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Learning two-phase microstructure evolution using neural
operators and autoencoder architectures
Vivek Oommen 1, Khemraj Shukla2, Somdatta Goswami 2, Rémi Dingreville 3✉ and George Em Karniadakis 1,2✉

Phase-field modeling is an effective but computationally expensive method for capturing the mesoscale morphological and
microstructure evolution in materials. Hence, fast and generalizable surrogate models are needed to alleviate the cost of
computationally taxing processes such as in optimization and design of materials. The intrinsic discontinuous nature of the physical
phenomena incurred by the presence of sharp phase boundaries makes the training of the surrogate model cumbersome. We
develop a framework that integrates a convolutional autoencoder architecture with a deep neural operator (DeepONet) to learn the
dynamic evolution of a two-phase mixture and accelerate time-to-solution in predicting the microstructure evolution. We utilize the
convolutional autoencoder to provide a compact representation of the microstructure data in a low-dimensional latent space. After
DeepONet is trained in the latent space, it can be used to replace the high-fidelity phase-field numerical solver in interpolation tasks
or to accelerate the numerical solver in extrapolation tasks.
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INTRODUCTION
The phase-field method has emerged as a powerful, heuristic tool
for modeling and predicting mesoscale microstructural evolution
in a wide variety of material processes1–5. This method models
interfacial dynamics without the overhead of resorting to
advanced interfacial tracking algorithms such as level-set6 or
adaptive meshing7. Scalar, auxiliary, continuous field variables
(so-called phase-field variables) are used to represent the
evolutionary state of the microstructure dynamics such as in
crack growth and propagation8,9, thin-film deposition10,11, and
dislocation dynamics12 to name a few. The Cahn-Hilliard,
nonlinear diffusion equation1,13,14, is one of the most commonly
used governing equations in phase-field models. It describes the
process of phase separation, by which a two-phase mixture
spontaneously separates and form domains pure in each
component. The Cahn-Hilliard equation finds applications in
diverse fields ranging from complex fluids to soft matter and
serves as the starting point of many phase-filed models for
microstructure evolution.
Traditional numerical approaches to solve the fourth-order

parabolic Cahn-Hilliard equation include finite differences15,
spectral approximation16, finite element analysis with mixed
methods17, and isogeometric analysis18,19. The coupled stiff
equation simultaneously captures a quick phase separation and
a very slow coalescence. Evidently, the two sub-processes operate
on significantly different spatial and temporal scales, making it
challenging to solve efficiently and accurately within realistic time
constraints and reasonable computational capabilities20. Improve-
ments in computational complexity have been enabled by the
growing interest in data-driven models using machine learning
(ML) methods. However, striking a balance between computa-
tional efficiency and accuracy has often been a challenge while
employing these methods. Indeed, for complex and multi-variate
phase-field models, the efficient Green’s function21 does not
ensure an accurate solution, while Bayesian optimization22,23

techniques solve such coupled models but to the detriment of a
higher computational cost.
Modern ML models have paved the way for the development of

fast emulators for solving parametric partial differential equations
(PDEs)23–36. There are strategies for accelerating the simulation of
PDEs. A promising approach for accelerating the predictions of
phase field-based microstructure evolution problems consists of
using recurrent neural networks (RNNs) to learn the time-
dependent, microstructure evolution in latent space37,38. Within
this framework, statistical functions combined with linear and
nonlinear embedding techniques are used to represent the
microstructure evolution in latent space. Such RNN-based
surrogate models demonstrated success in generating rapid
predictions of the time evolution of the microstructural auto-
correlation function. The microstructure reconstructed from these
statistical functions, using for instance a phase recovery algo-
rithm39, was then used as an input for a high-fidelity solver that
marches ahead in time. The developed approach reported a 5%
loss in accuracy against the high-fidelity phase-field solvers.
However, this class of models also comes with challenges. First,
the training and inference using RNNs as a surrogate model can
be relatively slow due to the temporal dependence of the current
predicted field on fields predicted at previous time steps,
prohibiting the efficiency of the algorithm for large datasets.
Second, the RNN-based architecture learns the underlying
evolutionary dynamics in terms of statistical functions (non-
primitive variables) of the microstructure. Reconstructing a
microstructure from these statistical functions is a non-trivial
and ill-posed problem40. This reconstruction step can incur
additional errors especially for interfacial dynamics problems
where resolving intricate spatial length scales such as in dendrite
growth phase-field problems is key.
In this work, we propose an alternative approach to circumvent

the aforementioned challenges. We formulate the microstructure
evolution problem as being equivalent to learning a mapping

1School of Engineering, Brown University, Providence, RI, USA. 2Division of Applied Mathematics, Brown University, Providence, RI, USA. 3Center for Integrated Nanotechnologies,
Sandia National Laboratories, Albuquerque, NM 87185, USA. ✉email: rdingre@sandia.gov; george_karniadakis@brown.edu

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00876-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00876-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00876-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00876-7&domain=pdf
http://orcid.org/0000-0003-4363-6896
http://orcid.org/0000-0003-4363-6896
http://orcid.org/0000-0003-4363-6896
http://orcid.org/0000-0003-4363-6896
http://orcid.org/0000-0003-4363-6896
http://orcid.org/0000-0002-8255-9080
http://orcid.org/0000-0002-8255-9080
http://orcid.org/0000-0002-8255-9080
http://orcid.org/0000-0002-8255-9080
http://orcid.org/0000-0002-8255-9080
http://orcid.org/0000-0003-1613-695X
http://orcid.org/0000-0003-1613-695X
http://orcid.org/0000-0003-1613-695X
http://orcid.org/0000-0003-1613-695X
http://orcid.org/0000-0003-1613-695X
http://orcid.org/0000-0002-9713-7120
http://orcid.org/0000-0002-9713-7120
http://orcid.org/0000-0002-9713-7120
http://orcid.org/0000-0002-9713-7120
http://orcid.org/0000-0002-9713-7120
https://doi.org/10.1038/s41524-022-00876-7
mailto:rdingre@sandia.gov
mailto:george_karniadakis@brown.edu
www.nature.com/npjcompumats


function G : u! ϕ such that,

G uðx; y; tÞð Þ ¼ ϕðx; y; tÞ; (1)

where u is the history of the microstructure evolution and ϕ(x, y, t)
is the state of the microstructure at time t. We develop a
framework that integrates a convolutional autoencoder architec-
ture with a Deep Operator Network41 (DeepONet) to learn this
mapping. Figure 1 illustrates the complete end-to-end workflow of
the proposed algorithm. We utilize a convolutional autoencoder to
provide a compact representation of the microstructure data in a
low-dimensional, latent space. This convolutional autoencoder
approach is then combined with the DeepONet architecture to
learn the dynamics of two-phase microstructures in the auto-
encoder latent space. The DeepONet architecture has demon-
strated its ability to model the governing differential equations

