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Abstract— We present a robotic walking aid capable of learning

models of users’ walking-related activities. Our walker is instrumented

to provide guidance to elderly people when navigating their environ-

ments; however, such guidance is difficult to provide without knowing

what activity a person is engaged in (e.g., where a person wants to go).

The main contribution of this paper is an algorithm for learning mod-

els of users of the walker. These models are defined at multiple levels

of abstractions, and learned from actual usage data using statistical

techniques. We demonstrate that our approach succeeds in determin-

ing the specific activity in which a user engages when using the walker.

One of our proto-type walkers was tested in an assisted living facility

near Pittsburgh, PA; a more recent model was extensively evaluated in

a university environment.

I. INTRODUCTION

We present a robotic walker for elderly people designed

to provide guidance to people who are cognitively or men-

tally frail and otherwise in danger of getting lost. To as-

sist such people in their daily walking-related activities, it is

beneficial for the walker to acquire a model of people’s daily

routines. Our walker does just this: by passively monitoring

people’s walking activities, it develops a hierarchical model

of people’s daily walking routines.

Our walkers extend commercial walking aids, as shown in

Figure 1. Both proto-types are equipped with a laser-based

navigation system for localization relative to a learned envi-

ronment map, a display for providing directions to its users,

a touch-based interface for receiving commands, and an ac-

tive drive mechanism equipped with a clutch for switching

between active and passive mode. The guidance provided

by the walker is similar to car-based GPS systems, in that

it informs individual users where to go when attempting to

navigate to a target destination [10].

A key ability of our walker is that it learns models of peo-

ple’s motion behaviors. These models are acquired when

the device is used with and without providing guidance. The

model is defined at multiple levels of abstraction: It includes

a representation of principled activities, topological loca-

tions through which a person may navigate, and low-level

metric locations. A hierarchical hybrid semi Markov model

ties together these multiple models into a single coherent

mathematical framework. The parameters of the model are

learned in a separate teach-in phase, in which a person labels

specific activities (e.g., a caregiver). When used for every-

(a) Early prototype (b) Current light-weight walker

Fig. 1. Two robotic walkers developed on top of a commercial walking aid.

Both walkers provide navigational guidance and can, though a clutch,

be controlled so as to park themselves.

day navigational assistance, our learned model is capable

of identifying individual walking-related activities with high

reliability. We conjecture that the ability to learn such mod-

els and recognize individual activities just from the way it

is used is an essential precondition to build truly effective

robotic walking aids for the elderly.

Experimental results illustrate that a highly accurate model

is learned after only a few days of using the walker. In par-

ticular, we have found 100% accuracy in classification of

activities when tested on independently collected data—for

the duration of an entire testing day.

II. PRIOR WORK

The idea of building robotic walking aids is not new. Most

existing robotic devices are active aids—meaning that they

share control over motion with the user—and are aimed at

obstacle avoidance and path navigation. There exist a num-

ber of wheelchair systems [14], [17], [19], [23] as well as

several walker- and cane-based devices [5], [13], [9], [21]

targeted at blind and elderly people. A technology with

some similarities to ours is the walker-based Guido sys-

tem. Guido evolved from Lacey and MacNamara’s PAM-



AID, and was designed to facilitate independent exercise

for the visually impaired elderly. It provides power-assisted

wall or corridor following [9]. Dubowksy et al’s PAMM

(Personal Aid for Mobility and Monitoring, distinct from

PAM-AID) project focuses on health monitoring and navi-

gation for users in an eldercare facility, and most recently

has adopted a custom-made holonomic walker frame as its

physical form [6], [25]. Wasson and Gunderson’s walk-

ers rely on the user’s motive force to propel their devices

and steer the front wheel to avoid immediate obstacles [30],

[29]. A similar device by Morris et al [21] also provides

guidance and force feedback through a haptic interface. All

four of these walkers are designed to exert some corrective

motor-driven force, although passive modes are available.

Our overall approach is similar to [6], [10], [25] in physical

shape and appearance, in that it is based on a light-weight

off-the-shelf walker frame. The ability to provide guidance

is similar in functionality to the one [10], [21]. However,

none of these systems learns and analyzes the motion of

its users. This paper fills this important gap: our walker

is unique in its ability to learn a user model.

