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Abstract

Establishing correspondences between two images re-

quires both local and global spatial context. Given puta-

tive correspondences of feature points in two views, in this

paper, we propose Order-Aware Network, which infers the

probabilities of correspondences being inliers and regresses

the relative pose encoded by the essential matrix. Specifi-

cally, this proposed network is built hierarchically and com-

prises three novel operations. First, to capture the local

context of sparse correspondences, the network clusters un-

ordered input correspondences by learning a soft assign-

ment matrix. These clusters are in a canonical order and

invariant to input permutations. Next, the clusters are spa-

tially correlated to form the global context of correspon-

dences. After that, the context-encoded clusters are recov-

ered back to the original size through a proposed upsam-

pling operator. We intensively experiment on both outdoor

and indoor datasets. The accuracy of the two-view geome-

try and correspondences are significantly improved over the

state-of-the-arts.

1. Introduction

Two-view geometry estimation is a fundamental prob-

lem in computer vision, which plays an important role in

Structure from Motion (SfM) [37, 33] and visual Simul-

taneous Localization and Mapping (SLAM) [21]. Cur-

rent state-of-the-art SfM [37, 33] and SLAM [21] pipelines

commonly start from local feature extraction and matching.

Outlier rejection algorithm is then applied which is neces-

sary for accurate relative pose estimation. After that, the

∗indicates equal contributions.
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‡interns at Shenzhen Zhuke Innovation Technology (Altizure).
§indicates corresponding authors.

relative pose can be recovered from inliers.

Until recently, great efforts have been spent on applying

deep learning techniques to geometric matching pipeline,

and most of them focus on learning local feature detec-

tors and descriptors [40, 4]. More interestingly, learning-

based outlier rejection has also been revisited [20, 29] and

achieves appealing results. Our work also applies learning-

based outlier rejection as the core component for two-view

geometry estimation. We exploit a neural network to in-

fer the probability of each correspondence as an inlier, then

recover the relative pose by regressing the essential matrix

through a closed-form and differentiable computation. The

overview of the workflow is illustrated in Fig. 1.

Previous works [20, 29] exploited PointNet-like archi-

tecture [26] and Context Normalization [20, 35] to classify

putative correspondences, which we refer to as PointCN.

It has following drawbacks: (1) PointNet-like architecture

applies Multi Layer Perceptrons (MLPs) on each point in-

dividually. Hence it cannot capture the local context [27],

e.g., similar motion shared by neighboring pixels [1], which

has been shown to be beneficial for outlier rejection [1, 44].

(2) PointCN relies on Context Normalization to encode the

global context. Such a simple operation normalizes the fea-

ture maps by their mean and variance, which overlooks the

underlying complex relations among different points and

may hinder the overall performance.

One of the challenges in mitigating the above limita-

tions is exploiting neighbors to encoding local context. Un-

like 3D point clouds, sparse matches have no well-defined

neighbors, where this issue is previously tackled in bilateral

domain [14] (2D spatial domain and 2D motion domain) or

by a graphical model [44]. Besides, another challenge is

modeling the relation between correspondences since they

are unordered and have no stable relations to be captured.

To address the above two problems, we draw inspira-

tion from hierarchical representations of Graph Neural Net-
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Figure 1. The Order-Aware Network to learn two-view correspon-

dences and geometry. PointCN blocks are used in level-1 to pro-

cess unordered input. Besides, we introduce three novel opera-

tions to exploit the local and global context: (1) The DiffPool layer

(left), which maps unordered nodes to a set of clusters in a canoni-

cal order to caputre local context; (2) the Order-Aware DiffUnpool

layer (right), which upsamples the clusters using the spatial infor-

mation of input nodes to build a hierarchical architecture; (3) the

Order-Aware Filtering block in level-2, which correlates the clus-

ters thus allows the network to better model the global context.

