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from User-Generated GPS Traces
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The advance of GPS-enabled devices allows people to record their location histories with GPS
traces, which imply human behaviors and preferences related to travel. In this article, we perform
two types of travel recommendations by mining multiple users’ GPS traces. The first is a generic
one that recommends a user with top interesting locations and travel sequences in a given
geospatial region. The second is a personalized recommendation that provides an individual with
locations matching her travel preferences. To achieve the first recommendation, we model multiple
users’ location histories with a tree-based hierarchical graph (TBHG). Based on the TBHG, we
propose a HITS (Hypertext Induced Topic Search)-based model to infer the interest level of a
location and a user’s travel experience (knowledge). In the personalized recommendation, we
first understand the correlation between locations, and then incorporate this correlation into a
collaborative filtering (CF)-based model, which predicts a user’s interests in an unvisited location
based on her locations histories and that of others. We evaluated our system based on a real-world
GPS trace dataset collected by 107 users over a period of one year. As a result, our HITS-based
inference model outperformed baseline approaches like rank-by-count and rank-by-frequency.
Meanwhile, we achieved a better performance in recommending travel sequences beyond baselines
like rank-by-count. Regarding the personalized recommendation, our approach is more effective
than the weighted Slope One algorithm with a slightly additional computation, and is more
efficient than the Pearson correlation-based CF model with the similar effectiveness.
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1. INTRODUCTION

Recently, people start recording their outdoor movements with GPS traces for
many reasons, such as travel experience sharing [Counts and Smith 2007;
GeoLife 2007], life logging [Zheng et al. 2008c, 2008d] and sports activity anal-
ysis [SportsDo 2007; Bikely 2006]. A branch of websites or forums that enable
users to establish some geo-related Web communities have appeared on the
Internet. By uploading their GPS traces to such communities, users can man-
age their travel experiences on a Web map and share travel knowledge among
each other. Although a huge amount of GPS traces have been accumulating,
the travel recommendations provided by these communities are not compre-
hensive enough. Being faced with such a large dataset, community users have
no patience in browsing every GPS trace and identify interesting locations by
themselves.

Typically, people need two types of recommendations during a journey:
generic and personalized recommendations. Regarding the generic recommen-
dation, people usually desire to know the most interesting locations in a geospa-
tial region and the popular travel sequences among these locations. To define
interesting location, we mean the culturally important places, such as Tianan-
men Square in Beijing and the Statue of Liberty in New York (i.e., popular
tourist destinations), and commonly frequented public areas, such as shop-
ping malls/streets, restaurants, cinemas and bars. With the information men-
tioned above, an individual can understand an unfamiliar city in a very short
period and plan their journeys with minimal effort. Besides the generic rec-
ommendation, an individual also wants to visit some locations matching her
travel preferences (personalized). For instance, a food-lover prefers to find some
restaurants providing delicious foods although these restaurants might not be
the most popular places in a city.

However, we will meet some challenges when conducting these two types of
recommendations. First, the interest level of a location does not only depend
on the number of users visiting this location but also lie in these users’ travel
experiences (knowledge). Intrinsically, different people have different degrees
of knowledge about a geospatial region. In a journey, the users, with more travel
experiences about a region, would be more likely to visit some interesting
locations in that region. For example, the local people of Beijing are more
capable than overseas tourists of finding out high quality restaurants and
famous shopping malls in Beijing. Second, an individual’s travel experience and
interest level of a location are relative values (i.e., it is not reasonable to judge
whether or not a location is interesting), and are region-related (i.e., conditioned
by the given geospatial region). A user, who has visited many places in a city like
New York, might have no idea about another city, such as Beijing. Third, current
CF models are not good enough to understand an individual’s travel preferences
from her location history. The traditional item-based methods have a good
online efficiency while cannot well model human travel behaviors, such as the
visited sequence of locations. On the contrary, some user-based CF models can
model human travel behavior while will cause a huge computation loads (due
to the computations of similarity between each pair of users).
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In this article, we conduct both generic and personalized travel recommen-
dations based on multiple users’ GPS traces. To achieve the generic recommen-
dation,

— We propose a tree-based hierarchical graph (TBHG), which can model mul-
tiple users’ travel sequences on a variety of geospatial scales.

— Based on the TBHG, we propose a HITS-based model to infer users’ travel
experiences and interest of a location within a region. This model leverages
the main strength of HITS to rank locations and users with the context
of a geospatial region, while calculating hub and authority scores offline.
Therefore, we can ensure the efficiency of our system while supporting users
to specify any geo-regions as queries.

— Considering an individual’s travel experiences and the interests of a location
as well as people’s transition probability between locations, we mine the top
popular travel sequences from multiple users’ location histories.

To conduct the second recommendation, we first mine the correlation among
locations from multiple users’ GPS traces in terms of (1) the sequences that the
locations have been visited and (2) the travel experiences of the users creating
these sequences. Later, the location correlation is integrated into a CF-based
model that predicts a user’s interests in an unvisited location based on her
locations histories and that of others.

The rest of this article is organized as follows. Section 2 summarizes the
related work. Section 3 introduces some basic concepts used in this article and
gives an overview of our work. Section 4 describes the methodology of mining
interesting locations and travel sequences. Section 5 illustrates the method
of mining location correlation. Section 6 details the recommenders. Section 7
reports on major evaluation results followed by some discussions. Section 8
concludes this article.

2. RELATED WORK

2.1 Mining Location History

2.1.1 Mining Individual Location History. During the past years, a branch
of research has been performed based on individual location history recorded
in GPS traces. These works include detecting significant locations of a user
[Ashbrook and Starner 2003; Hariharan and Toyama 2004], predicting the
user’s movement among these locations [Liao et al 2005], and recognizing user-
specific activities at each location [Liao et al. 2004; Patterson et al. 2003]. As
opposed to these works, we aim to model multiple users’ location histories and
learn patterns from numerous individuals’ behaviors.

2.1.2 Mining Multiple Users’ Location Histories. Gonotti et al. [2007]
mined similar sequences from users’ moving trajectories, and Mamoulis et al.
[2004] proposed a framework for retrieving maximum periodic patterns in
spatio-temporal data. MSMLS [Krumm and Horvitz 2006] used a history of
a driver’s destinations, along with data about driving behavior extracted from
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multiple users’ GPS traces, to predict where a driver may be going as a trip
progresses. Eagle and Pentland [2006] aimed to recognize the social pattern in
daily user activity from the dataset collected by 100 users with a Bluetooth-
enabled mobile phone. Based on raw GPS data, Zheng et al. [2008a, 2008b;
2010a] classified people’s GPS trajectories into different categories of trans-
portation modes consisting of driving, walking, taking a bus, and riding a bike.
In contrast to these techniques, we extend the paradigm of mining users’ loca-
tion histories from exploring users’ behaviors to understanding locations and
modeling the relation between users and locations.