(ordinary differential equations (ODEs) and PDEs) of such problems
by learning the underlying operator, a mapping from functions to
functions, from the available datasets for a broad range of
problems28,42. We show that such an architecture is more robust
than the RNN-based architecture in terms of training, computational
efficiency, and sensitivity to noise. The decoder part of the
convolutional autoencoder can efficiently reconstruct the time-
evolved microstructure from the DeepONet predictions bypassing
the challenges associated with reconstruction-induced errors when
using statistical functions to represent the microstructure for
instance. Overall, the trained autoencoder–DeepONet framework
can then be used to replace the high-fidelity phase-field numerical
solver in interpolation tasks for parameters inside the distribution of
inputs used during training or to accelerate the numerical solver in
extrapolation tasks for parameters outside this distribution.

Fig. 1 Schematic representation of DeepONet with convolutional autoencoder. Step 1 involves training of the convolutional autoencoder
to minimize Lae. The encoder learns a suitable transformation from the high-dimensional microstructure to a low-dimensional latent space
through a series of convolution (blue layers) and MaxPooling (green layers) operations. The decoder remaps the latent representation of the
microstructure back to the original, real space by performing transpose convolution (orange layers) operations. A detailed description of the
architecture is provided in Table 1. In step 2, we train the DeepONet in the latent space to minimize Ld. The entire history of 80 steps is
encoded by the pre-trained convolutional encoder as ~Φ. DeepONet learns to predict ~ϕðtÞ at any desired time t, fed to the trunk network. The
latent representation of the microstructure predicted by DeepONet is then re-mapped back to the primitive space by the transpose
convolutional decoder.
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RESULTS
Training and optimization of neural operators and
autoencoder architectures
We first investigated the impact of the size of the latent dimension
of the autoencoder, ld, on the model performance. To this end, we
trained five autoencoder models with ld= 9, 25, 64, 100, and 196
respectively. Details of the hyper-parameters used in these five
convolutional autoencoders are provided in Table 1. For any given
time step during the evolution of the microstructure, the encoder
reduced a 128 × 128 microstructure ϕ(x, y, t) to a latent vector of
size ld. The decoder mapped the microstructural latent space
representation back to a 128 × 128 microstructure ϕ̂ðx; y; tÞ (see
Methods for more details). Each autoencoder training took
approximately 33 h on one NVIDIA GeForce RTX 3090 GPU. Next,
we trained the DeepONet model for 120,000 epochs on the latent
space learned by the convolutional encoder for each of the five
trained autoencoder models. The last layer of the branch and
trunk networks for all the models uses a linear activation function.
The output of the DeepONet model was then sent to the trained
convolutional decoder, which performed a mapping from the
latent space back to the original microstructure space, ϕ̂ðx; y; tÞ.
We evaluated the effect of the size of the latent dimension of

each of the models on the basis of the relative L2 norm computed
across the training and testing dataset for all the time steps,
including the forecasting time frames, t= {t90,… , t99} not seen by
the surrogate model (Note that one time frame is equal to 500,000
time steps, t= 500,000Δt, see Methods for additional details). All
the details of this survey analysis, including the DeepONet
architecture, the L2 norm of relative error on train and test
datasets, and the computational time taken for training the
DeepONet model are reported in Table 2. From this survey, we
observe that the model predictions improve when we increase the
size of the latent dimension. In general, DeepONet models with
tanh and sin activation functions performed better compared to
models with a ReLU activation for this particular class of problems.
As such, our best model consists of a convolutional autoencoder
with ld= 196 and a DeepONet model with architecture 1 and sin
activation function (shown in Table 2). Although the training
dataset consists of 1,600 different microstructure-evolution
trajectories, each represented by over 80 snapshots from t= {t10,
t11,… , t89}, the DeepONet training is faster compared to popular
RNN architectures such as the Long Short-Term Memory (LSTM) or
Gated Recurrent Unit (GRU) networks38,42,43. Since DeepONet does
not have recurrent connections, there are no temporal depen-
dencies during the training or at the inference stage. Instead, the
network relies on the convolution operations that encode

information about the history through the branch network. In
addition, due to the lack of temporal dependencies, the fully
connected layers in the trunk network and convolutional layers in
the branch network of the DeepONet architecture can be easily
parallelized, unlike LSTMs. This makes training and inference of
DeepONet significantly faster than the RNN architectures.
We carried out additional simulations to analyze the sensitivity of

the proposed approach to the number of samples used for training.
We considered training datasets with 25%, 50%, 75% and all the
1600 training samples. We adopted the same methodology
proposed in Methods and trained separate autoencoder–DeepONet
models on each of these datasets. Details can be found in
Supplementary Note 2. The model performance was evaluated on
the basis of forecasting errors on test data, shown in Supplementary
Figure 2. As expected, we observe better accuracy in the model
predictions when increasing the number of training samples. The
model trained with 1200 data samples shows similar accuracy to the
best model trained with 1,600 data samples, indicating convergence
of the training procedure.
Finally, we also evaluated the effect of using different loss

functions on training the autoencoder models. Specifically, we
trained various autoencoders by minimizing L1 loss, relative L1

