
Boston University
OpenBU http://open.bu.edu
Computer Science CAS: Computer Science: Technical Reports

1993

Learning Unions of Rectangles with
Queries

Chen, Zhixiang; Homer, Steve. "Learning Unions of Rectangles with Queries",
Technical Report BUCS-1993-010, Computer Science Department, Boston
University, August 1993. [Available from: http://hdl.handle.net/2144/1473]
https://hdl.handle.net/2144/1473
Boston University

Learning Unions of Rectangles

with Queries �

Zhixiang Chen Steven Homer

Department of Computer Science

Boston University

Boston, MA 02215

�The authors were supported by NSF grant CCR91-9103055. The �rst author was also sup-

ported by a Boston University Presidential Graduate Fellowship. Email address: homer@cs.bu.edu,

zchen@cs.bu.edu

Abstract

We investigate the e�cient learnability of unions of k rectangles in the discrete plane
f1; : : : ; ng2 with equivalence and membership queries. We exhibit a learning algorithm
that learns any union of k rectangles with O(k3 log n) queries, while the time complexity
of this algorithm is bounded by O(k5 logn). We design our learning algorithm by
�nding \corners" and \edges" for rectangles contained in the target concept and then
constructing the target concept from those \corners" and \edges". Our result provides
a �rst approach to on-line learning of nontrivial subclasses of unions of intersections of
halfspaces with equivalence and membership queries.

2

1 Introduction

Learning unions of rectangles is closely related to other central problems in machine
learning theory. It is a generalization of learning DNF (disjunctive normal form) for-
mulas and a special case of unions of intersections of half-spaces in f1; : : : ; ngd, two
of the major open problems in computational learning theory. In addition, unions of
rectangles is a very natural concept class, and many practical problems can be easily
represented as special cases of this class. Thus, any e�cient learning algorithm for
unions of rectangles may �nd applications in practice.

In the pac-model, the class of single rectangles over the domain f1; : : : ; ngd was
shown to be polynomial time predictable by Blumer, Ehrenfeucht, Haussler and War-
muth [BEHW]. Long and Warmuth [LW] further proved that unions of a constant
number of rectangles over the domain f1; : : : ; ngd is polynomial time predictable. How-
ever, the problem of predicting unions of nonconstant number of rectangles is open
[LW].

In the on-line model with queries, the problem of learning a single rectangle with
only equivalence queries over the domain f1; : : : ; ngd has been well-studied. The �rst
known lower bound for this problem is
(d logn) (see [L] and [MTc]). There is a learning
algorithm with complexity O(dn) which always issues as its next hypothesis the smallest
rectangle that is consistent with all preceding counterexamples (see the algorithm for
the complementary class 1-CNF in Valiant's seminal paper [V]). Another O(2d log n)
learning algorithm was exhibited in [MTa] and [MTb]. The question whether there
is a learning algorithm for single rectangles whose complexity is O(poly(d; logn)) was
proposed by David Haussler (see also [MTb]). Chen and Maass [CMa, CMb] gave a
positive solution to this open question by introducing a new design technique.

The learning algorithm in [CMa, CMb] for rectangles consists of 2d separate search
strategies which search for the 2d boundaries of the target rectangle. A learning algo-
rithm with this type of modular design tends to fail because of the well-known \ credit
assignment problem": which of the 2d local search strategies should be \blamed" when
the global algorithm makes an error? This di�culty was overcome there (see also [CMc])
by employing local search strategies that are able to tolerate certain types of one-sided
errors. Based on this design technique and more powerful local search strategies which
can tolerate certain types of two-sided errors, Chen [C] exhibited an O(log2 n) algo-
rithm for learning unions of two rectangles in the discrete plane f1; : : : ; ng2 with only
equivalence queries while the hypothesis space of the learning algorithm is the same as
the target concept class. Recently, Auer [AU] has designed a variation of the learning
algorithm for BOXd

n that also learns with O(d2 logn) counterexamples, and that toler-
ates a fraction of at most 1=(16d2) false counterexamples (in arbitrary distribution). He
also proved that the number of equivalence queries required to learn BOXd

n is bounded
below by
(d2 log n= logd).

In contrast to learning unions of k rectangles, much research has been done on
learning k-term DNF formulas. The standard strategy for learning k-term DNF formu-
las uses a hypothesis space of l-CNF formulas and runs in time O(dk), where d is the

3

number of input variables [V]. Another O(dk) learning algorithm which uses a represen-
tation of general DNF formulas was also obtained in [BS]. With the added ability of the
learner to make membership queries, a wider collection of DNF subclasses are known
to be learnable. These include monotone DNF formulas in [V] and read-twice DNF
formulas in [AP] and [H]. For learning k-term DNF formulas with equivalence queries
and membership queries, Angluin [Ab] designed an algorithm whose running time is
O(dk

2

); another remarkable result is due to Blum and Rudich [BR], they exhibited an
O(d2O(k)) learning algorithm.

Enlightened by those positive results on learning k-term DNF formulas with queries,
we begin to investigate the e�cient learnability of unions of k rectangles, a general
class of k-term DNF formulas. We say a concept is a \tree" if it is a union of at most
k rectangles that are \piled" on some �xed \trunk" (a vertical line). We will give a
formal de�nition of a \tree" in the next section. In section 3 we design an O(k log n)
algorithm for learning a \tree" by �nding its \corners" and \edges", assuming that
its trunk is known to the learner. We then show how to use this design strategy to
learn any union of k rectangles. We prove in section 4 that with a slightly larger
hypothesis space one can learn any unions of k rectangles over the domain f1; : : : ; ng2

using O(k3 logn) equivalence and membership queries, while the time complexity of
the learning algorithm is bounded by O(k5 logn). Our result provides a contrast to
the known upper bounds for the learning complexity of k-term DNF formulas, since all
those known bounds are exponential in k.