2.2 Location Recommenders

2.2.1 Recommenders based on Real-Time Location. Mobile tourist guide
systems typically recommend locations and sometimes provide navigation in-
formation based on a user’s real-time location. Recently, some researchers aim
to filter away from the returned results the invisible entities occluded by the
nearby building [Beeharee and Steed 2007; Simon and Fröhlich 2007]. Mean-
while, another branch of work [Abowd et al. 1997; Park et al. 2007] started
involving a user’s location history in these systems to provide the user with a
more personalized recommendation. In contrast to these techniques, we aim
to integrate the social environment of an individual into travel recommenders
by helping the individual deeply understand the locations around them with
the knowledge mined from not only their own but also other users’ location
histories.

2.2.2 Recommenders based on Location History. Using multiple users’
real-world location histories, some recommender systems, such as Geowhiz

[Horozov et al. 2006], CityVoyager [Takeuchi and Sugimoto 2006], and GeoLife
[Zheng et al. 2009a; Li et al. 2008; Zheng et al. 2010b], have been designed to
recommend geographic locations like shops or restaurants to users. Horozov
et al. [2006] proposed an enhanced collaborative filtering solution to gener-
ate the recommendation of a restaurant. Takeuchi et al. [2006] attempted to
recommend shops to users based on their individual preferences estimated
by analyzing their past location histories. Li et al. [2008] first mined a user
similarity from human location history by considering the sequence property
of travel behaviors and the hierarchical property of geographical spaces. Fur-
ther, Zheng et al. [2010b] incorporate this user similarity into a user-centric CF
model to conduct a personalized friend & location recommendation. Zheng et al.
[2010c] use a collaborative learning approach to enable an activity-location
recommendation based on GPS traces associated with user-generated com-
ments. That is, given an activity like shopping, the system recommends the
best k locations. In turn, given a location, for example, the Olympic Park of
Beijing, the best k activities that should be conducted in the location are rec-
ommended.

The major difference between these works and ours lies in three aspects.
First, we differ the travel experiences of different users. Second, we consider
the relation between locations and users’ travel experiences, for example, the
mutual reinforcement relation and the region-related constraints. Third, our
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Fig. 1. The user interface regarding location recommendation.

CF model well model users’ travel behaviors while keeping the similar efficiency
as the original item-based method.

3. OVERVIEW

3.1 Application Scenarios

The work reported in this article is an important component of our project
GeoLife [Zheng et al. 2008a, 2008b, 2008c, 2008d, 2009a, 2009b, 2009c; Chen
et al. 2010; Zheng et al. 2010a, 2010b, 2010c; Zheng and Xie 2010], whose
prototype has been internally accessible within Microsoft since Oct. 2007. So
far, we have had 106 individuals using this system.

Figure 1 shows the user interface of our applications running on desktop com-
puters. In the right part of this figure, we can view the top five interesting loca-
tions and the most five experienced users in the region specified by the present
map view. The top five interesting travel sequences within this region are also
displayed on the map. By zooming in/out and panning this map, an individual
can retrieve such results within any regions. In addition, the photos taken at an
interesting location will be presented on the bottom of the window. Once a user
has accumulated a certain number of GPS traces, she can view the personalized
recommendation that offers locations matching her travel preferences.

As shown in Figure 2, a user with a GPS-phone can find out the top five
interesting locations and travel sequences nearby their present geographic
position (the red star). In addition, when the user reaches a location, our system
would provide them with a further suggestion by presenting the top three
popular sequences start from this location. Of course, users can also view the
personalized recommendation on a mobile phone as long as they have GPS
traces stored in GeoLife.
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Fig. 2. Location recommendations on a GPS-phone.

Fig. 3. A GPS trace and a stay point.

3.2 Preliminary

Definition 1. GPS Trace. A GPS trace Tra is a sequence of time-stamped
points, Tra = p0 → p1 → · · · → pk, where pi = (x, y, t) (i = 0, 1, . . . , k); (x, y)
are latitude and longitude respectively, and t is a timestamp. ∀0 ≤ i ≤ k,
pi+1.t > pi.t.

Definition 2. Dist(pi, pj) denotes the geospatial distance between two
points pi and pj , and Int(pi, pj) = |pi.t − pj .t| is the time interval between
two points.

Definition 3. Stay Point. A stay point s is a geographical region where
a user stayed over a time threshold Tr within a distance threshold Dr. In a
trace, s is characterized by a set of consecutive points P = 〈pm, pm+1, . . . , pn〉,
where ∀m < i ≤ n, Dist(pm, pi) ≤ Dr, Dist(pm, pn+1) > Dr and Int(pm, pn) ≥ Tr.
Therefore, s = (x, y, ta, tl), where

s.x =

n
∑

i=m

pi.x/|P|, (1)

s.y =

n
∑

i=m

pi.y/|P|, (2)

respectively, stands for the average x and y coordinates of the collection P;
s.ta = pm.t) is the user’s arriving time on s and s.tl = pn.t represents the user’s
leaving time.

As shown in Figure 3, {p1, p2, . . ., p8} formulate a trace, and a stay point
would be detected from {p3, p4, p5, p6} if d ≤ Dr and Int(p3, p6) ≥ Tr. In
contrast to a raw point pi, a stay point carries a particular semantic meaning,
such as a shopping mall and a restaurant they visited.

ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 1, Article 2, Pub. date: January 2011.



Learning Travel Recommendations from User-Generated GPS Traces • 2:7
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Fig. 4. Building a tree-based hierarchical graph.

Definition 4. Location History. An individual’s location history h is rep-
resented as a sequence of stay points they have visited with corresponding
transition times,

h = 〈s0
�t1
→ s1

�t2
→ · · ·

�tn−1
→ sn〉, (3)

where ∀0 ≤ i < n, si is a stay point and �ti = si+1.ta − si.tl is the time interval
between two stay points.

Intrinsically, people generate many trips in their lives. For instance, an
individual would visit some shopping malls in a trip and start a new trip two
days later to go hiking. Thus, we need to partition an individual’s location
history h into some trips if the travel time spent between two consecutive
locations exceeds a certain threshold Tp.

Definition 5. Trip. A trip is a sequence of stay points consecutively visited

by a user, Trip = 〈s0
�t1
→ s1

�t2
→ · · ·

�tn−1
→ sn〉, where ∀1 ≤ k < n, �tk < Tp (a

threshold).

However, so far, people’s location histories are still inconsistent as the stay
points detected from various individuals’ traces are not identical. To address
this issue, we propose the TBHG to model multiple users’ location histories.
Generally speaking, a TBHG is the integration of two structures, a tree-based
hierarchy H and a graph G on each level of this tree. The tree expresses the
parent-children (or ascendant-descendant) relation of the nodes pertaining to
different levels, and the graphs denote the peer relation among the nodes on
the same level.

As demonstrated in Figure 4, in our system two steps need to be performed
when building a TBHG.

(1) Formulate a Tree-Based Hierarchy H. We put together the stay points de-
tected from users’ GPS logs into a dataset. Using a density-based clustering
algorithm, we hierarchically cluster this dataset into some geospatial re-
gions (a set of clusters C) in a divisive manner. Thus, the similar stay points
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from various users would be assigned to the same clusters on different
levels.