loss, L2 loss, relative L2 loss, and mixed loss (L2 loss for the initial
5000 epochs and L1 loss for the remaining epochs). The choice of a
loss function determines the landscape in a hyperspace for the
optimizer to traverse in pursuit of global minima/best local
minima and avoiding the saddle points. For this task, we used a
DeepONet model with architecture 1 (Table 2) on each of the
learned latent microstructure data and re-transformed the
DeepONet predictions using a pre-trained decoder to retrieve
the microstructure. We analyzed the model performance by
computing the forecasting error, DtestðtÞ, on unseen test data, as
shown in Supplementary Note 3. We observed that models for
which the autoencoder is trained on L2 loss performed better than
the one which used L1 loss. When there are no outliers as
solutions, L2 loss is expected to perform better than L1. In the
presence of outliers, L2 squares them as compared to linear
contribution in the L1 norm. Similarly, mean values of relative L1

and L2 are a better choice for autoencoder loss, Lae, than the
mean of L1 and L2, respectively. The relative loss values are always
of Oð1Þ and help in achieving convergence faster as the learning
rate is of Oð10�3Þ. We have observed such an improvement in
convergence in other problems, e.g. electro-convection, where we
had sharp interfaces and multiscale dynamics44. Overall, all the
models performed consistently well. As such, our autoencoder
architecture of choice is an autoencoder with ld= 196 using a

Table 1. Details of the hyper-parameters used in the convolutional autoencoder.

Layer Kernel Size Width Activation Output

1 Conv2D 3 × 3 16 ReLU 128 × 128 × 16

2 Max-Pool 2 × 2 64 × 64 × 16

3 Conv2D 3 × 3 8 ReLU 64 × 64 × 8

4 Max-Pool 2 × 2 32 × 32 × 8

5 Conv2D 3 × 3 4 ReLU 32 × 32 × 4

6 Max-Pool 2 × 2 Reshaped to 1024

7 Fully connected ld Linear ld
8 Fully connected 1024 ReLU Reshaped to 16 × 16 × 4

9 Transpose Conv2D 2 × 2 ReLU 32 × 32 × 4

10 Transpose Conv2D 2 × 2 ReLU 64 × 64 × 8

11 Transpose Conv2D 2 × 2 ReLU 128 × 128 × 16

12 Transpose Conv2D 3 × 3 ReLU 128 × 128 × 1

ld is the dimension of latent space.
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relative L2 loss function. Taken together, these results demonstrate
not only the ability of our framework to accurately provide a
compact representation of the microstructure data in a low-
dimensional latent space, but they also illustrate the robustness of
the training of this framework.

Performance accuracy and forecasting ability
A comparison of the predictions from our accelerated framework
with that from high-fidelity phase-field simulations for a represen-
tative case of microstructure evolution at three different time steps
is shown in Fig. 2. During the initial time steps, the microstructure is
rich with multiple features and evolves rapidly with respect to time.
Our autoencoder–DeepONet as a surrogate model is able to
successfully predict the larger features and the overall morphology
of the microstructure. The point-wise error snapshots suggest that
the model fails to identify the relatively smaller features in the
microstructure and contains significant errors along the sharp
boundaries. In other words, the spatial gradient of the phase
concentration is not as sharp as that of the true microstructure
obtained from high-fidelity, phase-field simulations.
From Fig. 2, we qualitatively get the intuition that the predicted

microstructures contain errors at the earlier time steps because of
the missing, small-size features and at the later time steps due to
smoother boundaries predicted by the model. To confirm and
quantify this notion, we computed the L2 norm of the relative
error at each time step, DðtÞ, defined as:

DðtÞ ¼
P

x

P
y ϕðx; y; tÞ � ϕ̂ðx; y; t; θÞ� �2
P

x

P
yϕ x; y; tð Þ2 ; t 2 t10; t11; ¼ ; t99½ �:

(2)

To analyze the accuracy of the prediction at each time step, we
calculated DðtÞ across the samples in the training and testing
datasets, and created a boxplot as shown in Fig. 3. The error is

high for the initial time steps, where features span multiple length
scales and evolve rapidly with time. However, the predictions
improve over time when the evolution process slows down and
the microstructure features coarsen. The time steps shown in
Fig. 3a were used during the training of the model.
Next, we evaluated the capability of the model to forecast time

frames t= {t90, t91,… , t99}. From Fig. 3b, the error is seen to
increase gradually when the model extrapolates at unseen time
instances. A closer look at the forecasting predictions offers
further insights into the DeepONet predictive performance. We
computed the mean of DðtÞ across the training and testing
datasets for all the models given in Table 2. We also plotted these
values in Supplementary Fig. 4 with additional details in
Supplementary Note 4. We observe that the mean relative L2

error reduces when increasing the latent dimension of the
autoencoder model. In other words, the model with a larger
latent space is able to predict the evolution of the microstructure
in forecasting mode. This is intuitive because a larger dimension of
the latent space implies that there are more basis functions to
express the encoded information about the microstructure and its
evolution, and therefore the network has an improved represen-
tation capability. However, this trend seems to saturate beyond
ld= 100. For the model with ld= 100 or ld= 196, the forecasting
error is always less than 6%. The logarithm of the relative L2 error
linearly increases for ld= 64,100 and 196 for the forecasting time
step, whereas for ld= 9 and ld= 25, the error is high and remains
constant.

