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Abstract

We consider the problem of learning an unknown Markov Decision Process (MDP)
that is weakly communicating in the infinite horizon setting. We propose a Thomp-
son Sampling-based reinforcement learning algorithm with dynamic episodes
(TSDE). At the beginning of each episode, the algorithm generates a sample from
the posterior distribution over the unknown model parameters. It then follows the
optimal stationary policy for the sampled model for the rest of the episode. The
duration of each episode is dynamically determined by two stopping criteria. The
first stopping criterion controls the growth rate of episode length. The second
stopping criterion happens when the number of visits to any state-action pair is

doubled. We establish Õ(HS
√
AT ) bounds on expected regret under a Bayesian

setting, where S and A are the sizes of the state and action spaces, T is time, and
H is the bound of the span. This regret bound matches the best available bound for
weakly communicating MDPs. Numerical results show it to perform better than
existing algorithms for infinite horizon MDPs.

1 Introduction

We consider the problem of reinforcement learning by an agent interacting with an environment while
trying to minimize the total cost accumulated over time. The environment is modeled by an infinite
horizon Markov Decision Process (MDP) with finite state and action spaces. When the environment
is perfectly known, the agent can determine optimal actions by solving a dynamic program for the
MDP [1]. In reinforcement learning, however, the agent is uncertain about the true dynamics of the
MDP. A naive approach to an unknown model is the certainty equivalence principle. The idea is to
estimate the unknown MDP parameters from available information and then choose actions as if the
estimates are the true parameters. But it is well-known in adaptive control theory that the certainty
equivalence principle may lead to suboptimal performance due to the lack of exploration [2]. This
issue actually comes from the fundamental exploitation-exploration trade-off: the agent wants to
exploit available information to minimize cost, but it also needs to explore the environment to learn
system dynamics.

One common way to handle the exploitation-exploration trade-off is to use the optimism in the
face of uncertainty (OFU) principle [3]. Under this principle, the agent constructs confidence sets
for the system parameters at each time, find the optimistic parameters that are associated with the
minimum cost, and then selects an action based on the optimistic parameters. The optimism procedure
encourages exploration for rarely visited states and actions. Several optimistic algorithms are proved
to possess strong theoretical performance guarantees [4–10].
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An alternative way to incentivize exploration is the Thompson Sampling (TS) or Posterior Sampling
method. The idea of TS was first proposed by Thompson in [11] for stochastic bandit problems. It has
been applied to MDP environments [12–17] where the agent computes the posterior distribution of
unknown parameters using observed information and a prior distribution. A TS algorithm generally
proceeds in episodes: at the beginning of each episode a set of MDP parameters is randomly
sampled from the posterior distribution, then actions are selected based on the sampled model during
the episode. TS algorithms have the following advantages over optimistic algorithms. First, TS
algorithms can easily incorporate problem structures through the prior distribution. Second, they are
more computationally efficient since a TS algorithm only needs to solve the sampled MDP, while an
optimistic algorithm requires solving all MDPs that lie within the confident sets. Third, empirical
studies suggest that TS algorithms outperform optimistic algorithms in bandit problems [18, 19] as
well as in MDP environments [13, 16, 17].

Due to the above advantages, we focus on TS algorithms for the MDP learning problem. The main
challenge in the design of a TS algorithm is the lengths of the episodes. For finite horizon MDPs
under the episodic setting, the length of each episode can be set as the time horizon [13]. When there
exists a recurrent state under any stationary policy, the TS algorithm of [15] starts a new episode
whenever the system enters the recurrent state. However, the above methods to end an episode can
not be applied to MDPs without the special features. The work of [16] proposed a dynamic episode
schedule based on the doubling trick used in [7], but a mistake in their proof of regret bound was
pointed out by [20]. In view of the mistake in [16], there is no TS algorithm with strong performance
guarantees for general MDPs to the best of our knowledge.

