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Abstract. This paper describes a method for learning  flexible concepts, by which are meant concepts that lack

precise definition and are context-dependent. To describe such concepts, the method employs a twotiered represen-

tation, in which the first tier captures explicitly basic concept properties, and the second tier characterizes allowable

concept's modifications and context dependency. In the proposed method, the first tier, called Base Concept  Represen

tation (BCR), is created in two phases. In phase 1, the AQ-15 rule learning program is applied to induce a com-

plete and consistent concept description from supplied examples. In phase 2, this description is optimized accord-

ing to a domain-dependent quality criterion. The second tier, called the  inferential  concept interpretation (ICI),

consists of a procedure  tor  flexible matching, and a set of inference rules. The proposed method has been im-

plemented in the POSEIDON system, and experimentally tested on two real-world problems: learning the con-

cept of an acceptable union contract, and learning voting patterns of Republicans and Democrats in the U.S.

Congress. For comparison, a few other learning methods were also applied to the same problems. These methods

included simple variants of exemplar-based learning, and an ID-3-type decision tree learning, implemented in

the ASSISTANT program. In the experiments, POSEIDON generated concept descriptions that were both, more

accurate and also substantially simpler than those produced by the other methods.

Keywords. Concept learning, learning imprecise concepts, inductive learning, learning flexible concepts, two-

tiered concept representation, flexible matching

1. Introduction

Most current methods of machine learning, both empirical and analytic, assume that concepts

are precise and context-independent, and representable by a single symbolic description.

An important consequence of this assumption is that the recognition of such concepts, which

we call crisp, is very simple: if an instance satisfies a concept description, then it belongs
to the concept, otherwise it does not. Another common assumption is that concept instances
are equally representative, that is, there is no distinction in typicality among instances.

In some methods, these assumptions are partially relaxed by assigning to a concept a
fuzzy set membership function (e.g., Zadeh, 1974) or a probability distribution (e.g.,

Cheeseman, et al., 1988; Fisher, 1987). However, once such a measure is defined explicitly

for a given concept, the concept again has a fixed, well-defined meaning. Moreover, these
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methods remain unsatisfactory for coping with context-dependency, handling exceptional

cases, or for capturing increases in knowledge about the concept properties.

When one looks at human concepts, one can see that most of them inherently lack precisely

defined boundaries, and that their meaning is context-dependent. Although on the surface
these properties can be viewed as undesirable, one can argue that they contribute to a

cognitive economy of human knowledge representations (Michalski, 1987). In contrast to

fuzzy set theory, our view is that this imprecision and context dependency can be more

adequately captured by rules of inference and flexible concept matching than by a numerical

set membership function. In other words, the imprecision and context-dependency has often
a logical, rather than a probabilistic character. That is, to decide about the concept member-

ship of an instance that is uncommon, borderline, or irregular in some sense, one usually

reasons using background knowledge, draws an analogy or perform induction, rather than

performs a statistical analysis.

Examples of human concepts are usually not all equivalent. They may be characterized

by a degree of  typicality in representing the concept. For example, a robin is usually viewed
as a more typical bird than a penguin or an ostrich. The typicality can be characterized
as the degree to which an instance shares the common concept properties. In addition,

in different contexts, the same concept may have a vastly different meaning. For example,

the concept "bird" may apply to a live, flying bird, a sculpture, a chick hatching out of

the egg, or even an airplane. Thus, human concepts  are flexible, as their boundaries have
certain degree of fluidity, and can change with the context in which the concepts are used.
It is clear that in order to learn such concepts, machine learning systems need to employ

richer concept representations than are currently used. In view of the ubiquity of flexible

concepts, developing adequate methods for learning them is clearly one of the fundamental
tasks for machine learning research.

Our approach to learning such concepts is based on the idea of  twotiered  representation,

proposed by Michalski (1987). In this representation, the meaning of a concept is defined

by two components, the  base concept representation (BCR), and the  inferential  concept

interpretation (ICI). The BCR defines explicitly the basic properties of the concept, while

the ICI describes implicitly, through rules and matching procedures, the allowed modifica-
tions of the explicit meaning and its extensions in different contexts.

In the general formulation of the two-tiered representation, the "distribution" of the mean-
ing between the two tiers is not fixed, but depends on the properties of the reasoning agent,

and the criteria for evaluating the quality of concept descriptions. For example, in the method
described here, the first step of a leaning process produces a concept description in which
the BCR is a complete and consistent characterization of all training examples. Such a

description, as shown experimentally, can be overly complex and perform poorly on new

examples. Therefore, the second step optimizes this description according to a criterion

measuring its "quality." Our experiments have shown that this optimized description, in

addition to being substantially simpler, may also perform better in recognizing new concept

examples, than the original complete and consistent description. In the application of the

two-tiered method to modelling human concept representation, the Base Concept Represen-

tation would describe the most typical, common, and intentional meaning of a concept,

while the Inferential Concept Interpretation would handle the exceptional or borderline
cases, and context dependency (Michalski, 1990).
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Early ideas, experiments and the first method for learning two-tiered concept represen-

tations were presented in (Michalski, et al., 1986; Michalski, 1988; and Michalski, 1990).

The method proposed there employed a simple form of description simplification, called

TRUNC, which used only specialization as a description reduction operator. An intriguing

result of that research was that the description's complexity was substantially reduced without
affecting its performance on new examples. The effect was obtained by removing those

parts of the complete and consistent description that covered only a small fraction of exam-

ples (the so called  light disjuncts, or  light rules), and by applying a flexible matching pro-
cedure for concept recognition.

This paper extends and continues these early ideas. One important advance is the develop-

ment of a heuristic double-level search procedure, called TRUNC-SG, which explores the

space of two-tiered descriptions to derive a globally optimized description. The search em-
ploys both generalization and specialization operators, and is guided by a new criterion,

the general description quality measure  (GDQ). This measure considers the accuracy of

the description, the computational cost of both tiers—Base Concept Representation and

Inferential Concept Interpretation, and its cognitive comprehensibility (Bergadano, et al.,

1988). By introducing such a general description quality measure one can view any form

of concept learning as a process of modifying the input concept description in order to

maximize a given description quality measure. In this characterization, the initial concept
description may be in the form of positive examples, positive and negative examples, a
complete and/or consistent concept description, a tentative description (e.g., supplied by

a teacher), an abstract concept definition (as in the explanation-based learning), or a com-
bination of these forms.

Another difference between the present approach and previous research is that flexible

matching is used not only in the recognition process, as in (Michalski, et al., 1986), but

also in the learning process, i.e., in searching for high "quality" concept descriptions. This

feature also distinguishes the method from the related work described in (Bergadano &

Giordana, 1989), which does not involve deductive reasoning in the learning phase, and

evaluates the performance of generated descriptions solely on the basis of the coverage

of examples. These earlier approaches may be compared to using hands in learning how
to row a boat, and then using oars in the performance phase.

The idea that learning is more effective if one uses the same instruments for learning
and for the performance phases was also present in some incremental learning systems

(e.g., Fisher 1987). The work described here represents also an important advance over
tree-pruning techniques (e.g., Quinlan, 1987) which apply much more restrictive descrip-

tion reduction operators and do not use any form of deductive matching or flexible inter-

pretation of the learned descriptions. Other advances include the ability to take into con-
sideration the typicality of training instances (when it is known), and the introduction of

a rule base in the Inferential Concept Interpretation.

The paper presents also a body of experimental results comparing the performance of

the proposed method with several other methods, such as variants of exemplar-based learn-
ing, decision tree learning, learning complete and consistent descriptions, and the earlier

method using two-tiered representation based on the TRUNC procedure.

The method proposed has been implemented in the POSEIDON1 system, and experi-
mentally applied to two different real-world problems: learning the concept of an acceptable
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union contract, and learning voting patterns of Republicans and Democrats in the U.S.
Congress. The experiments have confirmed the initial findings that the two-tiered represen-
tation can substantially reduce the concept representation, and at the same time improve

its predictive power. They also show that in the applications considered, the method pro-
posed produced simpler and more accurate concept descriptions than other learning methods,
such as simple variants of exemplar-based learning and decision tree learning with pruning.

2. Two-tiered concept representation

Traditional work on concept representation has assumed that the whole meaning of a con-

cept resides in a single stored structure, e.g., a semantic network, a logic-based description
or a decision tree. Such a structure is expected to capture all relevant properties of the

concept(s) and define the concept boundary (e.g., Collins & Quillian, 1972; Minsky, 1975;
Smith & Medin, 1981; Sowa, 1984). In domains with a significant amount of noise, it may
be advantageous that the concept representation is partially inconsistent and/or incomplete
with regard to the given instances of the concept. The latter has been demonstrated by
the work on pruning decision trees (e.g., Quinlan, 1987), and the HILLARY system (Iba,

et al., 1988), and the work on two-tiered representation (Michalski, 1987; and this paper).
In traditional approaches, the recognition of a concept instance is typically done by directly

matching the instance description with the stored concept representation. Such matching
may include comparing feature values in an instance with those in the concept description,

or tracing links in a semantic network, but has not been assumed to involve any complex

inferential processes. More recently, researchers working on exemplar-based reasoning (e.g.,
Bareiss, 1989; Kolodner, 1988 and Hammond, 1989) have recognized the need for using
inference mechanisms to classify new instances. In these methods, however, the concept
representation consists of stored individual examples (cases). Such a representation taxes
memory, and makes matching concepts with instances more complex. The same objection

applies to methods of exemplar-based learning that use slightly generalized cases, because
the number of cases may still be large.

In contrast to the above, the two-tiered representation has the capability of employing

a general concept description (BCR), and an inference mechanism (ICI) to match the descrip-
tion with instances. Thus, the concept representation can be simpler than the one that stores

individual examples, or their independent generalizations. The BCR can be viewed as a
characterization of the central tendency, the most relevant properties, and the basic inten-

tion behind the concept.
The Inferential Concept Interpretation handles special cases, exceptions2 and context-

dependency. It treats them either by extending the base concept representation (concept
extension), or by specializing it (concept contraction). This process involves the background
knowledge and relevant inference rules contained in the Inferential Concept Interpretation.
Inference allows the recognition, extension or modification of the concept meaning accord-
ing to its context.

When an unknown entity is to be recognized, it is first matched against the Base Concept

Representation. Then, depending on the outcome, the entity may be related to the con-
cept's inferential extensions or contractions. A simple inferential matching can be merely
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a probabilistic inference based on some measure of similarity, e.g., the flexible  matching

method (Michalski et al., 1986). Advanced matching may involve any kind of inference-

deductive, analogical or inductive.

Let us illustrate the idea of two-tiered representation using the concept of "chair." A

simple two-tiered representation of that concept is given below (for an example of a two-

tiered chair description actually learned, see Bergadano, et al., 1988a).

BCR:  Superclass: A piece of furniture.

Function: To seat one person.

Structure: A seat supported by legs and a backrest attached from the side.

Physical properties: The number of legs is usually four. Often made of wood. The

height of the seat is usually about 14-18 inches from the end of the legs, etc.

(BCR may also include a picture or a 3D model of typical chairs)

ICI :  Possible variations of  the properties in BCR: The number of legs can vary from one

to four. The legs may be replaced by any support. The shape of the seat, the legs

and the backrest, and the material of which they are made are irrelevant, as long

as the function is preserved. The backrest may be very small or missing, etc.