Robustness of the surrogate DeepONet framework: Sensitivity
to noise
We evaluated the accuracy and robustness of the predictions from
our surrogate model by systematically increasing the noise levels
in the model input. For this analysis, we considered the best
model with ld= 196 and DeepONet architecture 1 (see Table 2)

Table 2. Detailed survey of different latent dimension size, ld, network architecture, and non-linear activation functions.

ld DeepONet Architecture Activation Dtrain Dtest DeepONet training time
per 1000 epochs (s)

ReLU 0.03621 0.06803 56

196 Architecture 1 tanh 0.02177 0.06233 56

sin 0.01408 0.01620 57

ReLU 0.04076 0.05991 31

100 Architecture 2 tanh 0.03196 0.04699 30

sin 0.02684 0.03679 31

ReLU 0.06708 0.07791 31

64 Architecture 3 tanh 0.04773 0.06013 35

sin 0.04781 0.05739 32

ReLU 0.16527 0.20097 19

25 Architecture 4 tanh 0.16507 0.20134 19

sin 0.16551 0.20167 20

ReLU 0.31536 0.3186 10

9 Architecture 5 tanh 0.31523 0.31903 11

sin 0.31539 0.31876 11

Architecture Branch Network Trunk Network

1 3 × [conv(32,(3,3))]+ [1960] 2 × [100] + [1960]

2 2 × [conv(32,(3,3))]+ [1100] 2 × [100] + [1100]

3 2 × [conv(32,(3,3))]+ [512] 2 × [100] + [512]

4 1 × [conv(64,(3,3))]+ [500] 2 × [100] + [500]

5 1 × [conv(128,(3,3))]+ [180] 2 × [100] + [180]
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with sin activation functions. We added Gaussian white noise to
our microstructure data with zero mean and standard deviations,
σ= 0.5%, 1%, 2%, 3%, 4%, 5%, 10%. To evaluate the model
performance, we used the relative L2 norm, D, as defined in Eq.
(8). The forecasting error, D, is calculated across the samples
present in the test dataset. Details can be found in Supplementary
Note 5.
From Supplementary Table 1 and Supplementary Figure 5, the

relative L2 norm does not increase noticeably when noise is added
to the model input. In fact, the surrogate is almost invariant to
noise up to 10% Gaussian white noise, as presented in
Supplementary Figure 5. Previous studies45–47 illustrated the
capability of autoencoders to denoise noisy images. The
transformation to a low-dimensional latent space forces the
autoencoder to retain the dominant features alone while
discarding unnecessary noise. The convolutional autoencoder
used in our approach does exactly that by denoising the noisy
microstructure input. The encoder filters out noise and only
retains the dominant energy modes of the microstructure data.
The output of the convolutional encoder is almost in its pure form,
free from noise and therefore it enables the DeepONet to make
stable predictions. The decoder accurately reconstructs the
microstructure from the predictions made by DeepONet in the
latent space. This performance illustrates the robustness and
efficacy of the present framework as compared to other machine-
learned frameworks that use statistical functions to encode the
microstructure representation40. Indeed, it has been illustrated by
Herman and coworkers40 and others48 that, while statistical
functions such as the microstructure auto-correlation functions

are sufficient to capture the salient features of the microstructure
in latent space, such representation does not uniquely map back
to the true microstructure as it is an ill-posed, inverse problem.
Here, our results essentially bypass such a challenge by taking
advantage of the fact that autoencoders are robust to corruption
in the representations they learn. The denoising nature of a
trained autoencoder enables the encoder to learn a stable and
consistent mapping to the latent space. This makes training of the
DeepONet much more stable and results in accurate predictions
of the microstructure at any desired time step.

Effect of time resolution
The high-fidelity phase-field forward numerical solver (MEMPHIS)
discretizes the time with a time step Δt= 1 × 10−4 (see Methods
for additional details). The stability of this numerical integration
scheme can be achieved by strictly following the Courant-
Friedrichs-Lewy (CFL) condition to solve the Cahn-Hilliard
equation for 50M time steps. The solver saves snapshots of the
solution at every 500,000th time step resulting in 100 micro-
structure time frames for each realization. We initially utilized 80
equally spaced time frames between the 10th and 90th time
frames for training the surrogate model. Therefore, for the
surrogate DeepONet model, each time step was 500000 × Δt= 50.
To investigate the effect of different spacing of physical time on

the surrogate DeepONet model, we performed a sensitivity study
using data that are spaced differently in time to train the model.
Specifically, we trained DeepONet models on datasets with a time
spacing of 500kΔt, 2 × 500kΔt, 5 × 500kΔt, and 10 × 500kΔt. The

Fig. 2 Predictions of microstructure evolutions. The true (top row), predicted (middle row), and point-wise error (bottom row) for a
microstructure realization evolving in time. The snapshots at time frames t= t10, t30, t99 are shown here. The network used for this simulation
has ld= 196, and uses the following network architecture: Branch network -- 2 × [conv(128, (3, 3))]+ [3920]; Trunk network -- 2 × [100]+ [3920].
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DeepONet predictions were then remapped to the primitive space
using the pre-trained convolutional decoder to recreate the
microstructure at the required time step. We plot the mean
relative L2 forecasting error corresponding to the models trained
on differently spaced datasets in Fig. 4. As expected, just like with
any other time-integration scheme, we observe that the forecast-
ing error increases for larger spacing in physical time. However,
the computational efficiency of the DeepONet predictions
remained the same for predicting consecutive time frames
regardless of the time spacing used.

Training strategy for learning concurrently multi-scale
features
We showed in a previous work37,38 that the microstructure
evolution in latent space is non-linear. Indeed, for early time steps
the microstructure evolves rapidly and then later on it evolves
more slowly once the phase separation dynamics have taken
effect.
We noted that the DeepONet model architecture presented

above was not able to resolve the small-scale microstructural
features as shown in Fig. 2. In the early time steps, which represent
fast dynamics, small wavelength features are hard to capture due
to spectral bias of neural networks; Fig. 3 quantifies this difficulty.
To circumvent this issue, during training of the DeepONet

model, we increased the weight given to earlier time steps of each

realization in the dataset. By placing more emphasis on early
snapshots during training, we endow DeepONet with an inductive
bias to learn the fast dynamic accurately. Practically speaking, we
are forcing the DeepONet model, Gð~ΦÞðt; θdÞ, to predict earlier
time steps repeatedly by creating a new training dataset with
repeated ~ϕðtÞ for each realization. Since the DeepONet model is
trained to minimize the mean squared error between the true and
predicted microstructures, the model is driven to give greater
emphasis to microstructures developing at earlier time steps. The
results from this training procedure are depicted in Fig. 5. Indeed,
from the comparison of the predicted microstructure without and
with an emphasis on earlier time steps in Fig. 5b and c,
respectively, we observe that increasing the weight given to the
earlier time steps of evolution for each realization results in a
DeepONet model capable of recovering smaller, high-frequency
components. This ability to accurately resolve multiple length
scales is particularly important in dynamic problems such as
dendrite or grain growth problems, for instance, where the
simulated microstructure dynamics can be extremely sensitive to
the development of multiple length scales concurrently.