We consider the most general subclass of weakly communicating MDPs in which meaningful finite
time regret guarantees can be analyzed. We propose the Thompson Sampling with Dynamic Episodes
(TSDE) learning algorithm. In TSDE, there are two stopping criteria for an episode to end. The
first stopping criterion controls the growth rate of episode length. The second stopping criterion
is the doubling trick similar to the one in [7–10, 16] that stops when the number of visits to any
state-action pair is doubled. Under a Bayesian framework, we show that the expected regret of TSDE

accumulated up to time T is bounded by Õ(HS
√
AT ) where Õ hides logarithmic factors. Here S

and A are the sizes of the state and action spaces, T is time, and H is the bound of the span. This
regret bound matches the best available bound for weakly communicating MDPs [7], and it matches
the theoretical lower bound in order of T except for logarithmic factors. We present numerical results
that show that TSDE actually outperforms current algorithms with known regret bounds that have the
same order in T for a benchmark MDP problem as well as randomly generated MDPs.

2 Problem Formulation

2.1 Preliminaries

An infinite horizon Markov Decision Process (MDP) is described by (S,A, c, θ). Here S is the state
space, A is the action space, c : S × A → [0, 1]1 is the cost function, and θ : S2 × A → [0, 1]
represents the transition probabilities such that θ(s′|s, a) = P(st+1 = s′|st = s, at = a) where
st ∈ S and at ∈ A are the state and the action at t = 1, 2, 3 . . . . We assume that S and A are finite
spaces with sizes S ≥ 2 and A ≥ 2, and the initial state s1 is a known and fixed state. A stationary
policy is a deterministic map π : S → A that maps a state to an action. The average cost per stage of
a stationary policy is defined as

Jπ(θ) = lim sup
T→∞

1

T
E

[

T
∑

t=1

c(st, at)
]

.

Here we use Jπ(θ) to explicitly show the dependency of the average cost on θ.

To have meaningful finite time regret bounds, we consider the subclass of weakly communicating
MDPs defined as follows.

Definition 1. An MDP is weakly communicating (or weak accessible) if its states can be partitioned
into two subsets: in the first subset all states are transient under every stationary policy, and every
two states in the second subset can be reached from each other under some stationary policy.

1Since S and A are finite, we can normalize the cost function to [0, 1] without loss of generality.
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From MDP theory [1], we know that if the MDP is weakly communicating, the optimal average cost
per stage J(θ) = minπ Jπ(θ) satisfies the Bellman equation

J(θ) + v(s, θ) = min
a∈A

{

c(s, a) +
∑

s′∈S

θ(s′|s, a)v(s′, θ)
}

(1)

for all s ∈ S. The corresponding optimal stationary policy π∗ is the minimizer of the above
optimization given by

a = π∗(s, θ). (2)

Since the cost function c(s, a) ∈ [0, 1], J(θ) ∈ [0, 1] for all θ. If v satisfies the Bellman equation, v
plus any constant also satisfies the Bellman equation. Without loss of generality, let mins∈S v(s, θ) =
0 and define the span of the MDP as sp(θ) = maxs∈S v(s, θ). 2

We define Ω∗ to be the set of all θ such that the MDP with transition probabilities θ is weakly
communicating, and there exists a number H such that sp(θ) ≤ H . We will focus on MDPs with
transition probabilities in the set Ω∗.

2.2 Reinforcement Learning for Weakly Communicating MDPs

We consider the reinforcement learning problem of an agent interacting with a random weakly
communicating MDP (S,A, c, θ∗). We assume that S, A and the cost function c are completely
known to the agent. The actual transition probabilities θ∗ is randomly generated at the beginning
before the MDP interacts with the agent. The value of θ∗ is then fixed but unknown to the agent. The
complete knowledge of the cost is typical as in [7, 15]. Algorithms can generally be extended to the
unknown costs/rewards case at the expense of some constant factor for the regret bound.

At each time t, the agent selects an action according to at = φt(ht) where ht =
(s1, s2, . . . , st, a1, a2, . . . , at−1) is the history of states and actions. The collection φ = (φ1, φ2 . . . )
is called a learning algorithm. The functions φt allow for the possibility of randomization over actions
at each time.

We focus on a Bayesian framework for the unknown parameter θ∗. Let µ1 be the prior distribution
for θ∗, i.e., for any set Θ, P(θ∗ ∈ Θ) = µ1(Θ). We make the following assumptions on µ1.

Assumption 1. The support of the prior distribution µ1 is a subset of Ω∗. That is, the MDP is weakly
communicating and sp(θ∗) ≤ H .