Variations:

If legs are replaced by wheels -» type(chair) is wheelchair

Chair without the backrest -» type(chair) = stool

Chair with the armrests -» type(chair) = armchair

Context  dependency:

Context  = museum exhibit -> chair is not used for seating persons any more, but

has all the physical characteristics of a chair.

Context  = toys -> the size can be much smaller than stated in BCR. The chair does

not serve for seating persons, but correspondingly small dolls.

This simple example illustrates several important features of two-tiered representation.

Commonly occurring cases of chairs directly satisfy the BCR, and the ICI is not involved.

The recognition time can thus be reduced for common cases. The BCR is not the same

as a description of a prototype (e.g., Rosch & Mervis, 1975), as it can be a generalization

characterizing different typical cases or be a set of different prototypes. The ICI does not

represent only distortions or corruptions of the prototype, but it can describe some radically

different cases. When an entity does not satisfy the base representation of any relevant
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concept (which concepts are relevant is indicated by the context of discourse), or satisfies

the base representation of more than one concept, the ICI is involved. The ICI can be

changed, upgraded or extended, without any change to Base Concept Representation. While

the BCR-based recognition involves just direct mathing, the ICI-based recognition can,

in general, involve a variety of transformations and any type of inference.

The ideas of two-tiered representation are supported by research on the so-called transfor-

mational model (Smith & Medin, 1981). In this model, matching object features with con-

cept descriptions may transform object features into those specified in the concept descrip-

tion. Such a matching is inferential. Some recent work in cognitive linguistics also seems

to support the ideas of two-tiered representation. For example, Lakoff (1987), in his idealized
cognitive models approach, stipulates that humans represent concepts as a structure, which

includes a fixed part and mappings that modify it. The fixed part is a prepositional struc-
ture, defined relative to some idealized model. The mappings are metaphoric or metonymic

transformations of the concept's meaning.

As mentioned before, in the general two-tiered method, the distribution of the concept

meaning between the Base Concept Representation and Inferential Concept Interpretation
can vary, depending on the criterion of the concept description quality. For example, the

Base Concept Representation can be just concept examples, and the Inferential Concept

Interpretation can be a procedure for inferential matching as used in the cased-based reason-

ing approach. Consequently, the case-based reasoning approach can be viewed conceptually

as a special case of the general two-tiered representation method.

2.1.  Concept representation  language

In the proposed method, the formalism used for concept representation is based on the
variablevalued logic system VL1 (Michalski, 1975). This formalism allows to express simply

and compactly any function that maps a set of vectors into a discrete set. Its advantage

is that it provides a formally well-defined, and at the same time, both comprehensible and

powerful mechanism for expressing complex logical relationships. The basic component
of the representation is a VL1 elementary condition (formally called a selector), which is

a relational expression:

[L # R]

where L is an attribute, R, called the  referent, is a value or a disjunction of values from
the domain of L, and # is one of the relational symbols =, <, >, <, >,  ^. Such a

condition is satisfied by an example, if the value of attribute L in this example is in relation

# to R. For example, [blood type = A v O] expresses the statement that blood type is
A or O. A conjunction of such elementary conditions is a VL1 conjunctive statement (for-

mally called a complex). For example, the expression [shape = circle v square] & [length

> 2] & [color ?£ red] is a VL1 conjunctive statement or a complex. The last elementary

condition in this statement is satisfied by an example, if the attribute "color" in this exam-

ple takes the value that is not "red."
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A disjunction of VL1 conjunctive statements is a VL1 DNF  expression. An expression

in which one VL1 conjunctive statement implies another is called a VL1 rule. If a VL1

conjunctive statement, S, is a description of examples of class C, then this fact is equivalent

to a rule S -» [class = C]. For simplicity, from now on, a VL1 elementary condition is

called a condition, a VL1 conjunctive statement with an implied class is called a rule, and

a VL1 DNF description of a class is called a ruleset for that class. Both, the base represen-

tation, as well as the rules in the inferential interpretation of a concept are represented
as (VL1) rulesets.

2.2. Inferential Concept Interpretation: Flexible matching function

A part of the Inferential Concept Interpretation is flexible  matching function, F, which is
assumed to be given as the background knowledge of the learner. The function measures

the degree of match between an event (example) and a concept description. In the method

implemented, F maps events from the set E, and concept descriptions from the set D, into
the degree of match from the interval [0. .1]:

The value of F for an event e, and a concept description D, is defined as the probabilistic
sum of F for its rules. Thus, if D consists of two rules, r1 and  r2 , we have:

A weakness of the probabilistic sum is that it is biased toward descriptions with many

rules. If a concept description  D has a large number of rules, the value of F(e, D) may

be close to 1, even if F(e, r) for each rule r, is relatively small (see Table 3 in Section 6).

To avoid this effect, if the value of F(e,  r) is below a certain threshold, then it is assumed

to be 0. In POSEIDON, this problem does not occur, because concept descriptions are

typically reduced to only few rules (see the TRUNC-SG procedure in Section 3).

The degree of match, F(e, r) between an event e, and a rule r, is defined as the average
of the degrees of fit for its constituent conditions, weighted by the proportion of positive

examples to all examples covered by the rule:

where F(e, ci) is a degree of match between the event e and the condition ci in the rule r,

n is the number of conditions in r, and tirpos and tirneg are the number of positive exam-

ples and the number of negative examples covered by r, respectively.
The degree of match between an event and a condition depends on the type of the attri-

bute in the condition. An attribute can be one of four types: nominal, structured-nominal,

linear and structured-linear (Michalski & Stepp, 1983). Values of a structured-nominal
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(linear) attribute are nodes of an unordered (ordered) generalization hierarchy. In an ordered

hierarchy, the children nodes stemming from any parent node constitute a totally ordered set.
In a nominal or structured-nominal condition, the referent is a single value or an inter

nal  disjunction of values, e.g., [color = red v blue v green]. The degree of match is 1,

if such a condition is satisfied by an event, and 0 otherwise. In a linear or structured-linear
condition, the referent is a range of values, or an internal disjunction of ranges, e.g.,

[weight = 1.. 3 v 6.. 9]. A satisfied condition returns the value of match 1. If the condition

is not satisfied, the degree of match is a decreasing function of the distance between the

value and the nearest end-point of the interval. If the maximum degree of match between

an example and all the candidate concepts is smaller than a preset threshold, the result

is "no match."

2.3. Inferential Concept Interpretation: Deductive rules

In addition to flexible matching, the Inferential Concept Interpretation includes a set of
deductive rules that allow the system to recognize exceptions and context-dependent cases.
For example, flexible matching allows an agent to recognize an old sequoia as a tree, although

it does not match the typical size requirements. Deductive reasoning is required to recognize
a tree without leaves (in the winter time), or to include in the concept of tree its special

instance (e.g. a fallen tree). In fact, flexible matching is most useful to cover instances

that are close to the typical case, while deductive matching is appropriate to deal with con-
cept transformations necessary to include exceptions, or take into consideration the

context-dependency.

The deductive inference rules in the Inferential Concept Interpretation are expressed as

Horn clauses. The inference process is implemented using the LOGLISP system (Robinson

& Sibert, 1982). Numerical quantifiers and internal connectives are also allowed. They

are represented in the annotated predicate calculus (Michalski, 1983).

2.4. Types of match

The method recognizes three types of match between an event and a two-tiered description:

1. Strict match: an event matches the Base Concept Representation exactly. In this case,

the event is said to be S-covered.

2.  Flexible match: an event is not S-covered, but matches the Base Concept Representation

through a flexible matching function. In this case, the event is said to be F-covered.
3.  Deductive match: the event is not F-covered, but it matches the concept by conducting

a deductive inference using the Inferential Concept Interpretation rules. In this case,

the event is said to be D-covered. (In general, this category could be extended to include
also matching by analogical reasoning and induction; Michalski, 1989).

The above concepts provide a basis for proposing a precise definition of classes of con-

cept examples that are usually characterized only informally. Specifically, examples that
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are S-covered are called  representative examples; examples that are F-covered are called

nearlyrepresentative examples; and examples that are D-covered are called exceptions.

As mentioned earlier, one of the major advances of the presented method over previous

methods using two-tiered representation (e.g., Michalski, et al., 1986) is that the Inferen-
tial Concept Interpretation includes not only a flexible matching procedure, but also infer-
ence rules. Thus, using our newly introduced terminology, we can say that the method

can handle not only representative or nearly representative examples, but also exceptions.

3. An overview of POSEIDON

The ideas presented above have been implemented in a system for learning two-tiered descrip-

tions, called POSEIDON. Table 1 summarizes the two basic phases in which the system

learns the Base Concept Representation. The first phase generates a general consistent and

complete concept description, and the second phase optimizes the description according
to a given measure of description quality.

3.1. Basic algorithm

The complete and consistent description is determined by the AQ15 inductive learning pro-
gram (Michalski, et al., 1986). The second phase improves this description by conducting

a "double level" best-first search. This search is implemented by the TRUNC-SG proce-

dure (SG symbolizes that the method uses both specialization and generalization operators).

In this "double level" search, the first level is guided by the description  quality measure,

which ranks candidate descriptions (see Section 4). The second level search is guided by
heuristics controlling the search operators to be applied to a given description. The search
operators simplify the description by removing some of its components, or by modifying

the arguments or referents of some of its predicates (see sec. 3.2). A general structure of
the system is presented in Figure 1.

Table  1. Basic phases in generating BCR in POSEIDON.

Phase 1

Given:

Concept examples obtained from some source
Relevant background knowledge

Determine:

Complete and consistent description of the concept

Phase 2

Given:

Complete and consistent description of the concept
A general description quality (GDQ) measure
Typicality of examples (if available)

Determine:

The Base Concept Representation that maximizes GDQ.
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Figure  1. Learning in the POSEIDON system.

The search process is defined by:

Search  space: A tree structure, in which nodes are two-tiered concept descriptions

(BCR + ICI)
Operators: Condition removal, Rule removal, Referent modification (see Section 3.2).
Goal: To determine a description that maximizes the general description quality

criterion.

The goal of the search is not necessarily to find an optimal solution, as this would require

a combinatorial search. Rather, the system tries to maximally improve the given concept
description by expanding only a limited number of nodes in the search tree. The nodes
to be expanded are suggested by various heuristics discussed in Section 5.1.

The BCR is learned from examples, and represented as a ruleset (as described in Sec-
tion 2.2). The Inferential Concept Interpretation consists of two parts: a flexible matching
function and a rule base. The rule base consists of rules that explain exceptional examples,
and is acquired through an interaction with an expert.

3.2. Operators for optimizing Base Concept Representation

A description can be modified using three general operators: rule removal, condition removal
and referent modification (i.e., a modification of the subset of attribute values that represents
a condition). The rule removal operator removes one or more rules from a ruleset. This
is a specialization operator because it leads to "uncovering" some examples. It is the reverse
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of the "adding an alternative" generalization rule (Michalski, 1983). Condition removal

(from a rule) is a generalization operator, as it is an instance of the "dropping condition"

generalization rule.

The referent modification operator changes the referent in a condition. Such changes
can either generalize or specialize a description. Consequently, two more specific operators

are defined: condition extension, which generalizes the description, and condition contrac

tion, which specializes the description.