Outside the realm of robotic walkers, the idea of learning

models of people’s motion is not new. Most notably, Ben-

newitz et al [2], [3] have developed techniques for learning

models of people’s motion, as observed from a nearby mo-

bile robot. Others have learned behavioral models of people

from camera images [1], [7], [11]. The activity of discrete

activities is also related to the rich literature of plan recogni-

tion [12]. The work here is related, in that it acquires statisti-

cal models of behavior. However, it applies these techniques

to a new and important domain. Further, our approach inte-

grates learning of behaviors at multiple levels of abstraction,

and it ties these together when analyzing high-level activi-

ties.

The specific mathematical models proposed here are hi-

erarchical and mixed discrete-continuous. Within the realm

of discrete statistical models, a more general class of hier-

archical models were proposed in [22], [8], and learning

algorithms were presented in [27]. The work here places

an instance of this more general mathematical model in the

context of a specific application; further, it extends it by

a continuous component, as previously proposed for non-

hierarchical models in [16].

III. LEARNING MODELS OF USERS

A. Hierarchical State Space

Our approach models activities at three levels:

1. The metric location of a person operating the walker is

comprised of her x-y-location along with her heading direc-

tion θ. The location vector at time t is denoted αt. Deter-

mining αt for an instrumented walker is essentially a metric

Fig. 2. Topological decomposition of a large foyer environment in the

Longwood assisted living facility near Pittsburgh, PA..

localization problem, for which a number of effective al-

gorithms exist [4], [15]. In our system, the location αt is

obtained by running the Carmen software package [20].

2. The topological location of a person is determined based

on a manually partitioned environment map into topologi-

cal regions. Regions correspond to rooms, corridors, foy-

ers, and so on. Each of these regions is given a unique

identifier. The topological location at time t is denoted βt.

The topological location is a function of the metric location:

βt = g(αt). Since we obtain accurate metric coordinates

from our metric localizer, we trivially obtain topological lo-

cations as well. Figure 2 depicts a topological decompo-

sition of the environment. While this decomposition was

specified manually, algorithms exist for finding similar de-

compositions automatically [28].

3. The logical activity in which a person is engaged forms

the most abstract level of our hierarchy. We distinguish two

types of activities: Activities carried out in a single location

(e.g., a person eating lunch), and activities that involves mo-

tion between multiple locations (e.g., walking from the din-

ing hall back to one’s room). Each activity is given a unique

identifier. The logical activity at time t will be denoted γt. In

the training phase, we assume the activity is provided (e.g., a

caregiver manually labels the data sequence). During every-

day operation, the activity is not directly observable; thus,

we need a statistical framework for estimating activity from

sequences of locations.

Clearly, the state at each level changes over time. How-

ever, it does so at vastly different time scales. Changes at the

metric location level occur continuously, and are reported

back at a sample rate of ten Hertz. At the the topological

level, changes occur much less frequently: It may take more

than a minute for frail elderly people to move from one topo-

logical region to another. At the activity level, the change is



even slower: An activity can easily persist for half an hour.

To accommodate these vastly different time scales, our

approach utilizes different time indices for the different lev-

els. At the lowest level, we use the regular fixed time inter-

val provided by the Carmen software; time will be denoted

by t. At the topological level, we will use the time index k.

The variable k is incremented whenever the topological lo-

cation changes. Finally, at the activity level we will use the

time index s. The value of s is incremented whenever the ac-

tivity changes. Both more abstract time indices are variable

and depend on a person’s actions. Markov chains in which

states transition at variable rates are known as semi-Markov

chains [18], [26].

The set B = {βk, t[k]} denotes the sequence of topologi-

cal events; here t[k] is the time at which a person’s topolog-

ical location changes. C = {γs, t[s]} shall be the sequence

of activities. Again, t[s] models the time at which such a

change occurs. We note that it is straightforward to extract

the duration of an event. For example, the duration of an

event in B is given by δk = t[k + 1] − t[k].