In this Bayesian framework, we define the expected regret (also called Bayesian regret or Bayes risk)
of a learning algorithm φ up to time T as

R(T, φ) = E

[

T
∑

t=1

[

c(st, at)− J(θ∗)
]]

(3)

where st, at, t = 1, . . . , T are generated by φ and J(θ∗) is the optimal per stage cost of the MDP.
The above expectation is with respect to the prior distribution µ1 for θ∗, the randomness in state
transitions, and the randomized algorithm. The expected regret is an important metric to quantify the
performance of a learning algorithm.

3 Thompson Sampling with Dynamic Episodes

In this section, we propose the Thompson Sampling with Dynamic Episodes (TSDE) learning
algorithm. The input of TSDE is the prior distribution µ1. At each time t, given the history ht, the
agent can compute the posterior distribution µt given by µt(Θ) = P(θ∗ ∈ Θ|ht) for any set Θ. Upon
applying the action at and observing the new state st+1, the posterior distribution at t + 1 can be
updated according to Bayes’ rule as

µt+1(dθ) =
θ(st+1|st, at)µt(dθ)

∫

θ′(st+1|st, at)µt(dθ′)
. (4)

2See [7]for a discussion on the connection of the span with other parameters such as the diameter appearing
in the lower bound on regret.
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Let Nt(s, a) be the number of visits to any state-action pair (s, a) before time t. That is,

Nt(s, a) = |{τ < t : (sτ , aτ ) = (s, a)}|. (5)

With these notations, TSDE is described as follows.

Algorithm 1 Thompson Sampling with Dynamic Episodes (TSDE)

Input: µ1

Initialization: t← 1, tk ← 0
for episodes k = 1, 2, ... do
Tk−1 ← t− tk
tk ← t
Generate θk ∼ µtk and compute πk(·) = π∗(·, θk) from (1)-(2)
while t ≤ tk + Tk−1 and Nt(s, a) ≤ 2Ntk(s, a) for all (s, a) ∈ S ×A do

Apply action at = πk(st)
Observe new state st+1

Update µt+1 according to (4)
t← t+ 1

end while
end for

The TSDE algorithm operates in episodes. Let tk be start time of the kth episode and Tk = tk+1− tk
be the length of the episode with the convention T0 = 1. From the description of the algorithm,
t1 = 1 and tk+1, k ≥ 1, is given by

tk+1 = min{t > tk : t > tk + Tk−1 or Nt(s, a) > 2Ntk(s, a) for some (s, a)}. (6)

At the beginning of episode k, a parameter θk is sampled from the posterior distribution µtk . During
each episode k, actions are generated from the optimal stationary policy πk for the sampled parameter
θk. One important feature of TSDE is that its episode lengths are not fixed. The length Tk of each
episode is dynamically determined according to two stopping criteria: (i) t > tk + Tk−1, and (ii)
Nt(s, a) > 2Ntk(s, a) for some state-action pair (s, a). The first stopping criterion provides that the
episode length grows at a linear rate without triggering the second criterion. The second stopping
criterion ensures that the number of visits to any state-action pair (s, a) during an episode should not
be more than the number visits to the pair before this episode.

Remark 1. Note that TSDE only requires the knowledge of S, A, c, and the prior distribution µ1.
TSDE can operate without the knowledge of time horizon T , the bound H on span used in [7], and
any knowledge about the actual θ∗ such as the recurrent state needed in [15].

3.1 Main Result

Theorem 1. Under Assumption 1,

R(T, TSDE) ≤ (H + 1)
√

2SAT log(T ) + 49HS
√

AT log(AT ).

The proof of Theorem 1 appears in Section 4.

Remark 2. Note that our regret bound has the same order in H,S,A and T as the optimistic
algorithm in [7] which is the best available bound for weakly communicating MDPs. Moreover, the
bound does not depend on the prior distribution or other problem-dependent parameters such as the
recurrent time of the optimal policy used in the regret bound of [15].