To illustrate these two types of referent modification, consider the condition

[size = 1. .5 v 7]

A referent modification that produces a condition

[size = 1.. 7]

is a condition extension operator. If, however, the initial condition was

[size  * 1. .5 v 7]

then the same referent modification, i.e., the change to [size ^ 1. .7], would represent

a condition contraction operator. A referent modification (in the original condition) that

produces a condition

[size = 1..5]

is a condition contraction operator. Similarly, if the initial condition was [size  *• 1.. 5 v 7],
then the modification to [size  ^ 1.. 5] would represent a condition extension operator.

A summary of the effect of different operators on a description is given in Table 2.

Thus, applying the above search operators can either specialize or generalize the given
description. A generalized (specialized) description covers potentially a larger (smaller)
number of training examples, which can be positive or negative. At any given search step,

the algorithm chooses an operator on the basis of an evaluation of the changes in the coverage

caused by applying the operator (Section 5.2).

3.3. Learning the Inferential Concept Interpretation

As indicated above, by applying a search operator (RR, CR, CE or CC) to the current

Base Concept Representation, one can make it either more general or more specific. If

Table  2. Search operators and their effect on the description.

Search Operator

Rule removal (RR)

Condition removal (CR)

Condition extension (CE)

Condition contraction (CC)

Type of Knowledge Modification

Specialization

Generalization

Generalization

Specialization
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the modified representation is more specific, some positive examples previously covered
may cease to be S-covered. These examples may, however, be still covered by the existing

Inferential Concept Interpretation (and thus would become F-covered or D-covered). On the

other hand, if the modified base representation is more general than the original one, some
negative examples, previously uncovered, may now become S-covered. They may, however,
remain to be excluded by the existing Inferential Concept Interpretation rules. Consequently,
two types of rules in the Inferential Concept Interpretation can be distinguished: those that
cover positive examples left uncovered by the base representation ("positive exceptions"),
and rules that eliminate negative examples covered by the base representation ("negative
exceptions"). A problem then is how to acquire these rules.

The rules can be supplied by an expert, inherited from higher level concepts, or learned
from other knowledge. If the rules are supplied by an expert, they may not be operationally
effective, but they can be made so through some form of analytic learning (e.g., Mitchell,

et al., 1986; Prieditis & Mostow, 1987). If the rules supplied by an expert are too specific
or not totally correct, they may be improved inductively (e.g., Michalski & Larson, 1978;
Dietterich & Flann 1988; Mooney & Ourston, 1989). Thus, in general, learning the Infer-
ential Concept Interpretation can be accomplished by different strategies, the same as learn-
ing the Base Concept Representation.

In the implemented method, the system identifies exceptions (i.e., examples not covered
by the Base Concept Representation), and asks an expert for a justification (see sec. 5.2).
The expert is required to express this justification in the form of rules. The search proce-
dure, shown in Fig. 1, guides the process by determining examples that require justifica-
tion. This way, the role of the program is to learn the "core" part of the concept from
the supplied examples, and to identify the exceptional examples. The role of a teacher is
to provide concept examples, and to justify why the examples identified by the learning
system as exceptions are also members of the concept class.

4. Quality of concept descriptions

Concept descriptions are influenced by different factors and their combinations. Starting
from that point, this section derives quality measures for concept descriptions.

4.1. Factors influencing the description quality

The learning method utilizes a general description quality measure that guides the search
for an improved two-tiered description. The General Description Quality measure is influ-
enced by three basic characteristics: the accuracy, the comprehensibility, and the cost. This

section discusses these three components, and describes a method for combining them into
a single measure.

The accuracy represents the description's ability to produce correct classifications. The
numbers of positive and negative examples covered by a description determine its degree
of completeness and consistency, and are indicative of its predictive power. In order to

achieve a high degree of completeness and consistency when learning from noisy input
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examples, the system may produce overly complex and detailed descriptions. Such descrip-

tions may strongly depend on the particular training set, and, consequently, may perform

poorly in classifying future examples. For that reason, when learning from imperfect in-

puts, it is often better to produce descriptions that are only partially complete and/or

consistent.

The comprehensibility of the acquired knowledge depends on subjective and domain-
dependent criteria. If an intelligent system is supposed to give advice to humans, knowl-

edge used by such a system should be comprehensible to human experts. A "black box"

classifier is not satisfactory in such situations. Therefore, knowledge acquired by a learn-
ing system should be related to terms, relations and concepts used by experts, and should

not be too complex syntactically. This requirement is called the comprehensibility princi

ple (Michalski, 1983). There is no well established measure of description's comprehen-

sibility, therefore we approximate it by using a measure of a  representational  simplicity

of a description. Such a simplicity measure is determined by counting the number of oper-

ators of different kinds involved: disjunctions, conjunctions, and the relations embedded

in individual conditions. In the case of two-tiered representations, the proposed approxima-

tion of the comprehensibility takes into account the operators occurring in both, the BCR
and the ICI, and weighs the relative contribution of each part to the comprehensibility of

the whole description.

The third criterion, the description cost, captures the properties of the description related
to its storage and its use (the computational complexity). Other things being equal, descrip-

tions which are easier to store and easier to use for recognizing new examples are preferred.

When evaluating the description cost, two characteristics are of primary importance. The

first is the cost of measuring values of variables occurring in the description. In some appli-
cation domains, e.g., in medicine, this is a very important factor. The second characteristic

is the computation cost (time and space) of evaluating the description. Again, in some real-

time applications, e.g., in speech or image recognition, there may be stringent constraints
on the evaluation time. The cost and the comprehensibility of a description are frequently

mutually dependent, but generally these are different criteria.
The criteria described above need to be combined into a single evaluation measure that

can be used to compare different concept descriptions. One solution is to have an algebraic

formula that, given numeric evaluations for individual criteria, produces a number that

represents their combined value. Such a formula may involve, e.g., a multiplication, weighted

sum, maximum/minimum, or t-norm/t-conorm of the component criteria (e.g., Weber,
1983). Although such an approach is often appropriate, it also has significant disadvantages.

First, it combines a set of heterogeneous evaluations into a single number, and the meaning
of this final number is hard to understand for a human expert. Second, it usually forces
the system to evaluate all the criteria for each description, even if it is sufficient to com-

pare descriptions on the basis of just one or two most important ones. The latter situation
occurs when one description is so much better than the other according to some important
criterion, that it is not worth to even consider the alternatives. To overcome these problems,

we use a combination of two measures, a lexicographic evaluation and a linear function-
based evaluation, as described in the next section.
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4.2. Combining individual factors into a single preference criterion

Given a set of candidate descriptions, we use the General Description Quality criterion

to select the "best" description. In POSEIDON, the General Description Quality consists
of two measures, the lexicographic evaluation functional (LEF), and the  weighed evalua

tion functional (WEF). The LEF, which is computationally less expensive than WEF, is

used to rapidly focus on a subset of the most promising descriptions. The WEF is used
to select the final description. A general form of a LEF (Michalski, 1983) is:

LEF: <(Criterionl,  T1) , (Criterion2, r2), ... (Criterionk, rk)>

where Criterion1, Criterion2, ... Criterionk are elementary criteria used to evaluate a de-
scription, and  T1, T2 , ... Tk are corresponding  tolerances, expressed in %. The criteria

are applied to a description in order from the left to right (this order reflects their decreas-

ing importance). At each step, all candidate descriptions whose score on a given criterion

is within the tolerance range from the best scoring description on this criterion are con-
sidered equivalent with respect to this criterion, and are kept on the CANDIDATE LIST;

other descriptions are rejected. If after applying some criterion, there is only one descrip-
tion on the CANDIDATE LIST, this description is selected as the best. If after applying

all criteria, the CANDIDATE LIST has more than one description, a standard solution

is to choose the description that scored highest on the first criterion. In POSEIDON, we

chose another approach to the latter problem (see below).

The LEF evaluation scheme is not affected by the problems of algebraic evaluation func-

tions mentioned above. The importance of a criterion depends on the order in which it
is evaluated in the LEF evaluation scheme, and on its tolerance. Each application of an

elementary criterion reduces the CANDIDATE LIST, and thus the subsequent criterion

needs to be applied only to a reduced set. This makes the evaluation process quite efficient.

In POSEIDON, the default LEF consists of the three elementary criteria discussed above,

i.e., accuracy, the representational simplicity and the computational complexity, specified
in that order. The tolerances are parameters of the program, and are set by the user.

While it is usually easy to determine the desired order of the criteria, it may be more dif-

ficult to decide the tolerance for them. If the tolerance for some criterion is too small, the

chances of using the remaining criteria decrease. If the tolerance is too large, the importance

of the criterion is decreased. For this reason, the LEF measure in POSEIDON is applied

with relatively large tolerances, so that all the elementary criteria are taken into account. If
after applying the last criterion the CANDIDATE LIST has still several candidates, a weighed

evaluation functional (WEF) is used to make the final choice. The WEF is a standard linear

function of the elementary criteria. The description with the highest WEF is selected.
Thus, the above approach uses a computationally efficient LEF to reduce the set of can-

didates to a small set, and then applies a more complex measure to the remaining candidates.

4.3. The role of typicality of examples

Accuracy is a major criterion to determine the quality of a concept description. Current
machine learning methods usually assume that the accuracy depends only on the number
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of positive and negative examples covered by the description (training and/or testing). One

can argue, however, that in evaluating accuracy one should take into consideration also the

typicality of examples (Rosch & Mervis, 1975). If two descriptions cover the same number

of positive and negative examples, the one that covers more typical positive examples and

less typical negative examples can be considered more accurate.

For the above reason, we propose a measure of the degree of completeness and the degree

of consistency of a description that takes into account the typicality of the examples. The

typicality of examples can be approximated by the frequency of their occurrence. Alterna-

tively, the teacher supplying the examples can be asked to assign the typicality to the ex-

amples. If the typicality is not provided, the system makes the standard assumption that

the typicality is the same for all examples. The degree of completeness of a description

is proportional to the typicality of the positive events covered. The consistency of the descrip-
tion is inversely proportional to the typicality of the negative events covered.3

In defining the completeness and consistency of a two-tiered description, other factors
may be taken into account. One may postulate that a description should cover the typical

examples explicitly, and non-typical ones implicitly. Thus, the typical examples are covered

by the Base Concept Representation, and non-typical, or exceptional ones by the Inferential
Concept Interpretation. In POSEIDON, the Base Concept Representation is inductively

learned from examples provided by a teacher, and it is desirable that they are typical of

the concept being learned. The Inferential Concept Interpretation rules are provided by
a teacher. They are assumed to handle special or rare cases. An advantage of such an ap-

proach is that the system learns a description of typical examples by itself, and the teacher

needs to explain only the special cases.

In view of the above, the explicitly-covered (strictly-covered, or S-COV) examples are
assumed to contribute to the completeness of a description more than implicitly-covered,

i.e., flexibly-covered (F-COV) or deductive inference rules-covered (D-COV) examples.
These assumptions are reflected by weights ws, wf, and wd used in the definition of com-

pleteness and consistency described in the next section.