Baum [Ba] studied the learnability of intersections of halfspaces. He has shown
that intersections of halfspaces are probably almost correctly learnable in an extended
version of the PAC model where the learner may also ask membership queries, provided
that the distribution and the target concept are chosen in a \non-malicious manner".
Baum [Bb] also studied the pac-learnabilty of a union of halfspaces. Bultman and
Maass [BM] have shown that a variety of intersections of halfspaces over the domain
f1; : : : ; ng2 are e�ciently learnable using only membership queries. One may note that,
in essence, Bultman and Maass' learning algorithm requires exactly one equivalence
query. Our result provides a �rst approach to on-line learning of nontrivial subclasses
of unions of intersections of halfspaces with equivalence and membership queries.

2 Preliminaries

Our learning model is the standard model for on-line learning with equivalence and
membership queries (see [Aa], [L] and [MTc]). A learning process for a concept class
C over a domain X is viewed as a dialogue between a learner A and the environment.
The goal of the learner A is to learn an unknown target concept Ct 2 C that has been
�xed by the environment. In order to gain information about Ct the learner proposes
hypothesis H from a �xed hypothesis space H with C � H � 2X . Whenever H 6= Ct

for the proposed hypothesis H, the environment responds with some counterexample
g 2 H 4 Ct = (Ct � H) [(H � Ct). g is called a positive counterexample (PCE) if
g 2 (Ct�H). g is called a negative counterexample (NCE) if g 2 (H�Ct). The learner

4

i1
Tree 1 with trunk

x = i1

i2
Tree 2 with trunk

x = i2

This is not a tree.

p

q

Figure 1: Tree Concept via Non-tree Concept

may also ask membership queries \x 2 Ct?" for some x 2 X , to which the environment
responds with the reply \yes" or \no". One also calls this x a counterexample. The
learning complexity LC-MEMB(A) of a learner A is the maximal number of equivalence
and membership queries that A needs in some learning process of this type before it
can uniquely identify the target concept Ct. The learning complexity LC-MEMBH(C)
of the concept class C is the learning complexity of the best algorithm that learns C,
assuming that the algorithm issues only hypotheses in H. One sets LC-MEMB(C)=LC-
MEMBC(C).

>From now on we let [i; j] denote the set fi; i+ 1; : : : ; jg for any integers i; j 2 N
with i � j. Let BOXd

n = f
Qd

i=1[ai; bi] j 1 � ai; bi � n for i = 1; : : : ; dg: We consider
for any integer k � 1 the concept class

U-k-BOXd
n = fC1 [� � � [Ck j Ci 2 BOXd

n for i = 1; : : : ; kg:

over the domain X = [1; n]d. Note that for any target concept Ct = C1 [: : : [Ck 2
U-k-BOX2

n, there may exist di�erent sets of k rectangles D1; : : : ; Dk such that Ct =
D1 [: : : [Dk. Note also that a single point and a line segment are special cases of
rectangles. For any Ct 2 U-k-BOX2

n , one says that Ct is a tree if there is an i 2 [1; n]
such that, for any z = (u; v) 2 Ct, [i; u]� [v; v] � Ct if i � u, or [u; i]� [v; v] � Ct if
u < i. One calls the y-axis-parallel line x = i the trunk of the tree Ct. For a given
tree, there may exist many di�erent trunks for it. In �gure 1, the �rst two concepts
are trees, while the third concept is not a tree, since the two points p and q can not be
assigned to any trunk at the same time. De�ne

TREEn;k = fCt 2 U-k-BOX2
n j Ct is a treeg

Let INTn = f[i; j] j i � j and i; j 2 [1; n]g. De�ne the concept class U-k-INTn =
fI1 [: : :[Ik j I1; : : : ; Ik 2 INTng over the domain [0; n+ 1]. Note that for any Ct 2
U-k-BOX2

n, for any axis-parallel segment It in the domain [0; n + 1]2, Ct \ It can be
viewed as a concept transformed from some concept in U-k-INTn. For convenience, we
simply consider Ct \ It as a concept in U-k-INTn. Consider any target concept It 2

5

U-k-INTn, let x 2 It such that x is known to the learner. one de�nes the following
binary search algorithm with membership queries to �nd a boundary (a; b) for It on
the right side of x. Where one says that (a; b) is a boundary of It if a 2 It, b 62 It, and
either b = a+ 1; or b = a� 1.

Algorithm BMn:

Set b1 = x; h1 = n+ 1.
For any br; hr; r � 1; let qr = br + dhr�br2 e.
If hr = br + 1 then stop, otherwise ask whether qr is in It.
If yes then set br+1 = qr, and hr+1 = hr .
Otherwise, set br+1 = br, hr+1 = qr

Proposition 2.1 For any target concept It 2 U-k-INTn, assume that x 2 It is
known to the learner. Then, the algorithm BMn �nds a boundary (b; b + 1) for the
target concept It with at most dlogne + 3 membership queries.

Proof. In the process of the algorithm BMn , for any r � 1, x � br < hr � n + 1,
br 2 It; hr 62 It, hr+1 � br+1 �

n
2r + 3. Thus, with at most dlog ne + 3 membership

queries, one can �nd a br 2 It with hr = br + 1 62 It. 2

Remark. One can also de�ne a dual version of the algorithm DBMn which �nds a
boundary (b; b� 1) for It on the left side of x with at most dlogne + 3 queries.

3 Learning Tree-Shape Unions of k Rectangles

We assume in this section that for each tree-shape target concept Ct 2 TREEn;k, the
trunk of Ct is known to the learner when the learner begins to learn it. The idea behind
this assumption is that when the learner wants to learn a target concept in U-k-BOX2

n,
he can use queries to �nd some trunks of the trees of the target concept. Once he knows
the trunk of a tree, he then employs a copy of the algorithm for tree-shape concepts
developed in this section to �nd the tree.