(2) Build Graphs on Each Level. Based on the tree-based hierarchy H and
users’ location histories, we can connect the clusters of the same level with
directed edges. If consecutive stay points from one trip are individually con-
tained in two clusters, a link would be generated between the two clusters
in a chronological direction in accordance with the time serial of the two
stay points.

Definition 6. Tree-Based Hierarchy H. H is a collection of stay point-based
clusters C with a hierarchy structure L. H = (C, L), L = {l1, l2, . . . , ln} denotes
the collection of levels of the hierarchy, and C = {ci j |1 ≤ i ≤ |L|, 1 ≤ j ≤ |Ci|}

means the collection of clusters on different levels. Here, ci j represents the jth
cluster on level li ∈ L, and Ci is the collection of clusters on level li.

Definition 7. Tree-Based Hierarchical Graph (TBHG). Formally, a TBHG

is the integration of H and G, TBHG = (H, G). H is defined in Definition 6, and
G = {gi = (Ci, Ei), 1 ≤ i ≤ |L|}. On each layer li ∈ L, gi ∈ G includes a set of
vertexes Ci and the edges Ei connecting ci j ∈ Ci.

Based on the TBHG, we can substitute a stay point in a user’s location
history h with the cluster ID the stay point pertains to. Supposing s0 ∈ c31, s1 ∈

c32, sn ∈ c3n, Eq. (3) can be replaced with

h = 〈c31
�t1
→ c32

�t2
→ · · ·

�tn−1
→ c3n〉. (4)

Therefore, a trip can be represented as a set of consecutive stay-point-
clusters sequence (∀0 ≤ k ≤ n,�tk < Tp), and h can be partitioned into a
set of trips on different levels of the hierarchy, h = {Trip}.

Notations. In the rest of this article, we use the following notations to simplify
the descriptions. U = {u1, u2, . . . , un} represents the collection of users in a
community, uk ∈ U, 1 ≤ k ≤ |U | denotes the kth user, and Trak, Sk, hk and
TPk respectively stand for the uk’s GPS traces, stay points, location history and
trips.

3.3 Architecture

Figure 5 shows the architecture of our system, which is comprised of three
parts: location history modeling, knowledge mining, and recommendation. The
first two operations can be performed offline, while the last process should be
conducted online based on the geo-region specified by a user.

Figure 6 gives a formal description of the location history modeling, where
the stay point detection algorithm is introduced in Li et al. [2008].

4. MINING INTERESTING LOCATIONS AND TRAVEL SEQUENCES

In this section, we first briefly introduce the key idea of HITS and then describe
our HITS-based inference model. Later, using such inference results, we mine
the popular travel sequences from each graph of the TBHG.
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Fig. 5. The architecture of our recommendation system.

Fig. 6. The algorithm for location history modeling.

4.1 Basic Concepts of HITS

HITS stands for hypertext induced topic search, which is a search-query-
dependent ranking algorithm for Web information retrieval. When the user
enters a search query, HITS first expands the list of relevant pages returned by
a search engine and then produces two rankings for the expanded set of pages,
authority ranking and hub ranking. For every page in the expanded set, HITS
assigns them an authority score and a hub score.

As shown in Figure 7, an authority is a Web page with many in-links, and
a hub is a page with many out-links. The key idea of HITS is that a good hub
points to many good authorities, and a good authority is pointed to by many
good hubs. Thus, authorities and hubs have a mutual reinforcement relation.
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Fig. 8. Our HITS-based inference model.

More specifically, a page’s authority score is the sum of the hub scores of the
pages it points to, and its hub score is the integration of authority scores of the
pages pointed to by it. Using a power iteration method, the authority and hub
scores of each page can be calculated. The main strength of HITS is ranking
pages according to the query topic, which may provide more relevant authority
and hub pages. However, HITS needs some time-consuming operations, such
as on-line expanding page sets and calculating the hub and authority scores.

4.2 Our HITS-Based Inference Model

4.2.1 Model Description. Using the third level of the TBHG shown in
Figure 4 as a case, Figure 8 illustrates the main idea of our HITS-based
inference model. Here, a location is a cluster of stay points, like c31 and c32. We
regard an individual’s visit to a location as an implicitly directed link from the
individual to that location. For instance, cluster c31 contains two stay points
respectively detected from u1 and u2’s GPS traces, that is, both u1 and u2 have
visited this location. Thus, two directed links are generated respectively to
point to c31 from u1 and u2. Similar to HITS, in our model, a hub is a user who
has accessed many places, and an authority is a location that has been visited
by many users. Therefore, users’ travel experiences (hub scores) and the
interests of locations (authority scores) have a mutual reinforcement relation.

4.2.2 Strategy for Data Selection. Intrinsically, a user’s travel experience is
region-related, that is, a user who has rich travel knowledge in a city might have
no idea about another city. Also, an individual, who has visited many places in
a part of a city, might know little about another part of the city (if the city is
very large, like New York). This feature is aligned with the query-dependent
property of the HITS. Thus, before conducting the HITS-based inference, we
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Fig. 9. Some cases demonstrating the data selection strategy.

need to specify a geospatial region (a topic query) for the inference model and
formulate a dataset that contains the locations fallen in this region. However,
using an online data selection strategy, (i.e., specify a region based on a user’s
input), we need to perform lots of time consuming operations, which may reduce
the feasibility of our system. Actually, on a level of the TBHG, the shape of a
graph node (cluster of stay points) provides an implicit region for its descendent
nodes. These regions covered by the clusters on different levels of the hierarchy
might stand for various semantic meanings, such as a city, a district and a
community. Therefore, we are able to calculate in advance the interest of every
location using the regions specified by their ascendant clusters. In other words,
a location might have multiple authority scores based on the different region
scales it falls in. Also, a user might have multiple hub scores conditioned by
the regions of different clusters.

Definition 8. Location Interest. In our system, the interest of a location (ci j)
is represented by a collection of authority scores Ii j = {I1

i j, I2
i j, . . . , Il

i j}. Here, Il
i j

denotes the authority score of cluster ci j conditioned by its ascendant nodes on
level l, where 1 ≤ l < i.

Definition 9. User Travel Experience. In our system, a user’s (e.g., uk) travel
experience is represented by a set of hub scores ek = {ek

ij |1 ≤ i < |L|, 1 ≤ j ≤

|Ci|} (refer to Definition 6), where ek
ij denotes uk’s hub score conditioned by the

region of ci j .