4.4. General Description Quality measure

This section defines the General Description Quality (GDQ) measure implemented in
POSEIDON. To this end, we first define the  typicalitybased  completeness, T COM-

PLETENESS, and the typicalitybased  consistency, T_CONSISTENCY, of a two-tiered

concept description:
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where POS and NEG are sets of positive and negative examples, respectively, that are covered

by the two-tiered concept description; and Typicality(e) expresses the degree of typicality

of e as a representative of a given concept. Weights ws, wf, and wd represent different

significance of the type of coverage. They depend on certain thresholds reflecting the appro-

priateness of the type of coverage for the given degree of typicality:

ws: if Typicality(e) > t2, then 1, else w

wf: if t2 > Typicality (e) > t1, then 1, else w

wd: if t1 > Typicality (e), then 1, else w

where thresholds tl and t2 satisfy the relation 0 < t1 < t2 < 1, and 0 < w < 1. The

role of w is to weigh the examples that are covered in a manner (S, F or D) that is not

compatible with their typicality.
Using the terms of T_COMPLETENESS and INCONSISTENCY, the description accuracy

is defined as:

where w1 + w2 = 1. The weights w1 and w2 reflect the expert's judgement about the relative

importance of completeness and consistency for the given problem. The default value of
both is 0.5.

A measure of comprehensibility of a concept description is difficult to define. As men-
tioned earlier, we approximate it by a representational simplicity, which is a reversal func-

tion of representational complexity, defined as:

where BCR (dsp) is the set of all operator occurrences in the BCR, and ICI (dsp) is the
set of all operator occurrences in the ICI. C (op) , the complexity of an operator, is a real
function that maps each operator symbol into a real number representing its complexity.

The values of complexities of the operators are ordered as follows:

C(interval) < C(internal disjunction) < C(=) < C(<>) < C(&) < C(v) < C(implication).

When the operator is a predicate, C increases with the number of the arguments of the

predicate. Parameters v1 and v2 are weights such that v1 + v2 = 1.
The Base Concept Representation is supposed to describe the general and easy-to-define

meaning of the concept, while the Inferential Concept Interpretation is mainly used to handle
rare or exceptional events. As a consequence, the Base Concept Representation should be
easier to comprehend than the Inferential Concept Interpretation, and thus v1 should be
larger than v2. The computational complexity (or a cost) of a description depends on two
parts:
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Measuring-Cost (MC)—the cost of measuring variables used in the concept description.
Evaluation-Cost (EC)—the cost of evaluating the concept description.

where  vars(e) is the set of all occurrences of variables used to evaluate a concept descrip-

tion to classify the event  e,  mc(v) is the cost of measuring the values of the variable v,

and  ec(e) is the computational cost of evaluating the concept description to classify the
event e. The latter depends on the computing time and/or on the number of operators in-
volved in the evaluation.

We now define the cost of a description:

Cost(description) = u1^MC(description) + u2*EC(description)

where u1 and u2 are weights defining the relative importance of the measuring-cost and

the evaluation-cost for a given problem.
The definitions of the above measures together with the specification of the way they

can be combined (sec. 4.2) define the general description quality. Various weights used

in the measures are specified by the program's user to reflect the requirements of the prob-
lem, or determined experimentally. For more details about the description quality measure

see (Bergadano, et al., 1988).

5. Learning by maximizing the concept description quality

As mentioned before, learning a base representation of a concept is performed in two phases.

In the first phase, a complete and consistent concept description is generated by inductive
learning from examples. In the second phase, the obtained complete and consistent descrip-
tion is optimized according to the general description quality criterion. In our approach,

the first phase is done using the AQ15 learning program (Michalski, et al., 1986a). This

section describes the second phase.

5.1. Search heuristics for optimizing Base Concept Representation

Optimizing BCR by a direct application of the General Description Quality measure is

computationally expensive, because every newly generated description has to be matched
flexibly against the complete set of training examples. To make the process more efficient,

we have introduced a doublelevel search method. The first level uses a simple heuristic
to determine which operator (RR, CR, CE or CC) is likely to improve the description,

and the second level actually applies the operator, and evaluates the description using General
Description Quality.
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The first level applies the so-called Potential Accuracy Improvement heuristic (PAI). The

PAI is a function of the change in the coverage of positive and negative examples by the

description due to an operator application. Specifically:

where AP (AN) is the  change in the number of positive (negative) examples that would

be covered by the description after applying the operator, and TP (TN) is the total number

of positive (negative) examples. For generalizing operators, SR and CE, AP and AN are

non-negative, and for specializing operators, CR and CC, AP and AN are non-positive.

The advantage of the Potential Accuracy Improvement measure is that it can be computed
much more efficiently than the General Description Quality. For every condition in the

current description, a list of examples covered by it is maintained using bit vectors. The

sets of examples covered by a ruleset (representing a complete description) is then obtained

by intersection and union operations. The matching time can be improved further by also
maintaining bit vectors for the examples covered by rules (the matching time trades off

with the memory for storing the bit vectors). Note that computing the General Description

Quality requires flexible matching, and thus cannot be done by an intersection and union

operations on bit vectors.

The above formula does not take into consideration the degree of reduction of the descrip-

tion complexity caused by applying an operator. For example, removing a rule reduces

complexity more than removing a condition. To account for this, POSEIDON assigns a

higher weight (preference) to applying the RR operator (rule removal) than for applying
the CR operator (condition removal).

The condition removal operator generalizes the description, therefore, the description
(ruleset) resulting from its application may cover some additional examples (positive or
negative). Due to this, some rule(s) may become redundant. If the CR operation produces

a rule that differs from another rule only in the value of attribute, the two rules may be

merged into one, in which the attribute is related to the internal disjunction of values (this

is a case of the so-called "refunion" operation; see Michalski & Stepp, 1983). For example,
the rules [shape = circle]&[size = 2. .6] and [shape = square]&[size = 2. .6] can be

replaced by single rule [shape = circle v square]&[size = 2. .6].
It is worth noting that in the case of operators RR and CR, the Potential Accuracy Im-

provement heuristic can be simplified by using an approximation:

where #P ( # N ) is the number of positive (negative) examples covered by the component

(rule or condition) to be removed. Such a heuristic is very efficient because it needs to
be computed only once for every condition and every rule in the initial description. This

computation can be done before the search starts, and does not need to be repeated for
every node in the search.

The operator that produces the largest Potential Accuracy Improvement is chosen, and

applied to the description under consideration. The descriptions so generated are then sub-

jected to an evaluation by the General Description Quality criterion.
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5.2. Search algorithm

The search process is conducted according to the algorithm in Table 3:

Table  3, The algorithm for optimizing a concept description.

1 . Identify in the search tree the best candidate description D

(Initially, D is the complete and consistent description obtained by the AQ15 program in Phase 1, and then

it is the highest rank description according to the General Description Quality criterion).

2. Apply to D the operator, from among the operators:

RRi: Remove the i-th rule from D.

CRij: Remove the j-th condition from the i-th rule in D.

CEij: Extend the referent of the j-th condition in the i-th rule in D.

CCij: Contract the referent of the j-th condition in the i-th rule in D,

that maximizes the Potential Accuracy Improvement measure.

3. Compute the General Description Quality (GDQ) of the description obtained in step 2. If the GDQ is smaller

than the GDQ of original D, then proceed to step 1. (When computing the description accuracy for GDQ,

flexible matching is used).

4. Ask an expert for an explanation of the exceptional examples, which are

(a) the positive examples that cease to be covered, and

(b) the negative examples that become covered.

If an explanation is given, add the rules that make up the explanation to the Inferential Concept Interpretation,

otherwise add to it the exceptional example(s).

5. Update the GDQ value of the new node by taking into account the added Inferential Concept Interpretation.

6. If the  stopping  criterion is satisfied, then STOP, otherwise proceed to step 1.

Let us explain the motivation and individual steps of the algorithm. Step 1 chooses the

node (description) for expansion on the best-first basis, that is, chooses the node with the

highest General Description Quality. (This is not always an optimal choice, because "worse"

nodes can sometimes lead to better descriptions after a number of removals. Whether the

search will behave in this manner will depend on the adequacy of the General Description

Quality as the measure of concept quality).

Step 2 chooses the "best" search operator according to the Potential Accuracy Improve-

ment heuristic, and applies it to the current description. Step 3 computes the General De-
scription Quality of the new node. It should be noted that, in the General Description Quality
measure, the typical examples covered directly by the base representation can weigh more
than those covered through flexible matching. The examples covered by Inferential Concept

Interpretation rules weigh more than the ones covered through flexible matching, but less

than the ones covered by the Base Concept Representation.
Step 4 determines exceptional examples, and asks an expert for an explanation of them.

If the explanation is provided, appropriate rules are added to the Inferential Concept Inter-

pretation. These rules may extend or contract the Base Concept Representation. For exam-

ple, the rule removal operator might uncover some positive examples, that were previously

covered. In this case, new rules added to the Inferential Concept Interpretation would allow
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the system to reason about such "special" positive examples, and explain why they should

be classified as instances of the concept being learned. On the other hand, the condition

removal operator might cause some negative examples to be covered. In this case, new

Inferential Concept Interpretation rules would have to be added to contract the Base Con-

cept Representation.

An important issue concerning step 4 is when an explanation should be required from

an expert ("explainer"). The problem is that in some cases the chosen operator may not

be appropriate, because it leads to a very poor description. In such a case, it is not worth-

while to ask an expert for an explanation, and search should continue in other direction.
The method follows the following strategy. Suppose that N is the node (description) being

expanded, and M is the node obtained after applying an operator (e.g., the condition re-

moval). The effort to obtain an explanation is made only if the General Description Quality

of M is "significantly" better than that of N (above a certain threshold). In this case, the

explainer is given the General Description Quality evaluations of both descriptions, N and
M, and asked for an explanation. These evaluations give the explainer a sense of impor-

tance of the request. If the explainer cannot provide an explanation, the exceptional exam-
ples are directly added to the Inferential Concept Interpretation. Step 5 updates the General

Description Quality of the obtained two-tiered description by taking into consideration the

added Inferential Concept Interpretation rules. Step 6 decides whether to stop or continue
the search. The stopping  criterion is satisfied when the number of nodes explored exceeds
valuedk1, or when the General Description Quality is not improved after the exploration

of k2 nodes since the last improvement. The search parameters k1 and  k2 have a default
value, which is modifiable by the user. When the search stops, the best node found until

this point defines the chosen two-tiered concept description.

In conclusion, let's summarize the main difference between the above two-level search

and the standard best-first search. The difference is that only one operator is applied to

the (best-GDQ) node selected for expansion, rather than all available operators, as in the
standard search. The operator applied is the "best" according to the PAI heuristic. Such

a procedure helps to avoid generating low quality nodes, and thus makes unnecessary the

computation of the General Description Quality for these nodes. Other operators are applied
only if the results obtained along this branch of the search tree turn out to be unsatisfactory.

5.3.  An  abstract  example

An abstract example of the search process is given in Figure 2. Individual nodes represent

both components of a two-tiered description (Base Concept Representation and Inferential
Concept Interpretation) generated at any given search step, and show the coverage of train-

ing examples by the description. The rectangular areas represent the coverage by the Base

Concept Representation, and the curved lines denote the coverage by the Inferential Con-
cept Interpretation.

In the example, the accuracy is computed according to the formula presented in Section

4, assuming that all examples have the same typicality. The initial description is represented

by node 1. The BCR contains two rules represented by two rectangular areas, which cover
five positive examples out of eight, and one negative example out of five. The Inferential
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Figure 2. An illustration of the search process.

Concept Interpretation extends this coverage by recognizing one more positive example. Next
nodes correspond to descriptions obtained by an application of operators marking the branches
of the search tree. For example, node 3 is obtained by eliminating condition C5 in the sec-
ond rule of the initial description. The new description is more accurate because all positive
examples are now covered, without changing the coverage of the negative examples.