We now consider the structural properties of a tree-shape concept. We �rst extend
our domain [1; n]2 to [0; n + 1]2 by assuming that all points in [0; n + 1]2 � [1; n]2

are outside any concept in U-k-BOX2
n. For any Ct 2 TREEn;k, we say that r =<

r1; r2; r3 > with rj = (xj ; yj), j = 1; 2; 3, is a corner-witness for Ct, if r1 2 Ct, r2; r3 62 Ct,
y2 = y1; x3 = x1, and one of the following conditions holds:

1. x2 = x1 + 1; y3 = y1 + 1;
2. x2 = x1 + 1; y3 = y1 � 1;
3. x2 = x1 � 1; y3 = y1 + 1;
4. x2 = x1 � 1; y3 = y1 � 1.

The intuition of a corner-witness r =< r1; r2; r3 > of a concept Ct 2 TREEn;k is that
r1 is a real corner of some rectangle contained in Ct. One says that e =< e1; e2 > with

6

i
Tree concept with trunk x = i

Every point relates to a corner-witness.
Every or point relates to an edge-witness.
Each point does not relate to any witness.

Figure 2: Corner-witness via Edge-witness

ej = (xj ; yj), j = 1; 2, is an edge-witness of Ct, if e1 2 Ct, e2 62 Ct, y2 = y1, and one of
the following conditions holds:

5. x2 = x1 + 1;
6. x2 = x1 � 1.

Note that when e =< e1; e2 > is an edge-witness for Ct, then e1 is on a vertical edge
of some rectangle contained in Ct. For any target concept Ct 2 TREEn;k, let t0 be
the �xed trunk for Ct, R(Ct) be the set of all corner-witnesses and, E(Ct) be the
set of all edge-witnesses. We also de�ne an equivalence relation among edge-witnesses
in E(Ct). For any two edge-witnesses e =< e1; e2 > and d =< d1; d2 > in E(Ct),
ej = (xj ; yj); dj = (uj; vj); j = 1; 2, we say that e is equivalent to d i�, x1 = u1,
[minfx1; t0g; maxfx1; t0g]� [minfy1; v1g; maxfy1; v1g] � Ct, and there are no corner-
witnesses between the x-axis-parallel lines y = y1 and y = v1, i.e. for any corner-witness
< r1; r2; r3 > with rj = (pj ; qj); j = 1; 2; 3, either q1 � minfy1; v1g, or q1 � maxfy1; v1g.
Using this equivalence relation, we can divide E(Ct) into disjoint equivalence classes
such that any two edge-witnesses are in the same equivalence classes if they are equiv-
alent. Let E�(Ct) denote the set of all equivalence classes of E(Ct).

Lemma 3.1 kR(Ct)k � 4k; kE�(Ct)k � 4k � 2.

Proof. For any corner-witness r =< r1; r2; r3 >2 R(Ct), by the de�nition, r1 2 Ct,
but r2; r3 62 Ct. Fix a rectangle Cj in Ct such that r1 2 Cj , then r1 is a real corner of
Cj . We also note that two di�erent corner-witnesses correspond to two di�erent real
corners of one rectangle (or two di�erent rectangles) in Ct. There are at most k di�erent
rectangles in Ct, each contains at most four di�erent corners. Thus, kR(Ct)k � 4k. For

7

each corner-witness r =< r1; r2; r3 >2 R(Ct), one draws an x-axis-parallel line from the
trunk of Ct through the point r1 to the boundary of the domain. Then we know, by the
de�nition of E�(Ct), that every equivalence class corresponds to a vertical boundary
segment of some rectangles in Ct between two of those adjacent x-axis-parallel lines.
There are at most k di�erent rectangles in Ct, one can draw at most 2k di�erent x-axis-
parallel lines on either side of the trunk. Thus, there are at most 2(2k � 1) di�erent
equivalence classes in E�(Ct). 2

For any Ct 2 TREEn;k, de�ne S(Ct) = R(Ct) [E�(Ct). In other words, S(Ct) is
the set of all real corners and all real vertical edges (each of those edge represents a
di�erent equivalence class) of the rectangles in Ct. An easy observation is that, given
the set S(Ct) of a concept Ct, one can e�ciently construct Ct.

Theorem 3.2 There is an algorithm L-TREE for learning TREEn;k such that, LC-
MEMB(L-TREE)=O(k logn), and the hypothesis space used by the learning algorithm
L-TREE is U-(4k-2)-BOX2

n, provided that the trunk of the input concept is known to
the learner. Moreover, the computation steps of the learning algorithm L-TREE are
also bounded by O(k3 logn).

Proof. Consider any target concept Ct 2 TREEn;k. Let t0 be the trunk of Ct

which is known to the learner. The algorithm L-TREE works in stages. At each stage
r, let Rr(Ct) and Er(Ct) be the set of all corner-witnesses and the set of all edge-
witnesses received by the learner within �rst r stages, respectively. Let Wr be the set
of all counterexamples received by the learner within �rst r stages. For any corner-
witness g =< g1; g2; g3 >2 Rr(Ct), one draws a horizontal line from the trunk x = t0
through the point g1 to the boundary of the domain. Let Lr be the set of all those
horizontal lines and the additional two lines y = 0, i.e. the bottom boundary of the
domain, and y = n + 1, i.e. the upper boundary of the domain. Initially, one sets
W0 = E0(Ct) = R0(Ct) = �, and L0 = fy = 0; y = n + 1g.