Figure 9 demonstrates these definitions. In the region specified by cluster
c11, we can respectively calculate an authority score (I1

21 and I1
22) for cluster c21

and c22. Meanwhile, within this region, we are able to infer authority scores
(I1

31, I1
32, I1

33, I1
34 and I1

35) for cluster c31, c32, c33, c34 and c35. Further, using the

region specified by cluster c21, we can also calculate another authority score (I2
31

and I2
32) for c31 and c32. Likewise, the authority scores (I2

33, I2
34 and I2

35) of c33, c34

and c35 can be re-inferred with the region of c22. Therefore, each cluster on the
third level has two authority scores, which would be used in various occasions
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based on users’ inputs. For instance, as depicted in the Figure 9 A), when a user
selects a region only covering location c31 and c32, the authority score I2

31 and I2
32

can be used to rank these two locations. However, as illustrated in Figure 9(B),
if the region selected by a user covers the locations from two different parent
clusters (c21 and c22), the authority value I1

32, I1
33 and I1

34 should be used to rank
these locations.

The strategy that sets multiple hub scores for a user and multiple authority
scores for a location has two advantages. First, we are able to leverage the main
strength of HITS to rank locations and users with the contexts of geospatial
region (query topic). Second, these hub and authority scores can be calculated
offline. Therefore, we can ensure the efficiency of our system while allowing
users specify any regions on a map.

4.2.3 Inference. Given the locations pertaining to the same ascendant clus-
ter, we are able to build an adjacent matrix M between users and locations based
on the users’ accesses on these locations. In this matrix, an item vk

ij stands for
the times that uk (a user) has visited to cluster ci j (the jth cluster on the ith
level). Such matrixes can be built offline for each non-leaf node. For example,
the matrix M formulated for the case shown in Figure 8 can be represented as
follows, where all the five clusters pertain to c11

M =

u1

u2

u3

u4

c31 c32 c33 c34 c35
⎡

⎢

⎢

⎣

1 1 0 0 0
1 1 2 0 0
0 0 1 2 0
0 0 0 1 1

⎤

⎥

⎥

⎦

.
(5)

Then, the mutual reinforcement relationship of user travel experience ek
ij

and location interest Il
i j is represented as follows:

Il
i j =

∑

uk∈U

ek
lq × vk

ij ; (6)

ek
lq =

∑

ci j∈clq

vk
ij × Il

i j ; (7)

where clq is ci j ’s ascendant node on the lth level, 1 ≤ l < i. For instance, as
shown in Figure 9, c31’s ascendant node on the first level of the hierarchy is c11,
and its ascendant node on the second level is c21. Thus, if l = 2, clq stands for
c21 and (c31, c32) ∈ c21. Also, if l = 1, clq denotes c11, (c31, c32, . . . , c35) ∈ c11.

Writing them in the matrix form, we use T to denote the column vector with
all the authority scores, and use E to denote the column vector with all the
hub scores. Conditioned by the region of cluster c11, T = (I1

31, I1
32, . . . , I1

35), and

E = (e1
11, e2

11, . . . , e4
11).

T = M
T

· E (8)

E = M · T . (9)
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Fig. 10. The algorithm for inferring the authority and hub scores.

If we use Tn and En to denote authority and hub scores at the nth iteration,
the iterative processes for generating the final results are

T n = M
T

· M · T n−1 (10)

En = M · M
T

· En−1. (11)

Starting with T 0 = E0 = (1, 1, . . . , 1), we are able to calculate the authority
and hub scores using the power iteration method.

Figure 10 depicts an offline algorithm for inferring each user’s hub scores
and the authority scores of each location conditioned by the different regions.
Here Cx is the collection of clusters on xth level. C ′

x ∩Cx denotes the collection of
ci j ’s descendant clusters on the xth level. For instance, the C ′

2 of c11 is {c21, c22},
and C ′

3 of c11 is {c31, c32, . . . , c35}. {Ii
x} represents the collection of authority

scores of the locations contained in Cx conditioned by their ascendant node on
the ith level.

4.3 Mining Travel Sequences

With users’ travel experiences and the interests of locations, we calculate a
popularity score for each location sequence within the given geospatial region.
The popularity score of a sequence is the integration of the following three
aspects. (1) The sum of hub scores of the users who have taken this sequence;
(2) The authority scores of the locations contained in this sequence; (3) These
authority scores are weighted based on the probability that people would take
a specific sequence.

Using a graph of TBHG, Figure 11 demonstrates the calculation of the pop-
ularity score for a 2-length sequence, A → C. In this figure, the graph nodes
(A, B, C, D, and E) stand for locations, and the graph edges denote people’s
transition sequences among them. The number shown on each edge represents
the times users have taken the sequence. Equation (12) presents the popular-
ity score of sequence A → C, which includes the following three parts. (1) The
authority score of location A (IA) weighted by the probability of people’s moving
out by this sequence (OutAC). Clearly, there are seven (5+2) links point out to
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Fig. 11. Demonstration on mining popular travel sequences from a graph.

other nodes from node A, and five out of seven of these links direct to node
C. So, OutAC = 5

7
, only five sevenths of location A’s authority (IA) should be

offered to sequence A → C, and the rest of IA should be provided to A → B; (2)
The authority score of location C (IC) weighted by the probability of people’s
moving in by this sequence (InAC); (3) The hub scores of the users (UAC) who
have taken this sequence.

SAC =
∑

uk∈UAC

(IA · OutAC + IC · InAC + ek)

= |UAC | · (IA · OutAC + IC · InAC) +
∑

uk∈UAC

ek

= 5 ×

(

5

7
× IA +

5

8
IC

)

+
∑

uk∈UAC

ek. (12)

Following this method, we calculate the popularity score of sequence C → D,

SCD = 1 ×

(

1

7
× IC +

1

7
ID

)

+
∑

uk∈UC D

ek. (13)

Thus, the popularity score of sequence A → C → D equals to:

SACD = SAC + SCD. (14)

Using this paradigm we are able to calculate the popularity score of any
n-length sequences. Later, the top m n-length sequences with relatively high
scores can be retrieved as n-length popular travel sequences. However, it is not
necessary to find out the sequences with a long length, as people would not
visit many places in a trip. Thus, in this article, we start with mining 2-length
sequences, and then try to find out some 3-lenth sequences by extending these
2-length sequences.

5. MINING LOCATION CORRELATION

In this section, we present the algorithm that computes the correlation between
locations by considering the user travel experience and the sequence of the
locations.

First, we claim that the correlation between two locations does not only
depend on the number of users visiting the two locations but also lie in these
users’ travel experiences. The locations sequentially accessed by the people with
more travel knowledge would be more correlated than those visited by those
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Fig. 12. A case calculating the correlation between locations.

having little idea about the region. For instance, some overseas tourists might
randomly visit some places in Beijing as they are not familiar with this city.
However, the local people of Beijing are more capable than them of arranging
a more proper and reasonable way to visit some places in Beijing.

Second, the correlation between two locations, A and B, also depends on the
sequences, in which the two locations have been visited: (1) This correlation
between A and B, Cor(A, B), is asymmetric; that is, Cor(A, B) �= Cor(B, A). The
semantic meaning of a travel sequence A → B might be quite different from
B → A. For example, on a one-way road, people would only go to B from A

while never traveling to A from B; (2) The two locations continuously accessed
by a user would be more correlated than those being visited discontinuously.
Some users would reach B directly from A (A → B) while others would access
another location C before arriving at B (A → C → B). Intuitively, the Cor(A, B)
indicated by the two sequences might be different. Likewise, in a sequence A →

C → B, Cor(A, C) would be greater than Cor(A, B), as the user continuously
accessed A → C while traveling to B after visiting C.