By truncating the first rule in node 3, node 5 is generated. The description no longer
covers negative examples, and is simpler. This node is then accepted as the optimized descrip-
tion resulting from the search. The other nodes lead to inferior concept representations
with respect to General Description Quality, and are discarded. The quality has been com-

puted with w1 = w2 = 0.5. For simplicity, the cost is omitted, and the complexity of the
Inferential Concept Interpretation is ignored. The complexity of the Base Concept Represen-
tation is indicated by the number of rules and the number of conditions.

6. Experiments

Experiments tested the POSEIDON program, and compared its performance with that of
three other methods: variants of exemplar-based learning, the method for learning consistent
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and complete descriptions (as implemented in AQ15), the method for generating top rule

descriptions (as described by Michalski et al, 1986), and the method for generating pruned

decision trees (as implemented in the ASSISTANT program; Cestnik, Kononenko, & Bratko,

1987). All these methods were applied to the same data from two problem domains. The
learned descriptions were then tested on the same testing examples.

The first domain concerned labor-management contracts, and the problem was to learn
a general description that discriminates between acceptable and unacceptable contracts.

The second domain concerned congressional voting records, and the problem was to char-

acterize the voting behavior of Republicans and Democrats in the U.S. House of Represen-
tatives. To describe the experiments, we start with a brief characterization of the data used.

6.1. Experimental data

Labormanagement contracts

The data regarding labor-management contracts were obtained from  Collective Bargain

ing, a review of current collective bargaining issues published by the Department of Labor
of the Government of Canada. The data describe labor-management contracts that were

negotiated between various organizations and labor unions with at least 500 members.

The raw data covered several economic sectors. Because the attributes describing indi-
vidual contracts varied among different economic sectors, the experiments focused on only

one sector: personal and business services. This sector includes unions representing hospital

staff, teachers, university professors, social workers and certain classes of administrative

personnel. The data involved multivalued attributes, and therefore the VL1 language was

very suitable and directly applicable to these data.
The data used in the experiments describe contracts concluded in the second half of 1987

or the first half of 1988. Each contract is described by sixteen attributes, belonging to two
main categories. One category concerns issues related to the salaries, e.g., pay increases

in each year of the contract, the cost of living allowance, a stand-by pay, etc., and the sec-
ond category concerns issues related to fringe benefits, e.g., different kinds of pension

contributions, holidays, vacation, dental insurance, etc. Positive examples represent con-

tracts that have been accepted by both parties. Negative examples represent contract pro-
posals deemed unacceptable by one of the parties. The training set consisted of 18 positive

and 9 negative examples of contracts; the testing set consisted of 19 positive and 11 nega-
tive examples.

Below is a typical example of an acceptable labor-management contract:

Duration of the contract = 2 years

Wage increase in the first year = 1.5%
Wage increase in the second year = 3.5%

Cost-of-living-allowance = unknown
Hours of work/per week = 38
Pension offer = none

Stand-by pay = $0.12/hr
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Shift differential = second shift is paid 25 % more than first shift
Educational allowance is offered
Holidays/per year = 11 days

Vacation offer = better than average in the industry
Long term disability insurance = offered by the employer

50% dental insurance cost = covered by the employer

Bereavement leave = available

Employer-sponsored health plan = not mentioned

The above description was represented as the following VL1 rule:

[Dur = 2][wagel = 1.5][Wage2 = 3.5][cola = unknown] [Work-hours = 38]

[Pension = none][Stby-pay = 12][Shift-diff = 25][Educ-allw = yes]

[Holidays = 11] [Vacation = better] [Ingtrm-disabil = true][Dntl-ins = half]

[Bereavement = yes][Empl-hlth-plan = unknown]

:: > [contract = acceptable]

(In the above rule, for simplicity, the conjunction is represented by concatenation).

U.S.  Congress voting record

The data regarding the U.S. Congress voting record were the same as the ones used by

Lebowitz (1987) in his experiments on conceptual clustering. The data represent the 1981
voting records of 100 selected representatives (50 in the training set and 50 in the testing

set). The problem was to learn descriptions discriminating between the voting record of
Democrats and Republicans. Below is an example of the voting record of a Democrat in
the U.S. Congress:

Draft  registration =  no

Ban aid  to Nicaragua  =  no

Cut  expenditure  on MX  missiles  =  yes

Federal  subsidy  to nuclear power  stations  =  yes

Subsidy  to national parks  in Alaska  =  yes

Fair  housing bill  =  yes

Limit on PAC contributions =  yes

Limit  on food  stamp program  =  no

Federal  help  to education  =  no

State =  north east

Population =  large

Occupation =  unknown

Cut  in Social Security spending  =  no

Federal  help  to  Chrysler  Corp.  =  vote  not  registered
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6.2 A description of experiments

For each problem domain, the experiments involved the following steps:

1. Learning a complete and consistent description from the training examples (by the AQ15
program).

2. Determining the  top  rule description from the above description using the TRUNC

method (Michalski, et al., 1986).
Such a description consists of a single rule that covers the maximum number of positive
examples among all other rules in the complete and consistent description. Such a descrip-
tion is easy to determine, because the AQ15 generates rules together with measures indi-
cating the number of examples covered  totally and uniquely by each rule (i.e., the t-weight
and u-weight, respectively; see below). In the experiments, one top rule description
was generated for positive concept examples, and one for the negative examples (i.e.,
from a complete and consistent description of the negative examples). An instance was

classified as belonging to a concept if it best matched the top rule description of positive
examples, and was rejected if it matched the top rule description of the negative exam-
ples. If both descriptions were matched with roughly the same degree, then the instance
was classified as "no match." Learning the top rule description, and using it with flexi-

ble matching, represents a simple, but important version of the two-tiered concept learn-
ing approach (Michalski, 1990).

3. Determining an optimized two-tiered description from the complete and consistent de-
scription using the TRUNC-SG procedure.

4. Determining descriptions of the given concepts using other methods, specifically, vari-

ants of the exemplar-based learning approach, and the decision tree learning algorithm
ASSISTANT.

5. Testing the performance of all generated descriptions on the testing examples.

To illustrate the difference between the complete and consistent descriptions, the top rule,

and the optimized descriptions created by POSEIDON, figures below show a sample of
these descriptions in the labor management domain. Figure 3 shows the complete and con-
sistent description produced by AQ15. In the Figure, t represents the t-weight, which is
the total number of examples covered by a rule, and u represents the u-weight, which is
the number of examples uniquely covered by the rule.

By selecting from each of the above descriptions the rule with the largest t-weight,  top

rule descriptions were obtained (Figure 4).
By applying the method implemented in POSEIDON (the TRUNC-SG optimization of

the complete and consistent description, and the ICI rule acquisition), the following opti-
mized two-tiered description was obtained (Figure 5).

During the BCR description optimization process, the system determined the training
events that were incorrectly classified by the base representation. An expert was asked to
formulate rules explaining these examples (the ICI rules in Figure 5). For example, the
first ICI rule for an unacceptable contract (Figure 5) describes contracts with the wage
increase in the first year lower than 3 %, and an even lower increase in the second year.

In such circumstances, the holiday and vacation time do not matter, and the contract is
classified as unacceptable (by the union).
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Figure  3. The complete and consistent descriptions generated by AQ15.

BCR:

ICI: Flexible matching

Figure  4. The  Top rule  descriptions generated by the TRUNC method.

As one can see, the optimized BCR descriptions are significantly simpler than the com-

plete and consistent descriptions generated by AQ15. They also seem to represent the most

important characteristics of the labor management contracts. Specifically, a contract is unac-

ceptable when it offers a significant wage increase (the first two rules in Fig. 5), or it offers

many holiday days, or the vacation time is above average.

6.3. Results from testing POSEIDON and other methods

As mentioned earlier, experiments tested POSEIDON and three other methods, specifically,

variants of exemplar-based learning, the method for learning consistent and complete descrip-

tions, a method for generating top rule descriptions, and a method for generating pruned

decision trees. All of these methods were employed to learn a concept description from



30 F. BERGADANO, S. MATWIN, R.S. MICHALSKI, AND J. ZHANG

BCR:

ICI:

Flexible matching

Deductive matching using rules:

Figure  5. Optimized two-tiered descriptions obtained by POSEIDON.

the same set of training examples. All the learned descriptions were then applied to the

same testing examples. The performance was evaluated by counting the number of examples

that were classified correctly, incorrectly, or unclassified.

Tables 4 to 7 present the results of different experiments. Table 8 provides a summary
of all results. In the tables, columns "Correct" and "Incorrect" specify the percentage
of the testing events that were correctly and incorrectly classified, respectively. The column

No_Match specifies the number unclassified examples (i.e., the examples that did not
match any description to a sufficient degree). To provide an estimate of the complexity

of descriptions learned, the tables also list the number of conditions and rules in each descrip-
tion. In the case of pruned decision trees, the table lists the number of nodes and leaves

(the number of leaves corresponds to the number of rules that can be directly determined

from the decision tree).
Experiment 1 (Table 4) tested a factual description, and variants of the examplar-based

approach (1-, 3- and 5-nearest neighbor match), A factual description is a disjunction of

all the training events, and, as such, is obviously complete and consistent with regard to
the training set. The first part of Experiment 1 tested the factual description on the testing
examples using the strict match method. In such a method, a testing example must match

exactly one of the training examples to be classified. In this case, obviously, the descrip-

tion had no predictive power. It produced No Match answers for all testing examples of

the labor contract data, and for 96/testing examples of the congressional voting data (two
examples were the same in the training and testing sets).
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Table  4. Results of experiment 1.

Simple Exemplar-Based Description

Labor-mgmt problem (Labor): 27 rules and 432 conditions

Congress problem (Congress): 51 rules and 969 conditions

Strict Match

Training Set

Testing Set

1-Nearest Neighbor

Training Set

Testing Set

3-Nearest Neighbors

Training Set

Testing Set

5-Nearest Neighbors

Training Set

Testing Set

Correct

Labor

100%

0%

100%

77%

100%

83%

100%

80%

Congress

100%

4%

100%

86%

100%

84%

100%

84%

Incorrect

Labor

0%
0%

0%
23%

0%
17%

0%
20%

Congress

0%
0%

0%
14%

0%
16%

0%
16%

No Match

Labor

0%
100%

0%
0%

0%
0%

0%
0%

Congress

0%
96%

0%

0%

0%

0%

0%
0%

Subsequent parts of Experiment 1 tested the factual description using the knearest neigh

bor method with different k. The method involved determining k closest (best "fitting")
learning examples to the one being classified, and assigning to the testing example the class
of the majority of the closest examples. Such a method is equivalent to simple forms of
exemplar-based learning. The 1Nearest Neighbor row in the table lists results from apply-
ing the factual description with a matching method somewhat similar to the one described

in (Kibler & Aha, 1987). The only difference was that Kibler and Aha's method uses the
maximum function for evaluating a ruleset (disjunction), while our flexible matching uses
the probabilistic sum (Section 2.2). We also tested the method with k = 3 and 5.

The second experiment  (Table  5) used concept descriptions generated by AQ15 without
truncation. Such descriptions are consistent and complete with regard to the training exam-

ples, i.e., they classify all training examples 100% correct when using the strict matching
method. The flexible matching method did not change this result. For the testing set, the
number of correct classifications was relatively high (80-86%), the same for the strict and
flexible matching methods. Flexible matching made no difference, probably due to two
factors. Firstly, the complete and consistent descriptions include many specific rules, leav-

ing little space for the "no match" cases (3%), in which flexible matching could help.
Secondly, the descriptions consisted only of disjoint rules, as the program was run using
the "disjoint cover" parameter. In such a situation, the "multiple match" cases do not occur,
and flexible matching cannot help.