B. The Hierarchical Probabilistic Semi Markov Model

Our generative probabilistic model—which forms the ba-

sis for the inference of activities from data—is defined through

four conditional probability distributions that characterize

the evolution of state over time. The first two of these distri-

bution operate at the topological time resolution k, whereas

the other two are defined for the activity level time s.

• p(β′ | β, γ) is the the transition probability between topo-

logical locations, conditioned on the activity γ. This prob-

abilistic function defines state transitions at the topological

level.

• p(δ | β, γ) is the distribution over durations spent in topo-

logical regions β, conditioned on the activity γ. Here δ is a

continuous variable. Notice that this distribution is defined

over a continuous domain.

• p(γ′ | γ) measures the transition probability for activities,

modeled at the activity level.

• p(f(t[s]) | γ) is a time-of-day distribution for activities:

It measures the time of day at which an activity γ may be

initiated. Here f(t[s]) is a function that extracts the time-of-

day from a time stamp t by removing the date information.

For example, f(“11:45:22 on 7/12/2003”) =“11:45:22”.

Under this model, the probability of the data sequences B,C

is then given by the following product:

p(B,C) =
∏

k

p(βk | βk−1, γk−1) p(δk | βk, γk)

·
∏

s

p(γs | γs−1) p(f(t[s]) | γs) (1)

Clearly, the probabilistic model has been designed carefully

so as to model the essentials of activities of elderly people

using our walker. For example, our model ignores the spe-

cific metric trajectory defined by the variables α; those are

only used to calculate the topological region β. The reason

for being oblivious to the specific trajectory is its depen-

dence on a great number of factors, such as other people

that might block the way. Our specific choice of temporal

models—the time a person stays at a single topological lo-

cation and the time-of-day an activity is initiated, are highly

informative: The former allows us to identify activities in

which a person stays in the same single topological loca-

tion for extended periods of time (e.g, watching television).

The latter helps us identify activities that occur at regularly

scheduled times, such as eating lunch.

C. Learning The Model

The first two probabilities are defined over discrete spaces.

Hence, we use a Laplacian estimator for estimating these

transition probabilities:

p(β′ | β, γ)

=

∑

k

I(βk = β′ ∧ βk−1 = β ∧ γk−1 = γ) + c

∑

k

I(βk−1 = β ∧ γk−1 = γ) + c|β|
(2)

Here I is the indicator function which is 1 if its argument

is true, and 0 otherwise. The parameter c is the parame-

ter of a Dirichlet prior: It can be thought of as a “pseudo”-

observation that prevents transition probabilities of zero (a

common technique in the literature on speech recognition).

For c = 0, this expression becomes the standard maximum

likelihood estimator.

Similarly, for the activities γ we have

p(γ′ | γ) =

∑

s

I(γs = γ;∧γs−1 = γ) + c

∑

s

I(γs−1 = γ) + c|γ|
(3)

The remaining probability distributions are defined over con-

tinuous values, but conditioned on discrete variables. Our

approach represents these distributions by conditional Gaus-

sian distributions:

p(δ | β, γ) ∼ N (µβ,γ , σ2
β,γ) (4)

p(f(t) | γ) ∼ N (νγ , τ2
γ ) (5)

where N (µ, σ2) denoted a Gaussian with mean µ and vari-

ance σ2. The mean and variance are obtained using the stan-



dard estimation equations:

µβ,γ =

∑

k

δk I(βk = β ∧ γk = γ)

∑

k

I(βk = β ∧ γk = γ)
(6)

σ2
β,γ =

∑

k

[δk − µβ,γ ]2 I(βk = β ∧ γk = γ)

∑

k

I(βk = β ∧ γk = γ)
(7)

and

νγ =

∑

s

f(ts) I(γs = γ)

∑

s

I(γs = γ)
(8)

τ2
γ =

∑

s

[f(ts) − νγ ]2 I(γs = γ)

∑

s

I(γs = γ)
(9)

These estimators generate the maximum likelihood Gaus-

sians.

D. Inferring Activities

During everyday use, we cannot observe the activities γ.