3.2 Approximation Error

At the beginning of each episode, TSDE computes the optimal stationary policy πk for the parameter
θk. This step requires the solution to a fixed finite MDP. Policy iteration or value iteration can be used
to solve the sampled MDP, but the resulting stationary policy may be only approximately optimal in
practice. We call π an ǫ−approximate policy if

c(s, π(s)) +
∑

s′∈S

θ(s′|s, π(s))v(s′, θ) ≤ min
a∈A

{

c(s, a) +
∑

s′∈S

θ(s′|s, a)v(s′, θ)
}

+ ǫ.
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When the algorithm returns an ǫk−approximate policy π̃k instead of the optimal stationary policy πk

at episode k, we have the following regret bound in the presence of such approximation error.

Theorem 2. If TSDE computes an ǫk−approximate policy π̃k instead of the optimal stationary policy
πk at each episode k, the expected regret of TSDE satisfies

R(T, TSDE) ≤ Õ(HS
√
AT ) + E

[

∑

k:tk≤T

Tkǫk

]

.

Furthermore, if ǫk ≤ 1
k+1 , E

[

∑

k:tk≤T Tkǫk

]

≤
√

2SAT log(T ).

Theorem 2 shows that the approximation error in the computation of optimal stationary policy is only

additive to the regret under TSDE. The regret bound would remain Õ(HS
√
AT ) if the approximation

error is such that ǫk ≤ 1
k+1 . The proof of Theorem 2 is in the appendix due to the lack of space.

4 Analysis

4.1 Number of Episodes

To analyze the performance of TSDE over T time steps, define KT = argmax {k : tk ≤ T} be the
number of episodes of TSDE until time T . Note that KT is a random variable because the number
of visits Nt(x, u) depends on the dynamical state trajectory. In the analysis for time T we use the
convention that t(KT+1) = T + 1. We provide an upper bound on KT as follows.

Lemma 1.

KT ≤
√

2SAT log(T ).

Proof. Define macro episodes with start times tni
, i = 1, 2, . . . where tn1

= t1 and

tni+1
= min{tk > tni

: Ntk(s, a) > 2Ntk−1
(s, a) for some (s, a)}.

The idea is that each macro episode starts when the second stopping criterion happens. Let M be the
number of macro episodes until time T and define n(M+1) = KT + 1.

Let T̃i =
∑ni+1−1

k=ni
Tk be the length of the ith macro episode. By the definition of macro episodes,

any episode except the last one in a macro episode must be triggered by the first stopping criterion.
Therefore, within the ith macro episode, Tk = Tk−1 +1 for all k = ni, ni +1, . . . , ni+1− 2. Hence,

T̃i =

ni+1−1
∑

k=ni

Tk =

ni+1−ni−1
∑

j=1

(Tni−1 + j) + Tni+1−1

≥
ni+1−ni−1

∑

j=1

(j + 1) + 1 = 0.5(ni+1 − ni)(ni+1 − ni + 1).

Consequently, ni+1 − ni ≤
√

2T̃i for all i = 1, . . . ,M . From this property we obtain

KT =nM+1 − 1 =

M
∑

i=1

(ni+1 − ni) ≤
M
∑

i=1

√

2T̃i. (7)

Using (7) and the fact that
∑M

i=1 T̃i = T we get

KT ≤
M
∑

i=1

√

2T̃i ≤

√

√

√

√M

M
∑

i=1

2T̃i =
√
2MT (8)

where the second inequality is Cauchy-Schwarz.

From Lemma 6 in the appendix, the number of macro episodes M ≤ SA log(T ). Substituting this
bound into (8) we obtain the result of this lemma.

Remark 3. TSDE computes the optimal stationary policy of a finite MDP at each episode. Lemma 1

ensures that such computation only needs to be done at a sublinear rate of
√

2SAT log(T ).
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4.2 Regret Bound

As discussed in [13, 20, 21], one key property of Thompson/Posterior Sampling algorithms is that for
any function f , E[f(θt)] = E[f(θ∗)] if θt is sampled from the posterior distribution at time t. This
property leads to regret bounds for algorithms with fixed sampling episodes since the start time tk of
each episode is deterministic. However, our TSDE algorithm has dynamic episodes that requires us
to have the stopping-time version of the above property.