The above results are similar to those obtained in the previous experiment, which used

an exemplar-based approach  (Table 4). The main difference is that the AQ descriptions are
much simpler in terms of the number of rules and the number of conditions involved (11 vs.

27 rules in the labor management problem, and 10 vs. 51 rules in the congress voting prob-
lem). The simpler descriptions allow the system to be more efficient in the recognition mode.
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Table  5. Results of experiment 2.

Complete and Consistent Description (No truncation)

Labor-mgmt problem (Labor): 11 rules and 28 conditions

Congress problem (Congress): 10 rules and 32 conditions

Correct

Labor Congress

Incorrect

Labor Congress

No Match

Labor Congress

Strict Match

Training Set

Testing Set

100%

80%
100%

86%
0%

17%
0%

14%
0%
3%

0%
0%

Flexible Match

Training Set

Testing Set

100%

80%
100%

86%
0%

17%
0%

14%
0%
3%

0%
0%

Table  6. Results of experiment 3.

The Top Rule Description (the TRUNC method)

Labor-mgmt problem (Labor): 2 rules and 6 conditions

Congress problem (Congress): 2 rules and 6 conditions

Correct

Labor Congress

Incorrect

Labor Congress

No Match

Labor Congress

Strict Match

Training Set

Testing Set

52%
63%

62%
69%

0%
7%

0%
7%

48%
30%

38%
24%

Flexible Match

Training Set

Testing Set

81%
83%

75%
85%

19%
17%

25%
15%

0%
0%

0%
0%

The third experiment (Table 6) tested the top rule descriptions determined from the above

complete and consistent descriptions. As shown in Table 6, the performance of these rules
using flexible matching was comparable to that of the complete and consistent descriptions,
as well as factual descriptions (compare with Tables 4 and 5).

It may be surprising that the top rule descriptions performed better on the testing set
than on the training set. This is due to the fact that the training set contained more excep-

tions than the testing set. The system used the TRUNC method, in which the truncation
process removes rules that cover all except the most typical training examples.

The  top rule descriptions consist of only one rule per concept, and therefore they are
significantly simpler than the factual, and consistent and complete descriptions (they use
only 2 vs. 11 vs. 27 rules in the Labor Management problem, and 2 vs. 10 vs. 51 rules

in the Congress Voting problem). It is quite revealing that such simple rules performed
as well as much more complex descriptions generated in previous methods.

The fourth experiment (Table 7) tested optimized descriptions generated by POSEIDON,
i.e., derived by the TRUNC-SG method. The descriptions were tested using flexible match-
ing alone  (Flexible  Match), and in the combination with deductive matching  (Deductive

Match).
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Table  7. Results of experiment 4.

Optimized (POSEIDON)

Labor-mgmt problem (Labor): 9 rules and 12 conditions

Congress problem (Congress): 10 rules and 21 conditions

Correct

Labor Congress

Incorrect

Labor Congress

No Match

Labor Congress

Strict Match

Training Set

Testing Set

63%
43%

84%
73%

0%
3%

0%
4%

37%
54%

16%
23%

Flexible Match

Training Set

Testing Set

85%
83%

100%

92%
0%

13%
0%

8%
15%
4%

0%
0%

Deductive Match

Training Set

Testing Set

96%
90%

96%
92%

0%
10%

4%

8%

4%

0%
0%
0%

For comparison, the performance of these descriptions was also tested using strict match.

The latter is rather an impractical combination. As expected, these descriptions used with
strict matching gave relatively poor performance.

The optimized descriptions (BCR) combined with deductive matching (ICI) gave the best

performance (90-92% correct). When used with only flexible matching, the performance
was slightly lower. The descriptions are simpler than complete and consistent descriptions,

although they include the Inferential Concept Interpretation rules. They are, of course, more
complex than the top rule descriptions, which do not use any interpretation rules.

For the Labor data, descriptions applied with deductive matching produced higher per-

formance than when used with flexible matching only (90 vs. 83%).4 For the Congress
data problem, the performance was the same for the two matching methods. This is because

deductive rules were acquired on the training set; in the specific testing set, the D-covered
events were the same as F-covered ones.

Table 8 summarizes the results of experiments, specifically, it compares the performance

and complexity of descriptions generated by simple exemplar-based methods, the two-tiered
descriptions generated by POSEIDON, and pruned decision trees generated by ASSISTANT

(a descendant of the Quinlan's ID3 program; Cestnik, et al., 1987). ASSISTANT was ap-
plied to the same learning and training data, which were used in the previous experiments

(whose results were presented in Tables 4-7). The decision trees obtained by ASSISTANT

were optimized using a tree-pruning mechanism (Cestnik, et al., 1987). This mechanism

is compared with the TRUNC-SG method in the next section.

The factual description was applied with the flexible matching function. The complexity
of a rule-based description was measured by stating the number of rules (#Rules) and the

number of conditions (#Conds). The complexity of a decision tree was measured by the
number of leaves (#Leaves) and the number of nodes (#Nodes). The number of rules in
a rule-based description can be taken as comparable with the number of leaves in a deci-

sion tree, because for each leaf of the tree one can generate one rule by tracing the nodes

from the root to the leaf.
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Table  8. Summary of the results of testing descriptions generated by different methods.

Simple exemplar-based method

Performance (% Correct/ % Incorrect)

1 -nearest neighbor

3-nearest neighbor

5-nearest neighbor

Complexity (# Rules/# Conds)

Pruned decision tree

(ASSISTANT + PRUNING)

Performance  (% Correct/ % Incorrect)

Complexity (# Leaves/* Nodes)

Complete and consistent description

(AQ15 without rule truncation)

Performance (% Correct/ % Incorrect)

Complexity  (# Rules/* Conds)

Top rule two-tiered description

(AQ15 with rule truncation)

Performance  (% Correct/ % Incorrect)

Complexity  (It Rules/0 Conds)

Optimized two-tiered description

(POSEIDON)

Performance (% Correct/ % Incorrect)

Complexity  (t Rules/* Conds)

Labor

77% /23%

83%/17%

80%/20%

27/432

8696/14%

29/53

80%/17%

11/29

83%/17%

2/6

90%/10%

9/12

Congress

86%/14%

84%/16%

84%/16%

51/969

87%/14%

19/28

87%/14%

10/32

85%/15%

2/6

92%/8%

10/21

aThe total performance does not sum up to 100% because of "no match" cases.

In the above experiments, for both domain problems, the learning method implemented
in POSEIDON produced descriptions that are simpler (except for the top rule descriptions),

and also perform better on the testing data than other tested methods. Being simpler, these
descriptions are also easier to understand, and have a lower evaluation cost. The meaning

of the concept defined by such descriptions depends on the base representation (i.e., a

TRUNC-SG optimized description learned from examples), and the inferential concept

interpretation (consisting of an apriori defined flexible matching procedure and a set of
deductive rules, formulated by the expert).

Using rules in the inferential concept interpretation has an advantage that exceptional
cases are easy to explain. In the current method, the system determines which examples

are exceptional (those that are misclassified by the base representation). The expert analyzes
them, and determines the rules for ICI. The top rule descriptions were significantly simpler
than any other descriptions, but performed somewhat worse than the optimized description
and the decision tree. Depending on the desired trade-off between the accuracy and simplic-
ity, the  top  rule or the optimized description can be taken as the base representation of

the concept being defined.
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6.4.  The  role of parameters  and  related issues

POSEIDON has many parameters which can be controlled by a user. On the surface, this

might be considered as a disadvantage. In our view, a learning system that allows the user
to explicitly modify parameters that affect learning processes (but which are not just method-
dependent), is to be preferred over a system that does not explicitly define such parameters.

The point is that in the latter systems these parameters are defined only  implicitly, by the
assumptions and the structure of the method. For example, many systems do not take into

consideration the typicality of examples. In POSEIDON, this is equivalent to an assump-
tion that the typicality of all examples is equal to the default value 1. As another example,
consider the cost of measuring the value of attributes. If a learning program does not have
parameters representing such costs, then this is equivalent to an assumption that all costs
are the same (which in reality is often not true). By being able to control such learning

parameters, the user can produce results that better fit the task at hand. For example, for
some tasks, the accuracy of descriptions may be a decisive criterion, while for others the
description simplicity may be of equal concern.

An important problem to be investigated is the sensitivity of POSEIDON to its various
parameters. While a comprehensive answer to this problem goes beyond the scope of this

paper, we report below a preliminary sensitivity analysis regarding the parameters control-
ling the trade-off between the description accuracy and simplicity. Such parameters are
considered to have the most important effect on the performance of learned descriptions.
Specifically, they are the tolerances in the lexicographic evaluation functional measuring
the description quality (Sec. 4.2). To explain their role, let us briefly review the descrip-

tion quality measure. This measure combines several criteria, such as the accuracy, the
simplicity, and the cost. Each criterion is associated with a tolerance interval such that
differences within this interval are not considered unimportant. Thus, if the tolerance inter-
val of accuracy is very narrow, then the accuracy becomes the prevailing criterion in quality
evaluation. On the other hand, if this tolerance interval is wide, the remaining criteria become

more significant.
An experiment was performed using the same Congress voting data, as used in experiments

reported in Tables 4-7. The training set had 51 examples, while the testing set had 49 exam-
ples. The concept to be learned was the voting record of Republicans in the U.S. Congress.
The description tested in Table 7, had 10 rules and 21 conditions, and yielded the accuracy

of 100% on the training set, and 92% on the testing set. The description was obtained
using the accuracy tolerance  (r1) value equal .05. To determine the method's sensitivity
to this parameter, the accuracy tolerance  T1 was set to values .55, .35, .02, .005, and for
each value the description accuracy was measured. For the above accuracy tolerances, the
system's performance on the testing set was 88 %, 88 %, 90 %, and 92 %, respectively. Thus,

this experiment seems to indicate that the accuracy of the descriptions slowly grows with
the narrowing of the tolerance interval on the accuracy in the description quality measure,
which completely confirms an intuitive expectation.

In general, when the accuracy tolerance interval is wide, the simplicity of the description
assumes an important role, yielding performances close to the performance of the top rule

in the two-tiered description. Intermediate values, such as the one used in the experiments
presented in Table 8 (T1 = 0.05) produced the best results, e.g., the performance of 92%
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on the testing set from the Congress data. In the case of the narrow tolerance interval for

accuracy, the simplicity has a lower impact on the quality of the description. An interesting

topic for future research is to systematically investigate the influence of such parameter

changes on the performance of the description.5
Another issue that should be explored more in the future is the role of example typicality

of learning examples. In the presented method, if the input examples are assigned typicality
values, the generated base concept representation will tend to cover the most typical exam-

ples, while the inferential concept interpretation will tend to cover less typical examples.

A problem for future investigation is to determine the effect of the typicality on the overall

quality of generated concept descriptions. When the typicality information is unavailable,
the system itself will assign examples to different classes of typicality. The examples covered

by the base representation are classified as typical, those covered by flexible matching as
nearly-typical, and those covered by the deductive rules as non-typical.6 An interesting ex-

periment would be to compare such classifications with human classifications. Another

interesting issue relates to the noise in the data. The preliminary analysis indicates that

the proposed method has a significant ability for handling noisy data. Experiments show
that noisy examples are usually covered by the "light" rules, i.e., rules that cover few ex-

amples. By removing such rules from the description, the effect of noise can be significantly

minimized (Zhang & Michalski, 1989). Future research should investigate these aspects

of the method in greater detail.