Integration of DeepONet with a numerical high-fidelity phase-
field solver
The results above show that a pre-trained autoencoder–DeepONet
model can be used as a robust and efficient surrogate of the
numerical solver when inference is requested for initial microstruc-
ture and parameters within the distributions of the training datasets
(interpolation task). Our proposed framework can also be used for
extrapolation tasks and be integrated into the phase-field numerical
solver to accelerate the predictions for initial microstructure and
parameters that are outside the aforementioned distributions
(extrapolation task). To demonstrate this point, we devised a hybrid
approach that integrates the autoencoder–DeepONet framework
with our high-fidelity phase-field Mesoscale Multiphysics Phase Field
Simulator (MEMPHIS solver). This hybrid model unites the efficiency
and computational speed of the autoencoder–DeepONet framework
with the accuracy of high-fidelity phase-field numerical solvers.
The hybrid framework consists of alternating between predic-

tions from the high-fidelity phase-field simulations and those from
the autoencoder–DeepONet model. The high-fidelity phase-field
simulation step provides accuracy in the description of the
dynamics, while the autoencoder–DeepONet model enables us to

Fig. 3 L2 norm of the relative error between true and predicted
microstructures at each time step. a Box plot with respect to DðtÞ
computed over the training time steps over the train and test
datasets. Error bars are equivalent throughout the figure. b Same
error metric, but in future time steps never seen during the training
phase. Error bars are equivalent throughout the figure.

Fig. 4 Variation of forecasting error on test data for models
trained on data with different spacing in time. Spacing in time
tested are: 500kΔt, 2 × 500kΔt, 5 × 500kΔt, 10 × 500kΔt. DtestðtÞ
represents the relative L2 error computed across the samples in test
dataset at different time steps.
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‘leap in time’. The algorithm is presented in Algorithm 1. Here we
choose to split the time evolution predicted between the high-
fidelity simulation and those of the autoencoder–DeepONet to be
equal to one another. Each solver within this integrated scheme
sequentially predicts 10-time frames, which corresponds to
10 × 500k= 5M time steps for the high-fidelity phase-field solver
alone. A schematic of the approach and results are shown in Fig. 6
for the training data. Results for the test data are provided in
Supplementary Fig. 6. The discontinuity along the centerlines of
the predictions made by the autoencoder–DeepONet model arises
from splitting each realization into four different realizations, as
discussed in the ‘Microstructure-evolution dataset’ subsection.

Algorithm 1. Integration of DeepONet with high-fidelity phase
field simulator (MEMPHIS)
Require: ϕ0 : Initial condition: ϕ(x, y, 0)
Require: NT : Number of total time steps
Require: nt : Initial number of time steps to be simulated by
MEMPHIS
Require: DONnt : Number of time steps to be leaped by
DeepONet
n ← 0 ⊳ Initialize

While n ! = NT do
ϕnt  MEMPHISðϕ0; ntÞ ⊳ Solution from MEMPHIS
ϕntþDONnt

 DeepONetðϕnt Þ ⊳ Prediction from DeepONet
ϕ0  ϕntþDONnt

⊳ Update the input for MEMPHIS
n ← nt + DONnt ⊳ Leaping n: MEMPHIS + DeepONet

end while

We see in Fig. 6 that the forecasting from 10 time frames using
the high-fidelity phase-field solver MEMPHIS running on 32 CPU-
cores (Intel® Xeon®, e5-2670) takes approximately 90 min. The
subsequent 10 time frames predicted by the
autoencoder–DeepONet model take only 2 s. A comparison of
the computational cost between the high-fidelity phase-field
solver alone and the hybrid approach is reported in Table 3. Here,
we achieve a speed-up of 29% . This performance can be
improved by a much greater factor with more extensive offline
training with a richer dataset of operating conditions, which will
lead to better generalization. For each evolution, our hybrid
approach saves 135min, without loss of accuracy as shown
previously in the Results section. The choice of a specific time step
splitting, for which the system is evolved using the high-fidelity
phase-field framework and then by the autoencoder–DeepONet
model, is arbitrary and can be considered as a hyper-parameter.

For instance, one could easily consider to use very short time steps
within the high-fidelity phase-field solver window to course-
correct the physical predictions and much longer time steps when
using DeepONet to accelerate the time evolution predictions. This
type of time splitting integration scheme would dramatically
increase the speedup even further. Additionally, although we
showed the microstructure evolution only until t= t105, such a
hybrid time integration strategy can be adopted to forecast time
evolution of the microstructure for time windows that can be
much longer, for instance as long as the input time history used to
train the DeepONet model while still keeping a good accuracy,
leading to substantial savings in CPU hours.

DISCUSSION
In this work, we investigated the effectiveness of a convolutional
autoencoder–DeepONet approach for modeling the evolution
dynamics of mesoscale microstructures. The proposed framework
consists of two parts. First, learning a non-linear mapping to a
latent manifold using convolutional autoencoders, and second,
learning the dynamics in the latent space (from the first step)
using DeepONet. We trained our model on high-fidelity, phase-
field data generated by solving the Cahn-Hilliard equation. The
results presented above show that the trained DeepOnet
architecture can be used robustly to replace the high-fidelity
phase-field numerical solver in interpolation tasks or to speed up
the numerical solver for extrapolation tasks. We showed that
increasing the latent dimension used to describe the micro-
structure evolution and putting more emphasis on earlier time
steps during the training improve the overall representation
capability of the framework. Given its performance, this framework
offers several advantages as compared to other machine-learned
architectures used for accelerating the prediction of the phase-
field-based microstructure evolution.
First, unlike existing methods37,40 that train machine-learning-

based surrogate models using low-dimensional representations of
microstructures based on statistical functions (e.g. auto-correlation
function), our autoencoder–DeepONet approach learns a suitable
low-dimensional latent space using a convolutional autoencoder.
We showed that this approach bypasses any post-processing
steps (e.g. a phase-recovery algorithm) necessary to reconstruct
the microstructure from statistical functions40. The advantage of
training DeepONet in the autoencoder latent space is two-fold. On
one hand, training DeepONet in a low-dimensional space is
computationally efficient. On the other hand, the presence of