work (GNN). In particular, we generalize the Differentiable

Pooling (DiffPool) [41] operator, which is permutation-

invariant and originally designed for GNN, into a PointNet-

like framework to capture the local context. Specifically,

as shown in Fig. 1, DiffPool maps input nodes to a set

of clusters by learning a soft assignment matrix, instead

of using pre-defined heuristic neighbors. Meanwhile, the

permutation-invariant DiffPool essentially yields a canon-

ical order for the resulting clusters, which eschews the

need of heuristic sorting such as [22, 43]. Moreover, be-

ing in a canonical order further enables us to exploit the

cluster relation with effective spatially-correlated opera-

tors, i.e. the proposed Order-Aware Filtering block, to

capture more complex global context. Finally, to assign

per-correspondence predictions, we develop a novel Differ-

entiable Unpooling (DiffUnpool) layer to upsample these

clusters to the original size. It is noteworthy that the

proposed DiffUnpool operator is specially designed to be

order-aware so as to precisely align the upsampled features

with the original input correspondences.

The proposed method is extensively evaluated on both

large-scale indoor and outdoor datasets with diverse scenes

and achieves significant accuracy improvements on relative

pose estimation over the-state-of-the-arts.

Our main contributions are threefold:

• We introduce the DiffPool and DiffUnpool layers to

capture the local context of unordered sparse corre-

spondences in a learnable manner.

• By the collaborative use of DiffPool operator, we pro-

pose Order-Aware Filtering block which exploits the

complex global context of sparse correspondences.

• Our work significantly improves the relative pose esti-

mation accuracy on both outdoor and indoor datasets.

2. Related Work

2.1. Learning based Matching

With the emergence of deep learning, many works at-

tempted to employ learning-based methods to solve ge-

ometric matching tasks, including both dense methods

[36, 45, 13, 30] and sparse methods [40, 23, 4, 3, 18, 17].

For these sparse methods, most of them focused on inter-

est point extraction and description with convolutional neu-

ral network (CNN) to replace handcrafted features such as

SIFT [16]. Meanwhile, some works [2, 20, 29] also at-

tempted to solve the outlier rejection problem with learning-

based methods to improve the accuracy of relative pose es-

timation, which is the topic of this work.

2.2. Outlier Rejection

Typically, putative correspondences established by hand-

crafted or learned features contain many outliers, e.g. in the

wide baseline case. So outlier rejection is necessary to im-

prove relative pose estimation accuracy. RANSAC [6] is the

standard and still the most popular outlier rejection method.

USAC [28] provided a universal framework for RANSAC

variants. BF [14] utilized a piecewise smoothness constraint

on the bilateral domain to filter outliers. GMS [1] simplified

the idea of smoothness constraints as a statistical formula-

tion. RMBP [44] defined a graphical model which describes

the spatial organization of matches to reject outliers.

In the deep learning era, DSAC [2] mimicked the be-

havior of RANSAC and proposed a differentiable counter-

part using probabilistic selection. PointCN [20] reformu-

lated the outlier rejection task as an inlier/outlier classifica-

tion problem and an essential matrix regression problem.

It exploited PointNet-like architecture to label input cor-

respondences as either inliers or outliers and introduced a

weighted eight-point algorithm to directly regress essential

matrix. Context Normalization was proposed which can

drastically improve the performance. A concurrent work

DFE [29] also used PointNet-like architecture and Context

Normalization but adopted a different loss function and an

iterative network. N3Net [25] inserted soft k-nearest neigh-

bors (KNN) layer to augment PointCN. Our work is also

built on PointCN but puts effort on improving the local and

global contexts by borrowing ideas from Geometric Deep

Learning.
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2.3. Geometric Deep Learning

Geometric Deep Learning deals with data on non-

Euclidean domains, such as graphs [11, 19, 8, 5] and man-

ifolds [26, 39, 12, 7, 42]. PointNet-like architecture can be

regarded as a special case of Graph Neural Network which

processes graphs without edges. Different from 3D point

clouds, sparse correspondences have no well-defined neigh-

bors. This is also a difficulty faced by many tasks on graphs

[41]. Instead of defining heuristic neighbors for correspon-

dences as done in previous works [14, 44], we exploit Dif-

ferentiable Pooling [41] to cluster nodes in a learnable man-

ner and capture the local context. However, the original

DiffPool Network is not applicable in our case because it

does not give a full size prediction. Hence, we propose a

novel DiffUnpool layer to upsample the coarsened feature

maps and build a hierarchical architecture. Moreover, we

introduce an Order-Aware Filtering block with spatial con-

nections to capture the global context.