7. Related work

The research presented here relates to various efforts on learning imprecise concepts, in
particular, to learning methods generating pruned decision trees (e.g., Quinlan, 1987;

Cestnik, et al., 1987; Fisher & Schlimmer, 1988). In these methods, a concept description

is a single tree structure ("one tier") that is supposed to account for all concept instances.

An unknown instance is classified by following the decision tree from the root to the leaf

indicating the class. Because pruned decision trees do not cover some of the training exam-
ples, and the recognition process does not use flexible matching, such trees must always

produce some error on the training examples. This may not be significantly detrimental

to the overall quality of the decision tree, however, as it avoids overfitting.
The two-tiered method avoids overfitting by simplifying original descriptions, yielding

base concept representations that, in the formal logical sense, are usually also incomplete
and inconsistent The two-tiered method, however, can compensate for the lack of coverage
or for an excessive coverage of the first tier (BCR), by the application of the second tier

(ICI). This can be done by flexible matching and/or deductive inference rules. The latter

ones are normally unaffected by noise, because they depend on a deeper understanding

of the domain. In addition, the presented melhod takes into consideration the typicality

of the examples (if it is available). This feature gives the method an additional help for

handling noisy examples.

The method presented in (Quinlan, 1987) is based on a hill-climbing approach that first
truncates conditions, and then rules. No search is performed, only one alternative trunca-

tion is tried at every step. The final result might possibly be far from optimal. By avoiding
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the search, such a procedure should, however, be significantly faster than the one imple-

mented in POSEIDON. If the speed of learning and the simplicity of descriptions are of

central importance, then the TRUNC method (that determines the top rule descriptions

without search) should be applied rather than TRUNC-SG. In the same paper (Quinlan,

1987), other methods for pruning decision trees are also described. Some of these methods

require a separate testing set for the simplification phase, and others use the same training

set that was used in creating the tree. The simplification phase in POSEIDON can also

be done either using the original training set, or using a separate set of examples.

The experiments by Fisher and Schlimmer (1988) on pruning decision trees use a statistical
measure to determine the attributes to be pruned. Such measures require a rather large

data sample, and thus do not apply well to small training sets. In the two-tiered approach,

training events are analyzed logically, rather than statistically, both in the phase creating
a complete and consistent description, and in the optimization phase. Consequently, the

two-tiered approach seems to be more suited for learning from a relatively small number

of examples. An interesting possibility for future research is to integrate a statistical measure,
such as used by Fisher and Schlimmer, or other, in the process of rule learning and trun-

cating with large data sets.
The system developed by (Iba, et al., 1988) uses a trade-off measure that is somewhat

similar to the general description quality (GDQ) measure proposed in this paper. Our GDQ
measure considers more factors. Besides taking into account the typicality of the instances
covered by the description, it considers different types of matching between an instance

and a description. Moreover, the simplicity measured by GDQ depends not only on the
number of rules in the description as in (Iba, et al., 1988), but also on the different syntac-

tic features in the description.

The CN2 inductive algorithm (Clark & Niblett, 1989) uses a heuristic function to termi-
nate search during rule construction. The heuristic is based on an estimate of the noise

present in the data. Such pruning of the search space of inductive hypotheses results in

rules that may not classify all the training examples correctly, but that perform well on

testing data. CN2 can be viewed as an induction algorithm that includes pre-truncation,

while the algorithm reported here is based on post-truncation. CN2 applies truncation during
rule generation, and POSEIDON applies truncation after rule generation. The advantage

of pre-truncation is efficiency of the learning process. On the other hand, such an approach

has difficulty with identifying irrelevant conditions and redundant rules.

The two-tiered method described here can also be viewed as a kind of constructive induc-
tion in the sense of (Michalski, 1983). In fact, the whole learned description may include

new terms, absent from the examples used for learning. This behavior is also encountered
in several other systems (e.g. Sammut & Banerji, 1986; Drastal, Czako, & Raatz, 1989).

However, constructive learning in POSEIDON is due to the second tier based on domain

knowledge characterizing non-typical examples. This is different from using domain knowl-
edge to rewrite or augment the whole training set (e.g., Rouveirol, 1991), or to generate

new attributes by a data-driven approach (Bloedorn & Michalski, 1991), or a hypothesis-

driven approach (Wnek & Michalski, 1991).

The exemplar-based learning system PROTOS (Bareiss, 1989) is similar to POSEIDON

in the sense that both systems use a sophisticated matching procedure—a knowledge-based
matching of an event with a concept description and acquiring the matching knowledge
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via explanations of training events provided by a teacher. There are, however, major differ-
ences: 1) PROTOS stores exemplars as base concept descriptions, whereas POSEIDON

generates simple and easy-to-understand generalizations as base concept descriptions,

2) PROTOS uses domain knowledge in classifying all new cases, whereas POSEIDON

uses Inferential Concept Interpretation rules only for classifying exceptions, 3) During the

learning process, PROTOS asks the teacher for explanations for all exemplars, whereas
POSEIDON only asks for explanations of exceptions.

The problem of using some typicality measure of examples has not so far been given

much attention in machine learning, although there were attempts in this direction. For

example, Michalski and Larson (1978) introduced the idea of "outstanding representatives"

of a concept to focus the learning process on the most significant examples. In cognitive

science, the concept of typicality of examples has been studied extensively (e.g., Rosch &

Mervis, 1975; Smith & Medin, 1981). The concept of two-tiered representation has naturally

led us to the proposition of a precise definition of representative, nearly-representative and

exceptional examples, namely, as those that are covered by the first tier, the second tier's

procedure for flexible matching, and the second tier's inference rules, respectively (see
Section 2.4).

To summarize, there are several major differences between the method presented and

related research described in the literature. First, the method has the ability to recover

from the loss of coverage due to the description truncation by using the second tier. Spe-
cifically, the procedures of flexible matching or deductive rules are used to cover examples
not covered explicitly. As has been demonstrated experimentally, this ability often leads

to a significant reduction of concept descriptions, and at the same time, to an improvement

of their predictive power. Second, the description reduction is done by independently per-

forming both generalization and specialization operators. Third, any part of the description

may be truncated in the simplification process, not just only specific parts (as, e.g., in
decision tree truncation). Fourth, the method is able to take into account the typicality

of the examples. Finally, the method uses a general description quality measure, which

takes into consideration a number of different aspects of a description.
It may be informative to relate the presented two-tiered approach to some other machine

learning approaches in terms of the type of concept representation and the kind of matching
applied for classification. Table 9 below makes such a comparison.

8. Summary and open problems

The most significant aspect of the presented method is that it represents concepts in a two-

tiered fashion, in contrast to traditional learning methods that represent concepts by a

Table  9. A comparison of the two-tiered approach with simple inductive and
exemplar-based methods.

Representation

Matching

Simple Induction

General

Precise

Exemplar-Based

Specific

Inferential

Two-Tiered

General

Inferential
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monolithical structure. In this representation, the first tier, the base concept representation
(BCR), captures the explicit and common concept meaning, and the second tier, the infer-

ential concept interpretation  (LCI) defines allowable modifications of the base meaning and

exceptions. Thus, typical concept instances match the BCR, and thus can be recognized

efficiently. Such a two-tiered representation is particularly suitable for learning flexible

concepts, i.e., concepts that lack precise definition and are context-dependent.
In the POSEIDON system that implements the method, the BCR is learned in two steps.

First, a complete and consistent description is learned by a conventional learning program

(AQ15). Next, the description is optimized according to a general description quality meas-

ure. This is done by a double-level search process that uses both generalization and special-
ization operators. The General Description Quality takes into account not only properties

of BCR, but also of ICI (by measuring the complexity and accuracy of the total descrip-

tion). The ICI has two components: one specifies a flexible matching function, and the

second specifies inference rules for handling exceptions and context-dependency. The ICI
rules can be of two types. The rules of the first type extend the meaning of the concept,

while the rules of the second type contract this meaning. The first type rules are employed

when an instance is neither covered by the BCR (not S-covered), nor by the flexible match-

ing function (not F-covered). The second type of rules are used when an unknown instance

covers a base representation of more than one concept, or when concept membership has

to be confirmed. In both cases, the rules are used deductively. An advantage of using rules
for matching over other matching methods is that they can serve as an explanation why

a given instance does or does not belong to the concept.

The experimental results have strongly supported the hypothesis that two-tiered concept

descriptions can be simpler and easier to understand than "single-tier" descriptions. Two-

tiered descriptions also perform better. For example, the two-tiered descriptions obtained
for the acceptable labor managements contracts gave a performance of over 90% correct

using only about 9 rules. In contrast, the best performance of a simple exemplar based

method gave the 80% correct predictions on new examples and used 27 rules, and the cor-

responding pruned decision tree performed at 86 %, and had 29 leaves (each of which may
be viewed as corresponding to one rule). The system also performed better than the previous
method based on the TRUNC procedure in terms of the performance (80%), but at the

cost of a more complex concept description. In addition, two-tiered descriptions are relatively
easy to understand, and can easily represent an explicit domain knowledge.

The presented method is different in several significant ways from the earlier method
of learning two-tiered representations (Michalski, et al., 1986). The flexible matching pro-

cedure is used not only in the testing phase, but also in the learning phase. In addition

to a flexible matching function, the method employs rules for extending or contracting the

concept meaning. The earlier TRUNC method used only one specialization operator (rule

removal), while TRUNC-SG employed in POSEIDON uses two generalization and two

specialization operators. The price for that is that the new method is significantly more
complex.

There are many interesting problems for future research. Some of them were indicated
previously, in particular, in section 6.4. Among especially interesting and important prob-

lems is how to integrate the description optimization phase with the initial description gen-

eration phase (done by AQ). The first step in this direction is currently being investigated.
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In it, the two processes share the same heuristics and the same measure of description

quality. The next step is to directly generate the target descriptions. Another problem for
future research is how to learn second tier rules from examples. In the initial method devel-

oped by (Plante & Matwin, 1990), the inferential concept interpretation rules are learned

by a chunking process in the situations when multiple explanations of (positive or negative)

training events are provided.

Future research should also address the application of constructive induction (Michalski,

1983) in the process of learning flexible concepts. In constructive induction, background

knowledge is used to construct new attributes and higher level descriptions. As a result,
produced descriptions can capture the salient features of the concept, and can be simpler

and more comprehensible. The ideas of constructive induction seem to be very relevant
to the method proposed. For example, through constructive induction the system may be

able to fold several rules into a single one, or prevent the removal of relevant rules.

The current system does not address the problem of dynamically emerging hierarchies

of concepts. The system only learns one concept at a time, and concepts do not change

or split as new examples become available. Another open issue is the ability of the system
to reorganize itself. The distribution of knowledge between the Base Concept Representa-

tion and the Inferential Concept Interpretation should be determined by the performance

of the system on large testing sets. If it turns out, for instance, that some inferential concept
interpretation rules are used very often, then they could be compiled into the base represen-

tation. Further research is needed on the role and importance of different parameters used

in the method, and on the trade-offs that they can control.
This paper has focused on learning attributional descriptions, that is, descriptions that

characterize entities by attributes, and thus do not represent their structural properties. An
important topic for future research is to develop methods for learning two-tiered structural
descriptions. A simple solution would be to replace the AQ15 program by a version of

INDUCE (e.g., Michalski, 1983) for learning the initial complete and consistent descrip-
tion. The basic search procedure would essentially be the same, but would deal with a

more complex knowledge representation. Such a representation would allow additional de-

scription modification operators. Also, the computation of the general quality of descrip-

tions would require modification, and flexible matching would need to be extended to handle

structural concept descriptions.