At stage 0, the learner proposes the hypothesis H1 = � to the environment to ask
an equivalence query. If Ct = H1 = � then the learner learns Ct, otherwise the learner
receives a PCE z = (z1; z2) from the environment. The algorithm L-TREE then uses
a copy of the algorithm BMn on the line segment Iz = [0; n + 1] � [z2; z2] to �nd a
boundary of Ct\ Iz on the right side of z if z is not on the left side of the trunk x = t0,
or on the left side of z if otherwise. We may assume that z is not on the left side of
the trunk, the case that z is on the left side can be coped with in the same manner.
By Proposition 2.1, one �nds an edge-witness e =< (b; y); (b+ 1; y) > for Ct. One sets
E1 = feg, and sets W1 be the set of all counterexamples received during the process of
the algorithm BMn . One keeps R1(Ct) = R0(Ct) and L1 = L0. At any stage r � 1,
the algorithm L-TREE executes the following three tasks sequentially.

Task 1: Constructing the New Hypothesis Hr+1.
For each edge witness e =< e1; e2 > 2 Er(Ct), one �nds the lowest horizontal line le
above the point e1 and the highest horizontal line he below e1 among all lines in Lr.
One then draws a vertical line ve from he through e1 to le. One �nally de�nes the

8

t0 t0

z

z1

z2

Iz

b (b+1)

l e

he

ve

q1

z2

Iz

I

u

w

z1

u+1

p 1 p1+1 v v+1
Finding New Witness: Finding New Witness:
 When z is a PCE When z is an NCE

Figure 3: Finding New Witnesses

new hypothesis Hr+1 as the set of all those points p such that, there is an edge-witness
e 2 Er(Ct) such that p is in the rectangle formed by the trunk, the lines ve; le and he.

Task 2: Asking an Equivalence Query.
One checks whether Hr+1 is consistent with all counterexamples in Wr. If yes then one
asks an equivalence query for Hr+1 to the environment. If Ct = Hr+1 then one learns
Ct, otherwise one receives a counterexamples from the environment, one then puts this
counterexample into Wr.

Task 3: Finding New Witnesses.
One �nds a counterexample z = (z1; z2) 2 Wr. We may assume that z1 � t0, the case
that z1 < t0 can be treated similarly. When z is a PCE, then one employs a copy of
the algorithm BMn�t0+1 on the line segment Iz = [t0; n + 1] � [z2; z2] to �nd a new
edge-witness e =< (b; z2); (b+ 1; z2) > on the right side of z.

When z = (z1; z2) is an NCE, one then �nds an edge-witness e =< e1; e2 > such
that z is in the rectangle formed by the trunk, the lines ve; le and he (see Task 1 for the
de�nitions of those lines). Let ej = (pj ; qj); j = 1; 2: We may also assume that z2 > q1,
since the case that z2 < q1 can be treated in the same way. Because Ct is a tree and
z is an NCE, z2 6= q1. One �rst employs a copy of the algorithm BMz2�q1+1 on the
line segment Iz = [z1; z1] � [q1; z2] to �nd a boundary w =< (z1; u); (z1; u + 1) > for
Ct\Iz . At next step, one employs another copy of the algorithm BMn�t0+1 on the line
segment Iw = [t0; n+1]� [u; u] to �nds an edge-witness < (v; u); (v+ 1; u) >. One also
obtains a corner-witness < (v; u); (v+ 1; u); (v; u+ 1) >, since (z1; u+ 1) 62 Ct and Ct

is a tree. The execution procedure of Task 3 is illustrated in �gure 3.

Finally, put all the obtained edge-witnesses (corner-witnesses) into Er(Ct) (Rr(Ct))
to get Er+1(Ct) (Rr+1(Ct)). Put all the received counterexamples into Wr to get Wr+1.

We now analyze the complexity of the algorithm L-TREE. For each edge witness

9

e =< e1; e2 > 2 Er(Ct), let le (he) be the lowest (highest) horizontal line above (below)
the point e1 among all lines in Lr. One de�nes an equivalence relation among edge-
witnesses in Er(Ct) as follows, for any e =< e1; e2 > and d =< d1; d2 > in Er(Ct),
ej = (xj ; yj), dj = (uj ; vj), j = 1; 2, e is equivalent to d i�, x1 = u1, le = ld; he = hd, and
[minft0; x1g; maxft0; x1g] �[minfy1; v1g; maxfy1; v1g] contains no NCE's in Wr. Note
that this equivalence relation is an approximation to the equivalence relation de�ned on
edge-witnesses in E(Ct). Let E

�

r(Ct) denote the set of all equivalence classes derived by
the equivalence relation among edge-witnesses in Er(Ct). Let Sr(Ct) = Rr(Ct)[E

�

r (Ct).

Lemma 3.3 kSr+1(Ct)k � kSr(Ct)k + 1 for any r � 1; provided that the learner
doesn't learn Ct at stage r.

Proof. At stage r � 1, the algorithm L-TREE �rst constructs the hypothesis Hr+1

in the execution of Task 1, L-TREE then asks an equivalence query for Hr. Since the
learner doesn't learn the target concept Ct at stage r by the assumption, he receives
a counterexample from the environment and adds this counterexample into Wr. Thus,
Hr+1 is not consistent with counterexamples in Wr, this implies that the learner will
�nd in the execution of Task 3 a counterexample z = (z1; z2) 2 Wr for Hr, L-TREE
then �nds new witnesses for Ct with z. We may assume that z1 � t0, the case that
z1 < t0 can be proved in the same manner.