Lemma 2. Under TSDE, tk is a stopping time for any episode k. Then for any measurable function
f and any σ(htk)−measurable random variable X , we have

E

[

f(θk, X)
]

=E

[

f(θ∗, X)
]

Proof. From the definition (6), the start time tk is a stopping-time, i.e. tk is σ(htk)−measurable.
Note that θk is randomly sampled from the posterior distribution µtk . Since tk is a stopping time,
tk and µtk are both measurable with respect to σ(htk). From the assumption, X is also measurable
with respect to σ(htk). Then conditioned on htk , the only randomness in f(θk, X) is the random
sampling in the algorithm. This gives the following equation:

E

[

f(θk, X)|htk

]

= E

[

f(θk, X)|htk , tk, µtk

]

=

∫

f(θ,X)µtk(dθ) = E

[

f(θ∗, X)|htk

]

(9)

since µtk is the posterior distribution of θ∗ given htk . Now the result follows by taking the expectation
of both sides.

For tk ≤ t < tk+1 in episode k, the Bellman equation (1) holds by Assumption 1 for s = st, θ = θk
and action at = πk(st). Then we obtain

c(st, at) = J(θk) + v(st, θk)−
∑

s′∈S

θk(s
′|st, at)v(s′, θk). (10)

Using (10), the expected regret of TSDE is equal to

E

[

KT
∑

k=1

tk+1−1
∑

t=tk

c(st, at)
]

− T E

[

J(θ∗)
]

=E

[

KT
∑

k=1

TkJ(θk)
]

− T E

[

J(θ∗)
]

+ E

[

KT
∑

k=1

tk+1−1
∑

t=tk

[

v(st, θk)−
∑

s′∈S

θk(s
′|st, at)v(s′, θk)

]]

=R0 +R1 +R2, (11)

where R0, R1 and R2 are given by

R0 = E

[

KT
∑

k=1

TkJ(θk)
]

− T E

[

J(θ∗)
]

,

R1 = E

[

KT
∑

k=1

tk+1−1
∑

t=tk

[

v(st, θk)− v(st+1, θk)
]]

,

R2 = E

[

KT
∑

k=1

tk+1−1
∑

t=tk

[

v(st+1, θk)−
∑

s′∈S

θk(s
′|st, at)v(s′, θk)

]]

.

We proceed to derive bounds on R0, R1 and R2.

Based on the key property of Lemma 2, we derive an upper bound on R0.

Lemma 3. The first term R0 is bounded as

R0 ≤E[KT ].
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Proof. From monotone convergence theorem we have

R0 =E

[

∞
∑

k=1

1{tk≤T}TkJ(θk)
]

− T E

[

J(θ∗)
]

=

∞
∑

k=1

E

[

1{tk≤T}TkJ(θk)
]

− T E

[

J(θ∗)
]

.

Note that the first stopping criterion of TSDE ensures that Tk ≤ Tk−1 + 1 for all k. Because
J(θk) ≥ 0, each term in the first summation satisfies

E

[

1{tk≤T}TkJ(θk)
]

≤E

[

1{tk≤T}(Tk−1 + 1)J(θk)
]

.

Note that 1{tk≤T}(Tk−1 + 1) is measurable with respect to σ(htk). Then, Lemma 2 gives

E

[

1{tk≤T}(Tk−1 + 1)J(θk)
]

=E

[

1{tk≤T}(Tk−1 + 1)J(θ∗)
]

.

Combining the above equations we get

R0 ≤
∞
∑

k=1

E

[

1{tk≤T}(Tk−1 + 1)J(θ∗)
]

− T E

[

J(θ∗)
]

=E

[

KT
∑

k=1

(Tk−1 + 1)J(θ∗)
]

− T E

[

J(θ∗)
]

=E

[

KTJ(θ∗)
]

+ E

[(

KT
∑

k=1

Tk−1 − T
)

J(θ∗)
]

≤ E

[

KT

]

where the last equality holds because J(θ∗) ≤ 1 and
∑KT

k=1 Tk−1 = T0 +
∑KT−1

k=1 Tk ≤ T .

Note that the first stopping criterion of TSDE plays a crucial role in the proof of Lemma 3. It allows
us to bound the length of an episode using the length of the previous episode which is measurable
with respect to the information at the beginning of the episode.

The other two terms R1 and R2 of the regret are bounded in the following lemmas. Their proofs
follow similar steps to those in [13, 16]. The proofs are in the appendix due to the lack of space.