Fig. 5 Capturing small microstructural features at earlier time steps. a True microstructure at t= t10. b Predicted microstructure without
emphasizing earlier time steps during training. c Microstructure predicted by DeepONet trained on a dataset where the earlier time steps
where repeated to increase the importance given to earlier time steps.
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Fig. 6 Schematic of our hybrid approach for integrating DeepONet with the numerical solver MEMPHIS to accelerate phase-field
predictions. The computational time corresponding to the autoencoder--DeepONet model and the MEMPHIS solver for one realization in the
training dataset is reported in this figure. The error is shown on the third column.
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high-gradient regions in the microstructure data (see Fig. 7a) can
make the training of the model challenging. However, the encoder
transforms microstructure data to a latent space (Fig. 7b), where
the gradients are not as high and more gradual . In other words,
the encoder learns a non-linear mapping of the microstructure
data coming from an untrainable distribution in the primitive
space, as shown in Fig. 7c, to a trainable distribution in the low-
dimensional latent space, as shown in Fig. 7d. Such a transforma-
tion from data with a high gradient to data with gradual,
smoother gradient facilitates the training of the DeepONet model.
Although we have trained our own autoencoder model in this
work, we believe that fine-tuning any autoencoder pre-trained on
existing image datasets with similarities to our microstructure
images will be suitable for this task. Reusing such readily available
pre-trained autoencoders can further save on the computational
cost of our workflow.

Second, even though the workflow presented in this work is
focused on two-dimensional (2D) microstructure data, it can easily
be extended to three-dimensional (3D) microstructure data. For
the 3D microstructure evolution case, each realization can be
represented by a sequence of 3D tensor data structures. Hence,
we could use an autoencoder with 3D convolution layers in the
encoder and 3D transpose convolution layers in the decoder and
learn a suitable non-linear mapping to a low-dimensional latent
manifold. Following the same approach, a DeepONet model can
be trained to learn the dynamics in the latent space, and be then
remapped to primitive space using the already trained decoder.
As shown in a recent theoretical paper, DeepOnet can tackle the
curse of dimensionality in the input space, so training it in
highdimensions is not a prohibitive issue49.
Third, the autoencoder and DeepONet are trained solely from

data, making the proposed approach purely data-driven, inde-
pendent of the boundary conditions. The boundary conditions are
never explicitly assumed as input data to the framework at any
stage. They are implicitly fed through the latent representation of
the microstructure history data inputted to the branch network of
DeepONet. Therefore, any information regarding a change in the
boundary condition will be available in the latent microstructure
history fed to the branch network, enabling the DeepONet model
to predict the dynamics accordingly in the latent manifold. In this
manner, the purely data-driven nature makes the proposed
autoencoder–DeepONet framework agnostic to any changes in
boundary conditions within the considered history. We also need
to clarify that periodic boundary conditions were imposed at all
four boundaries of the computational domain while generating
the data from the numerical solver MEMPHIS. We note that
DeepONet can be trained to map boundary conditions to an
output field if so desired for a very general set of variable
boundary conditions.
There are several extensions to the present framework that can

be implemented in order to improve the accuracy, predictability,
and acceleration performance. These improvements are related to

Table 3. A comparison between computational time for high-fidelity
phase-field simulations (MEMPHIS) and proposed hybrid model
(Hybrid) for a single microstructure evolution realization from time
frame t1 to time frame t105.

Computational time

Time frames MEMPHIS Hybrid

t1 to t30 135 mins 135 mins

t30 to t40 45 mins 2 sec

t40 to t60 90 mins 90 mins

t60 to t70 45 mins 2 sec

t70 to t90 90 mins 90 mins

t90 to t100 45 mins 2 sec

t100 to t105 23 mins 23 mins

Total time 473 mins 338.1 mins

Fig. 7 Representation of microstructure data and statistical insights. a represents a 3D visualization of the function to be approximated by
the surrogate model. The presence of several high-gradient regions at every time-step, makes it challenging for neural network models to
learn the evolution dynamics of microstructures. Panel (b) represents a smoother latent-microstructure learned by the encoder during the
autoencoder training. c The microstructure data, ϕ(x, y, t), is predominantly represented by 1s or 0s. d The encoder transforms ϕ to a latent
space, ~ϕ, where deep neural networks can learn easily. The curves in (c) and (d) represent the smoothed density estimates of the histogram.
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the training of the model and extension to a multi-fidelity
implementation. The first topic is related to improving the
accuracy of the model with physics constraints in order to better
capture non-linearities in the model evolution. The second topic is
related to fusing different sources of data within our dataset, e.g.,
‘low’ fidelity from simulation and ‘high’ fidelity from physical
experiments of the same nature.
Regarding a physics-informed implementation, Wang et al.50 for

instance put forward a physics-informed DeepONet, where the
PDE of the underlying system is added as a soft constraint to the
loss functions. In the present study, the training framework is
purely data-driven and we are learning the dynamical system in
the latent space defined by non-primitive coordinates except for
time, which is fed as an input to the trunk net. However, similar to
Wang et al., some physical constraints could be injected into the
current framework by using, for instance, the fact that mass ϕ is
conserved at all times.
Regarding the multi-fidelity implementation, the present

