Section III-A2). Similar to MPEG4,

workload misprediction is also observed when the system

switches to the FFT application after the 5754th frame. At

this time the LT and further explorations take place, which

causes under-performance initially for about 45 FFT frames.

However, after further explorations during the next 50 frames,

the under-performance is offset by updating the learning of the

appropriate VFS controls.

To highlight the advantages of the explorations using EPD

during the initial learning step (i.e. RL step), Table III compares

the average number of explorations required by the proposed

TABLE III
COMPARATIVE NUMBER OF EXPLORATIONS DURING THE INITIAL

LEARNING IN THE PROPOSED AND LEARNING APPROACHES

Application No. explorations
(proposed)

No. explorations
(learning [17])

MPEG4 (30 fps) 81 144

H.264 (15 fps) 91 149

mad (22k) 86 149

susan (384x288) 78 135

ispell (largespell) 82 139

FFT (32 fps) 75 119

browser (small) 89 141

approach and the that of the learing-based approach [17].

Column 1 shows the applications with the input sizes used,

while Columns 2 and 3 show the number of explorations

recorded for the proposed and learning-based approaches. As

can be seen, the proposed approach benefits from reduced

number of explorations due to the relationship between current

performance and VFS action in (4) when compared with the

exploration using a UPD in [17] (see Lemma I, Appendix B).

The applications FFT and susan were found to have the

lowest number of explorations as these applications exhibit

less workload variation, i.e. less number of workload states

during the learning step. As a result, the RL algorithm learns

the VFS controls faster. The MPEG4, H.264 and browser

applications showed the highest number of explorations due to

higher workload variations and eventually higher number of

workload states visited during learning.

B. Intra-Application Energy Minimization

A number of experiments are carried out with intra-

application workload and performance variations showing

comparative evaluation of the proposed adaptive approach.

1) Workload Variations: Fig. 7 shows the experimental

results of an H.264 decoder decoding at 24 VGA fps, used as

a case study, highlighting the adaptation to intra-application

workload variations. Fig. 7.(a) shows the predicted workload

together with the observed mean CPU workload over a moving

window of n=200 decision epochs, while Fig. 7.(b)-(d) show

the resulting average slack ratios caused by RL algorithm and

adaptation steps, the Q-table states and the VFS control actions

chosen over the decision epochs (in terms of frames). As can

be seen, initially the governor starts to learn the VFS control

actions (Fig. 7.(d)), which results in performance offset in terms

of L (Fig. 7.(b)). As the governor initiates exploiting some of

these VFS controls, L starts to reduce. During this phase the

Q-table states vary depending on the predicted workloads as

the VFS actions are chosen from the Q-table (Fig. 7.(c)-(d)).

After the 1271th frame the workload profile changes within

the application (observation 1, Section II), which is detected

through comparison of the observed mean workload, Cn with

the base workload (Cb) of the Q-table (Fig. 4). Due to such

variation in the workload, the proposed governor carries out

LT from the old Q-table with Cb=2.5× 107 to the new Q-table

with Cb=1.5×107 (Section III-B1). The LT is then followed by

further exploration of the Q-table to update the VFS controls

to achieve near-zero L values. Due to such re-exploration,

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

1

4
9

9
7

1
4

5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

6
2

5

6
7

3

7
2

1

7
6

9

8
1

7

8
6

5

9
1

3

9
6

1

1
0

0
9

1
0

5
7

1
1

0
5

1
1

5
3

1
2

0
1

1
2

4
9

1
2

9
7

1
3

4
5

1
3

9
3

1
4

4
1

1
4

8
9

1
5

3
7

1
5

8
5

1
6

3
3

1
6

8
1

1
7

2
9

1
7

7
7

1
8

2
5

1
8

7
3

1
9

2
1

1
9

6
9

W
o

rk
lo

a
d

,
C

P
U

 C
y

cl
e

s

Frames

Predicted workload

Observed mean workload, C_n

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

1

4
9

9
7

1
4

5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

6
2

5

6
7

3

7
2

1

7
6

9

8
1

7

8
6

5

9
1

3

9
6

1

1
0

0
9

1
0

5
7

1
1

0
5

1
1

5
3

1
2

0
1

1
2

4
9

1
2

9
7

1
3

4
5

1
3

9
3

1
4

4
1

1
4

8
9

1
5

3
7

1
5

8
5

1
6

3
3

1
6

8
1

1
7

2
9

1
7

7
7

1
8

2
5

1
8

7
3

1
9

2
1

1
9

6
9

A
v

e
ra

g
e

 s
la

ck
 r

a
ti

o
,

%

Frames

0

5

10

15

20

25

30

1

4
9

9
7

1
4

5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

6
2

5

6
7

3

7
2

1

7
6

9

8
1

7

8
6

5

9
1

3

9
6

1

1
0

0
9

1
0

5
7

1
1

0
5

1
1

5
3

1
2

0
1

1
2

4
9

1
2

9
7

1
3

4
5

1
3

9
3

1
4

4
1

1
4

8
9

1
5

3
7

1
5

8
5

1
6

3
3

1
6

8
1

1
7

2
9

1
7

7
7

1
8

2
5

1
8

7
3

1
9

2
1

1
9

6
9

Q
-t

a
b

le
 S

ta
te

 I
D

s

Frames

0

1

1

2

2

3

3

4

1

4
9

9
7

1
4

5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

6
2

5

6
7

3

7
2

1

7
6

9

8
1

7

8
6

5

9
1

3

9
6

1

1
0

0
9

1
0

5
7

1
1

0
5

1
1

5
3

1
2

0
1

1
2

4
9

1
2

9
7

1
3

4
5

1
3

9
3

1
4

4
1

1
4

8
9

1
5

3
7

1
5

8
5

1
6

3
3

1
6

8
1

1
7

2
9

1
7

7
7

1
8

2
5

1
8

7
3

1
9

2
1

1
9

6
9

V
F
S

 a
ct

io
n

 I
D

Frames

(a)