When z is a PCE, L-TREE employs a copy of the algorithm BMn�t0+1 on the line
segment Iz = [t0; n + 1] � [z2; z2] to �nd an edge-witness e =< (b; z2); (b + 1; z2) >
on the right side of z. Let lz (hz) be the lowest (highest) horizontal line in Lr which
is above (below) z. Since z is a PCE to Hr+1, according to the construction of the
hypothesis Hr+1, there is no edge-witness d = (d1; d2) in Sr such that, d1 is between
the lines lz and hz , and on the right side of the vertical line x = z1. This implies that
no edge-witness in Er(Ct) is equivalent to e. One sets Er+1(Ct) = Er(Ct)[feg. Hence,
kSr+1(Ct)k = kRr+1(Ct)k+ kE�

r+1(Ct)k = kRr(Ct)k+ kE�

r (Ct)k+ 1 = kSr(Ct)k+ 1:

Now assume that z = (z1; z2) is an NCE. By the construction of Hr+1, there is an
edge-witness e =< e1; e2 >2 Er(Ct) such that z is in the rectangle formed by the trunk
x = t0, and the lines ve; le; and he. Note that there may exist other edge-witnesses in
Er(Ct) between le and he. However, for any of those edge-witness d, ld = le; hd = he.
In the execution of Task 3, the learner �nds a corner-witness g =< g1; g2; g3 > for Ct

such that g1 is between the horizontal lines le and he, but not on either of those two
lines, this implies that g 2 Rr+1(Ct)�Rr(Ct). Thus, kSr+1(Ct)k � kSr(Ct)k+ 1. 2

Lemma 3.4 kSr(Ct)k � 8k � 2 for any r � 1.

Proof. By Lemma 3.1, kRr(Ct)k � kR(Ct)k � 4k, since Rr(Ct) � R(Ct). Note also
that Er(Ct) � E(Ct). We de�ne a mapping fun from E�

r (Ct) to E
�(Ct) as follows. For

any equivalence class � 2 E�

r (Ct), let min(�) denote the lowest edge-witness in �. More
precisely, for each edge-witness in � we draw an x-axis-parallel line through it, then
min(�) is the edge-witness representing the lowest line. For any � 2 E�(Ct), let eq(�)

10

denote the equivalence class in E�(Ct) that contains �. De�ne for any � 2 E�

r (Ct),

fun(�) = eq(min(�)):

We now show that fun is a one-to-one mapping from E�

r (Ct) to E
�(Ct). In order to do

so, we only need to show that, for any �1; �2 2 E�

r (Ct), if �1 6= �2, then eq(min(�1)) 6=
eq(min(�2)), i.e. fun(�1) 6= fun(�2). Let min(�1) =< e1; e2 >, min(�2) =< d1; d2 >,
ej = (xj ; yj), dj = (uj ; vj), j = 1; 2. Assume that �1 6= �2, then, by the de�nition
of the equivalence relation for Er(Ct), one of the following three cases is true. Case
1 : x1 6= u1. This implies by the de�nition that eq(min(�1)) 6= eq(min(�2)). Case
2 : either lmin(�1) 6= lmin(�2), or hmin(�1) 6= hmin(�2). We may assume without loss of
generality that lmin(�1) is above lmin(�2). Thus, the PCE e1 in the edge-witness min(�1)
is between l�1 and l�2 , since otherwise either l�1 = l�2 or l�1 is below l�2 , contradicting to
the assumption. Hence, there is at least one corner-witness between the x-axis-parallel
lines y = y1 and y = v1. This implies that eq(min(�1)) 6= eq(min(�2)). Case 3 : there is
an NCE in Wr which is in [minft0; x1g; maxft0; x1g]� [minfy1; v1g; maxfy1; v1g]. This
also implies that there is at least one corner-witness between the x-axis-parallel lines
y = y1 and y = v1. So, eq(min(�1)) 6= eq(min(�2)). By the above analysis, we know that
kE�

r (Ct)k � kE�(Ct)k � 4k � 2; the right inequality holds by Lemma 3.1. Therefore,
kSr(Ct)k = kRr(Ct)k+kE�

r (Ct)k � 4k+(4k�2) = 8k�2: 2 1 By Lemma 3.3 and 3.4,
the algorithm L-TREE can execute at most 8k-2 stages. At each stage, the learner asks
at most one equivalence query, and employs at most two copies of the algorithm BMn .
So, by Proposition 2.1, the learner asks at most 2(dlogne+3)+1 queries. Thus, the total
queries required by the learner is at most (8k� 2)(2(dlogne+3)+1) = (16k� 4)dlogne
+56k� 14. Hence, LC-MEMB(L-TREE) (16k� 4)dlogne +56k� 13 = O(k logn), and
kWrk � (16k � 4)dlogne +56k � 13. Note that any two di�erent edge-witnesses share
no common points, thus Er(Ct) � kWrk=2 � (8k � 2)dlogne +28k � 6. Note also that
kRr(Ct)k � 4k by Lemma 3.1. So, at stage r, the computation steps of executing Task
1 is O(kRr(Ct)k + kEr(Ct)k) = O(k logn). In the execution of Task 2, the learner is
required to test whether each counterexample in Wr is consistent with the hypothesis
Hr+1, while Hr+1 can be represented by 8k � 2 boundaries, since kSrk � 8k � 2 by
Lemma 3.4. So, executing Task 2 takes kWrk(8k� 2) = O(k2 logn) computation steps.
In the execution of Task 3, the learner runs at most two copies of the algorithm BMn ,
so the time in executing this task is O(logn). We already know that the algorithm
L-TREE runs for at most 8k � 2 stages. Therefore, the computation steps of L-TREE
is bounded by O(k3 logn). By the proof of Lemma 3.4, E�

r (Ct) � 4k � 2: Since each
equivalence class in E�

r (Ct) witnesses one rectangle in the hypothesis Hr, there are at
most 4k � 2 many di�erent rectangles contained in Hr, it follows that the hypothesis
space used by the algorithm L-TREE is U-(4k � 2)-BOX2

n. This completes the proof
of Theorem 3.1. 2

4 An Algorithm for Learning U-k-BOX2
n

For any Ct 2 U-k-BOX2
n, we observe that there exist trees T1; : : : ; Tl 2 TREEk

n with
l � k such that Ct = T1 [: : : [Tl. Examples of this observation are given in �gure
4. >From this observation, one may divide the task of learning Ct into at most k