approach can be extended to incorporate experimental data
coming from similar processes. For instance, recently, several
researchers51–53 explored diverse ways of exploiting the inherent
correlations between datasets coming from different sources of
data with different levels of fidelity and obtained optimal
predictions. In this context, the data obtained from phase-field
models using a numerical solver can be considered as a low-
fidelity dataset and the limited amounts of experimental
microstructure image data from similar processes can be treated
as a high-fidelity dataset. The autoencoder–DeepONet framework
proposed here can be extended to generate accurate predictions
from a limited number of high-fidelity experimental microstruc-
ture microscopy image data, by utilizing the high correlation with
the surplus low-fidelity phase field data. The assimilation of
experimental data in the present DeepONet architecture can be
concatenated with numerical data as another realization and the
proposed workflow will remain unchanged. Merging and taking
advantage of both experimental and modeling efforts is a future
direction of our research.
To summarize, we developed and applied a machine-learned

framework based on neural operators and autoencoder architec-
tures to efficiently and rapidly predict complex microstructural
evolution problems. Such an architecture is not only computa-
tionally efficient and accurate, but it is also robust to noisy data.
The demonstrated performance makes it an attractive alternative
to other existing machined-learned strategies to accelerate the
predictions of microstructure evolution. It opens up a computa-
tionally viable and efficient path forward for discovering, under-
standing, and predicting materials processes, where evolutionary
mesoscale phenomena are critical, such as in the optimization and
design of materials problems.

METHODS
Phase-field model of the spinodal decomposition of a two-
phase mixture
We illustrate our accelerated phase-field workflow on the simplest case of
the spinodal decomposition of a two-phase mixture. This model is highly
relevant to many phase-field models. In the spinodal decomposition of a
two-phase mixture uses a single order parameter, ϕ(x, t) to describe the
atomic fraction of solute diffusing within a matrix. The free energy of the
system is expressed by the Cahn-Hilliard equation based on the Onsager
force-flux relationship such that

∂ϕ

∂t
¼ ∇ � McðϕÞ∇½ωcðϕ3 � ϕÞ þ κc∇2ϕ�� �

; (3)

where ωc is the height of the energy barrier between the two phases, κc is
the gradient energy coefficient, and Mc denotes the concentration
dependent mobility, with Mc= s(ϕ)MA+ (1− s(ϕ))MB. The function s
defines a smooth interpolation to switch from phase ‘A’ to phase ‘B’. This
interpolation function is defined as sðϕÞ ¼ 1

4 ð2� ϕÞð1þ ϕÞ2. In the

present model, both the mobility and the interfacial energy are taken to
be isotropic and ωc and κc are stet to unity for simplicity. The evolution of
one phase is expressed as a symmetric double-well potential, with minima
at ϕ ± 1.

Microstructure-evolution dataset
The phase-field model described above is implemented using Sandia’s in-
house multi-physics phase-field modeling code MEMPHIS10,54. In order to
generate a diverse and large set of simulation results exhibiting a rich
variety of microstructure features, we independently sampled the phase
fraction ϕA, such that each phase has at least a minimum concentration of
0.15 (note that ϕB= 1− ϕA), and the phase mobilities MA and MB of
species ‘A’ and ‘B’. Phase mobilities are sampled independently to vary in
the range [0.01, 100]. In total we generated 500 triplets (ϕA,MA,MB) using
Latin Hypercube Sampling. In the simple case of the spinodal decomposi-
tion, only the tuple (ϕA,MA/MB) is necessary. As demonstrated in other
studies10,40 that share similar microstructure evolution as the spinodal
decomposition, it is, however, necessary to handle (ϕA,MA,MB) separately
since the ratio MA/MB by itself will not be sufficient anymore to characterize
the dynamics of the microstructure evolution. Herein, we frame the
present work in a broader context for generality. All the simulations were
performed using a two-dimensional (2D) square domain Ω= [0, 1] × [0, 1],
discretized with 512 × 512 grid points, with a dimensionless spatial
discretization of unity in either direction, and a temporal discretization
of Δt= 1 × 10−4. The simulation domain’s composition field is initialized
using truncated random Gaussian distribution in the range [− 1, 1] with
μ= ϕA, and σ= 0.35. The microstructure was allowed to evolve and grow
for 50,000,000 time steps, saving the state of the microstructural domain
every 500,000 time steps, hence a total of 100-time frames were saved
from each simulated case.
In order to use the data in the proposed algorithm, we down-sampled

each snapshot of our 512 × 512 domain into four images of 256 × 256, and
later used cubic interpolation55 to further reduce the resolution to
128 × 128. Hence, from the 500 microstructure evolution samples, we were
able to generate 2000 microstructure evolution samples of 128 × 128
resolution. From this dataset, we have used 1600 cases for training the
DeepONet and 400 cases for testing the network accuracy. Since the
compositional field is randomly distributed spatially, the microstructure
has no recognizable features at the first frame t0. The quick development
of subdomains is then observed between frames t0 and t10, followed by a
smooth and steady coalescence and growth of the microstructure from
time frames t10 to t100. We have trained our proposed model based on this
observation, starting at time frame, t10, when the microstructure had
reached a slow and steady development regime.

Training the autoencoder: learning the latent microstructure
representation
In this work, each microstructure evolution is represented by
(NT, Nx, Ny)= (80 × 128 × 128), with NT representing the number of snap-
shots and Nx × Ny denoting the spatial resolution along x− and y−
direction, respectively. To handle the entire feature space (R128´ 128)
16,384 distinct features are required to represent the microstructure at
each time step. Subsequently, to compute the prediction for all 1,600
microstructure evolutions, we will have 1600 × 80 × 16, 384 (≈2.5 Billion)
32-bit floating data points. Learning microstructure dynamics from such a
high-dimensional dataset is challenging.
To circumvent issues pertaining to the data dimensionality and