Lemma 4. The second term R1 is bounded as

R1 ≤ E[HKT ].

Lemma 5. The third term R2 is bounded as

R2 ≤ 49HS
√

AT log(AT ).

We are now ready to prove Theorem 1.

Proof of Theorem 1. From (11), R(T,TSDE) = R0 +R1 +R2 ≤ E[KT ] + E[HKT ] +R2 where
the inequality comes from Lemma 3, Lemma 4. Then the claim of the theorem directly follows from
Lemma 1 and Lemma 5.

5 Simulations

In this section, we compare through simulations the performance of TSDE with three learning
algorithms with the same regret order: UCRL2 [8], TSMDP [15], and Lazy PSRL [16]. UCRL2 is
an optimistic algorithm with similar regret bounds. TSMDP and Lazy PSRL are TS algorithms for
infinite horizon MDPs. TSMDP has the same regret order in T given a recurrent state for resampling.
The original regret analysis for Lazy PSRL is incorrect, but the regret bounds are conjectured to
be correct [20]. We chose δ = 0.05 for the implementation of UCRL2 and assume an independent
Dirichlet prior with parameters [0.1, . . . , 0.1] over the transition probabilities for all TS algorithms.

We consider two environments: randomly generated MDPs and the RiverSwim example [22]. For
randomly generated MDPs, we use the independent Dirichlet prior over 6 states and 2 actions but
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with a fixed cost. We select the resampling state s0 = 1 for TSMDP here since all states are recurrent
under the Dirichlet prior. The RiverSwim example models an agent swimming in a river who can
choose to swim either left or right. The MDP consists of six states arranged in a chain with the agent
starting in the leftmost state (s = 1). If the agent decides to move left i.e with the river current then
he is always successful but if he decides to move right he might fail with some probability. The cost
function is given by: c(s, a) = 0.8 if s = 1, a = left; c(s, a) = 0 if s = 6, a = right; and c(s, a) = 1
otherwise. The optimal policy is to swim right to reach the rightmost state which minimizes the cost.
For TSMDP in RiverSwim, we consider two versions with s0 = 1 and with s0 = 3 for the resampling
state. We simulate 500 Monte Carlo runs for both the examples and run for T = 105.
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Figure 1: Simulation Results

From Figure 1(a) we can see that TSDE outperforms all the three algorithms in randomly generated
MDPs. In particular, there is a significant gap between the regret of TSDE and that of UCRL2
and TSMDP. The poor performance of UCRL2 assures the motivation to consider TS algorithms.
From the specification of TSMDP, its performance heavily hinges on the choice of an appropriate
resampling state which is not possible for a general unknown MDP. This is reflected in the randomly
generated MDPs experiment.

In the RiverSwim example, Figure 1(b) shows that TSDE significantly outperforms UCRL2, Lazy
PSRL, and TSMDP with s0 = 3. Although TSMDP with s0 = 1 performs slightly better than TSDE,
there is no way to pick this specific s0 if the MDP is unknown in practice. Since Lazy PSRL is also
equipped with the doubling trick criterion, the performance gap between TSDE and Lazy PSRL
highlights the importance of the first stopping criterion on the growth rate of episode length. We also
like to point out that in this example, the MDP is fixed and is not generated from the Dirichlet prior.
Therefore, we conjecture that TSDE also has the same regret bounds under a non-Bayesian setting.

6 Conclusion

We propose the Thompson Sampling with Dynamic Episodes (TSDE) learning algorithm and establish

Õ(HS
√
AT ) bounds on expected regret for the general subclass of weakly communicating MDPs.

Our result fills a gap in the theoretical analysis of Thompson Sampling for MDPs. Numerical results
validate that the TSDE algorithm outperforms other learning algorithms for infinite horizon MDPs.

The TSDE algorithm determines the end of an episode by two stopping criteria. The second criterion
comes from the doubling trick used in many reinforcement learning algorithms. But the first criterion
on the linear growth rate of episode length seems to be a new idea for episodic learning algorithms.
The stopping criterion is crucial in the proof of regret bound (Lemma 3). The simulation results of
TSDE versus Lazy PSRL further shows that this criterion is not only a technical constraint for proofs,
it indeed helps balance exploitation and exploration.
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