11

t1 t2 t1 t2

Tree T Tree T1 1: :

Tree T Tree T2 2: :

Figure 4: Dividing a Concept into Trees

subtasks, in each subtask, one learns a tree Tj, j = 1; : : : ; l; by employing one copy
of the algorithm L-TREE. In our algorithm we may actually �nd Ct as a union of
more than k trees. We will prove, however, that never require more than 2k + 1 trees.
However, given a corner-witness (or an edge-witness) for the target concept Ct, one
does not know in general to which tree of the target concept the witness belongs. The
substantial problem involved in this type of design is how one can e�ciently derive a
corner-witness (or an edge-witness) for a speci�c tree Tj from a witness for the target
concept Ct. Another di�culty occurs when the learner receives a PCE z from the
environment for the target concept Ct. It is trivial that z belongs to some tree Tj of
the target concept. However, the learner does not know to which tree Tj z belongs.
Thus, whenever the learner receives a PCE, the learner has to decide for which tree of
the target concept to run a copy of the algorithm L-TREE.

Theorem 4.1 There is an algorithm LUKB for learning U-k-BOX2
n such that, LC-

MEMB(LUKB) = O(k3 log n), the hypothesis space used by the algorithm LUKB is U-
(8k2 � 2)-BOX2

n. Moreover, the computation steps of the algorithm LUKB is bounded
by O(k5 logn).

Proof. Consider any target concept Ct 2 U-k-BOX2
n . The algorithm LUKB works in

stages. At each stage r, the algorithm chooses a set of vertical lines which divide the
domain into subdomains formed by two adjacent vertical lines, and the upper boundary
and the bottom boundary of the original domain. Whthin each such subdomain, one
de�nes a tree of the target concept. One then runs a copy of the algorithm L-TREE
for the tree in each subdomain. If the learner �nds that the part of the target concept
in some subdomain is not a tree, then the learner chooses a new vertical line dividing
the subdomain into two parts, and then de�nes a new tree in each of the two parts.
Let Vr = fv1; : : : ; vmrg be the set of such vertical lines �xed by the learner within �rst
r stages to divide the original domain into subdomains. Assume that vi+1 is on the
right side of vi. Vr will be de�ned stage by stage during the execution of the algorithm

12

LUKB. Let Xr
i denote the subdomain formed by the vertical lines vi; vi+1, and the

upper boundary and the bottom boundary of the original domain. Let T r
i be the tree

de�ned in the subdomain Xr
i . As in the construction of the algorithm L-TREE, let Rr

i

and Er
i be the set of all corner-witnesses and the set of all edge-witnesses received by

the learner within the �rst r stages for the tree T r
i , respectively. For each corner-witness

< z1; z2; z3 > in Rr
i , one draws a horizontal line from the trunk of the tree T r

i through
the point z1 to the boundary of the subdomain Xr

i . Let Lr
i be the set of all those

horizontal lines and the additional two lines y = 0, i.e. the bottom boundary of the
original domain, and y = n + 1, i.e. the upper boundary of the original domain. Let
Wr be the set of all the counterexamples received by the learner within �rst r stages.

Initially, the learner proposes a hypothesis H0 = � to the environment to ask an
equivalence query. If Ct = H0 then the learner learns it, otherwise the learner receives a
PCE z = (z1; z2) from the environment. The learner then sets V0 = fx = 0; x = n+1g,
i.e. V0 contains exactly the left boundary and the right boundary of the original domain.
The learner de�nes the tree T 0

1 by giving its trunk x = z1. The algorithm LUKB then
uses a copy of the algorithm BMn on the line segment Iz = [0; n + 1] � [z2; Z2] to
�nd an edge-witness of Ct \ Iz on the right side of z. By Proposition 2.1, one �nds
an edge-witness e =< (b; y); (b+ 1; y) > for Ct. One sets E0

1 = feg, R0
1 = �. Let

L0
1 = fy = 0; y = n + 1g, i.e. L0

1 contains exactly the bottom boundary and the upper
boundary of the original domain. Let W0 be the set of z and all counterexamples
received during the execution of the algorithm BMn. At any stage r � 1, the algorithm
LUKB executes the following three tasks sequentially.

Task 1�: Constructing the New Hypothesis Hr+1.
For each two adjacent vertical lines vi; vi+1 2 Vr = fv1; : : : ; vmrg, one runs a copy of the
algorithm L-TREE for the tree T r

i in the subdomain Xr
i to construct the hypothesis

Hr+1
i : Let Hr+1 = Hr+1

1 [: : : [Hr+1
mr�1 be the next hypothesis for the target concept

Ct.

Task 2�: Asking an Equivalence Query.
One checks whether Hr+1 is consistent with all counterexamples in Wr. If yes then one
asks an equivalence query for Hr+1 to the environment. If Ct = Hr+1 then one learns
Ct, otherwise one receives a counterexample from the environment. One then puts this
counterexample into Wr.

Task 3�: Finding New Witnesses.
One �nds a counterexample z = (z1; z2) 2 Wr. We may assume z 2 Xr

i . We only
consider that z is on the right side of the trunk of the tree T r

i , the case that z is on
the left side of the trunk of the tree can be coped with in the same way. If z is a PCE,
then one runs the algorithm L-TREE for the tree T r

i in the subdomain Xr
i . When

z = (z1; z2) is an NCE, one then �nds an edge-witness e =< e1; e2 >2 Er
i such that

z is in the rectangle formed by the trunk of the tree T r
i , the vertical line ve, and the

horizontal lines he; le 2 Lr
i . Let ej = (pj ; qj); j = 1; 2: For the de�nitions of the lines

ve; he; le, the reader may refer the construction of the algorithm L-TREE. The learner
asks a membership query for the point w = (z1; q1), which is the projection of the point
z on the line segment from the trunk of the tree T r

i through the edge-witness e to the
boundary of the subdomain Xr

i . If the learner receives the answer that w is in the

13

vi
vi+1ti

z

w

le

ve

he

e
z

w

ve

eIe

le

he

vi ti
vi+2

X
r+1
i

X
r
i

X
r+1
i+1

When z is an NCE, ask whether When z is an NCE and w is not in
w is in the target concept. the target concept, then find a new
x = ti is the trunk of the tree
in the subdomain Xri