3. Order-Aware Network

We will present Order-Aware Network for learning two-

view correspondences and geometry, which contains three

novel operations: Differentiable Pooling layer, Order-

Aware Differentiable Unpooling layer, and Order-Aware

Filtering block. The formulation of our problem is first in-

troduced, and then these submodules successively.

3.1. Problem Formulation

Given image pairs, the goal of our task is to remove out-

liers from putative correspondences and recover the rela-

tive pose. More specifically, after extracting keypoints and

their descriptors in each image using handcrafted features

[16, 32] or learned features [40, 4], putative correspon-

dences can be established by finding their nearest neighbors

in the other image. Then outlier rejection method is applied

to establish geometrically consistent correspondences. Fi-

nally, an essential matrix can be recovered from the inlier

correspondences by a closed-form solution [15, 20].

The input to the outlier rejection process is a set of puta-

tive correspondences:

C = [c1; c2; ...; cN ] ∈ RN×4, ci = (xi
1, y

i
1, x

i
2, y

i
2), (1)

where ci is a correspondence and (xi
1, y

i
1), (x

i
2, y

i
2) are the

coordinates of keypoints in these two images. The coordi-

nates are normalized using camera intrinsics [20].

Following [20], we formulate the two-view geometry es-

timation task as an inlier/outlier classification problem and

an essential matrix regression problem. We use a neural

network to predict the probability of each correspondence

to be an inlier and then apply the weighted eight-point al-

gorithm [20] to directly regress the essential matrix. The

architecture can be written as:

z = fφ(C), (2)

w = tanh(ReLU(z)), (3)

Ê = g(w,C), (4)

where z is the logit values for classification. fφ(· ) is a

permutation-equivariant neural network and φ denotes the

network parameters. w is the weights of correspondences.

For each weight wi ∈ [0, 1), wi = 0 means an outlier. tanh

and ReLU are applied to easily remove outliers [20]. g(· , · )
in Eq. 4 is the weighted eight-point algorithm. Ê is the re-

gressed essential matrix. g(· , · ) takes more than eight cor-

respondences and their weights to compute essential matrix

via self-adjoint eigendecomposition. The weighted eight-

point algorithm can be more robust to outliers than tradi-

tional eight-point algorithm [9] because it has considered

the contribution of each correspondence. Besides, it is dif-

ferentiable with respect to w which makes it possible to

regress the essential matrix in an end-to-end manner.

The optimization objective of this neural network is to

minimize a classification loss and an essential matrix loss

as follows:

loss = lcls(z, s) + αless(Ê,E), (5)

where less is the essential matrix loss between the predicted

essential matrix Ê and the ground truth essential matrix E.

It can be a L2 loss [20]

lossL2 = min{‖Ê±E‖} (6)

or a geometry loss [29, 9]

lossgeo =
(pT

2
Êp1)

2

‖Ep1‖
2
[1] + ‖Ep1‖

2
[2] + ‖ETp2‖

2
[1] + ‖ETp2‖

2
[2]

,

(7)

where p1,p2 are correspondences and t[i] denotes the ith

element of vector t. lcls is a binary cross entropy loss for the

classification term. s denotes weakly supervised labels for

correspondences, which are also derived using the above ge-

ometric error, and a threshold of 10−4 is used to determine

valid correspondences. α is the weight to balance these two

losses.

3.2. Differentiable Pooling Layer

The unordered input correspondences require network

fφ(· ) to be permutation-equivariant. So PointNet-like ar-

chitecture was used [20, 29]. Each block in the PointNet-

like [20] architecture comprises one Context Normalization

layer, one Batch Normalization layer with ReLU, and one

shared Perceptron layer. This so called PointCN block is

shown in Fig. 2. The proposed Context Normalization layer
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Figure 2. Differentiable Pooling layer. DiffPool maps nodes to

clusters in a soft assignment manner. The soft assignment matrix is

learned by hpool(· ) which contains one PointCN block (in dashed

red box) and one softmax layer.