In short, the correlation between two locations can be calculated by inte-
grating the travel experiences of the users visiting them in a trip in a weighted
manner. Formally, the correlation between location A and B can be calculated
as Eq. (15).

Cor(A, B) =
∑

uk∈U ′

α · ek, (15)

where U ′ is the collection of users who have visited A and B in a trip; ek is uk’s
travel experience conditioned by the first shared ascendant regions (a cluster in
TBHG) by the two locations, uk ∈ U ′. 0 < α ≤ 1 is a dumping factor, which will
decrease as the interval between these two locations’ index in a trip increases.
For example, in our experiment we set α = 2−(| j−i|−1), where i and j are indices
of A and B in the trip they pertain to. That is, the more discontinuously two
locations being accessed by a user (| i − j| would be big, thus α will become
small), the less contribution the user can offer to the correlation between these
two location.

As depicted in Figure 12, three users (u1, u2, u3) respectively access locations
(A, B, C) in different manners and create three trips (Trip1, Trip2, Trip3). The
number shown below each node denotes the index of this node in the sequence.
In accordance with Eq. (15), from Trip1 we can calculate Cor(A, B) = e1 and
Cor(B, C) = e1, since these locations have been consecutively accessed by u1
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Fig. 13. Algorithm learning the correlation between locations.

(i.e., α = 1). However, Cor(A, C) = 1
2
. ei (i.e., α = 2−(|2−0|−1) = 1

2
) as u1 traveled

to B before visiting C. In other words, the correlation (between location A and C)
that we can sense from Trip1 might not that strong as if they are consecutively
visited by u1. Likewise, we can learn Cor(A, C) = e2, Cor(C, B) = e2, Cor(A, B) =
1
2
·e2 from Trip2, and infer Cor(A, B) = e3, Cor(A, C) = e3, Cor(B, C) = 1

2
·e3 from

Trip3. Later, we can integrate these correlation inferred from each user’s trips
and obtain the following results:

Cor(A, B) = e1 +
1

2
· e2; Cor(A, C) =

1

2
· e1 + e2 + e3;

Cor(B, C) = e1 +
1

2
· e3; Cor(C, B) = ·e2; Cor(B, A) = e3.

Figure 13 formally describes the algorithm for inferring correlation between
locations. Here, b is a constant, which is set to 2 in our experiment. |Trip| stands
for the number of locations contained in the Trip and Trip[i] represents the ith
location in Trip. For example, regarding Trip1 shown in Figure 12, |Trip| = 3,
Trip[0] = A (the first location), Trip[1] = B, Cor(Trip[0], Trip[1]) = Cor(A, B).
For the sake of simplification, we demonstrate the algorithm only using one
layer of the hierarchy.

Supposing we have n trips in a dataset and the average length of a
trip is m, this mining algorithm takes O(2|C|2 + m(m−1)

2
· n) time. So, the

overall computing complexity Q of our approach is the combination of in-
ferring user travel experience and calculating location correlation, that is,
Q = O(2w|C||U | + 2|C|2 + m(m−1)

2
· n).

6. RECOMMENDATION

6.1 The Generic One

A user can specify any geospatial regions as an input by zoom in/out and
panning a Web map. According to the zoom level, our recommender can find out
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the corresponding hierarchical level in the TBHG, and then collect the locations
(clusters) fallen in the given region on this level. The hub and authority scores
conditioned by the first shared ascendant cluster of these locations will be used
to rank locations and users (refer to Figure 9). Later, the most k experienced
users, top n interesting locations and top m popular travel sequences within the
specified region can be returned to the users as the generic recommendations.

6.2 The Personalized One

6.2.1 Collaborative Filtering. Collaborative filtering is a well-known
model widely used in recommendation systems. The CF model can be par-
tition into two categories; the user-based and item-based inference methods
[Linden et al. 2003].

Notations. As shown in Eq. (5), we have a matrix M describing the rela-
tion between each user and each location. Here, we can regard the times an
individual has stayed in a location as their implicit ratings on the location.
The ratings from a user up, called an evaluation, is represented as an array
Rp = 〈rp0, rp1, . . . , rpn〉, where rpj is up’s implicit ratings (the occurrences) in
location j. S(Rp) is the subset of the Rp, ∀rpj ∈ S(Rp), rpj �= 0, that is, the set
of items (locations) that has been rated (visited) by up. The average of ratings

in Rp is denoted as Rp, and the number of elements in a set S is |S|. The
collection of all evaluations in the training set is X. Sj(X) means the set of
evaluations containing item j, ∀Rp∈Sj(X), j∈S(Rp). Likewise, Si j(X) is the set
of evaluations simultaneously containing item i and j.

(1) The Pearson Correlation-Based CF. The Pearson correlation reference
scheme [Adomavicius and Tuzhhilin 2005] is the most popular and accurate
user-based CF model using the similarity between users, sim(up, uq), to weight
the ratings from different individuals. Equations (16) and (17) give a formal
description on calculating P(rpj), the predicted up’s ratings on location j. As
the number of users in a system is much larger and increases much faster than
the number of items, the user-based CF models are not that efficient than the
item-based methods.

sim(up, uq) =

∑

i∈S(Rp)∩S(Rq)(rpi − Rp) · (rqi − Rq)
√

∑

j∈S(Rp)∩S(Rq)(rpj − Rp)2 ·
∑

j∈S(Rp)∩S(Rq)(rqj − Rq)2
(16)

P(rpj) = Rp +

∑

Rq∈sj (x) sim(up, uq)×(rqj − Rq)
∑

Rq∈Sj (x) sim(up, uq)
; (17)

(2) The Slope One Algorithms. These algorithms [Lemire and Maclachlan
2005] are famous and representative item-based CF algorithms, which are easy
to implement, efficient to query and reasonably accurate. Given any two items i

and j with ratings rpj and rpi respectively in some user evaluation Rp ∈ Sj,i(X),
we consider the average deviation of item i with regard to item j as Eq. (18)

dev j,i =
∑

Rp∈Sj,i (x)

rpj − rpi

|Sj,i(X)|
, (18)
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Given that dev j,i+rpi is a prediction for rpj based on rpi, a reasonable predictor
might be the average of all the predictions.

P(rpj) =
1

|W j |

∑

i∈W j

(dev j,i + rpi), (19)

where W j = {i|i∈S(Rp), i �= j, |Sj,i(X)| > 0} is the set of all relevant items.
Further, the number of evaluations simultaneously contain two items has been
used to weight the prediction regarding different items. Intuitively, to predict
up’s rating of item A given up’s ratings of item B and C, if 2000 users rated the
pair of A and B whereas only 20 users rated pair of A and C, then up’s ratings
of item B is likely to be a far better predictor for item A than up’s ratings of
item C is.