. the subdomain Xri into two parts,
Xr+1i and Xr+1i+1

.

bb-1

tree with the trunk x=b, and divide

Figure 5: Finding New Witnesses | a New Approach

target concept Ct, then the learner just runs the algorithm L-TREE for the tree T r
i in

the subdomain Xr
i to �nd new witnesses. If the answer is that w is not in the target

concept, then by the de�nition of a tree, e1 is not a PCE for the tree T r
i , so e is not an

edge-witness for it. In this case, the learner runs a copy of the algorithm DBMp1�z1+1

on the line segment Ie = [z1; p1]� [q1; q1] to �nd a boundary < (b� 1; q1); (b; q1) > for
Ct \ Ie. Here, (b; q1) 2 Ct \ Ie, (b� 1; q1) 62 Ct \ Ie. The learner de�nes a new vertical
line x = b�1 and lets Vr+1 = Vr[fx = b�1g. The learner thus divides the subdomain
Xr

i into two parts Xr+1
i and Xr+1

i+1 . Xr+1
i is bounded by the lines vi and x = b � 1,

Xr+1
i is bounded by the lines x = b�1 and vi+1. De�ne a new tree T r+1

i as the old tree
T r
i in Xr+1

i . De�ne another new tree T r+1
i+1 in Xr+1

i+1 by giving its trunk x = b. Let Rr+1
i+1

be the set of all corner-witnesses of the tree T r
i that are on the right side of the line

x = b�1 (not on the line). Let Er+1
i+1 be the set of all edge-witnesses of the tree T r

i that

are on the right side of the line x = b� 1 (not on the line). Let Rr+1
i = Rr

i �Rr+1
i+1 , Let

Er+1
i = Er

i �Er+1
i+1 . All the other sets remain the same. The main part of the execution

of Task 3� is illustrated in �gure 5.

Remark. At any stage r, when one employs a copy of the algorithm L-TREE in
the subdomain Xr

i formed by the vertical lines vi, vi+1, and the upper and bottom
boundaries of the original domain, a subtle case which one has to consider is that one
needs to extend the subdomain Xr

i in accordance with the construction of the algorithm
L-TREE. Assume that vi and vi+1 are the lines x = a and x = b, respectively. The
extended subdomain is bounded by the vertical lines x = a�1, x = b+1, and the upper
and bottom boundaries of the original domain. We assume in the extended domain that
all points outside Xr

i are NCE's for the tree T
r
i de�ned in the subdomain Xr

i . Let x = ti
be the trunk of the tree T r

i . Thus, every PCE on the lines x = a and x = b witnesses
an edge-witness for the tree T r

i . Suppose that z = (z1; z2) is a PCE on one of those two

14

(a-1) a b (b+1)

ti

X
r
i

The Extended Domain

 z2

z2-1

zw

w1

Iw

p

Figure 6: Extending a Subdomain

lines, say, x = b. If one �nds an NCE w = (w1; w2) with ti � w1 � b, and w2 = z2 � 1
or z2 + 1, say, w2 = z2 � 1, then one considers in the execution of the algorithm for
the tree T r

i that z witnesses a corner-witness by assuming that all points on the line
segment Iw = [w1 + 1; b]� [z2 � 1; z2 � 1] are NCE's for Ct \ Xr

i . If one knows that
this assumption is not true by �nding a PCE p on the line segment Iw, then according
to the construction of Task 3� one will divide the subdomain Xr

i into two parts. Our
discussions are illustrated in �gure 6.

Lemma 4.1 For any r � 1, kVrk � 2k + 2.

Proof. Since initially one puts the left boundary x = 0 and the right boundary x = n+1
of the original domain into V0, so at any later stage r � 1, Vr contains those two
vertical lines. At any stage r � 1, the learner may add at most one vertical line into
Vr during the execution of Task 3�. This happens in the case that the learner �nds
an NCE z = (z1; z2) 2 Wr \ Xr

i which is not consistent with the hypothesis Hr+1

and the projection of z on the line segment, which is from the trunk of the tree T r
i

through the edge-witness e = (e1; e2) to the boundary of the subdomain Xr
i , is an

NCE, where ej = (pj; qj); j = 1; 2: We may assume without loss of generality that z is
on the right side of the trunk of the tree T r

i . The learner then employs a copy of the
algorithm DBMp1�z1+1 on the line segment Ie = [z1; p1] � [q1; q1] to �nd a boundary
< (b� 1; q1); (b; q1) > for Ct \ Ie. The learner de�nes a new vertical line x = b� 1 and
adds it into Vr. Since < (b � 1; q1); (b; q1) > (and thus the line x = b � 1) witnesses
a vertical boundary of some rectangle in the target concept Ct, since also there are at
most k di�erent rectangles in Ct, so the learner can add altogether at most 2k di�erent
vertical lines into Vr. Thus, kVrk � 2k + 2. 2

By Lemma 4.1, there are stages ri1 ; : : : ; rij , j � 2k, such that at any stage riu ; 1 �
u � j, the learner adds a vertical line into Vriu . Between any two adjacent stages riu ,