[20] normalizes features of each sample using their statistics

and can largely boost the performance.

However, PointNet-like architecture has the drawback in

capturing the local context because there is no direct inter-

action between points. In order to capture the local context

for sparse correspondences, we draw the idea from DiffPool

layer [41] to learn to cluster nodes to a coarser representa-

tion, as shown in Fig. 2. The DiffPool layer is analogous

to Pooling layer in CNN which assigns nodes to different

clusters. Rather than employing a hard assignment for each

node, the DiffPool layer learns a soft assignment matrix.

Denoting the assignment matrix as Spool ∈ RN×M , Diff-

Pool layer maps N nodes to M clusters:

Xl+1 = ST
poolXl, (8)

where Xl ∈ RN×D and Xl+1 ∈ RM×D are the features at

level l and level l + 1 respectively. D is the dimension of

features, and typically M < N , e.g. N = 2000,M = 500.

As we have mentioned before, the assignment matrix is

learned rather than pre-defined. More specifically, taking

the features at level l, we directly generate the assignment

matrix using a permutation-equivariant network as follows:

Spool = softmax(hpool(Xl)), (9)

where the permutation-equivariant function hpool(· ) is one

PointCN block here. It maps features from N×D to N×M .

Softmax layer is applied to normalize the assignment matrix

along the row dimension. These clusters can be viewed as

weighted average results of nodes in the previous level.

Permutation-invariance. DiffPool is a permutation-

invariant1 operation [41], which will play a crucial role in

1Equivariance means applying a transformation to input equals to ap-

plying the same transformation to output, while invariance means applying

a transformation to input will not affect the output.
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Figure 3. Designs of Differentiable Unpooling layer. (a) Plain Dif-

fUnpool layer. It learns a soft assignment matrix using features at

level l + 1. (b) Order-Aware DiffUnpool layer. It learns a soft

assignment matrix using features at level l which can encode the

order information of nodes at level l.

our design. Assuming permuting Xl with a permutation

matrix P ∈ {0, 1}N×N , Eq. 9 becomes

S̃pool = softmax(hpool(PXl)) = PSpool, (10)

because both hpool(· ) and softmax are permutation-

equivariant functions. So, according to Eq. 8, features at

level l + 1 become

Xl+1 = S̃T
poolPXl = ST

poolP
TPXl = ST

poolXl, (11)

since PTP = I holds for every permutation matrix. Eq.

11 and Eq. 8 prove the permutation-invariance property of

DiffPool layer.

The permutation-invariance property also means that,

once the network is learned, no matter how the input are

permuted, they will be mapped into clusters in a particular

learned canonical order by the DiffPool layer. This canon-

ical order is determined by the parameters of hpool(· ).

3.3. Differentiable Unpooling Layer

DiffPool Network was used to predict the label for an en-

tire graph [41]. However, it is not applicable for our sparse

matching problem, since we need to give predictions for

all correspondences. So, we develop a Differentiable Un-

pooling layer inspired by the DiffPool layer to upsample the

coarse representation and build a hierarchical architecture.

A straightforward way to implement the DiffUnpool

layer is reversing the behavior of DiffPool layer, as shown

in Fig. 3a. More specifically, similar to Eq. 8 and Eq. 9,

an unpooling assignment matrix Sunpool ∈ RM×N is first

predicted taking features X
′

l+1 through:

Sunpool = softmax(hunpool(X
′

l+1)), (12)

where X
′

l+1 ∈ RM×D denotes new features at the same

level of Xl+1, and it is computed from Xl+1. We then map
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features X
′

l+1 to a new embedding X
′

l ∈ RN×D at level l

as follows:

X
′

l = ST
unpoolX

′

l+1. (13)

However, we find the above implementation is not opti-

mal because it cannot align the unpooled features X
′

l with

features Xl in the previous stage (see section 4.4). The point

is that DiffPool is a permutation-invariant operation, which

means one Xl+1 can correspond to various input Xl. In the

other words, features Xl+1 and X
′

l+1 at level l+1 have lost

the spatial order information of features Xl at level l. We

cannot expect the learned assignment matrix as in Eq. 12

can recover the original spatial order of Xl or generate fea-

tures which can be precisely aligned with Xl, since Sunpool

in Eq. 12 only utilizes information at level l + 1.