P(rpj) =

∑

i∈S(Rp)∧i �= j(dev j,i + rpi)·|Sj,i(X)|
∑

i∈S(Rp)∧i �= j |Sj,i(x)|
(20)

6.2.2 Our Method. We integrate the location correlation into the Slop One
algorithm to achieve a more effective and accurate item-based CF model. Intu-
itively, to predict up’s rating of location A given up’s ratings of location B and
C, if location B is more related to A beyond C, then up’s ratings of location B

is likely to be a far better predictor for location A than up’s ratings of location
C is. In contrast to the number of observed ratings (i.e., the number of people
who have visited two locations) used by the weighted Slope One algorithm, the
mined location correlation considers more human travel behavior, such as the
travel sequence, user experience, and transition probability between locations.
Formally, our approach can be represented as

P(rpj) =

∑

i∈S(Rp)∧i �= j(dev j,i + rpi)·cor ji
∑

i∈S(Rp)∧i �= j cor ji

, (21)

where cor ji denotes the correlation between location i and j, and dev j,i is still
calculated as Eq. (18). Using Eq. (21), we can predict an individual’s ratings on
the locations they have not accessed, and then rank these locations in terms
of the predicted ratings. Later, the top n locations with relatively high ratings
can be recommended.

7. EXPERIMENTS

In this section, we first present the experimental settings. Second, we introduce
the evaluation approaches. Third, major results are reported followed by some
discussions.

7.1 Settings

7.1.1 Devices and Users. Figure 14 shows the GPS devices we chose to col-
lect data. They are comprised of stand-alone GPS receivers (Magellan Explorist
210/300, G-Rays 2 and QSTARZ BTQ-1000P) and GPS phones. Except for the
Magellan 210/300, these devices are set to receive GPS coordinates every two
seconds. Regarding the Magellan devices, we configure their settings to record
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Fig. 14. GPS devices used in our experiment.

Fig. 15. Demographic statistics of our experiment.

Fig. 16. Distribution of the GPS dataset we used in this experiment.

GPS points as densely as possible. Carrying these GPS-enabled devices, 107
users (49 females and 58 males) recorded their outdoor movements with GPS
logs from May 2007 to Oct. 2008. Figure 15 presents demographic statistics on
these users.

7.1.2 GPS Data. Figure 16 depicts the distributions of the GPS data used
in the experiments. Most parts of this dataset were created in Beijing, China,
and other parts covered 36 cities in China as well as a few cities in the USA,
South Korea, and Japan. The volunteers were motivated to log their outdoor
movements as much as possible by the payments based on the distance of GPS
traces collected by them; the more data collected by them, the more money
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Table I. Information of the TBHG Used in the Experiment

Num. of Average Size Average Num of Average Num Stay
Level Clusters of Clusters KM User/Cluster Points/Cluster

1 1 11,450.7 107 10,354

2 32 14.5 6.7 267.5

3 70 2.1 8 112.7

4 159 0.26 6.5 46.2

they obtained. As a result, the total distance of the GPS logs exceeded 166,372
kilometers, and the total number of GPS points is over 5 million. Considering
the privacy issues, we use these datasets anonymously.

7.1.3 Parameter Selection

. Stay Point Detection. We set Tr to 20 minutes and Dr to 200 meters for stay
point detection. In other words, if an individual stays over 20 minutes within a
distance of 200 meters, a stay point is detected. These two parameters enable
us to find out some significant places, such as restaurants and shopping malls,
while ignoring the geo-regions without semantic meanings, like the places
where people wait for traffic lights or meet congestion (refer to Li et al. [2008]
for details). As a result, we extracted 10,354 stay points from the dataset.

Clustering. We use a density-based clustering algorithm, OPTICS (Ordering
Points To Identify the Clustering Structure), to hierarchically cluster stay-
points into geospatial regions in a divisive manner. As compared to an agglom-
erative method like K-Means, the density-based approach is capable of detect-
ing clusters with irregular structures, which may stand for a set of nearby
restaurants or shopping streets. In addition, this approach would filter out a
few sparsely distributed stay points, and ensure each cluster has been accessed
by some users. As a result, a four-level TBHG is built based on our dataset (see
Table I for details).

Trip Partition. Based on the commonsense knowledge, we set Tp = 15 hours
and obtain 5,318 trips (the average length of these trips is 3.2).

7.2 Evaluation Approaches

7.2.1 Evaluation Framework. Figure 17 illustrates the framework of the
evaluation, in which we respectively explore the effectiveness of the generic
and personalized recommendations by performing a user study. In this study,
29 subjects (14 females and 15 males), who have been in Beijing for more than
6 years, were invited to answer the evaluation questions. At the same time, all
of them have an 3-month+ GPS trace set accumulated in our system. Given the
region within the fourth ring road of Beijing, we respectively retrieved the top
10 interesting locations, top 5 popular travel sequences and top 10 personalized
locations by using our methods and some baselines.

Regarding the interesting locations from the generic recommendation, we
conduct the following two aspects of evaluations. One is the Presentation, which
stands for the ability of the retrieved interesting locations in presenting a given
region. The other is the Rank, which represents the ranking performance of
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Fig. 17. Framework of the evaluation.

Table II. Users’ Interests in a Location

Ratings Explanations

2 I’d like to plan a trip to that location.

1 I’d like to visit that location if passing by.

0 I have no feeling about this location,
but don’t oppose others to visit it.

−1 This location does not deserve to visit.

the retrieved locations based on relative interests.

(1) Presentation. Each subject answers the following evaluation questions:
— Representative. How many locations in this retrieved set are representa-

tive of the given region (0-10)?
— Comprehensive. Do these locations offer a comprehensive view of the given

region (1-5)?
— Novelty. How many locations in this retrieved set have interested you even

though they only appeared recently (0-10)? In the study, the subjects were
able to view the points of interests (POIs) fallen in each location as well
as the photos taken there.

(2) Rank. Each subject had to individually rate the interest of each retrieved
location with a value (−1∼2) shown in Table II. Then, we aggregated these
subjects’ ratings for each location, and select the mode of the ratings for the
location. If the mode of two rating levels is identical, we prefer the lower
ratings.

With regard to evaluating the retrieved travel sequences, we required the
subjects to rate each sequence in the set with the scores shown in Table III.
Also, we aggregate these ratings as the method previously mentioned.

Different from evaluating the generic top n interesting locations, we first
respectively calculate the ranking performance of the top 10 personalized loca-
tions retrieved for each user (a user’s rating on a personalized location is also
based on Table II) and then aggregate ranking performance of different users.
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Table III. Users’ Interests in a Travel Sequence

Ratings Explanations

2 I’d like to plan a trip with this travel sequence.

1 I’d like to take that sequence if visiting the region.

0 I have no feeling about this sequence,
but don’t oppose others to choose it.

−1 It is not a good choice to select this sequence.

7.2.2 Measurements

. Measurements for Presentation. We compare our method with the baselines
using the mean score of the ratings offered by the subjects. In addition, we
perform a T-test for each comparison to justify the significant advantages of
our method.