15

riu+1 , the learner runs at most iu+1 + 1 copies of the algorithm L-TREE. By Theorem
3.2, the algorithm LUKB makes O((iu+1+1)k log n) queries, does O((iu+1+1)k3 log n)
computation steps, and issues a hypothesis in U-((iu+1+1)(4k� 2))-BOX2

n. Thus, the
hypothesis space used by LUKB is U-((2k+ 1)(4k� 2))-BOX2

n = U-(8k2 � 2)-BOX2
n,

the total number of queries and the total number of computation steps required by the
algorithm LUKB are bounded respectively by

jX

u=1

O((iu+1 + 1)k log n) = O(k3 log n);

jX

u=1

O((iu+1 + 1)k3 log n) = O(k5 logn):

2

5 Concluding Remarks

It is well known that learning unions of rectangles is closely related to the problem of
learning DNF formulas and the problem of learning unions of intersections of halfspaces.
In this paper, we have made a �rst step towards the problem of learning unions of k
rectangles in the discrete plane f1; : : : ; ng2 by designing an e�cient learning algorithm
that uses a slightly larger hypothesis space. The number of equivalence and membership
queries required by our algorithm is bounded by O(k3 log n), while the time complexity
of it is bounded by O(k5 logn). Our result provides a contrast to the known upper
bounds for learning k-term DNF formulas with queries, since all those are exponential
in k.

It is easy to see that, for any k = O(n), the number of equivalence and membership
queries required for learning unions of k rectangles in the discrete plane f1; : : : ; ng2

is bounded below by
(k logn). However, we do not know whether the upper bound
O(k3 logn) of our algorithm is optimal. Another open problem is whether one can
design an e�cient learning algorithm that also achieves an O(poly(k) logn) upper bound
but uses U-k-BOX2

n as the hypothesis space. Finally, since U-k-BOXd
n is a general

case of k-term DNF formulas with at most d variables, it would be very interesting to
investigate whether one can design an e�cient algorithm for learning U-O(log d)-BOXd

n

by extending Blum and Rudich's technique developed in [BR] for learning O(logn)-term
DNF formulas.

AcknowledgmentWe would like to thank Wolfgang Maass and Ming Li for their
discussions. We would also like to thank Avrim Blum for explaining the algorithm
developed in [BR] to us, Anselm Blumer for his critiques on the draft of this paper, and
Phil Long for his valuable comments on our work.

16

References

[Aa] D. Angluin, \Queries and concept learning", Machine Learning, 2, 1988, pages
319-342.

[Ab] D. Angluin, \Learning k-term DNF formulas using queries and counterexamples,
Technical Report YaleU/DCS/RR-559, Yale University department of Computer
Science, 1987.

[AP] H. Aizenstein, L. Pitt, \Exact learning of read-twice DNF formulas", Proc of
the 32th Annual Symposium on Foundations of Computer Science, 1991, pages
170-179.

[AU] P. Auer, \On-line learning of rectangles in noisy environment", Proc of the 6th
Annual Workshop on Computational Learning Theory, 1993.

[Bb] E.B. Baum, \Polynomial time algorithms for learning neural nets, Proc of the 3th
Annual Workshop on Computational Learning Theory, pages 258-272. Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1990.

[Ba] E.B. Baum, \On learning a union of halfspaces", Journal of Complexity, 6(1990),
pages 67-101.

[BR] A. Blum, S. Rudich, \Fast learning of k-term DNF formulas with queries", Proc
of the 24th Annual Symposium on Theory of Computing, 1992, pages 382-389.

[BS] A. Blum, M. Singh, \Learning functions of k terms", Proc of the 3th Annual
Workshop on Computational Learning Theory, pages 144-153. Morgan Kauf-
mann Publishers, Inc., San Mateo, CA, 1990.

[BEHW] A. Blumer, A. Ehrenfeucht, D. David, and M. Warmuth, \Learnability and the
Vapnik-Chervonenkis dimension", J. ACM, pages 929-965, 1989.

[BM] W. Bultman, W. Maass, \Fast identi�cation of geometric objects with mem-
bership queries", Proc of the 4th Annual Workshop on Computational Learning
Theory, pages 337-353. Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1991.

[C] Z. Chen, \Learning unions of two rectangles in the plane with equivalence
queries", Proc of the 6th Annual Workshop on Computational Learning The-
ory, 1993.

[CMa] Z. Chen, W. Maass, \On-line learning of rectangles", Proc of the 5th Annual
Workshop on Computational Learning Theory, pages 16-28. Morgan Kaufmann
Publishers, Inc., San Mateo, CA, 1992.

[CMb] Z. Chen, W. Maass, \On-line learning of rectangles and unions of rectangles",
to appear in Machine Learning.

[CMc] Z. Chen, W. Maass, \ A solution of the credit assignment problem in the case of
learning rectangles", Proc of the Second International Workshop on Analogical
Inductive and Inference, pages 26-34, 1992.

[H] T. Hancock, \Learning 2� DNF formulas and k� decision trees", Proc of the 4th
Annual Workshop on Computational Learning Theory, pages 199-209. Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1991.

17

[L] N. Littlestone, \Learning quickly when irrelevant attributes abound: a new
linear threshold algorithm",Machine Learning, 2, 1987, pages 285-318.

[BM] P. Long, M. Warmuth, \Composite geometric concepts and polynomial pre-
dictability", Proc of the 3th Annual Workshop on Computational Learning The-
ory, pages 273-287. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1991.

[MTa] W. Maass, G. Tur�an, \On the complexity of learning from counterexamples",
Proc of the 30th Annual Symposium on Foundations of Computer Science, 1988,
pages 262-267.

[MTb] W. Maass, G. Tur�an, \Algorithms and lower bounds for on-line learning of
geometric concepts", Report 316 (Oct. 1991), IIG-Report Series, Technische
universitaet Graz; to appear in Machine Learning.

[MTc] W. Maass, G. Tur�an, \Lower bound methods and separation results for on-line
learning models", Machine Learning, 1992, pages 107-145.

[V] L. Valiant, \A theory of the learnable", Comm. of the ACM, 27, 1984, pages
1134-1142.

18