(b)

(c)

(d)

Exploration during Initial learning causes

the average slack ratio to vary -- indicating

over-performance or uder-performance

The over-performance or under-performance

is caused by random selection of actions in the Q-table

The exploration in the initial learning causes the

the Q-table states to vary as well

Workload profile change (Cb=2.5e7 to Cb=1.5e7 cycles)

necessitates transfer learning and performance offset

Transfer learning for meeting near nero slack

requires minimal re-exploration with low VFS actions

During transfer learning the over-performance and

workload change causes more Q-table states to be visited

Fig. 7. (a) Predicted and observed mean workloads, (b) average slack ratios
(in %), (c) VFS controls, and (d) corresponding Q-table states of an H.264
decoder

the L values are perturbed again with over-performance at

reduced Cn (Fig. 7.(b)). Since the proposed governor adapts

the VFS controls in the presence of intra-application workload

variations, it can effectively minimize energy, while meeting

the application performance requirement.

Fig. 8 plots the normalized energy and performance values

of the proposed energy minimization approach with different

frame rates and resolutions of H.264, compared with the

existing approaches. Normalization is carried out to give

comparative figures between different approaches covering

the dynamic range of performance and workload variations for

various applications. Figures 8.(a)-(c) show the results of decod-

ing QVGA resolution with 15 fps, 24 fps and 29.97 fps, while

Figures 8.(d)-(f) show the same for decoding SVGA resolutions.

The performance is normalized with respect to the required

performance per frame (Tref) and the energy normalization

is carried out with respect to Oracle, found through offline

determination of optimized VFS controls for the observed CPU

workloads. The normalized energy and performance results

are obtained through averaging the decoder results of three

different video clips (football, flower and foreman) from xiph

video repository (http://media.xiph.org/video/derf/). The results

of the proposed approach are compared with Linux’s onde-

mand governor [11], predictive and learning-based approaches.

Predictive approach is implemented using [14] without any

Predictive
Learning-

based

Ondemand

Proposed
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 0.25 0.5 0.75 1 1.25 1.5 1.75

QVGA - 15 fps (67 ms/frame)

Predictive

Learning-

based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

QVGA - 24 fps (41 ms/frame)

Predictive

Learning-

based

Ondemand

Proposed
0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

QVGA - 29.97 fps (33 ms/frame)

Predictive

Learning-

based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

SVGA - 15 fps (67 ms/frame)

Predictive

Learning-

based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

SVGA - 24 fps (41 ms/frame)

Predictive
Learning-

based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

SVGA - 29.97 fps (33 ms/frame)

(c)

(a)

(b)

(d)

(e)

N
o

rm
a

li
ze

d
 E

n
e

rg
y

Normalized Performance->

(f)

Fig. 8. Comparative evaluation of energy minimization of H.264 video decoder
with different performance requirements (normalized performance of 1 means
on par performance, > 1 means under-performance and < 1 means over-
performance; normalized energy of > 1 means higher energy consumption, <
1 means lower energy consumption; ≈1 means effective energy minimization
provided that performance is also on par)

explicit performance information from the application.

0

10

20

30

40

50

60

300 MHz 600 MHz 800 MHz 1 GHz

N
o

 o
f

fr
a

m
e

s
(%

)

Operating frequency

QVGA 24 fps (41 ms/frame)

Ondemand

Predictive

Learning-based

Proposed

0

10

20

30

40

50

60

300 MHz 600 MHz 800 MHz 1 GHz

N
o

 o
f

fr
a

m
e

s
(%

)

Operating frequency

SVGA 24 fps (41 ms/frame)

Ondemand

Predictive

Learning-based

Proposed

(a) (b)

Fig. 9. Comparative histogram of operating frequencies applied in H.264
decoding (a) QVGA, and (b) SVGA frame resolutions, 24 fps each

As can be seen, the ondemand governor consistently over-

performs when compared with the other approaches as it is

agnostic of application performance requirements. Hence, it

generates the highest energy consumption among all approaches.

The predictive energy minimization approach is also oblivious

to applications’ performance requirement, and hence it fails

to minimize energy consumption effectively meeting the

applications’ performance requirements. For example, in the

case of QVGA the predictive approach over-performs and

incurs higher energy consumption (Fig. 8(a)-(c)). However, for

SVGA with 24 and 29.97 fps it under-performs, which makes

the energy savings achieved through the predictive approach

ineffective (Fig. 8(e)-(f)). The learning-based approach [17]

performs better as it learns the VFS controls based on the

performance requirements. However, since it uses a single Q-

table formulation it adapts poorly to intra-application workload

variations. Our proposed approach can adapt to such variations

and minimize energy effectively. However, energy reduction

achieved in our approach depends on the number of intra-

application workload variations detected. For example, in the

case of Fig. 8.(c)-(f), the proposed approach does not offer

much of an energy saving when compared to the learning-based

approach [17] due to less workload variations (1, in the case

of decoding SVGA frames at 24 fps). However, in the case

of Fig. 8.(a)-(b), up to 20% energy reduction can be achieved

as the number of workload variations are much higher (4 for

both cases: decoding QVGA frames at 15 and 24 fps).

