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Abstract

In apparel recognition, deep neural network models are

often trained separately for different verticals (e.g. [7]).

However, using specialized models for different verticals is

not scalable and expensive to deploy. This paper addresses

the problem of learning one unified embedding model for

multiple object verticals (e.g. all apparel classes) without

sacrificing accuracy. The problem is tackled from two as-

pects: training data and training difficulty. On the training

data aspect, we figure out that for a single model trained

with triplet loss, there is an accuracy sweet spot in terms of

how many verticals are trained together. To ease the train-

ing difficulty, a novel learning scheme is proposed by using

the output from specialized models as learning targets so

that L2 loss can be used instead of triplet loss. This new

loss makes the training easier and make it possible for more

efficient use of the feature space. The end result is a unified

model which can achieve the same retrieval accuracy as a

number of separate specialized models, while having the

model complexity as one.

1. Introduction

Apparel recognition has received increased attention in

vision research ([7, 4, 11, 1, 14, 17]). Given a piece of gar-

ment, we want to find the same or similar items. Apparel re-

trieval is a challenging object instance recognition problem.

The appearance of the item changes with lighting, view-

points, occlusion, and background conditions. Images from

online shopping sites may differ from those taken in “real

life” (also called street photos [7]). Different verticals also

have different characteristics. For instance, images from the

dress vertical may undergo more deformations than those

from the handbags vertical.

In fine-grained recognition, separate models are often

used for different verticals. For example, in [9, 8], separate

models are built for birds, dogs, aircrafts, and cars. Simi-

larly, in apparel recognition, separate models are trained for

different verticals/domains ([4, 7]). In [4], the embedding

models for images from shopping sites and from streets are

Figure 1. Can a unified embedding model be learned across all the verti-

cals in apparel recognition?

learned using separate sub-networks. In [7], the network for

each vertical is fine-tuned independently in the final model

training. While using separate models can help improve ac-

curacy, it brings extra burden for model storage and deploy-

ment. The problem becomes more severe when the models

are used on mobile devices. Therefore it is desirable to learn

a unified model across different apparel verticals.

This paper studies the problem of learning unified mod-

els for apparel recognition. Our goal is to build a unified

model which can achieve comparable accuracy as separate

models, with the model complexity no bigger than a single

specialized model. As shown in Figure 1, the clothing item

is first detected and localized in the image. An embedding

(a vector of floats) is then obtained from the cropped image

to represent the item and is used to compare similarity for

retrieval. We focus on the embedding model learning in this

paper.

One way to learn the unified model is to combine train-

ing data from different verticals. As shown in our experi-

ments (Section 4.1) and in [7], data combination may cause

performance degradation. To avoid the performance degra-

dation, we have developed a selective way to do vertical

combination. Unfortunately, such “smart” data combina-

tion strategies are not enough - we cannot learn one unified

model with satisfying accuracy. Is it possible to obtain such

a model? Is the limitation intrinsic in model capacity or is

it because of the difficulties in model training? Triplet loss

is used to learn embedding for individual verticals, which
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has shown powerful results in embedding learning [18, 13].

However, as noted in [15, 13] and also observed in our ex-

periments, triplet-based learning can be hard due to slow

convergence and the nuances in negative sampling strategy.

In this work, we seek new approaches to ease the difficulty

in triplet training so that a unified model can be learned.

This paper presents a novel way to learn unified embed-

ding models for multiple verticals. There are two stages in

model training. The first stage tackles a relatively easier

problem - learning embedding models for individual verti-

cals or a small number of combined verticals. In the second

stage, the embeddings from the separate models are used as

learning target and L2 loss is deployed to train the unified

model. The second stage uses the feature mapping learned

in the first stage, and combines them into one single model.

As shown in Figure 2 and Section 3.2, the learned unified

model can make better and broader use of the feature space.

In summary, this paper proposes a two-stage approach

to learn a unified model for apparel recognition. The new

approach can help alleviate the training difficulty in triplet-

based embedding learning, and it can make more efficient

use of the feature space. We have also developed ways to

combine data from different verticals to reduce the number

of models in the first stage. As a result, a unified model is

successful learned with comparable accuracy with separate

models and with the same model complexity as one model.

2. Learning Individual Embedding Models

As shown in Figure 1, we adopt a two-step approach in

extracting embedding feature vectors for object retrieval.

The first step is to localize and classify the apparel item.

Since the object class label is known from the first step, spe-

cialized embedding models can be used in the second step

to compute the similarity feature for retrieval.

2.1. Localization and Classification

An Inception V2 ([6]) based SSD ([10]) object detector

is used. Other object detection architecture and base net-

work combination can also work [5]. This module provides

bounding boxes and apparel class labels, i.e., whether it is a

handbag or a pair of sunglasses or a dress. Features are then

extracted on the cropped image using an embedding model.