We are only given the set B of topological transitions, and

the times at which γ changes (e.g., detected by a person en-

gaging or disengaging from the walker). The problem of in-

ferring the activities γ from data is then a semi-HMM, short

for semi hidden Markov model. Inference for this model

can then be carried out using any of the standard HMM in-

ference algorithms, such as the Baum Welch algorithm [24]

and its hierarchical extensions [22].

With our walker, we are interested in inferring the present

activity of a person in real time. This is achieved by the

Bayes filter, an algorithm equivalent to the forward pass in

Baum Welch. The Bayes filter calculates, for any time t, the

probability that the person’s activity is γt given the present

and past data. If we denote the data up to time t by B[0; t],
we seek to estimate p(γt | B[0; t]). This expression nicely

decomposes, thanks to our choice of the hierarchical model.

First, we note that if we define s∗ as the time index of the

most recent activity change, we obtain:

p(γt | B[0; t])

=
∑

γs∗

p(γt | γs∗, B[0; t]) p(γs∗ | B[0; t])

=
∑

γs∗

p(γt | γs∗, B[s∗; t]) p(γs∗ | B[0; s∗]) (10)

Here we split the data B into two parts: B[0; s∗] and B[s∗; t].
The set B[0; s∗] contains all items collected before the time

Initially, set π(γ) = uniform for all activities γ.

When activity change detected at time t, use

π(γ′) = p(t | γ′)
∑

γ p(γ′ | γ)π(γ) as the new esti-

mate (after normalization).

When the topological location changes from β to β ′ after

being in β for a duration of δ, multiply π(γ) by p(β ′ | β, γ) ·
p(δ | β, γ) and normalize.

TABLE I

ALGORITHM FOR CALCULATING POSTERIORS π OVER ACTIVITIES γ .

at which s∗ occurred (this time is denoted t[s∗]). The re-

maining data, gathered in the time interval from t[s∗] through

t, is denoted B[s∗; t]. The transformation above exploits the

fact that the hidden variable γ is the only hidden state in

the model—every other state variable is observable. Thus,

γ renders the past and future conditionally independent—

which is the defining property of Markov chains.

In other words, whenever an activity changes, it suffices

to memorize the posterior distribution p(γs | B[0; s]) over

the activity at that time. Data gathered before that activity

change carries no further information relative to the prob-

lem of estimating the current activity. This important char-

acteristic of our approach (and Markov chains in general) is

documented by the fact that (10) is indeed a recursion.

Unfortunately, activities change slowly. However, a sim-

ilar Markov property can be exploited for the estimates be-

tween activity changes.

p(γt | γs∗, B[s∗; t]) ∝ p(f(t[s∗]) | γ)
∏

βk∈B[s∗;t]

p(βk | βk − 1, γ) p(δk | βk, γ) (11)

This again lends itself nicely to a recursive implementation:

While no activity change occurs, the posterior probability

of each activity γ is simply updated in proportion to the

transition probabilities p(βk | βk − 1, γ) and the duration

probabilities p(δk | βk, γ).

The resulting algorithm is depicted in Table I. Notice that

it is extremely simple: Whenever a state change is observed,

the corresponding probability is multiplied into the posterior

state estimate. once a posterior estimate of the activity has

been obtained, it is straightforward to calculate the likeli-

hood of the data sequence from Equation (1).

IV. RESULTS

We conducted a number of experiments to evaluate the

ability of our approach to learn good predictive models of

its users. The model learning results were achieved on data



Fig. 3. Predicted activity using our learned model plotted as log-likelihoods, and the actual activity of a person during an entire day. Each time step on

the horizontal axis corresponds to a change of the topological location or the activity, and each row corresponds to one of nine different activities. The

predictions are remarkably accurate!

collected over a four-day period with an individual user (a

student). Figure 4 shows the testing environment, which

covers three different floor levels in two different buildings

connected by a walkway and two elevators. All results in-

volve genuine motion. For learning, the guidance system

was switched off to avoid the obvious bias asserted by the

active guidance system. Within those four days, we col-

lected more than 60,000 position data, from which we de-

rived a total of 213 topological state transitions. The map

was subdivided into 86 locations. It spanned three different

buildings, and within these buildings a total of three differ-

ent floors, which were accessed through three different sets

of elevators. One of the days was withheld from the data to

serve as independent testing data; all other data was used for

training.