To give further insight into the energy minimization of

different approaches compared (Fig. 8), Fig. 9 plots the

histograms of H.264 decoding QVGA and SVGA resolutions

at 24 fps each. As can be seen from Fig. 9.(a), for the low

resolution QVGA video, the learning-based, predictive and

proposed approaches execute most of the frames at 300MHz

or 600MHz. The ondemand, however, executes more than

45% of the frames at 1 GHz due to its CPU utilization-based

VFS control. For decoding videos with different workloads

(Fig. 9.(b)), the proposed approach generates a balanced

frequency utilization based on the performance requirement to

ensure effective energy minimization.

Predictive

Learning-

based

Ondemand
Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

H.264(ffmpeg) - VGA 24 -> SVGA 29.97 fps

Predictive Learning-

based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

FFT(MiBench) - 16fps -> 32fps

Predictive

Learning-

based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

1.75

0 0.25 0.5 0.75 1 1.25 1.5 1.75

MPEG4(ffmpeg) - SVGA 24 -> QVGA 24 fps

Predictive
Learning-

based

Ondemand

Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

mad(MiBench) - 44k -> 22k

PredictiveLearning-

based

Ondemand
Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

Susan(MiBench) - large-> small pgm

Predictive

Learning-

based

Ondemand Proposed

0

0.25

0.5

0.75

1

1.25

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

ispell(MiBench) - smallspell -> largespell

N
o

rm
a

li
ze

d
 E

n
e

rg
y

(a) (d)

(b) (e)

(c) (f)

Normalized Performance->

Fig. 10. Comparative energy and performance trade-offs with intra-application
performance variations for different benchmark applications (performance and
energy consumption values normalized similar to Fig. 8)

2) Performance Variations: Fig. 10 depicts the normalized

energy and performance values (with respect to Oracle) of

different benchmark applications with varied performances

within the applications. Figures 10.(a)-(c) show the variation

from a lower performance to a higher performance for ispell

(MiBench), H.264 (ffmpeg) and FFT (MiBench) applications,

while Figures 10.(d)-(f) show the variation from a higher perfor-

mance to a lower performance for susan (MiBench), MPEG4

(ffmpeg) and mad (MiBench) applications. The normalized

energy and performance results are obtained through averaging

three observations, each with input sequence of 3000 decision

epochs (i.e. frames for MPEG4, H.264, FFT and susan, spelling

task for ispell and audio packet for mad).

As can be seen, when the performance requirement increases

from low to high, both predictive and learning-based approaches

under-perform (Fig. 10.(a)-(c)). On the other hand, when the

performance requirement decreases, these approaches over-

perform and incur higher energy consumptions (Fig. 10.(d)-(f)).

This is because both approaches cannot adapt to performance

variations due to lack of interactions between the layers.

The ondemand governor, however, shows trends of scaling

with the performance requirements, but it consistently over-

performs. The proposed approach can effectively scale with the

variation in the performance requirement and adapt through

LT (Section III-B2). As a result, it shows effective energy

minimization across all experiments saving on average 33%

and 24% when compared with the predictive and learning-

based approaches in the case of MPEG4 performance variation

(Fig. 10.(e)) and 30% when compared with the ondemand

governor in the case of FFT performance variation (Fig. 10.(c)).

Fig. 11. Comparative normalized energy with inter-application variations

C. Inter-Application Energy Minimization

Fig. 11 plots the comparative normalized energy con-

sumptions of energy minimization approaches for six inter-

application scenarios. Fig. 11.(a) and (b) show inter-application

switches from high performance to low performance, Fig. 11.(c)

and (e) show the same for high performance to high per-

formance switch, and finally, Fig. 11.(d) and (f) show inter-

application switches from low performance to high performance.

For each inter-application variation, two different switching

intervals of 1000 and 2000 decision epochs are used. The

energy values are normalized with respect to the proposed

approach.

From Fig. 11 two observations can be made. First observation

is related to inter-application energy minimization for a given

switching interval; as can be seen, for an application switch

from a higher performance to lower performance requirement

the proposed approach saves up to 38% and 22% for switching

interval of 2000 decision epochs compared to the predictive

and learning-based approaches, respectively (Fig. 11.(a)). How-

ever, when the application switches from a lower to higher

performance requirement the proposed approach consumes

more energy, while meeting the new application performance

requirement when compared with the predictive and learning-

based approaches. This is because the proposed adaptive

approach adapts to higher VFS control actions to meet the in-

creased performance requirement. Both predictive and learning-

based approaches fail to meet the application performance

requirement despite their energy savings. Similar adaptations

are also observed for the other inter-application switches. As

expected, the ondemand consistently over-performs compared

to the proposed approach. The second observation is related to

the change of switching interval; as can be seen with higher

switching interval the proposed approach exploits the learning

and adaptation for longer time. This leads to higher energy

savings compared with the other approaches. For example,

for a change of switching interval from 1000 to 2000, the

proposed approach saves up to 6% more energy compared to

the predictive approach.

V. LEARNING OVERHEADS

The learning algorithims in the proposed approach have

the following two impacts: deadline misses and learning

overheads. To demonstrate the impact of learning through real-

time deadline misses and overhead, Fig. 12.(a)-(b) show the

worst-case number of deadline misses for intra-application

scenarios, while Fig. 12.(c)-(d) show the same for inter-

application scenarios using the proposed and learning [17]

approaches, respectively. For all application scenarios, the

worst-case number of deadline misses was recorded from

five consecutive runs using the input sizes specified, each

application with 3000 decision epochs. For the intra-application

scenarios (Fig. 12.(a)-(b)), the following observation can be

made. As can be seen, the number of worst-case deadline

misses depends on the intra-application workload variations

and the initial random explorations. The mad, MPEG4 and

H.264 applications exhibit the highest number of deadline

misses as these applications go through one initial RL and

0

20

40

60

80

100

120

140

160

ispell

(largespell)

susan (small) H.264 (VGA

24 fps)