Keeping this in mind, we propose an Order-Aware Dif-

fUnpool layer as shown in Fig. 3b, which can be aware

of the particular order (position) of nodes in the previous

level. Different from the above implementation, the assign-

ment matrix for unpooling is learned from features at level

l which has stored the input order information as follows:

Sunpool = softmax(hunpool(Xl)). (14)

With this unpooling assignment matrix Sunpool ∈ RN×M ,

we can map features at level l + 1 to level l by:

X
′

l = SunpoolX
′

l+1. (15)

Since each row in this Sunpool ∈ RN×M corresponds to

one node in Xl, it has already encoded the particular or-

der information of Xl and ensures the unpooled features

can well aligned to the previous stage. The mapping in

Eq. 15 also requires the learned assignment matrix to be

aware of the order of X
′

l+1. But it is much easier for the

network this time since the feature X
′

l+1 is in a canonical

order. hunpool(· ) in Eq. 14 is also a PointCN block and it

maps features from N×D to N×M . We apply the softmax

along the column dimension this time2, so the unpooled fea-

tures can be viewed as weighted average results of different

clusters. X
′

l is then concatenated with Xl to fuse shallow

features.

Another advantage of the proposed Order-Aware Dif-

fUnpool layer is that it does not require a fixed size input.

When there are less than or more than 2000 keypoints in im-

ages, we can still pool nodes to fixed 500 clusters and then

upsample clusters back to the same size. This is useful in

practice.

3.4. Order­Aware Filtering Block

With the DiffPool and DiffUnpool layers, we can build

a multiscale network which is a common practice in CNN.

2Actually we find changing the normalization directions in Eq. 9 and

Eq. 14 only has little influence on results. They do not even need to be

orthogonal.

C
o
n
te
x
t
N
o
rm

B
N
+
R
e
L
U

S
h
a
re
d
P
e
rc
e
p
tr
o
n

C
o
n
te
x
t
N
o
rm

B
N
+
R
e
L
U

S
h
a
re
d
P
e
rc
e
p
tr
o
n

B
N
+
R
e
L
U

S
h
a
re
d
P
e
rc
e
p
tr
o
n

T
ra
n
sp
o
se

T
ra
n
sp
o
se

Spatial Correlation Layer

Figure 4. Order-Aware Filtering block. We insert the Spatial Cor-

relation layer to PointCN ResNet block. This layer is complemen-

tary to PointCN and can help capture the global context effectively.

We can apply PointCN blocks repeatedly to process these

newly generated clusters. However, as we have discussed

above, PointCN may have weakness in modeling the com-

plex global context because it ignores the relation between

nodes. Here we propose a simple but more effective opera-

tion than PointCN block, which is called Spatial Correlation

layer to explicitly model relation between different nodes

and capture the complex global context.

As we have shown above, the pooled features are in a

canonical order after the DiffPool layer. This is a useful

property but PointNet-like architecture cannot make full use

of it. Our Spatial Correlation layer applies weight-sharing

perceptrons directly on the spatial dimension to establish

connections between nodes. Note this operation is differ-

ent from the fully connected layer because the weights are

shared along the channel dimension, which can help to pre-

vent overfitting. The Spatial Correlation layer is orthogonal

to PointCN, since one is along the spatial dimension and the

other is along the channel dimension. These two operations

are complementary, so we assemble them into one block to

better capture the global context as shown in Fig. 4.

Spatial Correlation layer is implemented by transpos-

ing the spatial and channel dimensions of features. After

the weight-sharing perceptrons layer, we transpose features

back. Residual connection and batch normalization with

ReLU are also used. We insert the Spatial Correlation layer

to the middle of PointCN ResNet block and call this com-

posite module Order-Aware Filtering block which can pro-

cess data in a canonical order. Note that before the DiffPool

layer, we cannot apply the Spatial Correlation layer on the

feature maps as the input data is unordered and there is no

stable spatial relation to be captured. So we apply this sim-

ple block only at the level after the DiffPool layer and find

it can significantly boost the performance.