preparing the phase-field microstructure data for DeepONet training, we
explored a couple of options. First, we tried using Principal Component
Analysis (PCA) with a linear kernel, for reducing the dimensionality of the
data21,56,57. The low-dimensional representation of the data obtained from
PCA is a linear transformation of the high-dimensional data and discards
the insignificant modes (eigen/singular) corresponding to the lower eigen/
singular values (λi). However, the system considered here is non-diffusive,
which is confirmed by cumulative explained variance and energy
distribution of the system over principal modes. Therefore, using PCA for
reducing the dimensionality of the microstructure description could result
in the loss of valuable information, if only a convenient low number of
principal components are considered. A detailed explanation on PCA of
the microstructure dataset is presented in Supplementary Note 1. Learning
a non-linear mapping from a high-dimensional to a low-dimensional latent
space is one way to compress data without losing as much information as
in the PCA. An autoencoder precisely does this by learning a non-linear
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transformation to a low-dimensional latent space using an encoder. The
decoder learns the mapping to retrieve initial high-dimensional data from
its latent representation.
In this study, we have used a convolutional autoencoder58 with

convolutional layers in the encoder and transpose convolutional layers in
the decoder as shown in Fig. 1. The encoder learns a nonlinear mapping of
the high-dimensional microstructure data, ϕ(x, y, t), to a low-dimensional
latent space represented by ~ϕðtÞ and is expressed as

αθenc : ϕðx; y; tÞ ! ~ϕðtÞ; (4)

βθdec :
~ϕðtÞ ! ϕ̂ðx; y; tÞ; (5)

where α and β represent the mappings performed by the encoder and the
decoder, respectively. In Eq. 4, the encoder takes ϕðx; y; tÞ 2 R128 ´ 128 as
input, and maps it to ~ϕðtÞ 2 Rld , where ld is the dimension of the latent
space. θenc represents the trainable parameters of the convolutional
encoder. Equation 5 represents the decoder network, which takes the
latent dimensional representation, ~ϕðtÞ 2 Rld as the input and predicts the
primitive microstructure, ϕ̂ðx; y; tÞ 2 R128 ´ 128, using transpose convolu-
tional operations. The details of the autoencoder architecture are provided
in Table 1.
θae represents the trainable parameters of the autoencoder. These

parameters are learned by minimizing the loss function, Lae, which reads

Lae ¼ min
θae¼fθenc ;θdecg

kϕðx; y; tÞ � ϕ̂ðx; y; t;θaeÞk22: (6)

Alternatively, the autoencoder provides a low-dimensional representa-
tion of the microstructure by learning a non-linear transformation to a
latent space with ld features. We also observe that it is easier to learn the
microstructure dynamics in the latent space representation, learned by the
autoencoder, than the original primitive form of the microstructure in real
space. This is due to the presence of several high gradient regions in the
original form of the microstructure as shown in Fig. 7a. These high gradient
regions in the solution are due to the nature of the governing Cahn-Hilliard
equation. The latent microstructure representation in Fig. 7b is smoother
and does not have high gradient regions. The latent representation of the
data offers higher regularity and therefore, we achieve faster convergence
during the training of the surrogate neural network model.

Training the DeepONet: learning the microstructure dynamics
in lower dimensions
Neural operators generate nonlinear mappings across infinite-dimensional
function spaces on bounded domains, giving a simulation framework for
multidimensional complex dynamics prediction in real time. Once properly
trained, such models are discretization invariant, which means they share
the same network parameters regardless of how the underlying functional
data is parameterized. DeepONet, originally proposed by Lu and
coworkers41, allows the mapping between infinite-dimensional functions
using deep neural networks. This subsection provides a detailed
description of the training of DeepONet to model the evolution of the
microstructure in the latent dimension.
The unstacked DeepONet architecture is made up of two concurrent

deep neural networks: one encodes the input function at fixed sensor
locations (branch network), while the other represents the domain of the
output function (trunk network). Time, t 2 R1, is given as input to the
trunk network while ~Φ ¼ f~ϕðt10Þ; ~ϕðt11Þ; ¼ ; ~ϕðt89Þg 2 R80 ´ ld is the input
fed to the branch network. ~Φ represents the phase field in the latent
dimension, ld, for all the 80-time steps available in the given dataset. The
goal of the DeepONet is to learn the solution operator, ~ϕðtÞ � ~̂ϕðtÞ ¼
Gð~ΦÞðtÞ from the 1600 microstructure evolutions provided in the training
dataset. The output of the DeepONet is a vector 2 Rld and is expressed as
Gð~ΦÞðt; θdÞ, where θd ¼ Wd;bdf g includes the trainable weights, Wd, and
biases, bd, of the DeepONet model. The framework of the
DeepONet allows the branch network to have a flexible architecture. To
model the microstructure evolution, we have considered a fully connected
neural network for the trunk network. Due to the high-dimensional nature
of the branch network input, R80 ´ ld , a convolutional neural network is
used as the branch network because it utilizes the same kernels across the
time axis and enables the branch network to encode the entire history in a
memory efficient manner. Hence, the input has to be reshaped to

R80 ´
ffiffiffi
ld
p

´
ffiffiffi
ld
p

before feeding it to the branch network. The network
architecture is presented in Fig. 1. The trainable parameters of the

DeepONet, θd, are obtained by minimizing a loss function, ↕d, defined as:

Ld ¼ min
θd

~ϕðtÞ � Gð~ΦÞðt;θdÞ
�� ���� ��2

2; (7)

where ~ϕðtÞ is the ground truth for the low-dimensional phase field
representation at time, t obtained from the convolutional encoder. The
trained DeepONet is used to predict ~ϕðtÞ 2 Rld . The output of the
DeepONet is fed into the transposed convolutional decoder to predict,
ϕ̂ðtÞ 2 R128 ´ 128. The DeepONet is trained using the Adam optimizer59. The
implementation has been carried out using the TensorFlow framework60.
We use Xavier Initialization61 to initialize the weights of all the models.

Error metrics
The L2 norm of relative error, D, is used as the evaluation metric to analyze
the performance of each model considered in this study. D is defined as:

D ¼
P

n

P
x

P
y

P
t ϕðnÞðx; y; tÞ � ϕ̂

ðnÞðx; y; t; θÞ
� �2

P
n

P
x

P
y

P
tϕ
ðnÞðx; y; tÞ2 ; (8)

where n corresponds to the nth sample of the given dataset.
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