MPEG4 -

QVGA 15 fps

FFT (32 fps) mad (22k)

N
o

 o
f

d
e

a
d

li
n

e
 m

is
s
e

s

During initial learning During learning transfer

(a) Intra-application (Proposed)

0

50

100

150

200

250

ispell(small) ->

mad(44k)

MPEG4 (24

fps) -> H.264

(15 fps)

susan(small) ->

FFT(32 fps)

bbench (small)

-> MPEG4 (30

fps)

mad(44k) ->

susan (large)

FFT(16 fps) ->

bbench

(medium)

N
o

 o
f

d
e

a
d

li
n

e
 m

is
s
e

s

During initial learning During learning transfer

(c) Inter-application (Proposed)

0

100

200

300

400

500

600

ispell

(largespell)

susan (small) H.264 (VGA

24 fps)

MPEG4 -

QVGA 15 fps

FFT (32 fps) mad (22k)

N
o

 o
f

d
e

a
d

li
n

e
 m

is
s
e

s

Initial+re-learning

(b) Intra-application (Re-learning)

0

100

200

300

400

500

600

700

800

ispell(small) ->

mad(44k)

MPEG4 (24

fps) -> H.264

(15 fps)

susan(small) ->

FFT(32 fps)

bbench (small)

-> MPEG4 (30

fps)

mad(44k) ->

susan (large)

FFT(16 fps) ->

bbench

(medium)

N
o

 o
f

d
e

a
d

li
n

e
 m

is
s
e

s

Initial+re-learning

(d) Inter-application (Re-learning)

(1RL+2LT)
(1RL+2LT) (1RL+2LT)

(1RL+1LT)

(1RL+1LT)

(1RL)

(3RL)
(3RL)

(3RL)

(2RL)
(2RL)

(1RL)

(1RL+2LT)

(1RL+4LT)

(1RL+2LT)

(1RL+3LT)

(1RL+4LT)

(1RL+3LT)

(3RL)

(5RL)

(3RL)

(4RL)
(5RL)

(4RL)

Fig. 12. Worst-case number of deadline misses for (a) intra-application
variations using the proposed approach, (b) intra-application variations using
the learning approach [17], (c) inter-application variations using the proposed
approach, and (d) inter-application variations using the learning approach [17]

two intermediate LTs each. For the inter-application scenarios

(Fig. 12.(c)-(d)), the worst-case number of deadline misses

depends on the number of variations encountered. Hence, the

inter-application scenarios with MPEG4 (24 fps) to H.264

(15 fps) and browser (small) to MPEG4 (30 fps) incur higher

number of deadline misses, as they go through one initial RL

and four LTs. These deadline misses accounts to only 4.8%

(compared to 18% in [17]) for the intra-application scenarios

and 3.8% (compared to 13% in [17]) for the inter-application

scenarios over 3000 decision epochs.

To demonstrate the impact of learning due to additional

computation and storage, Fig. 13 plots the average learning

overheads of the proposed approach, compared with the existing

approaches: ondemand [11], learning [17] and predictive [14].

The measured time overheads are evaluated by averaging the

0

0.5

1

1.5

2

2.5

Ondemand Proposed Learning Predictive

VFS transition Performance monitor Control decisionD
V

F
S

 C
o

n
tr

o
l
o

v
e

rh
e

a
d

s,
 m

s

R
L:

 1
.2

2
 m

s

T
L:

 0
.2

3

Fig. 13. Comparative time overheads (TOV H) of different approaches

differences of per frame execution times of a ffmpeg video

decoder decoding three sequences (Tref = 31ms) with and

without energy minimization approaches. The overheads have

the following three components:

1. VFS transition delay is a variable delay due to transition of

CPU frequencies. ARM Cortex A8 has a transition delay of

about 300 µs [30].

2. Performance monitor delay includes the time taken by clock

(depends on the number of accesses) and performance counter

register access (typically ≈20µs per access using C-wrapped

assembly instructions).

3. Control Decision Delay includes the time taken by the

control steps and varies/depends on their complexities.

As expected, the control decision dominates the overheads

as it requires number of computation steps (such as learning

and transfer algorithms with fixed point calculations). The

proposed approach exhibits the highest time overhead of 2.1ms,

with up to 8% deviation due to random explorations during

initial RL and intermediate LTs. Compared with the learning

approach [17], the proposed approach also uses additional

interactions between the layers and LT-based adaptation steps

to minimize energy further in the presence of variations, with

up to 1.22 ms and 0.23 ms, respectively, for the RL and TL

steps. The predictive and ondemand approaches have lower

overheads due to simpler control decisions and less performance

counters’ access. The higher overhead of the proposed approach

highlights one of the limitations of the proposed approach,

which can be minimized by defining the decision epochs as

multiple of frame intervals.

To demonstrate the impact of learning choices made in terms

of size of the Q-tables in the RL algorithm, Fig. 14 plots the

average energy (in %) and time overheads (in ms) for different

Q-table sizes with the following state-action entries: 15 states

and 4 actions (i.e. 15x4), 30 states and 4 actions (i.e. 30x4)

and 40 states and 4 actions (i.e. 40x4). The energy overheads

0

2

4

6

8

10

12

14

(15x4) (30x4) (40x4) (50x4)

E
n

e
rg

y
 o

v
e

rh
e

a
d

 (
%

)

Q-table size

0

0.5

1

1.5

2

2.5

3

3.5

(15x4) (30x4) (40x4) (50x4)

D
V

F
S

 o
v

e
rh

e
a

d
,

m
s

Q-table size

(a) (b)