Measurements for Ranking. We employ two criteria, nDCG (normalized dis-
counted cumulative gain) and MAP (Mean Average Precision), to measure the
ranking performance of the retrieved interesting locations. MAP is the most
frequently used summary measure of a ranked retrieval run. In our exper-
iment, it stands for the mean of the precision score after each interesting
location is retrieved. Here, a location is deemed as an interesting location if its
interest level equals to 2. For instance, the MAP of an interest rating vector,
G = 〈2, 0, 2, 0, 1, 0, 0, 2, 0,−1〉, for the top 10 location, is computed as follows:

MAP =
1 + 2/3 + 3/8

3
= 0.681.

nDCG is used to compute the relative-to-the-ideal performance of informa-
tion retrieval techniques. The discounted cumulative gain of G is computed as
follows: (In our experiments, b = 3.)

CG[i] =

⎧

⎨

⎩

G[1] if i = 1
DCG[i − 1] + G[i], if i < b

DCG[i − 1] + G[i]
loggi

, if i ≥ b

Given the ideal discounted cumulative gain DCG’, then nDCG at ith position
can be computed as NDCG[i] = DCG[i]/DCG′[i].

Measurement for Travel Sequence. We use the mean score of these subjects’
ratings, along with a T-test for each comparison, to distinguish our method from
baselines. At the same time, we investigated the popular rate, which represents
the ratio of sequences with a score of 2 in the set, of different methods.

7.2.3 Baselines

. Baselines for Mining Interesting Locations. Here, we explore the effective-
ness of two baseline methods, rank-by-count and rank-by-frequency. Regarding
the former one, the more users visiting a location the more interesting this
location might be. In the latter, the more frequent people accessed a location
the more interesting this location might be. The visited frequency of a location
is the ratio between the number of the users visiting this location and the time
span, from the first day one user accessed this location to the last day at least
one individual visited it.
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Fig. 18. Top 10 interesting locations of different approaches.

Table IV. Comparison on the Presentation Ability
of Different Methods

Ours Rank-by-count Rank-by-frequency

Representative 5.4 4.5 3.1

Comprehensive 4 3.4 2.3

Novelty 3.4 2.4 2.2

Baselines for Mining Travel Sequences. We compare our method with three
baselines; rank-by-count, rank-by-interest and rank-by-experience. With regard
to the first baseline, we rank a sequence based on the number of the users
who have taken this sequence. Regarding the second one, we only take into
account the interests of the locations contained in a sequence to rank the travel
sequences. In the third baseline method, we only consider the experiences of
the users who have taken this sequence.

Baseline for the Personalized Recommendation. We respectively investigate
the performance of three baseline schemes: (1) Our approach only using user
travel experience, that is, each pair of locations occurring in a trip share the
same correlation; (2) Our method only considering the sequence between lo-
cations, that is, all users has the same travel experiences; (3) the Pearson
Correlation-based approach described in Section 6.2.1.

7.3 Results

7.3.1 Related to Interesting Locations

. Presentation Ability. Figure 18 illustrates the top 10 interesting locations,
which were respectively inferred out by our method and two baselines using
the region within the fourth ring road of Beijing (the zoom level corresponds to
the 3rd level of the TBHG).

Based on these results, 29 subjects individually answered the evaluation
questions with the ratings mentioned in Table II. As shown in Table IV, our
method is more capable than the baselines of finding out representative loca-
tions in the give region (T-test result: p1 < 0.01, the comparison between ours
and the Rank-by-count; p2 < 0.01, the comparison between ours and Rank-

by-frequency). Meanwhile, the top 10 locations retrieved by our method pre-
sented a more comprehensive view of this region over the baselines (p1 ≪ 0.01,
p2 ≪ 0.01). In addition, using our method, more novel locations that interest
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Table V. Ranking Ability of Different Methods

Ours Rank-by-count Rank-by-frequency

nDCG@5 0.823 0.714 0.598

nDCG@10 0.943 0.848 0.859

MAP 0.759 0.532 0.365

Table VI. Performance of Different Methods in Finding Popular Sequences

Ours
(Interest + Experience) Rank-by-count Rank-by-interest Rank-by-experience

Mean score 1.6 1.2 1.4 1.5

Popular Rate 0.6 0.3 0.4 0.4

the subjects have been retrieved (p1 < 0.01, p2 < 0.01). These regions represent
the development of new Beijing, while having not been noticed by many peo-
ple. Regarding the baselines, Rank-by-count outperformed rank-by-frequency

in finding out the representative locations (p < 0.01) and presenting a compre-
hensive view of the region (p < 0.01). However, the former method does not
show a clear advantage beyond the latter in detecting the novel interesting
locations (p > 0.2).

Ranking Ability. Table V depicts the ranking ability of different methods
using nDCG@5, nDCG@10 and MAP as measurements. Although the set of
interesting locations retrieved by our method and rank-by-count had a 60 per-
cent overlap, our method showed clear advantages beyond baseline methods in
ranking this location set.

7.3.2 Related to Travel Sequences. Using two measurements (mean score
and popular rate), Table VI distinguishes the performance of our method from
the baselines in finding out the popular sequences in the given region. Clearly,
our method considering both users’ travel experiences and location interests
outperforms rank-by-count (p ≪ 0.01), rank-by-interest (p < 0.01) and rank-by-

experience (p < 0.01). Meanwhile, when respectively taking into account users’
travel experiences (p < 0.01) or location interests (p < 0.01), the performance of
rank-by-count had been significantly improved. These results proved that user
travel experience and location interests respectively play an important role in
retrieving the travel sequences and offered a greater contribution when being
used together. (See 8.2.2 for the meaning of popular rate.)

7.3.3 Related to Personalized Recommendation

. Effectiveness. Using the average NDCG and MAP, Table VII compares the
effectiveness of different methods in conducting the personalized location rec-
ommendation. Clearly, our approach (Experience + Sequence) outperforms the
weighted Slope One algorithm (T-Test of NDCG@5, p = 0.0053 < 0.01; T-Test
of MAP, p = 0.0049 < 0.01). Although our method is slightly weaker than the
Pearson correlation-based CF model in terms of the average NDCG and MAP,
the T-test result (NDCG@5, p = 0.678 ≫ 0.01; MAP, p = 0.741 ≫ 0.01) shows
that the advantage of the Pearson correlation is not significant. Thus, we can
claim that at least our method is as effective as the Pearson correlation-based
one.
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Table VII. Ranking Performance of Different Methods
(Personalized Recommendation)

The Pearson The Weighted
Ours Correlation-Based CF Model Slope One Algorithm

NDCG@5 0.840 0.862 0.762

NDCG@10 0.922 0.938 0.891

MAP 0.798 0.804 0.665

 

0

5

10

15

20

25

30

35

40

The Pearson 
Correlation-Based 

Model

The Weighted 
Slope One 

Algorithm

Ours (Experience 
+ Sequentiality)

Ours 
(Sequentiality)

C
o

m
p

u
ti

n
g

 T
im

es
 P

er
 P

er
d

ic
ti

o
n (E+04)

Methods

Computing Complexity

Fig. 19. Average computing complexity in computing a prediction.