2.2. Embedding Training with triplet loss

We use triplet ranking loss [18, 13] to learn feature em-

beddings for each individual vertical. A triplet includes an

anchor image, a positive image, and a negative image. The

goal for triplet learning is to produce embeddings so that

the positive image gets close to the anchor image while the

negative is pushed away from the anchor image in the fea-

ture space. The embeddings learned from triplet training

are suitable for computing image similarity.

In our applications, the positive image is always of the

same product as the anchor image, and the negative image

is of another product but in the same vertical. Semi-hard

negative mining [13] is used to pick good negative images

online to make the training effective.

3. Learning Unified Embedding

Section 2 shows how embeddings for individual verticals

are learned. Given enough training data for each vertical,

good performance can be achieved. However, with more

verticals in the horizon, having one model per vertical be-

comes infeasible in real applications. This section describes

how a unified model across all verticals is learned.

3.1. Combining Training Data

One natural way to learn a model which can work for

multiple verticals is to combine training data from those

verticals. With the combined training data, models can be

learned in the same way as described in Section 2.

However as shown in our own experiments (Section 4.1)

and in [7], training models with combined data may cause

accuracy degradation compared to models trained for each

individual vertical. To prevent performance degradation, a

greedy strategy is developed to decide data from which ver-

ticals can be combined. Starting from one vertical, we add

data from other verticals in to see if the model learned from

the combined data causes accuracy degradation. We keep

adding until degradation is observed and keep the previous

best combination of verticals. We end up with a number

of specialized models, each covering a subset of verticals,

while maintaining the best possible accuracy. In our experi-

ments, this results in four specialized models for all apparel

verticals.

3.2. Combining Specialized Models

Combining the training data can only somewhat alleviate

the coverage scalability issue. Is it possible to learn a uni-

fied model with the sample model complexity as one model

and no accuracy degradation? Is model capacity the bottle-

neck or the difficulty in training?

Deep neural networks can be hard to train. The chal-

lenge of triplet training has been documented in literature

[18, 13, 15]. As exemplified in the Resnet work ([2]), mak-

ing the training easier can lead to substantial performance

improvement. We propose a solution from a similar angle –

to ease the difficulty in model training.

We want to learn a unified model such that the embed-

dings generated from this model is the same as (or very

close to) the embeddings generated from separated special-

ized models. Let V = {Vi}
K
i=1

, where each Vi is a set of

verticals whose data can be combined to train an embedding

model (Section 3.1). Let M = {Mi}
K
i=1

be a set of embed-
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ding models, where each Mi is the model learned for verti-

cal set Vi. Let I = {Ij}
N
j=1

be a set of N training images.

If the vertical-of- Ij ∈ Vs, s = 1 . . .K, its corresponding

model Ms is used to generate embedding features for image

Ij . Let fsj denote the feature embeddings generated from

Ms for image Ij . We want to learn a model U , such that the

features produced from model U are the same as features

produced from separate models. Let fuj denote the feature

embeddings generated from model U . The learning goal is

to find a model U , which can minimize the following loss

function,

L =

N∑

j=1

‖fuj − fsj‖
2

(1)

Note that features fuj is computed from model U , while fsj
may be computed from different models.

The above learning uses L2-loss, instead of triplet loss.

L2-loss is easier to train than triplet loss. It is also easier

to apply learning techniques such as batch normalization

[6]. The above approach allows the use of more unlabeled

data because the product identity (e.g. “Chanel 2.55 classic

flap bag”) is needed for generating the training triplet, while

here only the vertical labels are needed.

3.2.1 Visualization

Feature visualization sheds lights on why our approach

works. Figure 2 shows the t-SNE projection ([16]) of the

features generated from the separate models, i.e, fsj . It

includes two thousand images from each vertical, and the

features are projected down to 2-d space for visualization.

From Figure 2 we can see that the feature embeddings fsj
are separated across verticals in the space. In other words,

the embedding model for each vertical fsj (from model Ms)

only uses part of the high dimensional (64-d in our case)

space. Therefore one unified model can be learned to com-

bine all of them. This answers our earlier question: the

model capacity is not the bottleneck but rather the difficulty

in training is.

Figure 2. T-SNE projection for embeddings. Blue: dresses; Red:

footwear; Green: outerwear; Yellow: pants; Black: handbags; Grey: sun-

glasses; Cyan: tops; Magenta: skirt.

3.2.2 Relation to the Distillation work

Our work is inspired by the distillation work in [3]. [3] fo-

cuses on classification models, and our work is to learn fea-

ture embeddings. In [3], an ensemble of models are trained

for the same task, and then the knowledge in the ensemble

is compressed into a single model. In contrast, the separate

models Ms in our work are trained for different tasks. Our

unified model is to consolidate multiple tasks in one model,

and to make more efficient use of the feature space.