Fig. 14. (a) Energy, and (b) time overheads for different Q-table sizes

are evaluated by comparing the average energy consumptions

of the proposed approach with offline profile-generated en-

ergy consumption in Oracle for similar performance levels

(Fig. 14.(a)), while time overheads are measured by observing

the CPU times elapsed during learning and VFS action (TOVH)

averaged per decision epoch (Fig. 14.(b)). Both measurements

are obtained through two ffmpeg (H.264 and MPEG4) and four

MiBench (FFT, susan, ispell and mad) benchmark applications,

running over 3000 decision epochs each with the corresponding

input sequences. As can be seen, the energy overheads increase

slightly with the increased Q-table sizes (Fig. 14.(a)) due to

the following two reasons. Firstly, with higher number of

states, the Q-tables now have higher complexity and require

longer exploration times, which results in slower convergence

over time. Secondly, due to increased time overheads, the

effective deadline per decision epoch (Tref −TOV H) reduces,

which requires slightly higher VFS control to be applied to

meet the performance requirements, resulting in higher energy

consumption.

To investigate into the impact workload bin (∆C) and

window sizes of average workload (Cn) computation, Fig. 15(a)

and (b) show the 3D bar plots of the energy and time overheads

(a) (b)

Fig. 15. (a) Energy, and (b) time overheads for varying workload bins (∆C)

incurred by the proposed approach for the following ∆C values:

0.05× Cb, 0.1× Cb, 0.2× Cb and 0.25× Cb. For each ∆C
value, the window size n is varied between 100, 200, 300

and 1000 decision epochs. The energy and time overheads are

evaluated repeating the experiments reported in Fig. 14 with the

Q-table size of (30x4). Fig. 15(a)-(b) demonstrate the energy

consumption and time overhead trade-offs with ∆C values for

a given moving average window size. As can be seen, at the

lower ∆C values, the energy and time overheads are higher as

the workload variations covered by the Q-table is lower. As a

result more workload variations are encountered, which incur

the higher LT overheads, as expected. When the ∆C values are

higher, coarser workload variations are covered by the Q-table,

which gradually reduce the learning time overheads due to

less number of LTs. However, at increased ∆C values, the

normalized energy overhead increases marginally due to loss

of precision of VFS controls.

The moving average window size for Cn also demonstrates

energy and time overheads trade-offs (Fig. 15(a)-(b)). At

lower window size, the proposed approach experiences higher

workload variations in the short-term, causing an increase in

the LTs needed to adapt to workload variations. This causes the

energy and time overheads to increase slightly. As the window

size is gradually increased, the number of intra-application

variations decrease, reducing the energy and time overheads.

However, when the window size is too large, it causes higher

energy and time overheads due to loss of control precisionand

higher computation and storage overheads. Such increased time

overheads, in turn, reduces the opportunity to reduce energy

effectively as demonstrated by the highest energy overheads

(≈ 10%) for a given ∆C value of 0.05×Cb (Fig. 15(a)). The

best trade-off between energy and time overheads is obtained

at ∆C value=0.1× Cb and Cn window size of 200.

VI. SCALING TO MULTI-CORE SYSTEMS

The proposed approach is also implemented and validated

in multi-core systems, through simple modifications to the

approach in Section III. First, the predicted workload per core

is normalized with respect to the total system workload as

C
j

t+1 =
Ĉj
t+1

∑J

j Ĉj
t+1

, (13)

where Ĉj
t+1 is the predicted workload in CPU cycles and C

j

t+1

is the normalized workload for the j-th processor core (j=1

to J , J is the total number of cores in the system). With

the given normalized workload (C
j

t+1) and the average slack

ratio (Lt) bins a number of Q-table states are defined and

organized in rows (similar to (2) and (3)). For each state, the

available VFS control options are used in the action space

organized in the columns to form the Q-table. This Q-table is

then shared among the processor cores to allow RL through

one core action update per decision epoch (controlled in a

round robin fashion). Such VFS control per decision epoch has

two distinct advantages: (a) automatic LT between cores when

similar workload is predicted (due to normalization of workload

in (13)), and (b) Q-table complexity is reduced significantly

as opposed to controlling multiple cores per decision epoch,

which requires combinations of VFS controls of all cores in

the Q-table [29].

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1 Core 2 Cores 4 Cores

N
o

rm
a

li
ze

d
 E

n
e

rg
y

Multi-core Learning

Ondemand

Proposed

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1 Core 2 Cores 4 Cores

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce Multi-core Learning

Ondemand

Proposed

(a) (b)

Fig. 16. Comparative (a) normalized performance, and (b) normalized energy
consumptions of different approaches for varying number of processor cores

To validate the effectiveness of the approach in multi-core

systems, further experiments are carried out on the following:

a Xilinx Zync ZC702 SoC [26] with two ARM Cortex-A9

cores, and a Hardekernel Odroid-XU SoC [28] with four

ARM cores. The Zync SoC supports three VFS control points:

666MHz at 1V, 333MHz at 0.8V and 222MHz at 0.75V and

the Odroid-XU SoC has six VFS control points: 1.6GHz

at 1.2V, 1.0GHz at 1V, 600MHz at 0.8V and 300MHz at

.75V. An H.264 based video decoder application is executed

with a football sequence of approximately 3000 frames using

the following three approaches: multi-core DVFS control

approach [29], Linux ondemand governor per core [11] and

the proposed approach. The approach [29] was chosen for

comparison as it is the closest match using RL-based DVFS

controls in multiprocessor systems. However, for equivalence

and comparability between [29] and our approach the thermal

constraint was removed. Fig. 16.(a) and (b) show the normalized

performance and energy consumptions of the approaches.

Similar to Fig. 8, the performance is normalized with respect

to Tref and the energy normalization of the Oracle.