4. Experiments

We conducted experiments on outdoor YFCC100M [34]

dataset and indoor SUN3D [38] dataset. Experiment results

and network interpretation are as follows.
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threshold S L mAP5(%) mAP10(%) mAP20(%)

0.01 X 17.53/12.50 27.61/21.15 42.06/34.21

0.001
X 44.50/12.50 54.50/21.15 65.27/34.21

X 47.98/23.55 58.13/36.58 68.67/53.08

Table 1. Performances of baseline network [20] on YFCC100M

unknown sequences. Results with/without RANSAC under error

thresholds of 5◦, 10◦ and 20◦ are all reported. Changing the in-

lier threshold in RANSAC and using more data can significantly

boost the performance. S: using only sequences ‘Saint Peter’s’

and ‘brown bm 3 05’ as [20]. L: using 68 sequences.

4.1. Datasets

Outdoor scenes. We use the Yahoo’s YFCC100M

dataset [34], which contains 100 million photos from in-

ternet. The authors of [10] later generated 72 3D recon-

structions of tourist landmarks from a subset of the collec-

tions. We use four sequences [20] as unknown scenes to

test generalization ability. For training sequences, differ-

ent from PointCN, we use the remaining 68 sequences for

training, while [20] uses only two sequences. Our setting is

not prone to overfitting on known sequences and has better

generalization ability as shown in Tab. 1. To have a fair

comparison, we re-train all models on the same data.

Minimum visual overlap is required if pairs are selected

into the dataset. For outdoor scenes, the overlap is the num-

ber of sparse 3D points in the reconstructed model which

can be both seen by the image pairs. We use the cam-

era poses and sparse models provided by [10] to generate

ground-truth.

Indoor scenes. We use the SUN3D dataset [38] for in-

door scenes, which is an RGBD video dataset with camera

poses computed by generalized bundle adjustment. Follow-

ing [36] we split the dataset into 253 scenes for training and

15 as unknown scenes for testing. This splitting can en-

sure there is no spatial overlap between training and testing

datasets. We find some sequences in the training set do not

provide camera poses, so we drop these sequences and fi-

nally get 239 sequences for training. We subsample videos

every 10 frames. The visual overlap for indoor scenes is

computed by projecting the depth map to the other image.

Following [20], we test on both known scenes and un-

known scenes. The known scenes are the training se-

quences. We split them into disjoint subsets for training

(60%), validation (20%) and testing (20%). The unknown

sequences are the test sequences described above.

4.2. Evaluation Metrics

We use the angular differences between ground truth and

predicted vectors for both rotation and translation as the er-

ror metric. mAP results with and without RANSAC post-

processing are reported. We find the inlier threshold of

OpenCV function findEssentialMat() used in [20]

PointCN UnA UnB OF L3 Geo Iter Known Unknown

X 34.36/13.93 47.98/23.55

X X 34.38/14.04 47.93/24.10

X X 36.33/17.88 49.65/28.78

X X X 40.78/25.94 51.63/32.55

X X X X 39.69/26.04 50.70/30.48

X X X X 40.79/28.39 51.10/33.68

X X X X X 42.46/33.06 52.18/39.33

Table 2. Ablation study on YFCC100M. mAP (%) on both known

and unknown scenes are reported with/without RANSAC post-

processing. UnA: the plain DiffUnpool layer. UnB: the Order-

Aware DiffUnpool layer. OF: using the Order-Aware Filtering

blocks rather than PointCN blocks in the second level. L3: a larger

model with three levels. Geo: using geometry loss rather than L2
loss. Iter: using the iterative network.

is not optimal. Changing the threshold from 0.01 to 0.001
will largely improve results with RANSAC, as shown in

Tab. 1. We will use mAP under 5◦ as the default metric

since it is more usable in 3D reconstruction context.

4.3. Implementation Details

The baseline network [20] has 12 PointCN ResNet

blocks. Based on this network, we add one DiffPool layer

and one DiffUnpool layer. Another 6 Order-Aware Filter-

ing blocks at the second level are used as shown in Fig. 1.