We found that our model predicted people’s activity with

100% accuracy, for a total of 61 activities and topological

location changes in the testing data. This result is illustrated

in Figure 3. Shown there is a sequence of 61 probability

distributions over 9 possible activities. Each distribution is

plotted as log-likelihood: the brighter an activity, the more

likely it is. The red line in this diagram depicts ground truth:

clearly, the prediction of activities is remarkably accurate.

This illustrates that the features chosen in our model are

well-suited for modeling user activities.

Components of the learned model are visualized Figures 5

through 7. Figure 5 shows two examples of topological

transition tables for the conditional probability distribution

p(β′ | β, γ). This distribution measures the probability that

a person enters region β′ from β in activity γ. As should be

apparent from this graph, there is a huge diversity of tran-

sition functions. For the activity “at lunch,” the person re-

mains at a single location (the dining hall), whereas for the

activity “returning from lunch” she traverses a number of

regions in mostly fixed order.

Figure 6 shows the transition table between activities, that

is, the learned probability distribution p(γ ′ | γ). Again,

most activities occur in some sort of sequence, though not

all. This remarkably deterministic behavior is a key reason

for the high predictive accuracy of our approach. Finally,

Figure 7 shows the distribution for the time of day at which

an activity is usually carried out. Here we find specific time

dependence for a number of activities. This should come as

little surprise, since certain activities (such as lunch-related

activities) occur at about the same time every day.

Our guidance activities were rather informal, and are mostly

documented in [10]. We essentially tested the walker with

a number of elderly people, who by and large showed ex-

citement for this new concept. An informal lab evaluation

showed that pointing to the next topological region leads to

more intuitive guidance than pointing in the direction of the

final target location. In a previous related system [21], we

found that the guidance can effectively deliver people at lo-

cations that they might otherwise be unable to find.

V. CONCLUSION

We have presented a robotic walker designed to provide

guidance to people, and that is able to learn models of peo-

ple’s walking activities. Our approach to learning this model

is a hierarchical Markov model that operates at three differ-

ent levels: A metric motion level at which location is de-

scribed by metric coordinates, a topological motion level

which uses topological regions as its basic element, and an

activity level, at which a person’s walking activities are log-

ically subdivided into broader categories.

Our model is trained from labeled data. In particular, our

approach learned transition probabilities for the two upper

levels, and duration and time-of-day distributions. Once

learned, it uses Bayesian filtering to determine the specific

activity in which a person engages. We find after only a few

testing days that our system predicts activities with 100%

accuracy on an independent testing day.

While these results are encouraging, more needs to be

done to turn this walker into a profitable guidance system.

Most importantly, we plan to utilize the learned models in

our guidance system, in the hope of providing the right guid-

ance at the right time even if a person fails to specify the

target location. This should now easily be possible, given

our ability to determine the target location (a function of the



Fig. 4. These three maps together describe the environment in which the

walker is being operated. Each corresponds to a different floor, con-

nected by three different sets of elevators. The total distance spanned

by these maps is several hundred meters.

(a) at lunch (b) returning from lunch

Fig. 5. Two samples of the topological location transition probability

p(δ | β, γ), for the activity “at lunch” and “returning from lunch.”

The former activity takes place at a single location, whereas the latter

involves a long walk back through a number of topological regions.

Fig. 6. The activity transition probability table p(γ ′ | γ) learned from

data. Some of the activities tend to occur in sequence.

Fig. 7. The Gaussians modeling the time-of-day probability p(f(t[s]) |
γ), for the nine different activities in our model. Some of these activi-

ties are remarkably time-specifi c, whereas others are not.



activity). On the mathematical side, we plan to employ tech-

niques that can automatically segment time series, so as to

improve our ability to detect activity change.

Despite these limitations, this paper presents the some-

what surprising result that walking activities can success-

fully be modeled using relatively little training data, and an

appropriately equipped robotic walker.
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