As can be seen, the proposed approach continues to provide

energy reduction compared to the existing approaches. The

multi-core learning [29] and ondemand [11] approaches over-

perform due to poor adaptation to variations, resulting in up

to 18% higher energy (Fig. 16.(b)). Using LT-based approach

to multi-core systems has the added advantage of controlled

learning overheads as shown in Fig. 17. As the learning of

each core can be exploited by the other cores, it shows quicker

convergence.

0

50

100

150

200

250

2 Cores 4 Cores

W
o

rs
t-

ca
se

 le
a

rn
in

g
 t

im
e

(i

n
 d

e
c
is

io
n

 e
p

o
c
h

s
)

Multi-core Learning

Proposed

Fig. 17. Comparative worst-case learning overheads for multi-core systems

VII. CONCLUSIONS

An adaptive energy minimization approach for embedded

systems has been proposed, capable of adjusting to workload

and performance variations within and across applications.

The energy minimization is enabled through RL algorithm

for identifying the suitable VFS controls based on predicted

workloads for a given application performance requirement. To

ensure VFS controls are adjusted to workload or performance

variations learning transfer-based adaptation is carried out,

guided by the feedback from the CPU performance counters.

The proposed approach is implemented as a power governor in

Linux OS and extensively validated through experiments using

different benchmark applications and number of cores. The

approach is expected to provide effective energy savings for

embedded systems that typically execute multiple applications.

ACKNOWLEDGMENT

The authors would like to thank the EPSRC-UK for funding

this work under PRiME project, grant number EP/K034448/1.

Experimental data used in this paper can be found at DOI

http://dx.doi.org/10.5258/SOTON/383899.

REFERENCES

[1] D. Flynn. An ARM Perspective on Addressing Low-power Energy-efficient
SoC Designs. in Proc. of the 2012 ACM/IEEE International Symposium

on Low Power Electronics and Design (ISLPED’12), pp.73–78, 2012.

[2] Y. Tan, W. Liu, and Q. Qiu. Adaptive power management using
reinforcement learning. in Proc. of Intl. Conference on Computer-Aided

Design, ICCAD, New York, NY, USA: ACM, 2009, pp.461–467.

[3] J. Pouwelse, K. Langendoen and H.J. Sips. Application-directed voltage
scaling. in IEEE Trans. Very Large Scale Integration Systems (TVLSI),
vol.11, no.5, pp.812–826, Oct. 2003.

[4] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques
for system-level dynamic power management,” in IEEE TVLSI, vol.8, no.3,
pp.299–316, June. 2000.

[5] K. Choi, W.-C. Cheng, and M. Pedram. Frame-based dynamic voltage and
frequency scaling for an MPEG Player. Journal of Low Power Electronics,
vol. 1, no. 1, pp.27–43, Apr. 2005.

[6] W. Yuan and K. Nahrstedt. Practical voltage scaling for mobile multimedia
devices. in Proc. of the 12th Annual ACM International Conference on

Multimedia, ACM, pp.924–931, NY, USA, 2004.

[7] Y. Gu and S. Chakraborty. Control theory-based DVS for interactive 3D
games. in Proc. of the 45th Annual Conference on Design Automation

(DAC), New York, USA: ACM Press, 2008, pp.740–745.

[8] S. Sinha, J. Suh, B. Bakkaloglu and Y. Cao. Workload-aware neuromorphic
design of the power controller. IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, vol. 1, no. 3, pp.381–390, Sep. 2011.

[9] G. Dhiman and T.S. Rosing. System-level power management using online
learning. IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems (TCAD), vol. 28, no. 5, pp.676–689, May. 2009.

[10] M. Pedram. Power optimization and management in embedded systems.
in Proc. of the Asia and South Pacific Design Automation Conference,

ASP-DAC’01, ACM, pp.239–244, Yokohama, Japan, 2001.
[11] V. Pallipadi and A. Starikovskiy. The Ondemand governor. in Proc. of

the Linux Symposium, 2006.
[12] R. Jejurikar and R. Gupta. Dynamic voltage scaling for systemwide

energy minimization in real-Time embedded systems Proc. of ISLPED’04,
pp.78–81, August, 2004.

[13] H. Jung and M. Pedram. Continuous frequency adjustment technique
based on dynamic workload prediction. in 21st IEEE Intl. Conference on

VLSI Design, VLSID, IEEE, 2008, pp.249–254.
[14] K. Choi, R. Soma and M. Pedram. Dynamic voltage and frequency

scaling based on workload decomposition. in Proc. of ISLPED’04, 2004,
pp.174–179.

[15] S. Yue, D. Zhu, Y. Wang, and M. Pedram. Reinforcement learning based
dynamic power management with a hybrid power supply. in IEEE 30th

Intl. Conference on Computer Design (ICCD), 2012, pp.81–86.
[16] A.K. Das, R.A. Shafik, G.V. Merrett, B.M. Al-Hashimi, A. Kumar and

B. Veeravalli. Reinforcement learning-based inter-and intra-application
thermal optimization for lifetime improvement of multicore systems. in
Proc. of DAC’14, pp.1–6, June, 2014.

[17] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu. Achieving autonomous
power management using reinforcement learning. ACM Trans. Des. Autom.

Electron. Syst., vol. 18, no. 2, pp.24:1–24:32, Apr. 2013.
[18] R. Ye, Q. Xu. Learning-based power management for multi-core

processors via idle period manipulation. In IEEE TCAD, vol.33, no.7,
pp.1043–1055, 2014.