The channel dimensions are all 128 in these blocks. The

inputs to the network are N × 4 putative correspondences

established using SIFT feature, typically N = 2000. Af-

ter DiffPool layer, the number of nodes are reduced to fixed

500 which gives best performance. Besides, we also use an

iterative network as [29] which takes residuals and weights

of previous stage as additional inputs. This can futher im-

prove the performance. Our network is implemented with

Pytorch [24]. We use Adam solver with a learning rate of

10−4 and batch size 32. Weight α is 0 during the first 20k

iterations and then 0.1 in the rest 480k iterations as in [20].

4.4. Ablation Studies

In this section, we will give ablation studies about the

proposed operations, loss functions and network architec-

ture on YFCC100M dataset.

DiffUnpool layer design. To demonstrate the efficacy

of DiffUnpool layer, we add DiffPool and DiffUnpool lay-

ers to the baseline PointCN model. Both plain DiffUn-

pool and Order-Aware DiffUnpool described in section 3.3

are tested. After the DiffPool layer, another six PointCN

ResNet blocks are used. Features after DiffUnpool layer are

concatenated to the previous stage. As shown in Tab. 2, our

Order-Aware DiffUnpool (PointCN + UnB) achieves an im-

provement of 5.23% over the baseline on unknown scenes

when without RANSAC, while the plain DiffPool (PointCN

+ UnA) gives a negligible improvement over the baseline.

Plain PointCN block vs. Order-Aware Filtering
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Figure 5. Matching results using RANSAC (top), PointCN [20] (middle) and our method (bottom). Images are taken from test set of

YFCC100M and SUN3D datasets. Correpondences are in green if they conform the ground truth essential matrix (true positives), and in

red otherwise (false positives). Best viewed in color.

block. We replace the PointCN blocks at the second level

with Order-Aware Filtering blocks described in section 3.4,

which can better exploit the spatial relationships within the

clusters. As shown in Tab. 2, the proposed block (PointCN

+ UnB + OF) can significantly boost the performance over

simple PointCN block (PointCN + UnB), achieving an im-

provement of 3.77% on unknown scenes without RANSAC.

Does a larger model help? We train a larger model

which is a U-Net [31] with three levels. 12 PointCN ResNet

blocks are used at the first level, 12 and 6 Order-Aware Fil-

tering blocks are used at the second and third level. The

number of nodes in the second and third level is 500 and

125 respectively. However, we find this larger model even

drops on unknown scenes, as shown in Tab. 2. This might

show that the representational ability of Order-Aware Filter-

ing block suffices to capture the global context. So we use

the two-level network in our rest experiments.

Essential matrix loss. L2 loss is used as the essential

matrix loss in previous experiments. However, the L2 loss

is not geometric meaningful. So we replace the L2 loss

with the Gold Standard geometry loss [29, 9]. α is set to

0.5. Clamping the geometry losses to 0.1 works best in our

case. Using the geometry loss helps a little for both known

and unknown scenes as shown in Tab. 2.

Iterative network. Iterative network shares similarity

[29] with traditional guided matching method. Residuals

and weights are passed to next stage iteratively to guide the

estimation. Here we use one initialization network and one

refinement network. Each network has 6 PointCN ResNet

blocks and 3 Order-Aware Filtering blocks to keep almost

the same amount of parameters. We find it is really neces-

sary to detach the gradients from latter stage. Tab. 2 shows

that the iterative network can largely improve the mAP from

33.68% to 39.33% without RANSAC on unknown scenes.

4.5. Comparison to Other Baselines

We compare our network with other state-of-the-art

models from [20, 25, 26, 29] on both outdoor and indoor

datasets. All these models are trained under the same set-

tings. For N3Net [25], we use the official implementation.