Efficiency. Suppose we have such a GPS dataset generated by T users. From
this dataset, we discover k locations and n trips; the average length (number
of locations) of a trip is m. Thus, to predict a user’s interest level in a location,
the upper bound of computing complexity (times) of different methods are as
follows:

The Pearson correlation-based CF model: O(k× (T − 1)2);

The Weighted Slope One algorithm: O(T × k(k − 1));

Our method (Exp + Seq): O(T × k(k − 1) + Q),

where Q = 2wkT + 2k2 + m(m − 1)n/2 is the total computing complexity of
inferring the location correlation, and w is the iteration times.

Using the given GPS dataset, Figure 19 depicts the upper bound of com-
puting complexity of different methods in calculating a prediction. Clearly, our
method is much more efficient than the Pearson correlation-based CF model,
while being slightly slower than the weighted Slope One algorithm. In short,
our algorithm is as effective as the Pearson correlation-based model and almost
as efficient as the weighted Slope one algorithm. Alternative, we can say our
method is more efficient than the Pearson correlation-based model and more
effective than the Weighted Slope One algorithm.

7.4 Discussions

7.4.1 Discussion on Human Location History. Beyond the static POI/YP
dataset, people’s location histories can provide us with richer knowledge of
geographical spaces.
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First, from the location history we are able to discover some places, which
attract multiple users’ interests, using a data-driven approach. Thus, (1) it is
not necessary to manually pre-define some locations; (2) the detected locations
would be more reasonable to be recommended to users; (3) we can find out the
geo-regions with irregular structures, such as a shopping street and a lake; (4)
the places developed recently can be automatically discovered.

Second, from the location history, we can discover the correlated locations
pertaining to different business categories. For example, our method can detect
that a restaurant is correlated with a cinema, or a lake and a museum are highly
correlated.

Third, the location history implies some key factors, such as the travel time,
distance, reachability and sequentiality between locations, which should be
taken into account to plan a trip or perform a travel recommendation. For
example, if two locations A and B co-occurred in multiple users’ trips, at least
we can guarantee these two locations are reachable. Further, if people always
travel to location B from A, it might imply that there would be a one-way road
between these two locations. Meanwhile, people prefer to travel to a shopping
mall nearby them rather than a distant one unless the quality of the distant
one deserves a relatively long travel.

Given the previously mentioned reasons, we believe that human location
history is a much better data source than others, like POI/YP datasets, in
revealing the location correlation.

7.4.2 Discussion on Interesting Locations. With the data shown in
Table IV, we observe that users’ travel experiences are useful in not only re-
trieving representative locations in a region but also finding out more novel and
interesting locations beyond baseline methods. Intuitively, some interesting
places, which contain high-quality restaurants or nice shopping malls devel-
oped recently, would not be visited by many people. However, a location covering
some landmarks, which is not that interesting but with a relatively long history,
might be accessed by more people. Hence, the rank-by-count cannot handle this
kind of problem well. Meanwhile, a user would frequently access the restaurant
nearby their working place for convenience rather than food quality or having
fun. Therefore, a location frequently visited by people might not be interesting.

7.4.3 Discussion on Travel Sequences. First, intuitively, without consider-
ing the information of user experience, the sequence from a railway station to
a nearby hotel might be detected as a popular travel sequence because some
tourists usually stay in the hotels nearby the station. Obviously, this is not a
good recommendation for users. Second, if only using individuals’ travel experi-
ences, we would mine out some life routine of an experienced user. For instance,
sometimes, an experienced user would have dinner at a restaurant nearby their
home and then go to a supermarket not far away from this restaurant. Since the
user has a relatively high hub score, their life routine, like from the restaurant
to the supermarket, might be detected as a popular travel sequence. Third, if
only considering location interest, some impractical sequences would be found
out. For example, the Summer Palace and the Forbidden City are two very
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interesting locations in Beijing. An experienced user would not visit them in
a sequence as each deserves a one day tour. However, a few tourists without
much travel knowledge might carelessly visit these two places in a sequence,
hence make this sequence popular.

7.4.4 Discussion on Location Correlation

. (1) User Travel Experience. Intuitively, if we do not differentiate the ex-
periences of different users, the locations randomly visited by some tourists
without much knowledge about the given geo-region would also become corre-
lated. Thus, the recommended locations might not be that interesting as if they
are generated from some experienced users’ location histories. With a user’s
travel experience, we can also reduce to some extent the cold start problem in
the existing recommendation systems, where a location would not be recom-
mended until this location has been rated (accessed) by many people. In our
method, if a newly discovered place co-occurred with some locations in some
experienced users’ trips (although the number of the co-occurrences is not very
big), the place would become correlated with these locations, hence might be
retrieved as a recommendation.

(2) Sequentiality. At the first glance, people would argue that sometimes
the locations accessed by an individual in a trip might share the same degree
of correlation among each other. For example, A, B, C are three similar shop-
ping malls. The perfect inference result should be Cor(A, B) = Cor(A, C) =

Cor(B, C). However, an individual would access these locations in a sequence
of A → B → C. In accordance with, our approach weighting the user travel
experience according to the sequence in which the locations has been visited,
Cor(A, B) = Cor(B, C) > Cor(A, C). This does not look right. But, remem-
ber we have many users’ location histories; if these locations really share the
similar degree of correlation, different users would access them in a variety
of sequences, such as A → C → B and B → A → C. Therefore, the finally
integrated results would be correct. On the contrary, if people always travel
to these places in a sequence of A → B → C there must be some reason
behind the phenomenon; that is the different degree of correlation between
locations.

8. CONCLUSION

In this article, we learned the generic and personalized travel recommendations
from a large number of user-generated GPS traces. In the generic recommenda-
tion, we modeled multiple users’ location histories with TBHG, and mined the
top n interesting locations and the top m popular travel sequences in a given
geospatial region based on the TBHG and a HITS-based inference model. To
achieve the personalized recommendation, we first calculated the correlation
between locations by employing the user travel experiences and the sequence
that locations have been visited. Then, we incorporated this correlation into an
item-based CF model, which predicts a user’s interest in an unvisited location
in terms of the user’s location history and that of others.
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To evaluate these two types of recommendations, we performed a user study
based on a real-world GPS trace dataset collected by 107 users over a period
of one year. As a result, our method showed clear advantages beyond rank-

by-count and rank-by-frequency by providing a better presentation ability and
ranking performance. When employing both users’ travel experiences and lo-
cation interests, we achieved the best performance in detecting popular travel
sequences. Regarding the personalized location recommendation, our approach
is more effective than the weighted Slope one algorithm with a slightly addi-
tional computation. In addition, in contrast to the Pearson correlation-based
CF model, our method is much more efficient while keeping the similar effec-
tiveness.
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