[19] BeagleBoard. BeagleBoard-xM Rev C System Reference Manual, 2010.
[Online]. Available: http://beagleboard.org

[20] FFmpeg A complete, cross-platform solution to record, convert and
stream audio and video. [Online]. Available: https://www.ffmpeg.org/

[21] M.R. Guthaus, M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin,
T. Mudge, and R.B. Brown. MiBench: A free, commercially representative
embedded benchmark suite. in IEEE International Workshop on Workload

Characterization (WWC), IEEE, pp.3–14, Dec., 2001. [Online]. Available:
http://www.eecs.umich.edu/mibench/

[22] FFmpeg Open-source Mozilla Firefox browser. [Online]. Available:
https://www.mozilla.org/

[23] BBench Browser benchmarking tool. [Online]. Available: http://bbench.
eecs.umich.edu/

[24] T. Jiang, D. Grace and P.D. Mitchell Efficient exploration in reinforcement
learning-based cognitive radio spectrum sharing IET Communications,
vol. 5, Iss. 10, pp. 1309–1317, 2010.

[25] O.S. Unsal, and I. Koren. System-level power-aware design techniques
in real-time systems in Proc. of the IEEE, vol.91, no.7, pp.1055–1069,
July, 2003.

[26] Xilinx Inc. Zynq-7000 All Programmable SoC: ZC702 Evaluation Kit
and Video and Imaging Kit (ISE Design Suite 14.2) 2012.

[27] W. Yuan, K. Nahrstedt, S. Adve, D.L. Jones and R.H. Kravets. Design and
evaluation of a cross-layer adaptation framework for mobile multimedia
systems. in Proc. SPIE 5019, Multimedia Computing and Networking,
pp.1–13, Jan, 2003.

[28] Hardkernel. Odroid-XU by Hardkernel. [Online]. Available:
http://www.hardkernel.com. Last Accessed 10 Dec. 2014.

[29] Y. Ge and Q. Qiu. Dynamic Thermal Management for Multimedia
Applications Using Machine Learning. in Proc. of the 48th Design

Automation Conference (DAC), New York, USA, pp.95–100, 2011.
[30] S. Sangyoung, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram and

N. Chang. Accurate Modeling of the Delay and Energy Overhead of
Dynamic Voltage and Frequency Scaling in Modern Microprocessors. in
IEEE TCAD, vol.32, no.5, pp.695–708, May, 2013.

[31] ARM. Cortex-A8 Technical Reference Manual. [Online]. Available:
http://www.arm.com. Last Accessed 7 April 2015.

APPENDIX A: LINUX GOVERNOR IMPLEMENTATION

Fig. 18 shows the block diagram of the Linux power governor

implementation consisting of the following interfaces:

A. Kernel-level Library Interfaces

These interfaces comprise of the scheduler, CPUfreq and

SYSFS interfaces. The scheduler interface (block A) defines

the CPU IDs, system timer and functions to establish gov-

ernor control of a specific CPU. The CPUfreq interface

Governor Settings
curQtable[][], prevQtable[][],

currentC_b, slack_states, action_states

HW Interface Functions
uint32 predict_WL(uint32 cur_avg) [Section 3.1]

uint32 observe_WL(void) [Section 3.1]

void lbg_set_cpufreq(..) [Section 3.2]

void start/stop_counter(counter_id*)

RL Functions
float calculate_reward(slack_ratio, prev_slack_ratio) [Section 3.2]

float calculate_slack(prev_slack_ratio) [Section 3.2]

void map_state(curWL, slack_ratio) [Section 3.2]

void update_Qtable(state_id, action_id) [Section 3.2]

D E

F

GH

Application Programming Interface
void set/get_appid(AppID) [Section 3.3]

int set/get_perf(void *app()) [Section 3.3]

Transfer-Learning-based Adaptation
unsigned int mean_WL(cur_WL) [Section 3.3]

int check_mean_WL(cur_mean) [Section 3.3]

Void transferQtable(..) [Section 3.3]

Governor Library Interfaces

OS Scheduler Interfaces
(CPU ID, timer, scheduler)

CPUfreq Interface
(Up/down thresholds and differentials)

SYSFS Interface
(Kernel System File System variables)

A

BC

Kernel-level Library Interface

Fig. 18. Implementation of the proposed approach showing different interfaces

(block B) retrieves information related to processor frequency

steps. The SYSFS interface (block C) defines file system

variables/constants.

B. Governor Library Interfaces

These interfaces include the following:

1) Governor settings (block D): define the Q-tables

(curQTable and prevQTable), each with its base workload Cb,

performance requirement Tref and the state-action pairs.

2) Application programming interface (block E): sets up

the inter-layer interactions between the application and runtime

layers, implemented through a thread-safe handshake signal

(called rts→handshake), and a SYSFS variable for storing the

Tref . The kernel initially starts a notification process with the

rts→handshake signal, which is acknowledged by set perf(..)

function to set the Tref .

3) Hardware interface (block H): defines the interaction and

control between the runtime and hardware layers. It processes

the necessary prediction and feedback from the CPU perfor-

mance counters through predict WL(..) and observe WL(..)

functions. During observation of the workload, start counter(..)/

stop counter(..) IO functions are used to start/stop the CPU

performance counters using the ioctl interface in Linux. The

frequency is set for the system using lbg set cpufreq(..)

function.

4) RL functions (block F): set up the learning functions

in the Q-table (Section III-A2). Based on the predicted

workload, map state(..) maps the system’s current state, calcu-

late reward(..) calculates reward of a selected VFS action. The

calculated reward is then updated through update Qtable(..)

function using the Q-values given by (5).

5) Learning transfer-based adaptation (block G): is imple-

mented through a set of functions. For detecting workload

variations, the short-term mean workload is calculated using

mean WL(..) and for performance variations are communicated

through API. When a variation is detected, the Q-table is

updated and learning is transferred with a new base workload

value (Cb) using transferQtable(..).