4. Experiments

We use Inception V2 ([6]) as the base network, pre-

trained with ImageNet ([12]) data. Other base network can

also be used. For the triplet feature learning (Section 2.2),

the training data are first collected from 200,000 search

queries using Google Image Search, taking 30 images for

each search query. The anchor and the positive images for

the triplets are from the same search query, and the nega-

tives are from a different search query, but in the same ver-

tical as the anchor. We call these triplets “Image Search

triplets”. We send a subset of triplets (20, 000 triplets for

each vertical) to human raters and verify the correctness of

them. We call this second set of triplets “clean triplets”.

In the unified model learning, the same training images are

used as those in triplet embedding learning.

The retrieval performance is measured by top-k accu-

racy, i.e, the percentage of queries with at least one correct

matching item within the first k retrieval results. From the

definition of the metric, for the same model, the bigger k is,

the higher the top-k accuracy is.

4.1. Effect of Combining Training Data

This section presents results on combining different ver-

ticals of training data (Section 3.1). Triplet loss is used

in training (Section 2.2). The first three rows of Table 1

show the top-1 accuracy of (1) models trained individu-

ally on each vertical; (2) the model trained with all verti-

cals combined; (3) models trained with the following ver-

tical combination. Training data from dresses and tops are

combined to train one model; footwear, handbags and eye-

wear are combined to train one model; skirts and pants are

combined; outerwear is trained on its own. This selected

vertical combination is obtained by the method described in

Section 3.1. From Table 1, models trained with the selected

vertical combination give comparable results with individ-

ual models. However, the model trained with all verticals

combined gives inferior results on some verticals such as

eyewear, dresses, tops and outerwear. This shows that it is

not trivial to obtain a satisfying unified model by combining

all the training data.

The above models are trained using “Image Search

triplets”. To further improve the retrieval performance,
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Method bags eyewear footwear dresses tops outerwear pants skirts

Individual models (no FT) 57.5 53.1 26.6 48.6 24.8 26.7 25.5 37.1

All data combined (no FT) 55.6 35.8 25.1 30.9 18.5 17.4 21.9 30.9

Selected vertical combination (no FT) 56.3 46.2 27.6 48.9 27.6 26.7 24.2 35.2

Selected vertical combination (with FT) 66.9 48.3 35.7 59.1 35.2 29.6 27.6 46.4

Table 1: Comparison of top-1 retrieval accuracy. “FT” means fine-tuning, indicating whether the models are fine-tuned with the clean triplets.

Method bags eyewear footwear dresses tops outerwear pants skirts

WTB paper [7] (top-20) 37.4 42.0 9.6 37.1 38.1 21.0 29.2 54.6

Unified Model (top-20) 82.2 77.9 67.3 80.8 56.5 52.2 56.8 76.0

Separate models (top-1) 66.9 48.3 35.7 59.1 35.2 29.6 27.6 46.4

Unified Model (top-1) 68.4 51.0 36.0 55.4 33.0 27.3 27.6 46.0

Separate models (top-5) 76.3 64.1 52.4 74.6 49.2 45.9 43.2 62.4

Unified Model (top-5) 75.6 62.1 53.1 72.5 47.6 43.9 43.4 62.1

Table 2: Comparison of retrieval accuracy. The “top-k” inside the brackets shows which top-k accuracy is evaluated. The “Separate models” are trained

with the selected vertical combination as in Section 4.1. The “Unified Model” is learned by the approach in Section 3.2.

“Clean triplets” are used to fine-tune the models. The last

two rows of Table 1 shows the top-1 accuracy comparison

results. This shows that fine-tuning with the clean data is an

effective way to improve retrieval accuracy.

4.2. Effect of Combining Models

After obtaining separate models according to the se-

lected vertical combination, a unified model for all the ver-

ticals is learned via algorithm in Section 3.2. Table 2 shows

the results. The row ”WTB paper” represents the best top-

20 accuracy in [7] (Table 2). Note that our models and the

models from [7] are trained using different data. The rows

with “Separate models” are from the selected vertical com-

bination (Section 4.1). The rows with “Unified Model” are

from the one unified model (Section 3.2). The results from

the “Unified Model” are very comparable to those of “Sep-

arate models”. Figures 3 shows sample retrieval results.

The unified model is also evaluated on DeepFashion data

[11]. Using the ground-truth bounding boxes, our retrieval

performance is 13.9% (top-1) and 39.2% (top-20), while it

is 7.5% (top-1) and 18.8% (top-20) in [11]. Note that the

numbers are not directly comparable as we use the ground-

truth bounding boxes. However, it serves the purpose of

confirming the quality of our embedding model.

5. Conclusion

This paper presents our discoveries on how to learn a

unified embedding model across all apparel verticals. A

novel way is proposed to ease the difficulty in triplet-based

embedding training. Embeddings from separate specialized

models are used as learning target for the unified model.

The training becomes easier and makes full use of the fea-

ture space. Successful retrieval results are shown on the

learned unified model.
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Figure 3. Sample retrieval results from the unified model. The images to

left of the dashed lines are query images. The items in green bounding

boxes are the correct retrieval results.
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