As practical problems frequently require only attributional descriptions, and the method

presented is domain-independent, POSEIDON has the potential to be useful for concept

learning and knowledge acquisition in a wide range of applications.
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Notes

1. The system is named after POSEIDON, the Greek god of the sea, which represent fluidity and changing aspects

of nature.

2. The term "exceptions" is used here in its colloquial meaning. In section 3.4, the term is given a precise meaning.

3. When negative examples are instances of another concept, as is often the case, their typicality is understood

as the typicality of being members of that other concept.

4. This difference, for the labor data, is not X2 significant. Nevertheless, we think that there are other reasons

to prefer deductive matching over flexible matching. Deductive classification is based on rules and knowledge-

based inference, and is therefore easier to understand by humans. The rules may be modified locally, while

changing the flexible matching function is difficult and produces uncontrolled, global consequences. In other

words, examples that are correctly recognized through ICI deductive rules are also explained ipso facto in

terms of domain knowledge. The same cannot be said of examples correctly recognized by flexible matching,

which is a knowledge-independent distance measure. To reflect this, the GDQ measure assigns a higher score

to a description with deductive matching than with flexible matching.

5. In our experiment, for small values of T1 = 0.02 and .005, which emphasize the role of accuracy in the measured

quality of a description, the performance on the testing set was close or equal to the performance obtained

for  T1  = 0.05, and higher than performance of 86% for AQ15 in Table 8. The reason is that in the last two

experiments, as well as in the original experiment in Table 8, it was always possible to find a description that

was simpler than the one produced by AQ15, but still 100% correct on the training data. Therefore, by giving

more importance to accuracy, the simpler description was preferred, and better performance on the test set

was obtained.

6. This three-way classification of the examples is, in fact, a simple method of learning typicality. A similar

feature is available in Cobweb (Fisher, 1987). On the other hand, if the typicality information is available,

it is used by POSEIDON to improve the quality of the learned description.

References

Bareiss, R. (1989).  An  exemplarbased knowledge acquisition. Academic Press.

Bergadano, F., & Giordana, A. (1989). Pattern classification: An approximate reasoning framework. International

Journal  of  Intelligent  Systems.

Bergadano, F., Matwin, S., Michalski, R.S., & Zhang, J. (1988a).  Learning flexible concept descriptions using

a twotiered knowledge  representation: Part 1—ideas and a method Reports of Machine Learning and Inference

Laboratory. MLI-88-4. Center for Artificial Intelligence, George Mason University.

Bergadano, F., Matwin, S., Michalski, R.S., & Zhang, J. (1988b). Measuring quality of concept descriptions.

Proceedings  of  the  Third  European  Working  Sessions  on  Learning (pp. 1-14). Glasgow.

Bloedorn, E. & Michalski, R.S. (1991). Data-driven constructive induction in AQ17: A method and experiments

(Reports  of Machine  Learning  and  Inference  Laboratory). Center for Artificial Intelligence, George Mason

University.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). AutoClass: A Bayesian classification

system. Proceedings of  the Fifth  International  Conference  On Machine Learning (pp. 54-64). Ann Arbor, MI.



42 F. BERGADANO, S. MATWIN, R.S. MICHALSKI, AND J. ZHANG

Cestnik, B., Kononenko, I., & Bratko, I. (1987). ASSISTANT 86: A knowledge-elicitation tool for sophisticated

users.  Proceedings of  the  Second  European  Workshop  on  Learning, (pp. 31-45).

Clark, P. & Niblett, T. (1989). The CN2 induction algorithm.  Machine Learning, 3, 261-283.

Collins, A.M., & Quillian, M.R. (1972). Experiments on semantic memory and language comprehension. In

L.W. Gregg (Ed),  Cognition,  learning and  memory. John Wiley.

DeJong, G., & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine  Learning, 1.

Dietterich, T. (1986). Learning at the knowledge level.  Machine  Learning,  1, 287-315.

Dietterich., T., & Flann, N. (1988). An inductive approach to solving the imperfect theory problem. Proceedings

of  the  Explanationbased  Learning  Workshop (pp. 42-46). Stanford University.

Drastal, G., Czako, G., & Raatz, S. (1989). Induction in an abstraction space: A form of constructive induction.

Proceedings  of  IJCA1  89 (pp. 708-712). Detroit.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning,  2, 139-172.

Fisher, D.H., & Schlimmer, J.C. (1988). Concept simplification and prediction accuracy.  Proceedings of  the  Fifth

International  Conference  on  Machine  Learning (pp. 22-28). Ann Arbor.

Hammond, K. (1989).  Casebased planning:  Viewing  planning  as  a  memory  task. Academic Press.

Iba, W., Wogulis, J., & Langley, P. (1988). Trading off simplicity and coverage in incremental concept learning.

Proceedings  of  the  Fifth  International  Conference  on  Machine  Learning (pp. 73-79). Ann Arbor.

Kedar-Cabelli, S.T., & McCarthy, L.T. (1987). Explanation-based generalization as resolution theorem proving.

Proceedings  of  the  Fourth International  Workshop  on  Machine  Learning. Irvine.

Kibler, D., & Aha, D. (1987). Learning representative exemplars of concepts.  Proceedings of  the Fourth Interna

tional  Workshop  on Machine  Learning. Irvine.

Kolodner, J., (Ed.) (1988). Proceedings of  the CaseBased Reasoning  Workshop. DARPA, Clearwater Beach, F1.

Lakoff, G. (1987).  Women, fire,  and dangerous things:  What categories reveal about mind. University of Chicago

Press.

Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEM.  Machine  Learning, 2.

Michalski, R.S. (1975). Variable-valued logic and its applications to pattern recognition and machine learning.

In D.C. Rine (Ed.), Computer science and multiplevalued logic theory and applications. North-Holland Pub-

lishing Co.

Michalski, R.S., & Larson, J.B. (1978).  Selection of most representative training examples and  incremental gen

eration of  VLl  Hypotheses: The underlying methodology and  the description  of programs ESEL and  AQ11 (TR

867, Reports of the Department of Computer Science). University of Illinois at Urbana-Champaign.

Michalski, R.S. ((1983). A theory and methodology of inductive learning. In R.S. Michalski, J.G. Carbonell,

T.M. Mitchell (Eds.),  Machine  learning: An  artificial  intelligence approach. Palo Alto, CA: Tioga Pub. Co.

Michalski, R.S., & Stepp, R.E. (1983). Learning from observation: Conceptual clustering. In R.S., Michalski,

J.G., Carbonell, T.M. Mitchell, (Eds.), Machine  learning: An artificial  intelligence approach. Palo Alto, CA:

Tioga Pub. Co.

Michalski, R.S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose incremental learning system

AQ15 and its testing application to three medical domains.  Proceedings of  the  Fifth  AAAI (pp. 1041-1045).

Michalski, R.S. (1989). Two-tiered concept meaning, inferential matching and conceptual cohesiveness. In S.

Vosniadou and A. Ortony (Eds.),  Similarity  and  analogy. Cambridge University Press.

Michalski, R.S.,  & Ko, H. (1988). On the nature of explanation, or why did the wine bottle shatter. AAAI Sym

posium::  ExplanationBased  Learning, (pp. 12-16). Stanford University.

Michalski, R.S. (1987). How to learn imprecise concepts: A method employing a two-tiered knowledge repre-

sentation for learning.  Proceedings of  the Fourth International  Workshop  on  Machine Learning (pp. 50-58).

Irvine, CA.

Michalski, R.S. (1990). Learning flexible concepts: Fundamental ideas and a methodology. In Y. Kodratoff and

R.S. Michalski (Eds.),  Machine  learning: An  artificial  intelligence approach,  volume III. Morgan Kaufmann

Publishers.

Minsky, M. (1975). A framework for representing knowledge. In P. Winston (Ed.),  The psychology  of computer

vision. New York: McGraw-Hill.

Mitchell, T.M., Keller, R. & Kedar-Cabelli, S. (1986). Explanation-based generalization: A unifying view. Machine

Learning,  1, 11-46.

Mitchell, T.M. (1977)  Version spaces: An approach to concept learning. Ph.D. dissertation, Stanford University.



TWO-TIERED DESCRIPTIONS OF FLEXIBLE CONCEPTS 43

Mooney, R. & Ourston, D. (1989). Induction over the unexplained: Integrated learning of concepts with both

explainable and conventional aspects. Proceedings of Sixth International Workshop  on Machine Learning. (pp.

5-7). Ithaca, NY.

Plante, B., & Matwin, S. (1990). Learning second tier rules by chunking of multiple explanations Research Report.

Department of Computer Science, University of Ottawa.

Prieditis, A.E. & Mostow, J. (1987). PROLEARN: Towards a prolog interpreter that learns. Proceedings of  IJCAI

87 (pp. 494-498). Milan.

Quinlan, J.R. (1987). Simplifying decision trees.  Int.  Journal  of  ManMachine  Studies,  27, 221-234.

Robinson J.A. & Sibert E.E. (1982). LOGLISP: An alternative to prolog. In J.E. Hayes & D. Michie, (Eds.),

Machine  intelligence,  vol. 10.

Rosch, E. & Mervis, C.B. (1975). Family resemblances: Studies in the internal structure of categories.  Cognitive

Psychology,  7, 573-605.

Rouveirol, C. (1991). Deduction and semantic bias for inverse resolution.  Proceedings of  IJCAI  91. Sydney, (to

appear).

Sammut, C. & Banerji, R.B. (1986). Learning concepts by asking questions. In R.S. Michalski, J.G. Carbonell,

T.M. Mitchell (Eds.),  Machine  learning: An  artificial  intelligence approach. Palo Alto, CA: Tioga Pub. Co.

Smith, E.E. & Medin, D.L. (1981).  Categories and  concepts. Harvard University Press.

Sowa, J.F. (1984).  Conceptual structures. Addison Wesley.

Sturt, E. (1981). Computerized construction in Fortran of a discriminant function for categorical data. Applied

Statistics, 30, 213-222.

Watanabe, S. (1969).  Knowing and  guessing,  a formal  and  quantitative study. Wiley Pub. Co.

Weber, S. (1983). A general concept of fuzzy connectives, negations and implications based on t-norms and

t-conorms.  Fuzzy  Sets and  Systems,  II, 115-134.

Winston, P.H. (1975). Learning structural descriptions from examples. In P. Winston (Ed.),  The psychology of

computer  vision. New York: McGraw-Hill.

Wnek, J. & Michalski, R.S. (1991).  Hypothesisdriven  constructive induction in AQ17: A method and  experiments

(Reports of Machine Learning and Inference Laboratory). Center for Artificial Intelligence, George Mason

University.

Zadeh, L.A. (1974). Fuzzy logic and its applications to approximate reasoning.  Information  processing.  North

Holland.

Zhang, J. & Michalski, R.S. (1989). Rule optimization via SG-Trunc method.  Proceedings of  the Fourth European

Working  Sessions  on Learning. Glasgow, December.