Since floating point calculations are limited in kernel-level,

appropriate scaling was applied to different variables and

constants (in Section III). The governor is applied through

the Linux command-line as

cpufreq_set --cpu 0 --governor ltbg

The cpufreq set is a command to administer the governor

settings; the –cpu option is followed by the CPU ID (.e.g ’0’)

and the –governor option specifies the governor name, (e.g.

’ltbg’: learning transfer-based governor).

APPENDIX B

LEMMA I: For exploration of all |S| states in a Q-table,

each with |A| actions, the minimum number of explorations

required by an EPD-based exploration is given by:
(

3

5
|S||A|

)

,

which is less than that required by an UPD-based exploration:

(|S||A|).
Proof: The exploration of the states with near-zero (i.e. ±5%)

slack values constitute 1

5
th of |S| and require exploration of

all |A| actions in the Q-table due to (4). The total number of

explorations required by these states amounts to
(

1

5
|S||A|

)

.

The remaining states constitute 4

5
-th of |S| and minimally

require explorations of only half of the |A| actions in the

Q-table due to relationship between their slacks and actions

given by (4). Hence, the total number of explorations required

by these states sums up to
(

4

5

1

2
|S||A|

)

=
(

2

5
|S||A|

)

. The total

number of minimum explorations required for |S| states by

an EPD-based exploration is:
(

3

5
|S||A|

)

. This proves the first

part.

The exploration of |S| states using UPD does not exploit

the state-action relationships described in (4). As a result, all

slack state-action pairs need to be explored, requiring a total

of (|S||A|) explorations. This is 40% less than EPD-based

explorations. This proves the second part.

PROPOSITION I: If x% of the higher slack states (i.e.

15% > |Lt| > 5%) retain their relationships with the chosen

actions, the learning transfer algorithm (Algorithm 1) will

require minimum
[(

1

5
|S||A|

)

+
(

2

5
(1− x%)|S||A|

)]

further

explorations.

Proof: From Lemma I, the minimum number of explorations

required for the lower slack states (i.e. ±5% slack values)

is given by
(

1

5
|S||A|

)

. When x% of the higher slack states

retain their relationships with the scaled actions, the minimum

number of explorations required by the LT algorithm is

given by the fraction of remaining higher slack states by

half of the total number of possible actions (due to intrinsic

state-action relationships), i.e.
(

2

5
(1− x%) |S||A|

)

(Lemma

I). For all slack states, the LT algorithm (Algorithm 1)

requires minimum
[(

1

5
|S||A|

)

+
(

2

5
(1− x%)|S||A|

)]

further

explorations to expedite learning. This proves the proposition.

Rishad A. Shafik (M’09-) is a lecturer in Electronic
Systems at Newcastle University, UK. Dr. Rishad
received his Ph.D., and M.Sc. (with distinction)
from the University of Southampton in 2010, and
2005; and B.Sc. in Electronic Engineering (with
distinction) from the IUT, Bangladesh in 2001. He
is one of the editors of the book ”Energy-efficient
Fault-tolerant Systems,” published by Springer USA,
and author/co-author of 70+ IEEE/ACM journal and
conference articles. His research interests include
energy-efficiency and reliability aspects of embedded

systems.

Sheng Yang received his B.Eng. in Electronic
Engineering from the University of Southampton, UK,
in 2008, and Ph.D. degree in Electronic Engineering
from the same in 2013. In 2007 he worked as an NXP
intern for modelling a data hub using SystemC. In
2011 he held an internship with ARM investigating
data integrity of flip-flops within microprocessors.
Currently, he is working as a research fellow at the
University of Southampton. His research interests in-
clude low power and fault tolerant design techniques
for embedded systems.

Anup Das received B.Eng. degree in Electronics
and Telecommunication Engineering from Jadavpur
University, India, in 2004, and Ph.D. degree in
computer engineering from the National University of
Singapore, in 2014. He is currently a post-doctoral
research fellow at the University of Southampton.
From 2004 to 2007, he was with STMicroelectronics
Ltd. as an IC design engineer and from 2007 to
2011, he was with LSI Corporation as design-for-
test engineer of storage SoCs. His research interests
include and reliable design and runtime management

of multiprocessor systems.

Luis A. Maeda-Nunez is a research student from
Mexico. He studied his Bachelor in Electronics
Engineering back at ITESM, Mexico. He did his MSc
in Microelectronics Systems Design at the University
of Southampton where graduated with Distinction
in 2011. He started and is currently studying for
his PhD on Power Management for Multi-core
Processors. His research interests include multi-core
architectures, power and thermal management, and
Machine Learning.

Geoff Merrett (GSM’06-M’09) received the BEng
degree (Hons) in Electronic Engineering and the
PhD degree from the University of Southampton,
UK, in 2004 and 2009. He is currently an Associate
Professor in electronic systems at the University
of Southampton. His research interests include low-
power and energy harvesting aspects of embedded
systems, and has published over 90 articles in
journals/conferences in these areas. Dr Merrett is
a Fellow of the HEA and he was the General Chair
of the Energy Neutral Sensing Systems (ENSsys)

workshop from 2013 to 2015.

Bashir M. Al-Hashimi (M’99-SM’01-F’09) is a
Professor of Computer Engineering and Dean of
the Faculty of Physical Sciences and Engineering
at University of Southampton, UK. He is an ARM
Professor of Computer Engineering and Co-Director
of the ARM- ECS research centre. His research
interests include methods, algorithms and design
automation tools for low-power design and test of
embedded computing systems. He has published over
300 technical papers, authored or co-authored 5 books

and has graduated 31 PhD students.