We find N3Net is unstable during training, so we run it for

three times and give the best results here. PointNet++ [26]

is an extension of PointNet which also aims to improve the

capability in capturing local context of point sets. As we

have discussed before, it may not be optimal for our sparse

matching problem because correspondences have no well-
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Outdoor(%) Indoor(%)

Known Unknown Known Unknown

RANSAC 5.82/- 9.08/- 4.38/- 2.86/-

PointCN[20] 34.36/13.93 47.98/23.55 20.44/11.28 15.98/9.36

PointNet++[26] 34.15/9.28 46.23/14.04 20.28/7.15 15.61/5.59

N3Net[25] 34.18/12.49 49.13/23.18 20.31/7.95 15.38/7.13

DFE[29] 36.87/18.40 49.45/29.70 20.97/14.09 16.45/12.45

Ours 40.78/25.94 51.63/32.55 21.82/16.09 16.51/12.54

Ours++ 42.46/33.06 52.18/39.33 22.50/21.44 17.50/16.39

RANSAC* 15.21/- 21.95/- 18.17/- 14.58/-

PointCN*[20] 30.48/13.82 43.18/24.83 23.66/12.04 18.52/10.21

Ours* 33.42/23.85 46.28/32.18 24.31/14.81 19.04/12.12

Table 3. Comparision with other baselines on YFCC100M and

SUN3D. mAP (%) (with/without RANSAC post-processing) on

are reported. Ours++ uses the geometry loss and iterative network

while Ours not use. Methods with * means using SuperPoint [4],

otherwise using SIFT.

defined neighbors. Here we implement a 4D-version Point-

Net++ which exploits the 4D Euclidean space as the un-

derlying metric space. DFE [29] is a concurrent work with

[20] and has similar core designs. We implement [29] based

on [20] by adopting their loss formulation and iterative net-

work with the authors’ help.

Results are shown in Tab. 3, our method achieves best

results under all settings, showing improvements of 15.78%

and 7.03% over PointCN [20] on both outdoor and indoor

unknown scenes without RANSAC and still works well

with strong RANSAC post-processing. We also provide the

precision (inlier ratio), recall and F-score of each method in

supplementary material. Fig. 5 shows the visualization re-

sults of our method and other baselines. It can be found that

our method can give better results on several difficult scenes

such as wide baselines, textureless objects, repetitive struc-

tures, and large illumination changes.

We also evaluate learned features such as SuperPoint

[4] as shown in Tab. 3. It is surprising to find Super-

Point gives worse results in outdoor scenes than SIFT when

using learned outlier rejection methods. Although it per-

forms much better than SIFT when only using RANSAC.

It might demonstrate that SuperPoint has better descriptors

but less accurate keypoints. It can give putative correspon-

dences with higher inlier ratio thus has better performance

when only using RANSAC. But the bottleneck may become

keypoint accuracy when inlier ratio is largely improved, in

which situation, SuperPoint performs worse.

4.6. Network Visualization

In order to understand the mechanism of the proposed

Order-Aware Network, we visualize the assignment ma-

trix Sunpool ∈ RN×M of DiffUnpool layer which reflects

the spatial relationships between different nodes in the first

level. More specifically, we visualize the top k responses in

each column of Sunpool. Each column in Sunpool represents

one cluster and each row corresponds to one putative corre-

Figure 6. DiffUnpool layer visualization. Top 15 responses in dif-

ferent columns of Sunpool are visualized in the same image pair.

Different clusters might correspond to different motions in differ-

ent areas. Best viewed in color with 200% zoom in.

Figure 7. DiffUnpool layer visualization. Top 20 responses in the

same column of Sunpool are visualized in different image pairs.

Motions in different pairs are roughly consistent. Best viewed in

color with 200% zoom in.

spondence. These top k correspondences are “clustered”

together because they all have a strong response to the same

cluster. We find DiffUnpool can capture meaningful con-

text for sparse matching. Fig. 6 shows that different clus-

ters might correspond to different local motions. Moreover,

we find the corresponding motion of a particular cluster are

roughly consistent in different pairs and even in different

scenes as shown in Fig. 7, which supports that the pooled

features are in a canonical order.

5. Conclusion

In this work, we proposed the Order-Aware Network for

learning two-view correspondences and geometry. The in-

troduced DiffPool layer and Order-Aware DiffUnpool layer

can learn to cluster meaningful nodes to capture local con-

text. Besides, we develop Order-Aware Filtering blocks to

capture the global context. These operations can signifi-

cantly improve relative pose estimation accuracy on both

outdoor and indoor datasets.
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